JP2017521814A - 高エネルギー効率、高出力のプラズマトーチ - Google Patents

高エネルギー効率、高出力のプラズマトーチ Download PDF

Info

Publication number
JP2017521814A
JP2017521814A JP2016568013A JP2016568013A JP2017521814A JP 2017521814 A JP2017521814 A JP 2017521814A JP 2016568013 A JP2016568013 A JP 2016568013A JP 2016568013 A JP2016568013 A JP 2016568013A JP 2017521814 A JP2017521814 A JP 2017521814A
Authority
JP
Japan
Prior art keywords
electrode
plasma torch
gas heater
gas
heater plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016568013A
Other languages
English (en)
Other versions
JP6887251B2 (ja
Inventor
ピエール・キャラバン
ミシェル・ジー・ドロエ
Original Assignee
パイロジェネシス・カナダ・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイロジェネシス・カナダ・インコーポレーテッド filed Critical パイロジェネシス・カナダ・インコーポレーテッド
Publication of JP2017521814A publication Critical patent/JP2017521814A/ja
Application granted granted Critical
Publication of JP6887251B2 publication Critical patent/JP6887251B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3468Vortex generators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3421Transferred arc or pilot arc mode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3452Supplementary electrodes between cathode and anode, e.g. cascade
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3494Means for controlling discharge parameters

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)

Abstract

導入されたガスを非常に高い温度に加熱するために電気アークが採用される装置が開示される。本装置は、4つの内部構成要素、すなわちボタンカソードと、3つの円筒同軸構成要素である第1の短いパイロット挿入部と、第2の長い挿入部と、アノードと、を含む。渦発生器は、これらの構成要素の間に配置され、装置内に導入され、アノードとカソードとの間で発生した電気アークによって非常に高い温度まで加熱されることとなるガスに渦流を発生させる。3つの内部構成要素、すなわち、カソード、アノード及びパイロット挿入部の溶融を防ぐために冷却が行われる。しかし、冷却流体への熱損失を制限するために、長い挿入部は絶縁材料からなる。このため、より多くの電気エネルギーがガスへ伝達される。

Description

本出願は、2014年5月16日に出願され、本明細書に参照により組み込まれている係属中の米国仮出願第61/994672号の優先権を主張する。
本発明の対象は、高エネルギー効率、高出力のプラズマトーチに関する。
アークプラズマトーチは、ガスのヒーターとして使用されることが多い。トーチに供給される電力は、トーチ端子間の電流及び電圧の両方に比例し、加熱される導入ガスと接触することにより、トーチ電気アークから伝達される熱量は、トーチ効率に依存する。アーク温度は非常に高く、10000℃にもなるため、トーチ電極は水冷しなければならない。この水冷も、アークから冷却水への熱の伝達となるため、トーチを出て導入ガスに伝達される熱は、電力供給によって提供される電気的エネルギーよりも低い。
このエネルギー損失は、具体的には、水冷される電極の長さに依存することとなる。そのため、排出するガスへの熱の伝達の効率を最大化することができるように、できる限り短い電極を有することが興味深い。しかし、この場合、アーク電圧は、アークの長さに比例するため、小さくなる。必要な電力を得るために、電流を増加しなければならず、これは電流の侵食の増加につながり、より低い電流及び高いアーク電圧で動作する同じ出力の長い電極トーチに比べて、対応する維持コストが高くなる。
そのため、高出力アークプラズマガスヒータートーチについて、動作の選択は、
−高エネルギー伝達効率を有するが高い維持コストを要する高電流型、または
−維持コストは低いが冷却水への熱損失が高い高電圧型である。
過去50年の間に文献に示され、及び/または市販されてきた様々なトーチの提案は、これら2つのカテゴリーの一方に分類可能である。
高電圧を得るためにアークを伸ばすことについて、Ramakrishnan、Camacho、Mogensen、Eschenbach及びHanusによって報告されたように、Tioxide社、SKF社及びAcurex社などのいくつかの企業は、多電極設計及び、必要な高電圧が得られるまで1つの区画から他の区画へアーク発生部を移動させる方法を提案している。この一般的な種類のトーチは、例えば、特許文献1にも示されている。
例えば特許文献2に示され、またはCamachoによって報告されているように、例えば、Westinghouse社、SKF社及びAerospatiale社によって市販されているデバイスについて、高電流での動作の選択の帰結である電極侵食を制限するために、高電流アーク発生部の脚部を、電極表面上で急速に移動させるための磁場を使用することを選択したものもある。
従って、エネルギー効率の高い高出力プラズマトーチが必要とされている。
米国特許第4543470号明細書 米国特許第5132511号明細書
Ramakrishnan, et al, Technological Challenges in Thermal Plasma, CSIRO Publishing
Camacho, Industrial-worthy plasma torches State-of-the-art, Pure & Appl. Chem., Vol. 60, No. 5, pp. 619-632, 1988.
Mogensen, et al, Electrical and Mechanical Technology of Plasma Generation and Control, in Plasma Technology in Metallurgical Processing by J. Feinman, The Iron and Steel Society, 1987, pp. 65-76
Eschenbach, et al, Plasma Torches and Plasma torch Furnaces, in Plasma Technology in Metallurgical Processing by J. Feinman, The Iron and Steel Society, 1987, pp. 77-87.
Hanus, Phoenix Solutions’ Plasma Arc Application and High-Temperature Process Experience, Proceedings Plasma Arc Technology, October 29-30, 1996, pp. 321-352.
従って、新規なプラズマトーチの提供が強く望まれている。
本明細書において説明された実施形態は、1つの態様において、無移送アークモードで動作するように適合されたガスヒータープラズマトーチであって、導入されるガスへの高い熱伝達効率を特徴する、ガスヒータープラズマトーチを提供し、ガスヒータープラズマトーチは、
−円筒形のトーチ本体と、
−トーチ本体の内部に同軸上に取り付けられた円筒形の後方電極と、
−後方電極と同軸上に、後方電極の前方に取り付けられた、貫通穴を有する短いパイロットチューブ状電極と、
−短いパイロット電極と同軸上に、短いパイロット電極の前方に取り付けられた、貫通穴を有する長いチューブ状挿入部と、
−長いチューブ状挿入部と同軸上に、長いチューブ状挿入部の前方に取り付けられた、貫通穴を有する短い前方電極と、
−電極及び長いチューブ状挿入部の両方と円筒形のトーチ本体との間に取り付けられ、シールされた通路を提供する円筒チューブ状筐体であって、トーチの動作時に電極及び長いチューブ状挿入部から熱を除去するために通路を通して流体冷媒が循環する、円筒チューブ状筐体と、
−後方電極とパイロット電極との間に提供され、後方電極とパイロット電極との間のチャンバー内に適切なガスの渦流を発生させるための第1の渦発生器と、
−パイロット電極と長いチューブ状挿入部との間に提供され、長いチューブ状挿入部内に適切なガスの渦流を発生させるための第2の渦発生器と、
−長いチューブ状挿入部と短い前方電極との間に提供され、短い前方電極内に適切なガスの渦流を発生させるための第3の渦発生器と、
−後方電極と前方電極との間に接続され、渦発生器によって提供されたガスの流動を通してアークを維持するための電力供給手段と、
−後方電極とパイロット電極との間にアーク放電を点火するための手段であって、アークが、長いチューブ状挿入部内で、前方電極に到達するのに十分長くなるようにする、アーク放電を点火するための手段と、
−パイロット電極及び前方電極の表面におけるアーク発生点が、電極からの金属の侵食を均一に分布させ、それによってトーチ寿命を延長するために、円運動で電極の表面上を急速に移動するように、電流及び電圧のアークパラメータを、渦発生器で提供されるガス流動と協調させるための手段と、を含む。
また、本明細書において説明される実施形態は、別の態様において、
−トーチ本体と、
−トーチ本体内に取り付けられたチューブ状後方電極と、
−後方電極の前方に取り付けられたパイロットチューブ状電極と
−パイロット電極の前方に取り付けられたチューブ状挿入部と、
−チューブ状挿入部の前方に取り付けられた前方電極と、
−電極及びチューブ状挿入部の両方とトーチ本体との間に取り付けられて通路を提供する筐体であって、通路を通して流体冷媒が循環する、筐体と、
−後方電極とパイロット電極との間のチャンバー内に適切なガスを提供するための第1の供給システムと、
−チューブ状挿入部内に適切なガスを提供するための第2の供給システムと、
−第1の電極内に適切なガスを提供するための第3の供給システムと、
−供給システムによって提供されたガスの流動を通してアークを維持するための電力供給部と、
−後方電極とパイロット電極との間でアーク放電を点火するための点火システムであって、アークが、長いチューブ状挿入部内で、前方電極に到達するのに十分長い、点火システムと、
−電流及び電圧のアークパラメータを供給システムによって提供されるガス流動と協調させるための協調システムと、を含む、ガスヒータープラズマトーチを提供する。
本明細書で説明される実施形態のより良好な理解のため、及びそれらが効果をどのように奏しうるかをより明確に示すために、単なる例として、少なくとも1つの例示的な実施形態を示す添付図面を参照する。
ボタンカソードとパイロット挿入部との間のパイロットアークが、長いチューブ状挿入部内に導かれる高温プラズマガスとともに示された、例示的な実施形態に従うプラズマトーチの断面側面図である。 ボタンカソードとアノードとの間の主アークを示す、プラズマトーチの別の断面側面図である。 第1及び第2のスイッチを閉じることによってパイロットアークにエネルギーを印加してトーチの動作を可能にし、図2に示されるように、アノードにアークを伝達する際に第2のスイッチが開放されうる、例示的な実施形態に従うプラズマトーチの電気的構成の概略図及び断面側面図である。 例示的な実施形態に従う長いチューブ状挿入部の第1の実施形態の要部の概略部分断面図である。 例示的な実施形態に従う長いチューブ状挿入部の第2の実施形態の要部の概略部分断面図である。 例示的な実施形態に従う長いチューブ状挿入部の第3の実施形態の要部の概略部分断面図である。
本装置は、主に、高電流で動作する、非常に高い維持コストを要するエネルギー効率の高いトーチと、高電圧で動作する、維持コストは低いがエネルギー効率が非常に悪いトーチと、から選択しなければならないという、従来のガスヒーターの前述の欠点の少なくともいくつかに対処することを意図される。
そのため、本装置によって、低電流高電圧で動作し、長いアークを有する高出力アークプラズマガスヒータートーチは、ガスへのエネルギー伝達効率が高く、維持コストも低いものとすることができる。
そのために、
a)例えば銅からなり、水冷され、アークのために必要な電子を放出するためのタングステンまたは例えばトリウム、ジルコンもしくはランタンでドープされたタングステンからなる挿入部を備え、または、タングステンまたはタングステンドープ挿入部を有する場合に不活性パイロットガスで動作する必要があることを避けるためにハフニウム挿入部を備えた、ボタンカソードと、
b)例えば銅からなり、水冷され、ボタンカソードと同軸上に取り付けられ、カソードとパイロット挿入部との間の絶縁破壊に続いて確立されるパイロットアークのための一時アノードとして使用される、短いチューブ状パイロット挿入部と、
c)例えば電気的及び熱的に絶縁性の材料からなり、カソード及びパイロット挿入部の両方に対して同軸上に取り付けられ、まず、カソードとパイロット挿入部との間で確立されたパイロットアークによって発生した高温プラズマガスを導き、動作時には、必要なアーク電圧を得るためにアークを延長させるために使用される、長いチューブ状挿入部と、
d)例えば銅からなり、水冷され、カソード、パイロット挿入部及び長い挿入部のアセンブリと同軸上に取り付けられ、カソードとパイロット挿入部との間のパイロット放電によって発生し、長いチューブ挿入部によって導かれた高温プラズマガス内の電圧絶縁破壊に続いてボタンカソードと電極との間に確立された主アークのためのアノードとして使用される、短いチューブ状電極と、
を含む種類のエネルギー効率の高い高出力プラズマトーチが、絶縁材料を含むアーク延長器の使用が冷却水への熱損失を大きく制限するため、高電圧低電力で、ガスへのエネルギー伝達の高いエネルギー効率で動作可能である。
そのため、図面に示されたような、無移送モードの動作のためにのみ適合されたプラズマトーチTは、本発明の例示的な実施形態の特徴を具現化する。トーチTは、図に示された4つの構成要素、すなわちカソード10、パイロット挿入部12、長いチューブ状挿入部15及びアノード16が内部に収容された、例えばステンレス鋼などの金属からなる外部本体(図示されない)を含む。
カソード10は、例えば銅からなり、水冷されたボタン型であり、例えばタングステンまたは例えばトリウム、ジルコンもしくはランタンでドープされたタングステンからなり、アークに必要な電子を放出するための挿入部11を備え、または、タングステンもしくはタングステンドープ挿入部を有する場合に不活性パイロットガスで動作する必要があることを避けるためにハフニウム挿入部を備える。
図1に示されるように、これも例えば銅からなり、水冷されたパイロット挿入部12は、カソード10と同軸上に取り付けられる。パイロット挿入部12は、始動時には、カソード10とパイロット挿入部12との間の電気的絶縁破壊に続いて確立されるパイロットアーク13のための一時アノードとして使用される。
また、図1に示されるように、例えば電気的及び熱的に絶縁性の材料からなり、カソード10及びパイロット挿入部12の両方に同軸上に取り付けられた長いチューブ状挿入部15が、始動時には、カソード10とパイロット挿入部12との間に確立されたパイロットアーク13によって発生した高温プラズマガス14を導くために使用される。長いチューブ状挿入部15の長さは、少なくとも部分的に、所望の動作電圧およびアークの長さに依存する。
図2は、カソード10と下流アノード16との間に確立された主アーク20での通常のトーチ動作を示す。長い挿入部15は、この場合、アーク20、及びガス17、18と接するように使用され、カソード10とパイロット挿入部12との間及びパイロット挿入部12と長い挿入部15との間にそれぞれ設けられた渦発生器(図示されない)によってトーチT内に導入される。追加的なガス19は、長い挿入部15とアノード16との間に配置された第3の渦発生器(図示されない)によって導入される。
ガス19は、主に、必要な保守の間のトーチ動作時間の長さを延長するために、電極からの金属の侵食を均一に分布させることができるように、アーク発生点をアノード表面上で円運動で急速に移動させるために、アノード表面に対して接線方向に導入される。アーク発生点をアノード表面上でさらに急速に移動させ、それによってさらに電極侵食を低減するために、アークに電磁力を印加することができるように、アノード16の周囲に、磁気コイルまたは永久磁石を設けること可能である。
電気的構成Eは図3に示されている。始動から進行するために、第1及び第2のスイッチ21、23が共に閉じられ、DC電力供給部24がオンにされる。カソード10とパイロット挿入部12との間に接続された点火モジュール(図示されない)は、カソードとパイロット挿入部との間のパイロットガスを電離するために使用され、図3に示されるようにDC電力供給部24によってサポートされるパイロットアーク13を確立する。
図1に示されるように、ガス渦発生器(図示されない)によって生じた渦流17、18によって駆動されるパイロットアーク13は、長い挿入部15のチューブ状の通路内にある程度伸びる。さらに、パイロットアーク13によって生じたイオン化したガスは、アノード16とパイロットアーク13の下流延長部との間の電気的抵抗経路をかなり低下させる。抵抗器22は、アノード16とパイロット挿入部12との間の電位差をさらに増大させるために使用される。このように、アノード16の電位がより高くなるため、アーク13がアノード16に到達する前に、延長されたアーク13とアノード16との間の電気的絶縁破壊が良好に生じることとなる。主アーク20の開始において、第2のスイッチ23は接続解除される。
図1、2及び3に示されるように、パイロット挿入部12の内径は長いチューブ状挿入部15の内径よりも小さい。試験時において、パイロット挿入部12の直径d1と、長いチューブ状挿入部15の直径d2との間の比が、アークの安定性に影響を及ぼすことが分かった。1つの実施形態において、主試験を、最大400kWの出力について、1.15から1.35の範囲のd2/d1の比を用いておこなった。
図4、5及び6において、例示的な実施形態に従う装置のさらなる実施形態が示され、これによって、長いチューブ状挿入部のほとんどの要部のみが示されている。これらの実施形態のそれぞれにおいて、例えばほとんど絶縁性の材料からなる長いチューブ状挿入部は、水冷されたほとんど金属からなるチューブ状構成部内に収容される。
図4の実施形態において、内側の挿入部15は、シーリングリング32によってシールされ、互いから絶縁された金属リング31を含むチューブ状構成部内に挿入された1つの部分からなる。
図5の実施形態において、内側の挿入部は、それ自体がシーリングリング35によってシールされ、互いから絶縁された金属リング34によって分離された、絶縁性の材料のリング33を含む。
図6の実施形態において、内側の挿入部はまた、図5に示されたものとは断面の異なる絶縁性の材料のリング36を含む。リング36は、それ自体がシーリングリング38によってシールされ、互いから絶縁された金属リング37によって分離される。
図5及び6において、絶縁材料のリング33及び36の数はそれぞれ、少なくとも部分的に、所望の動作電圧およびアークの長さに依存する。
(図1から4に示されるように)単一の長いチューブ15または(それぞれ図5及び6に示されるように)複数のリング33及び36のいずれかを含む長いチューブ状の挿入部は、例えば、シリコンカーバイドやSaint−Gobain Ceramics社製のHexoloy、またはSaint−Gobain社及びESK社によって製造される窒化ホウ素のような、例えば良好な電気抵抗及び低い熱伝導率を有し、同時に非常に高い融点を有する材料からなる。シリコンカーバイド、Hexoloy、及び窒化ホウ素は、例えば、その熱伝導率が銅よりも約5倍低いため、カソードとアノードとの間の長い挿入部内に導かれた高温プラズマからの熱損失は、銅であった場合のわずか約20%となる。
図面には示していないが、図1、2、3及び4に示されるような単一の長いチューブ15または図5及び6にそれぞれ示されるような複数のリング33及び36のいずれかを含む長いチューブ状挿入部は、その壁に、異なる位置において、ガスを接線方向に導入するためにオリフィスを有して提供される。得られる渦ガス流動は、アークから周囲のガスへの熱伝達を増加させ、そのため、アークを維持するために必要な電圧を増加させる。長いチューブ状挿入部におけるこれらの追加的な渦流動は、挿入部の穴の表面を冷却するだけでなく、アークを安定させ、挿入部の穴の直径を増加させることができ、壁の安定性の必要性が低くなる。
例示的な実施形態をさらに、以下の実施例によって示す。
実施例
比較のために、長いチューブ状の銅アノードまたは図1に関して説明したような絶縁挿入部を備えるプラズマトーチで試験を行った。
両方の場合において、出力は800アンペア及び500ボルトで、400kWであった。空気の流動は1分間に920リットルであった。カソード及びノズルの水冷回路は、これらのトーチ構成部の熱損失の測定を分離することができるように、アノード水冷回路とは独立とした。
カソード及びアノードへの水流は、それぞれ1分間に45リットル及び1分間に40リットルとした。カソードの水温の上昇は、25kWの冷却水への熱伝達を示す両方の場合で、8℃であった。
長いチューブ状銅アノードでは、水温の上昇は、69.7kWの冷却水への熱伝達に相当する25℃であった。
絶縁挿入部を備える場合、アノードの温度上昇は14kWに相当するわずか5℃であった。
対応するトーチ効率は、通常の銅アノードを備えるトーチで76%であり、絶縁挿入部を備えるトーチで90%であり、そのため14%の効率向上となった。
前述の説明は実施形態の例を示しているが、説明された実施形態のいくつかの特徴及び/または機能は、説明された実施形態の動作の思想及び原理から逸脱しない改良を許容することは了解されるであろう。従って、前述したものは、実施形態の例示であり非限定的であることを意図されており、当業者であれば、添付の特許請求の範囲において規定された実施形態の範囲から逸脱せずにその他の変形及び改良がなされうることを理解するであろう。
T トーチ
10 カソード
12 パイロット挿入部
13 パイロットアーク
15 長いチューブ状挿入部
16 アノード
17、18、19 ガス
20 主アーク
21 第1のスイッチ
23 第2のスイッチ
24 DC電力供給部
31 金属リング
32 シーリングリング
33 絶縁性の材料のリング
34 金属リング
35 シーリングリング
36 絶縁性の材料のリング
37 金属リング
38 シーリングリング

Claims (54)

  1. 無移送アークモードで動作するように適合されたガスヒータープラズマトーチであって、導入されるガスへの高い熱伝達効率を特徴とし、
    −円筒形のトーチ本体と、
    −前記トーチ本体の内部に同軸上に取り付けられた円筒形の後方電極と、
    −前記後方電極と同軸上に、前記後方電極の前方に取り付けられた、貫通穴を有する短いパイロットチューブ状電極と、
    −前記短いパイロット電極と同軸上に、前記短いパイロット電極の前方に取り付けられた、貫通穴を有する長いチューブ状挿入部と、
    −前記長いチューブ状挿入部と同軸上に、前記長いチューブ状挿入部の前方に取り付けられた、貫通穴を有する短い前方電極と、
    −前記電極及び前記長いチューブ状挿入部の両方と前記円筒形のトーチ本体との間に取り付けられ、シールされた通路を提供する円筒チューブ状筐体であって、前記トーチの動作時に前記電極及び前記長いチューブ状挿入部から熱を除去するために前記通路を通して流体冷媒が循環する、円筒チューブ状筐体と、
    −前記後方電極と前記パイロット電極との間に提供され、前記後方電極と前記パイロット電極との間のチャンバー内に適切なガスの渦流を発生させるための第1の渦発生器と、
    −前記パイロット電極と前記長いチューブ状挿入部との間に提供され、前記長いチューブ状挿入部内に適切なガスの渦流を発生させるための第2の渦発生器と、
    −前記長いチューブ状挿入部と前記短い前方電極との間に提供され、前記短い前方電極内に適切なガスの渦流を発生させるための第3の渦発生器と、
    −前記後方電極と前記前方電極との間に接続され、前記渦発生器によって提供されたガスの流動を通してアークを維持するための電力供給手段と、
    −前記後方電極と前記パイロット電極との間にアーク放電を点火するための手段であって、前記アークが、前記長いチューブ状挿入部内で、前記前方電極に到達するのに十分長くなるようにする、アーク放電を点火するための手段と、
    −前記パイロット電極及び前記前方電極の表面におけるアーク発生点が、前記電極からの金属の侵食を均一に分布させ、それによってトーチ寿命を延長するために、円運動で前記電極の表面上を急速に移動するように、電流及び電圧のアークパラメータを、前記渦発生器で提供されるガス流動と協調させるための手段と、を含む、ガスヒータープラズマトーチ。
  2. 前記長いチューブ状挿入部が前記短いパイロット電極よりも大きな直径を有する、請求項1に記載のガスヒータープラズマトーチ。
  3. 前記長いチューブ状挿入部が絶縁材料からなる、請求項1に記載のガスヒータープラズマトーチ。
  4. 前記長いチューブ状挿入部が、金属リングによって分離された絶縁材料からなる複数の環状リングを含む、請求項1に記載のガスヒータープラズマトーチ。
  5. 前記長いチューブ状挿入部が、金属リングによって分離された絶縁材料からなる複数の環状リングを含み、前記金属リングが、前記リング間に電気的絶縁を提供するシールによって分離された、請求項1から3のいずれか一項に記載のガスヒータープラズマトーチ。
  6. 前記後方電極が、電子を放出するために、タングステン挿入部または、例えば、トリウム、ジルコンもしくはランタンでドープされたタングステンを有して提供される、請求項1に記載のガスヒータープラズマトーチ。
  7. 前記後方電極が、電子を放出するために、ハフニウム挿入部を有して提供される、請求項1に記載のガスヒータープラズマトーチ。
  8. 前記後方電極、前記パイロット電極及び前記前方電極が銅からなる、請求項1に記載のガスヒータープラズマトーチ。
  9. 前記長いチューブ状挿入部の絶縁材料がシリコンカーバイドからなる、請求項1に記載のガスヒータープラズマトーチ。
  10. 前記長いチューブ状挿入部の絶縁材料がHexoloyシリコンカーバイドからなる、請求項1に記載のガスヒータープラズマトーチ。
  11. 前記長いチューブ状挿入部の絶縁材料が窒化ホウ素からなる、請求項1に記載のガスヒータープラズマトーチ。
  12. 絶縁材料の前記環状リングがシリコンカーバイドからなる、請求項4または5に記載のガスヒータープラズマトーチ。
  13. 絶縁材料の前記環状リングがHexoloyシリコンカーバイドからなる、請求項4または5に記載のガスヒータープラズマトーチ。
  14. 絶縁材料の前記環状リングが窒化ホウ素からなる、請求項4または5に記載のガスヒータープラズマトーチ。
  15. オリフィスが、前記チューブ状挿入部の様々な位置に設けられ、前記アークのカラムの周りの渦流において接線方向にガスを導入する、請求項1から3のいずれか一項に記載のガスヒータープラズマトーチ。
  16. オリフィスが、前記環状リングの様々な位置に設けられ、前記アークのカラムの周りの渦流において接線方向にガスを導入する、請求項4または5に記載のガスヒータープラズマトーチ。
  17. 磁気コイルまたは永久磁石が前記前方電極の周囲に設けられ、前記電極からの金属の侵食を均一に分布させ、それによってトーチの寿命を延長するように、アーク発生点を前記電極の表面上において円運動で急速に移動させる、請求項1に記載のガスヒータープラズマトーチ。
  18. −トーチ本体と、
    −前記トーチ本体内に取り付けられたチューブ状後方電極と、
    −前記後方電極の前方に取り付けられたパイロットチューブ状電極と
    −前記パイロット電極の前方に取り付けられたチューブ状挿入部と、
    −前記チューブ状挿入部の前方に取り付けられた前方電極と、
    −前記電極及び前記チューブ状挿入部の両方と前記トーチ本体との間に取り付けられて通路を提供する筐体であって、前記通路を通して流体冷媒が循環する、筐体と、
    −前記後方電極と前記パイロット電極との間のチャンバー内に適切なガスを提供するための第1の供給システムと、
    −前記チューブ状挿入部内に適切なガスを提供するための第2の供給システムと、
    −前記前方電極内に適切なガスを提供するための第3の供給システムと、
    −前記供給システムによって提供されたガスの流動を通してアークを維持するための電力供給部と、
    −前記後方電極と前記パイロット電極との間でアーク放電を点火するための点火システムであって、前記アークが、前記長いチューブ状挿入部内で、前記前方電極に到達するのに十分長くなるようにする、点火システムと、
    −電流及び電圧のアークパラメータを前記供給システムによって提供されるガス流動と協調させるための協調システムと、を含む、ガスヒータープラズマトーチ。
  19. 前記チューブ状挿入部が実質的に長い、請求項18に記載のガスヒータープラズマトーチ。
  20. 前記パイロット電極が実質的に短い、請求項18または19に記載のガスヒータープラズマトーチ。
  21. 前記前方電極が実質的に短い、請求項18から20のいずれか一項に記載のガスヒータープラズマトーチ。
  22. 前記チューブ状挿入部が前記パイロット電極よりも大きな直径を有する、請求項18から21のいずれか一項に記載のガスヒータープラズマトーチ。
  23. 前記後方電極、前記パイロット電極、前記チューブ状挿入部及び前記前方電極の少なくとも1つが実質的に円筒形である、請求項18から22のいずれか一項に記載のガスヒータープラズマトーチ。
  24. 前記筐体が実質的に円筒形である、請求項18から23のいずれか一項に記載のガスヒータープラズマトーチ。
  25. 前記後方電極が、前記トーチ本体内に実質的に同軸上に取り付けられた、請求項18から24のいずれか一項に記載のガスヒータープラズマトーチ。
  26. 前記パイロット電極が、前記後方電極と同軸上に、前記後方電極の前方に取り付けられた、請求項18から25のいずれか一項に記載のガスヒータープラズマトーチ。
  27. 前記チューブ状挿入部が、前記パイロット電極と同軸上に、前記パイロット電極の前方に取り付けられた、請求項18から26のいずれか一項に記載のガスヒータープラズマトーチ。
  28. 前記前方電極が、前記チューブ状挿入部と同軸上に、前記チューブ状挿入部の前方に取り付けられた、請求項18から27のいずれか一項に記載のガスヒータープラズマトーチ。
  29. 前記後方電極、前記パイロット電極、前記チューブ状挿入部及び前記前方電極が、実質的に円筒形である、請求項18から28のいずれか一項に記載のガスヒータープラズマトーチ。
  30. 前記トーチ本体が実質的に円筒形である、請求項18から29のいずれか一項に記載のガスヒータープラズマトーチ。
  31. 前記流体冷媒のための経路がシールされた、請求項18から30のいずれか一項に記載のガスヒータープラズマトーチ。
  32. 前記経路を通って循環する前記流体冷媒が、前記トーチの作動時に、前記電極及び前記チューブ状挿入部から熱を除去するように適合された、請求項18から31のいずれか一項に記載のガスヒータープラズマトーチ。
  33. 前記第1、第2及び第3の供給システムがそれぞれ、第1、第2及び第3の渦発生器を含む、請求項18から32のいずれか一項に記載のガスヒータープラズマトーチ。
  34. 前記第1の渦発生器が、前記後方電極と前記パイロット電極との間に設けられ、前記後方電極と前記パイロット電極との間のチャンバー内に適切なガスの渦流を発生させる、請求項18から33のいずれか一項に記載のガスヒータープラズマトーチ。
  35. 前記第2の渦発生器が、前記パイロット電極と前記チューブ状挿入部との間に設けられ、前記チューブ状挿入部内に適切なガスの渦流を発生させる、請求項18から33のいずれか一項に記載のガスヒータープラズマトーチ。
  36. 前記第3の渦発生器が、前記チューブ状挿入部と前記前方電極との間に設けられ、前記前方電極内に適切なガスの渦流を発生させる、請求項18から33のいずれか一項に記載のガスヒータープラズマトーチ。
  37. 前記電力供給手段が、前記供給システムまたは前記渦発生器によって提供されるガスの流動を通して前記アークを維持するために、前記後方電極と前記前方電極との間に接続された、請求項18から36のいずれか一項に記載のガスヒータープラズマトーチ。
  38. 前記協調システムが、前記パイロット電極の表面上及び前記前方電極上のアーク発生点が、前記電極からの金属の侵食を実質的に均等に分布させ、それによってトーチの寿命を延長するように、前記電極の表面上を円運動で急速に移動するように、電流及び電圧のアークパラメータを、前記供給システムまたは前記渦発生器によって提供されたガス流動と協調させるように適合された、請求項18から37のいずれか一項に記載のガスヒータープラズマトーチ。
  39. 前記チューブ状挿入部が絶縁性の材料からなる、請求項18から38のいずれか一項に記載のガスヒータープラズマトーチ。
  40. 前記チューブ状挿入部が、金属リングによって分離された、絶縁性の材料からなる複数の環状リングを含む、請求項18から39のいずれか一項に記載のガスヒータープラズマトーチ。
  41. 前記チューブ状挿入部が、金属リングによって分離された、絶縁性の材料からなる複数の環状リングを含み、前記金属リングが、前記リングの間に電気的絶縁を提供するシールによって分離された、請求項18から39のいずれか一項に記載のガスヒータープラズマトーチ。
  42. 前記後方電極が、電子を放出するために、タングステン挿入部または、例えば、トリウム、ジルコンまたはランタンでドープされたタングステンを有して提供される、請求項18から41のいずれか一項に記載のガスヒータープラズマトーチ。
  43. 前記後方電極が、電子を放出するために、ハフニウム挿入部を有して提供される、請求項18から41のいずれか一項に記載のガスヒータープラズマトーチ。
  44. 前記後方電極、前記パイロット電極及び前記前方電極が銅からなる、請求項18から41のいずれか一項に記載のガスヒータープラズマトーチ。
  45. 前記チューブ状挿入部の絶縁性の材料がシリコンカーバイドからなる、請求項18から41のいずれか一項に記載のガスヒータープラズマトーチ。
  46. 前記チューブ状挿入部の絶縁性の材料がHexoloyシリコンカーバイドからなる、請求項18から41のいずれか一項に記載のガスヒータープラズマトーチ。
  47. 前記長いチューブ状挿入部の絶縁性の材料が窒化ホウ素からなる、請求項18から41のいずれか一項に記載のガスヒータープラズマトーチ。
  48. 絶縁性の材料の前記環状リングがシリコンカーバイドからなる、請求項40または41に記載のガスヒータープラズマトーチ。
  49. 絶縁性の材料の前記環状リングがHexoloyシリコンカーバイドからなる、請求項40または41に記載のガスヒータープラズマトーチ。
  50. 絶縁性の材料の前記環状リングが窒化ホウ素からなる、請求項40または41に記載のガスヒータープラズマトーチ。
  51. 前記アークのカラムの周囲の渦流にガスを接線方向に導入するために、オリフィスが前記チューブ状挿入部に様々な位置において設けられた、請求項18から50のいずれか一項に記載のガスヒータープラズマトーチ。
  52. 前記アークのカラムの周囲の渦流にガスを接線方向に導入するために、オリフィスが前記環状リングに様々な位置において設けられた、請求項40または41に記載のガスヒータープラズマトーチ。
  53. 前記電極からの金属の侵食を均一に分布させ、それによってトーチの寿命を延長するために、前記アーク発生点を前記電極表面において円運動で急速に移動させるように、磁気コイルまたは永久磁石が前記前方電極の周囲に設けられた、請求項18から52のいずれか一項に記載のガスヒータープラズマトーチ。
  54. 前記ガスヒータープラズマトーチが、無移送アークモードで動作するように適合された、請求項18から53のいずれか一項に記載のガスヒータープラズマトーチ。
JP2016568013A 2014-05-16 2015-05-19 高エネルギー効率、高出力のプラズマトーチ Active JP6887251B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461994672P 2014-05-16 2014-05-16
US61/994,672 2014-05-16
PCT/CA2015/000325 WO2015172237A1 (en) 2014-05-16 2015-05-19 Energy efficient high power plasma torch

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020187867A Division JP7271489B2 (ja) 2014-05-16 2020-11-11 高エネルギー効率、高出力のプラズマトーチ

Publications (2)

Publication Number Publication Date
JP2017521814A true JP2017521814A (ja) 2017-08-03
JP6887251B2 JP6887251B2 (ja) 2021-06-16

Family

ID=54479081

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2016568013A Active JP6887251B2 (ja) 2014-05-16 2015-05-19 高エネルギー効率、高出力のプラズマトーチ
JP2020187867A Active JP7271489B2 (ja) 2014-05-16 2020-11-11 高エネルギー効率、高出力のプラズマトーチ
JP2023033602A Pending JP2023060181A (ja) 2014-05-16 2023-03-06 高エネルギー効率、高出力のプラズマトーチ

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2020187867A Active JP7271489B2 (ja) 2014-05-16 2020-11-11 高エネルギー効率、高出力のプラズマトーチ
JP2023033602A Pending JP2023060181A (ja) 2014-05-16 2023-03-06 高エネルギー効率、高出力のプラズマトーチ

Country Status (6)

Country Link
US (1) US20170086284A1 (ja)
EP (1) EP3143845A4 (ja)
JP (3) JP6887251B2 (ja)
AU (3) AU2015258742A1 (ja)
CA (1) CA2948681A1 (ja)
WO (1) WO2015172237A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102207933B1 (ko) * 2019-07-17 2021-01-26 주식회사 그린리소스 서스펜션 플라즈마 용사 장치 및 그 제어 방법
JP2021503695A (ja) * 2017-11-30 2021-02-12 コリア ハイドロ アンド ニュークリアー パワー カンパニー リミテッド 多電極型前方電極及びボタン型後方電極を有するプラズマトーチ

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6854628B2 (ja) * 2016-11-10 2021-04-07 東京エレクトロン株式会社 プラズマ溶射装置及び溶射制御方法
KR20180086669A (ko) 2017-01-23 2018-08-01 에드워드 코리아 주식회사 질소 산화물 감소 장치 및 가스 처리 장치
KR102646623B1 (ko) * 2017-01-23 2024-03-11 에드워드 코리아 주식회사 플라즈마 발생 장치 및 가스 처리 장치
DE102020125073A1 (de) * 2020-08-05 2022-02-10 Kjellberg-Stiftung Elektrode für einen Plasmaschneidbrenner, Anordnung mit derselben, Plasmaschneidbrenner mit derselben sowie Verfahren zum Plasmaschneiden

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113600A (ja) * 1984-06-27 1986-01-21 荒田 吉明 大出力プラズマジエツト発生装置
JPS6340300A (ja) * 1986-06-13 1988-02-20 ザ・パ−キン−エルマ−・コ−ポレイシヨン プラズマ発生装置及び精確に制御されたプラズマを発生させる方法
JPH01148472A (ja) * 1987-12-04 1989-06-09 Nippon Steel Weld Prod & Eng Co Ltd プラズマジェットトーチ
JPH06201513A (ja) * 1992-12-29 1994-07-19 Ishikawajima Harima Heavy Ind Co Ltd コンストリクタ型アークヒータ
WO2004028221A1 (en) * 2002-09-17 2004-04-01 Smatri Ab Plasma-spraying device
WO2013134619A1 (en) * 2012-03-08 2013-09-12 Belashchenko Vladimir E Plasma systems and methods including high enthalpy and high stability plasmas

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1268843A (en) 1969-07-04 1972-03-29 British Railways Board Improvements relating to plasma-torch apparatus
US4587397A (en) * 1983-12-02 1986-05-06 Plasma Energy Corporation Plasma arc torch
US4570048A (en) * 1984-06-29 1986-02-11 Plasma Materials, Inc. Plasma jet torch having gas vortex in its nozzle for arc constriction
US4916273A (en) * 1987-03-11 1990-04-10 Browning James A High-velocity controlled-temperature plasma spray method
US5147998A (en) * 1991-05-29 1992-09-15 Noranda Inc. High enthalpy plasma torch
US5808270A (en) * 1997-02-14 1998-09-15 Ford Global Technologies, Inc. Plasma transferred wire arc thermal spray apparatus and method
FR2792493B1 (fr) * 1999-04-14 2001-05-25 Commissariat Energie Atomique Cartouche pour torche a plasma et torche a plasma equipee
US7703413B2 (en) 2004-06-28 2010-04-27 Sabic Innovative Plastics Ip B.V. Expanded thermal plasma apparatus
US7375303B2 (en) * 2004-11-16 2008-05-20 Hypertherm, Inc. Plasma arc torch having an electrode with internal passages
US7750265B2 (en) * 2004-11-24 2010-07-06 Vladimir Belashchenko Multi-electrode plasma system and method for thermal spraying
SE529056C2 (sv) * 2005-07-08 2007-04-17 Plasma Surgical Invest Ltd Plasmaalstrande anordning, plasmakirurgisk anordning och användning av en plasmakirurgisk anordning
ITPR20060035A1 (it) * 2006-04-12 2007-10-13 Turbocoating Spa Torcia per deposizione di ricoprimenti superficiali mediante tecnologie thermal spray e corrispondenti ricoprimenti.
CN101784154B (zh) * 2009-01-19 2012-10-03 烟台龙源电力技术股份有限公司 电弧等离子体发生器的阳极以及电弧等离子体发生器
CZ305206B6 (cs) * 2010-12-31 2015-06-10 Ústav Fyziky Plazmatu Akademie Věd České Republiky, V. V. I. Plazmatron s obloukem stabilizovaným kapalinou
WO2012115533A1 (en) * 2011-02-25 2012-08-30 Nippon Steel Corporation, Plasma torch
DE102011114406A1 (de) * 2011-09-26 2013-03-28 Klaus Landes Plasmaspritzgerät

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113600A (ja) * 1984-06-27 1986-01-21 荒田 吉明 大出力プラズマジエツト発生装置
JPS6340300A (ja) * 1986-06-13 1988-02-20 ザ・パ−キン−エルマ−・コ−ポレイシヨン プラズマ発生装置及び精確に制御されたプラズマを発生させる方法
JPH01148472A (ja) * 1987-12-04 1989-06-09 Nippon Steel Weld Prod & Eng Co Ltd プラズマジェットトーチ
JPH06201513A (ja) * 1992-12-29 1994-07-19 Ishikawajima Harima Heavy Ind Co Ltd コンストリクタ型アークヒータ
WO2004028221A1 (en) * 2002-09-17 2004-04-01 Smatri Ab Plasma-spraying device
WO2013134619A1 (en) * 2012-03-08 2013-09-12 Belashchenko Vladimir E Plasma systems and methods including high enthalpy and high stability plasmas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021503695A (ja) * 2017-11-30 2021-02-12 コリア ハイドロ アンド ニュークリアー パワー カンパニー リミテッド 多電極型前方電極及びボタン型後方電極を有するプラズマトーチ
KR102207933B1 (ko) * 2019-07-17 2021-01-26 주식회사 그린리소스 서스펜션 플라즈마 용사 장치 및 그 제어 방법

Also Published As

Publication number Publication date
JP2021015810A (ja) 2021-02-12
JP7271489B2 (ja) 2023-05-11
JP2023060181A (ja) 2023-04-27
JP6887251B2 (ja) 2021-06-16
US20170086284A1 (en) 2017-03-23
WO2015172237A1 (en) 2015-11-19
AU2022291468A1 (en) 2023-02-02
AU2015258742A1 (en) 2017-01-12
CA2948681A1 (en) 2015-11-19
AU2021200689A1 (en) 2021-03-04
EP3143845A1 (en) 2017-03-22
EP3143845A4 (en) 2018-03-14

Similar Documents

Publication Publication Date Title
JP7271489B2 (ja) 高エネルギー効率、高出力のプラズマトーチ
RU2504931C2 (ru) Анод генератора дуговой плазмы и генератор дуговой плазмы
US20130292363A1 (en) Non-transferred and hollow type plasma torch
US11116069B2 (en) High power DC non transferred steam plasma torch system
JP2010511284A (ja) プラズマ装置およびシステム
US8259771B1 (en) Initiating laser-sustained plasma
JP2009076435A (ja) プラズマヘッドおよびこれを用いたプラズマ放電装置
US20190185770A1 (en) Modular Hybrid Plasma Gasifier for Use in Converting Combustible Material to Synthesis Gas
US3201560A (en) Electric-arc heater
US10926238B2 (en) Electrode assembly for use in a plasma gasifier that converts combustible material to synthesis gas
CN108601193B (zh) 一种长尺度均匀热等离子体弧产生方法及装置
JP2007193950A (ja) 放電安定性に優れた中空カソード放電ガン
CN214101883U (zh) 一种等离子体火炬
Anshakov et al. Electric-arc steam plasma generator
USRE25088E (en) Electrode
CN112996210A (zh) 一种多电弧通道等离子体炬
KR100493731B1 (ko) 플라즈마 발생장치
Zhang et al. Comparison of $\mu $ s-and ns-Pulse Gliding Discharges in Air Flow
RU2374791C1 (ru) Электродуговой плазмотрон переменного тока
Hrabovský Generation of Thermal Plasmas
RU2575202C1 (ru) Электродуговой плазмотрон постоянного тока для установок плазменной переработки отходов
SU792614A1 (ru) Электродуговой подогреватель газа
RU2037983C1 (ru) Электродуговой плазмотрон
SU458109A1 (ru) Способ генерации низкотемпературной плазмы
JP2013101787A (ja) プラズマ発生装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170831

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190708

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200511

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210518

R150 Certificate of patent or registration of utility model

Ref document number: 6887251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150