JP2017511213A - 校正の方法及びシステム - Google Patents

校正の方法及びシステム Download PDF

Info

Publication number
JP2017511213A
JP2017511213A JP2016562872A JP2016562872A JP2017511213A JP 2017511213 A JP2017511213 A JP 2017511213A JP 2016562872 A JP2016562872 A JP 2016562872A JP 2016562872 A JP2016562872 A JP 2016562872A JP 2017511213 A JP2017511213 A JP 2017511213A
Authority
JP
Japan
Prior art keywords
reference object
calibration tool
coordinate system
imaging unit
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016562872A
Other languages
English (en)
Other versions
JP2017511213A5 (ja
Inventor
スヨリュンド、イェンス
Original Assignee
エレクタ アクチボラゲット(パブル)
エレクタ アクチボラゲット(パブル)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エレクタ アクチボラゲット(パブル), エレクタ アクチボラゲット(パブル) filed Critical エレクタ アクチボラゲット(パブル)
Publication of JP2017511213A publication Critical patent/JP2017511213A/ja
Publication of JP2017511213A5 publication Critical patent/JP2017511213A5/ja
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating apparatus or devices for radiation diagnosis
    • A61B6/582Calibration
    • A61B6/583Calibration using calibration phantoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • A61N5/1039Treatment planning systems using functional images, e.g. PET or MRI
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1075Monitoring, verifying, controlling systems and methods for testing, calibrating, or quality assurance of the radiation treatment apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1061Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1075Monitoring, verifying, controlling systems and methods for testing, calibrating, or quality assurance of the radiation treatment apparatus
    • A61N2005/1076Monitoring, verifying, controlling systems and methods for testing, calibrating, or quality assurance of the radiation treatment apparatus using a dummy object placed in the radiation field, e.g. phantom

Abstract

本発明は、放射線治療の分野に関する。詳細には、本発明は、固定放射線焦点を有する放射線治療ユニットを備える放射線治療システムにおける位置決め装置を校正する方法に関する。方法は、少なくとも1つの基準物を備える校正ツールに照射するステップと、校正ツールの基準物の断面写像を含めて少なくとも1つの2次元画像を撮影するステップと、各基準物の写像の画像座標を決定するステップとを含む。基準物画像座標、校正ツールの原点に対する定位座標系における基準物の位置、及び画像化ユニットに対する校正ツールの原点の位置に基づき、並進及び回転の位置差を含む定位座標系における校正ツールの位置と画像化装置座標系における校正ツールの位置との間の位置差を計算する。

Description

本発明は放射線治療の分野に関する。詳細には、本発明は、固定放射線焦点を有する放射線治療ユニットを備える放射線治療システムにおける、位置決め装置を校正する方法に関する。
外科技術が年来大きな進展を遂げている。たとえば、患者を苦しませる外傷のほとんど無い非侵襲手術が、脳外科を必要とする患者に対し現在利用可能である。
非侵襲手術に対する1つのシステムがレクセル・ガンマ・ナイフ(Leksell Gamma Knife(登録商標))の名前で販売され、ガンマ放射による手術などを提供する。放射は、非常に多くの固定放射源から放たれ、コリメータ、すなわち、断面の制限されたビームを取得する為の通路又はチャネルで、確定されたターゲット又は治療容積に向かって収束する。放射源がそれぞれガンマ放射の量を供給するが、間の細胞を十分に破壊するほどではない。しかしながら、細胞の破壊が起こるのは全放射源からの放射ビームが交差するか又は収束するところであり、放射が細胞破壊レベルに達する。収束点は以降「焦点」と呼ぶ。
放射線治療を処方される患者が定位固定ユニットを用いて位置決め装置に固定される。したがって、定位固定ユニットが患者の治療容積を位置決め装置に対して固定し、すなわち、処置される細胞領域を含む患者の部分を固定する。たとえば、治療領域又は治療容積が患者の頭部内の細胞の一部分の場合、一般に、定位固定ユニットが頭部固定フレームを構成し、たとえば、フレームが患者の骸骨に具体的には固定スクリュー等によって固定されてもよい。次いで、定位固定ユニットの座標が定位固定ユニット座標系によって定義され、これを介して治療容積との固定された関係が治療容積の輪郭を画定するのにも用いられる。定位固定ユニット及びよって定位固定ユニット座標系が、操作で固定放射線焦点に対し移動して、焦点が固定ユニット座標系の意図する座標に正確に位置付けられる。
そのような定位固定ユニット及び座標系の例に、レクセル(Leksell)定位ヘッド・フレーム及びレクセルXYZ座標系がそれぞれある。レクセルXYZ座標系が、定位固定ユニットのフレームに完全に整列した3つの垂直軸によって画定される、3つの垂直面に配置されるデカルト座標系である。患者に対し、X軸が患者の内側外側方向に延在し、Y軸が前後方向に延在し、Z軸が頭部−つま先方向に延在する。
言い換えるならば、患者がレクセルXYZ座標系に正しく位置付けられれば、X軸が患者の耳から耳に、Z軸が頭部からつま先、及びY軸が背面から正面に延在する。
放射線治療システムにおける放射線治療に関し、治療が治療計画システムで計画される。患者の治療容積が画像化装置、たとえば、コーン・ビーム・コンピュータ断層写真(CBCT:cone beam computed tomography)システムを用いて走査され、走査された画像が治療計画システムに入力される。コンピュータ断層写真(CT:computed tomography)画像化が、コンピュータ横断層写真(CAT)スキャンとも呼ばれ、デジタルコンピュータに結合された回転X線装置を用いることを含み、体の画像を取得する。CT画像化を用いて、体の組織及び細胞の断面画像が生成され得る。医者は、CT画像化を用いて、腫瘍が存在するのを確認するだけでなく、それらの位置を正確に特定でき、腫瘍の大きさを正確に測定でき、隣接する細胞に拡がったかどうかを判断できる。CT画像化が、ある癌の診断だけでなく放射線癌治療の計画及び診断に、又、ある種の手術を計画するのにも用いられる。CBCT画像を用いて、治療容積の空間再構成が生成され、治療を計画する際にそれが用いられ得る。この目標を達成する為に、治療容積の空間再構成が、放射治療システム、及び位置決め装置の焦点位置に正確に関連付けされる必要がある。
しかしながら、CBCT再構成が画像化装置の回転軸に対して生成され、CBCTシステム及び定位固定ユニット座標系が、たとえば、製造ばらつきにより整列しないで偏移を有する。治療セッションで患者が位置決め装置に固定され放射線ユニット内に位置付けされる際に、CBCT座標系と定位固定ユニット座標系との間の角度偏移などが、たとえば位置誤差に至る。
先行技術において、上記の課題を解決する試みが為されてきた。同じ出願人による特許文献1において、画像化装置を校正する装置及び方法が示される。特許文献1によれば、校正ツールの3次元再構成が、画像の組に基づき生成され、3次元再構成が次いで知られる位置及び向き、すなわち定位座標系における校正ツールの姿勢と比較されて位置差を取得とする。この方法によれば、校正ツールの適正な空間再構成を生成する為に非常に多くの画像が取得される必要がある。
対象間の位置ずれに類似する課題が、コンピュータ・ビジョン及びロボット学のような技術分野においても扱われる。これらの分野で、共通のタスクに、画像に特別な対象を特定し座標系に対する各対象の位置及び向きを決定することが含まれる。たとえば、機械学習アルゴリズムが、2次元画像特徴からマッピングすることを学習するのに用いられ、訓練案件の多大な組に基づいて変換を提示するか、又はフィードバック・メカニズムを介して適合を最適化するのを試みる。別のアプローチがいわゆる幾何学的な方法であり、対象上の制御点の組、典型的に角や他の特徴的な特徴部が、対象の画像においてこれに基づいて特定され、姿勢変換が解かれ得る。このアプローチでは、画像センサ(カメラ)が校正され、シーンにおける3次元ポイントからのマッピング及び画像における2次元ポイントが知られる必要がある。しかしながら、これらの方法は医療システムにおいて使用に適さない。
このように、CBCTシステムなどの画像化装置の座標系と定位固定ユニット座標系との間の偏移を決定し補償する改善された方法及び装置が未だに必要とされる。さらに、CBCTシステムなどの画像化装置の座標系と定位固定ユニット座標系との間の偏移を、向上した正確さ及びよって向上したさらに正確な校正で決定し補償する方法及び装置が必要とされる。
国際公開第2012/146301号 国際公開第2004/06269号
本発明の目的は、CBCTシステムなどの画像化装置の座標系と定位固定ユニット座標系との間の偏移を補償する装置及び方法を提供することである。
さらに目的は、CBCTなどの画像化装置の座標系と定位固定ユニット座標系との間の偏移に対し、向上した正確さ及びしたがって向上したさらに正確な校正で決定し補償する為の方法及び装置を提供することである。
これら及び他の目的は、独立請求項において定義される特徴を有する校正方法を提供することで達成される。好適な実施例が従属請求項において定義される。
本出願の内容において、用語「姿勢」が対象の位置及び向きの組合せを定義する。
本発明の態様によれば、患者の画像を撮影する為の画像化装置を放射線治療システムに対して校正する方法が提供される。放射線治療システムが、放射線治療ユニットにおいて固定放射線焦点及び固定焦点に対し患者を位置決めする位置決め装置を有する放射線治療ユニットを備える。本発明のこの態様によれば、方法が、画像操作手順中に、少なくとも1つの基準物を備える校正ツールを画像化装置の放射線ユニットを用いて電離放射線で照射することを含む。校正ツール又は校正ツールの基準点、及び少なくとも1つの基準物が定位座礁系において知られる位置又は座標を有する。さらに、画像操作手順中に、校正ツールの基準物の断面写像を含む少なくとも1つの2次元画像が画像化装置の検出器を用いて撮影される。撮影された画像における各基準物の写像の画像座標が決定され、画像化ユニットに対する校正ツールの原点の位置が決定される。基準物画像座標、定位座標系における校正ツールの原点に対する基準物の位置、及び画像化ユニットに対する校正ツールの原点の位置に基づいて、定位座標系における校正ツールの位置と画像化装置座標系における校正ツールの位置との間の変換が計算される。言い換えると、基準物画像座標、校正ツールの原点に対する定位座標系における各基準物の姿勢及び画像化ユニットに対する校正ツールの原点の位置に基づいて、定位座標系における校正ツールの姿勢と画像化装置における校正ツールの姿勢との間の変換が計算される。
本発明の別の態様によれば、放射線治療システムに対して患者の画像を撮影する画像化装置を校正するシステムが提供され、放射線治療システムが、固定放射線焦点を有する放射線治療ユニットと、放射線治療ユニットにおいて固定焦点に対して患者を位置付けする位置決め装置を備える。画像化装置が、画像走査手順中に放射線ユニットを用いて少なくとも1つの基準物を備える校正ツールを電離放射線で照射するように構成される。校正ツール又は校正ツールの基準点、及び少なくとも1つの基準物が、定位座標系における知られる位置及び座標を有する。画像化装置がさらに、画像走査手順中に校正ツールの基準物の断面写像を含む少なくとも1つの2次元画像を検出器を用いて撮影するように構成される。処理ユニットが、撮影した画像において各基準物の写像の画像座標を決定し、画像化ユニットに対する校正ツールの原点の位置を取得するように構成される。さらに、処理ユニットが、定位座標系における校正ツールの位置と画像化装置座標系における校正ツールの位置との間の変換を、基準物画像座標、校正ツールの原点に対する定位座標系における基準物の位置、及び画像化ユニットに対する校正ツールの原点の位置に基づいて計算するように構成される。言い換えると、基準物画像座標、定位座標系における校正ツールの原点に対する各基準物の姿勢、画像化ユニットに対する校正ツールの原点の位置に基づいて、定位座標系における校正ツールの姿勢と画像化装置座標系における校正ツールの姿勢との間の変換が計算される。
変換が、定位座標系における校正ツールの位置と画像化装置座標系における校正ツールの位置との間の並進及び回転の位置差を含む。
本発明が、LINACシステム(LINAC system)又はレクセル・ガンマ・ナイフ(登録商標)・システム(Leksell Gamma Knife(R) system)などにおいて、放射線治療システムに用いられる。
本発明は、たとえば製造ばらつきによって、CBCTシステムなどの画像化装置の座標系と治療位置を画定する定位座標系との間に、角度偏移又は偏差があるとの識見に基づく。CBCTシステムが患者の画像を撮影するのに用いられ、治療容積及び治療容積の再構成画像はよって治療ユニットの焦点及び患者位置決め装置に関連付けされる必要がある。CBCT座標が物理的に焦点からオフセットし、CBCTシステムが焦点に対しどの位置にあるかはばらつきから機械的に知り得ない。このように、これらの偏移又は偏差が、患者が治療のために放射線治療ユニットの中に移動するときに位置誤差を引き起こす。非常に小さい類洞の誤差であっても、患者が大きな距離を移動する場合大きな偏移になる惧れがあり、よって大きな位置誤差を引き起こす惧れがある。これらの識見により、CBCTシステムなどの画像化装置の座標系と治療位置を画定した定位座標系との間の偏移を決定し補償する発明及び考えに至った。決定された偏移を用いて、再構成された対象の位置及び回転が定位座標系に対して決定され得る。
偏移を決定する為に、定位座標系に容易に整列され正確に位置付けられる校正ツール及びしたがって画像取得中でも確実に維持される校正ツールが用いられる。たとえば、校正ツールが患者位置決め装置の定位固定ユニットに実装され又は取り付けられ得る。治療容積を固定する為の定位固定ユニットが患者位置決め装置と固定して係合し、位置決め装置に対して並進又は回転され得ない。
座標系における校正ツールの画像化装置に対する位置が、画像化装置の検出器によって撮影された少なくとも1つの2次元画像を用いて決定される。本発明の好適な実施例において、固定ユニットに取り付け可能な少なくとも3つのボール・バーを有する校正ツールが用いられる。各ボール・バーが定位座標系において及び校正ツールの原点に対し知られる位置(座標)を有する。校正ツールの基準物の大きさ、形状及び材料により、それらの突出が、水平又は垂直の何れにも重なることなく背景に対し高いコントラストを有する領域を画像に占める。このように、各基準物の写像が特定でき、それらの画像座標が決定され得る。定位座標系における基準物の座標及び画像化装置における検出器の位置が知られているので、基準物の画像座標が決定され得る。
画像化装置のX線源の位置から基準ツールのそれぞれの基準物へのベクトルを各画像に対し決定することによって、校正ツールの位置又は座標が画像化装置座標系に対し決定され得る。以降、画像化装置座標系における校正ツールの決定された位置及び定位固定ユニット座標系における校正ツールの知られる位置の間の変換が計算され得る。
本発明は、先行技術と比較し非常に正確な校正を提供する。
本発明の実施例によれば、画像化ユニットに対する校正ツールの原点の位置が計算される。別の実施例で、画像化ユニットに対し校正ツールの原点の位置が予め決定され知られる。
本発明の実施例によれば、画像化ユニットに対する基準物の位置が、基準物画像座標及び画像化ユニットに対する検出器の位置に基づいて決定され、変換が、画像化ユニットに対する基準物の位置、画像座標系における基準物の位置、及び画像化ユニットに対する校正ツールの位置に基づいて計算される。
本発明の実施例によれば、変換の計算がさらに、画像化ユニットと検出器との間の距離及び検出器回転に基づく。それは検出器の位置の差、又は定位座標系における検出器の位置と画像化装置座標系における検出器の位置との間の変換である。
本発明の実施例によれば、基準物位置と画像化ユニットの位置との間のベクトルが、それぞれの基準物画像座標、及び、基準物位置と画像化ユニットの位置との間のベクトルがそれぞれの基準物に対し基準物画像座標と画像化ユニットの位置との間のベクトルに平行であるとの前提に基づき決定される。基準物位置と画像化ユニットの位置との間のベクトル、及び基準物画像座標と画像化ユニットの位置間のベクトル間の関係が変換を計算するのに次いで用いられる。
本発明の実施例によれば、画像化ユニットに対する基準物画像化座標のベクトルと画像化ユニットに対する基準物位置のベクトルとの間の関係がスカラとして定義され、スカラの値が、画像化ユニットに対する基準物の位置、画像化座標系における基準物の位置、及び画像化ユニットに対する校正ツールの位置に基づいて決定される。
本発明の実施例によれば、画像装置座標系における校正ツールの原点に対する基準物の位置が定位座標系における校正ツールの原点に対する基準物の位置に基づいて計算され、変換が、基準物画像座標、画像化座標系における基準物の座標、及び画像化ユニットに対する校正ツールの座標に基づいて計算される。
本発明の実施例によれば、定位座標系における基準物の位置と画像化座標系における基準物の位置との間の各関係が、ベクトル回転方法を用いて並進及び回転の位置差を定義するベクトルとして計算される。
本発明の実施例によれば、校正ツールが、患者位置決め装置の固定装置に脱着可能に取り付けられ得る取付手段と、6次元で位置決定を可能とする形状を有する基準物とを備える。本発明の実施例において、校正ツールが、取付手段及びそれぞれのロッドに取り付けられた鋼球を備えるベース・プレートに取り付けられたロッドをそれぞれが含む少なくとも3つの基準物を備える。
本発明の実施例によれば、画像化装置の校正が、画像化装置の回転軸を決定することを含んで実行される。この校正のステップが、画像化装置座標系と定位座標系との間の偏差を決定するセッションが実行される前に実行されてもよい。
当業者が容易に分かるように、放射線焦点を決定する為の種々の知られる方法が用いられ得て、そのうちいくつかは上述された。しかしながら、本発明は本明細書に示され説明される特別な例に限定されず、放射線焦点を決定する何れの好適な測定方法が本発明の範囲内で考えられる。
本発明の好適な実施例が添付の図面を参照してより詳細に説明される。
本発明を用いる校正に適した放射線治療システムの一般的な原理を概略的に示した図である。 図1の放射線治療システムで実施される本発明に係るシステムの実施例を概略的に示した図である。 本発明に係る校正ツールの実施例を概略的に示した図である。 定位座標系のZ軸の方向の反対方向で図1の放射線ユニットを正面から見た配置を示した図である。 Z軸の方向の反対方向で図1の放射線ユニットを正面から見た配置の拡大を概略的に示した図である。 定位座標系と比較された検出器の回転を示した図である。 本発明に係る方法の全体ステップを示すフローチャートである。 本発明の実施例に係る方法のステップを示すフローチャートである。 本発明の実施例に係る方法のステップを示すフローチャートである。
図1を参照すると、本発明が適用される放射線治療システム1が、放射線ユニット10及び患者位置決めユニット20を備える。放射線ユニット10において、放射線源、放射線源ホルダ、コリメータ体、及び外部シールド要素が設けられる。コリメータ体が、当分野に広く知られるような方法で、共通焦点に向けて向けられた数多くのコリメータ・チャネルを備える。
コリメータ体が、放射線がコリメータ・チャネル以外に患者に達するのを防ぐ放射線シールドとしても機能する。本発明に適用可能な放射線治療システムにおいてコリメータ装置の例が、特許文献2に示され本明細書に援用される。
患者位置決めユニット20が、固いフレームワーク22、摺動自在又は移動可能キャリッジ24、及びキャリッジ24をフレームワーク22に対し動かすモータ(図示せず)を備える。キャリッジ24が患者全体を搬送し動かす患者ベッド(図示せず)をさらに備える。キャリッジ24の一端に固定装置28が設けられ、直接に又はアダプタ・ユニット(図示せず)経由で定位固定ユニット(図示せず)を受けて固定し、これにより定位固定ユニットが可動キャリッジ24に対し並進又は回転移動するのを防ぐ。患者は、図1に示す少なくとも3つの直行軸x、y及びzに沿って、患者位置決めユニット20を用いて放射線治療システム1又は患者位置決めユニット20の座標系の中で移動される。患者が、ある実施例でたとえば回転軸に沿っても移動される。
患者の画像を撮影する画像化装置50が、たとえば治療計画又は治療に関連して、放射線ユニット10たとえばコーン・ビーム・コンピュータ断層写真(CBCT)システムに配置又は位置付けられる。
画像化装置50が、X線源51及び検出器52を含む。X線源51及び検出器52が画像化装置50の座標系(a、b、c)の回転軸c(図1参照)の回りに回転するよう配置され、異なる角度で患者ベッド26上に位置付けされた患者の画像を撮影する。理想的には、X線源51及び検出器52が、患者位置決めユニット20のZ軸の回りに回転し、Z軸が画像化装置50の回転軸cと整列される。しかしながら、実際には、たとえば、製造ばらつきの為にアライメント誤差があって、患者位置決めユニット20の座標系と画像化装置50との間の誤った整列に至り、よってc軸がz軸に整列しない。
コンピュータ断層写真において、回転の1つの軸の回りに非常に小さなステップ(たとえば、<1°)で2次元X線画像の連続を撮影しながら対象の回りの画像化装置を回転させることで、3次元画像が生成される。他の用途では、対象が小さなステップで画像化の回りを回転される。すなわち、画像化装置又は対象がそれぞれ対象又は画像化装置の回りにたとえば180°又は360°回転される。その後に最終の3次元画像が、2次元画像に基づき数値的に再構成され、断層画像の連続又は3次元画像として表示され得る。
図1から分かるように、説明された実施例が、患者の頭部におけるターゲット容積へガンマ放射線治療を提供する放射線治療システムに関わる。このような治療がしばしば定位手術と呼ばれる。治療の間、患者の頭部が、放射線治療システムの固定装置28との係合に適合された係合点を備えた、たとえば定位頭部フレームの形状のバイト・ブロック及び固定ユニットを用いて、定位固定ユニットに固定される。このように、定位手術の間、患者の頭部が、定位フレームに固定され、今度は固定装置28を介して患者位置決め装置に固定して取り付けられる。放射線焦点に対して、たとえば図1に示される3つの軸x、y、zに沿って、患者の頭部における治療容積の移動の間、患者全体が動く。このように、ヘッド・フレームと患者位置決め装置20のキャリッジ24との間の移動の関連が無い。
さて、図2を見ると、本発明に係るシステムの実施例が説明される。図2で、本発明に係るシステム100が、概略的に示された放射線ユニット10及び画像化装置50と一緒に概略的に示される。本発明に係るシステム1が、一般的に、放射線治療システムの固定装置28へ着脱自在で確実に取り付けられるように配置された校正ツール110、及び処置ユニット120、たとえばパーソナル・コンピュータ(PC)を備える。図3において、校正ツール110の実施例のさらに詳細な図が示される。
校正ツール110が定位固定ユニット座標系に容易に整列され正確に位置付けられて配置される。校正ツール110が患者位置決めユニット20に対して何れの移動する可能性も無く校正ツール110を取付手段118で確実に取り付けることによって、校正ツールが、定位固定ユニット座標系において確定された所定位置、xcal.tool、ycal.tool、cal.toolに配置され、画像取得中にそのままで維持されるよう固定され得る。
好適には、校正ツール110が固定装置28に取り付けされる際に、校正ツール110は、定位固定ユニット座標系において所定又は知られる位置を有する少なくとも1つの基準物又はマーク112をそれぞれ備える。すなわち、校正ツール110の所定位置に対する基準物又はマーク112の位置が知られそして定位固定ユニット座標系における所定座標を有する。基準物112が、画像化装置50の検出器52によって撮影された2次元画像において特定されるような材料で作られ配置され形状とされる。
図2及び図3に示される校正ツール110の実施例において、校正ツール110が、それぞれがプレート119上に装着された鋼球115を備えたロッド116を含む、4つの基準物112を備える。各基準物112が、校正ツール110が固定装置28に装着される際に、定位固定ユニット座標系における所定位置を有する。
検出器52によって撮影された2次元画像における基準物の特定を可能とする為、基準物112は画像化ユニット又はX線源51から発せれるX線放射を減衰させるスチールなどの材料で作られる。X線が基準物112により減衰され、これにより、各基準物の写像が検出器によって撮影され、写像が影として各画像に見られるようになる。各基準物写像を特定する手順が以降に説明される。
処理ユニット120が画像化装置50に接続可能にされて、双方向通信が、たとえばブルートゥース(登録商標)やWLANなどを用いてワイヤレスで可能とされる。このように、処理ユニット120が、たとえば画像化装置50から画像情報を取得し、指令を画像化装置50に送信して、画像走査手順を開始してもよい。
一般的に、処理ユニット120が、定位座標系における校正ツール110の位置と画像化装置座標系における校正ツール110の位置との間の変換又は並進及び回転の位置差を計算するために構成される。校正ツール110が中に配置される定位固定ユニットの座標系(軸x、y、zで定義される)が、たとえば製造ばらつきにより画像化装置の座標系(軸a、b、cで定義される)に整列しない。
このように、処理ユニット120が画像化装置50の座標系における校正ツール110の位置、acal.tool、bcal.tool、ccal.toolを決定し、又は寧ろ基準物の位置すなわち座標の組は、各基準物が3つの座標に関連するところで取得される。好ましくは、各基準物114の座標が決定されて、一列の位置座標となる。
さらに、処理ユニット120が画像化装置に関連する座標系における校正ツールの所定位置acal.tool、bcal.tool、ccal.toolと、定位固定ユニット座標系における校正ツールの位置xcal.tool、ycal.tool、zcal.toolとの間の変換を計算して、画像化装置に関連する座標系と定位固定ユニット座標系における校正ツールの位置との関係を決定する。好適には、定位固定ユニット座標系における基準マークの知られる位置と画像化装置に関連する座標系における校正ツールの所定位置との間の変換が決定される。
計算が、基準物画像座標dxy、校正ツール110の原点oに対する定位座標系における基準物112の位置rob、画像化ユニット51に対する校正ツール110の原点oの位置rsoに基づく。
本発明の実施例において、変換の計算が、画像化ユニット51に対する基準物の位置rsd、画像化座標系の基準物の位置ro’b、画像化ユニット51に対する校正ツールの位置rsoに基づく。
本発明の実施例において、変換の計算がさらに、画像化ユニット51と検出器52との間の距離SDD(図4参照)、定位座標系における検出器の位置と画像化ユニット座標系における検出器の位置との間の検出器の回転に基づく。図6を参照し、ベクトル回転が3つのパラメータに定義され、ここでq及びwが面からの回転角で、nが面内回転角である。検出器面が整列されて、v軸がz軸に平行で、u軸がy軸に平行である。u=uの軸に沿った検出器面の回転角がqで、v=vの軸に沿った検出器面の回転角がw、(u、v)の点に沿った検出器面の回転角がnである。軸x、y、zが定位座標系(図1参照)に関連し、u及びvが検出器面に関連する。
本発明の実施例において、変換を計算する際に、それぞれの基準物画像座標dxy、及び基準物位置と画像化ユニット51の位置との間のベクトルrsbがそれぞれの基準物112に対し基準物画像座標dxyと画像化ユニット51の位置との間のベクトルrsdに平行であるとの前提に基づいて、基準物位置と画像化ユニット51の位置との間のベクトルrsd、及び基準物画像座標dxyと画像化ユニット51の位置間のベクトルrsb間の関係を用いて、基準物位置と画像化ユニット51の位置との間のベクトルrsbが決定される。
本発明の実施例によれば、画像化座標系における校正ツール110の原点oに対する基準物112の位置ro’b’が、定位座標系における校正ツール110の原点oに対する基準物の位置robに基づいて計算され、変換が、基準物画像座標dxy、画像化座標系における基準物の座標ro’b’、及び画像化ユニット51に対する校正ツールの座標rsoに基づいて計算される。
さて、図4〜図9を参照し、放射線治療システムにおいて治療計画又は治療に関連する患者の画像を撮影する画像化装置50を校正する本発明に係る方法が説明される。方法が、たとえば図2に説明されるようなシステムで実行される。図4〜図6が画像化手順の間の配置を概略的に示し、図7〜図9が本発明に係る方法の実施例のフローチャートを示す。
図4及び図5を参照し、配置が、放射線ユニット10の正面から見て概略的に図示され、この実施例においては、すなわち図1に示される定位座標系のZ軸の方向と反対の方向のガンマ・ナイフである。X線源51が、位置sにおいて(すなわち画像化装置座標系の座標a、b、cにおいて)放射線を発し、放射線は、位置bにおいて(すなわち定位座標系における座標x,y,zにおいて)基準物112によって減衰される。明確に差別化される影が次いで位置d(d、d)で検出器52上に検出され得る。空間における各基準物の写像の位置d、すなわち定位座標系におけるx,y,zは画像に基づく。校正ツール110が位置oに位置し、すなわち校正ツール110の基準点が定位座標系における点x,y,zに位置する。画像化装置50における校正ツール110の位置がo’すなわちao’,bo’,co’である。
ベクトルrsbは点sから点bへのベクトル、すなわち、X線源51からそれぞれの基準物112までのベクトルである。ベクトルrobが点oから点bまでのベクトル、すなわち、校正ツール110の中心点からそれぞれの基準物112までのベクトルである。このベクトルrobが知られる。ベクトルrsoが点sから点oまでのベクトル、すなわちX線源51から校正ツール110までのベクトルである。ベクトルro’b’。SDDが「ソースから検出器までの距離」、すなわちX線源51と検出器52との距離である。
ガントリ角度βが、X線源51の現在位置sとy軸との間の角度を定義する。角度αが、補正が必要とされる回転を定義し、よって画像化装置50の座標系における校正ツール110の位置o’が、定位座標系における校正ツール110の位置oと比較される。図5が図4に示される配置のさらに詳細な図である。
図4を参照し、ベクトルrsbが、次式に表される。

ここで、符号rsbが上述のように点s(X線源51)から点b(それぞれの基準物112)までのベクトルを表す。校正ツール110の中心点oに対して基準物112の位置が知られると仮定する。定位座標系における座標と回転された座標系の座標すなわち画像化装置の座標系との間の関係が、空間におけるベクトル回転に対するアルゴリズム、たとえばロドリゲス回転公式(Rodrigues rotation formula)を用いることで決定され、軸^k及び回転角度αとする。

回転軸が単位ベクトルなので、2つのパラメータθ及びφで次式に表される。

ガントリ回転が検討される。図4に定義されるように基準の静止フレームを仮定し、これが、^k=^z及びα=βである式(2)をrso(β=0)及びrsd(β=0)に適用することで為される。


ベクトルrsd=(x,y,z)が画像たとえば質量算定の中心によって計算され得る。基準物112の各写像が画素よりも大きい検出器面(すなわち画像における)の領域を占める。本発明の実施例によれば、検出器面の中の1つの点又は画素が投影を正確に表す各基準物に対して選択される。検出器面の選択された点d及びdに基づいて、ベクトルrsd(x,y,z)が決定され得る。基準物112が背景に対し高いコントラストを有し、よって閾値が投影を特定するか決定する効果的な方法である。校正ツール110及び基準物112が好ましくは、画像において異なる投影間で水平方向又は鉛直方向に何れも重ならないように設計される。好適な実施例によれば、関心の領域が各投影に対し決定され、正確に投影を表すように決定される点がたとえば質量算定の中心を用いて関心の領域から選択される。
ベクトルrsbがrsdに平行なので、次式を適用する。

ここで、λがスカラである。このスカラの値が余弦公式を図5に示される三角に適用することで表され、次式を得る。

式(7)を式(6)に結合し、スカラ積として長さを表して、次式を得る。


式(8)及び式(9)に基づき、式(1)が次式に表される。

自由度が、校正ツールのθ、φ、α、及びソース−軸距離(SAD)で決定される並進roo’=(x,y,z)及び回転である。式(10)が各画像における各基準物に対し解かれる。好適な実施例で、3つの基準物が用いられ、300画像が画像化セッションの間に撮影される。さらに、式(10)が、好適な実施例によれば、少なくとも数的に最小二乗法で解かれる。
以降に、ガウス・ニュートン・アルゴリズムを用いて式(10)の数的解法の例が示される。簡単な表記の為に、次式が導出される。






ここで、ベクトル・コンポーネント及び基準物の両方への適当なインデキシングが分かる。RSADがソースすなわちX線源51から校正ツール110の原点oを経由する軸までの距離、すなわち校正ツール110の位置である。次に、残りのvが式(10)を解く際に検討される。

これにガウス・ニュートン・アルゴリズムが二乗和を最小にするのを目指す。初期のガウスxで開始し、アルゴリズムが反復して次に従い解を更新する。

ここで、Δが次の正規方程式を解いて決定される小さなステップである。

今度は、Jがxに対するFのヤコビアンであり、すなわち、次式である。

正規方程式がJのコレスキー分解又はQR因数分解を用いて1ステップで解かれてもよい。大きなシステムでは、共役傾斜法などの反復手法がさらに効率的な場合がある。そして、J(x)の解析式が計算され得る。

v(x)=rso(RSAD,β)+roo’(x,y,z)+ro’b(θ、φ、α)であるため、次が適用される。







ここで、次式を参照する。


最後に次が適用される。

これが、コンポーネント形式で次に変換される。

したがって、式(21)が次のように書き換えられる。
ここで図7を参照し、放射線治療システムにおける治療計画又は治療について患者の画像を撮影する為に、画像化装置50を検出するための本発明に係る方法の実施例の一般的なステップが説明される。方法は、たとえば図2に説明されるようなシステムにおいて実行されてもよい。
第1のステップが、画像化装置50の回転軸を決定することを含む画像化装置50の画質パラメータの校正を実行することでよい。別法では、校正が先に実行されたならば、画像化装置50が校正を必要としなくてもよいし、校正データが校正ファイルに保存され得る。
ステップ210で、画像走査手順が開始され脱着可能な校正ツール110が、画像化装置50の放射線ユニット51を用いて照射される。
ステップ220で、校正ツール110の基準物112の断面写像を含む少なくとも1つの2次元画像が、画像走査手順中に画像化装置50の検出器52を用いて撮影される。
ステップ230で、各基準物112の写像又は投影の画像座標dxyが撮影された画像に特定されるか決定される。上述したように、各対象112に対する点が決定され、これは、各対象の投影が決定されることを示す。対象112の大きさにより、それらの投影が画素よりも大きい画像の中の領域を占め、よって中心点を表す点を特定するのに効率的である。たとえば、閾値が用いられて、投影を背景から分離する。投影が水平にも鉛直にも重ならないように、基準物112が校正ツール110上に配置される。重ならない方向における合計及び隣接非ゼロ領域の特定が実行される。この手順がセグメント化された一辺の各々に対し両方の方向で繰り返される。分類された点が関心の結果の領域に見い出される。たとえば質量算定の中心がこの目的に用いられる。
ステップ240で、画像化ユニット51に対する校正ツール110の原点oの位置、又は画像化ユニット51と校正ツールの原点oとの間のベクトルrsoが取得される。本発明の実施例で、画像化ユニット51と校正ツールの原点oとの間のベクトルrsoが計算され、本発明の別の実施例において、画像化ユニット51と校正ツールの原点oとの間のベクトルrsoが予め決定される。
ステップ250で、定位座標系における校正ツール110の位置と画像化装置座標系における校正ツール110の位置との間の並進及び回転の位置差を含む変換が、たとえば上述の式(1)〜(33)を用いて計算される。一般に、計算は、基準物画像座標dxy、校正ツール110の原点oに対する定位座標系における基準物112の位置rob、及び画像化ユニット51に対する校正ツール110の原点oの位置rsoに基づいて為される。SADが予め決定されていない場合、変換が計算される同じ時間に、SADが計算される。
次のステップにおいて、計算された変換が、放射線治療システム1に対する画像化装置50を校正する為に用いられ得る。
さて、図8を戻り、本発明に係る方法の別の実施例の放射線治療システムにおける治療計画又は治療に関する患者の画像を撮影する為の、画像化装置50を校正するステップが説明される。方法が、たとえば、図2に説明されたようなシステムにおいて実行されてもよい。第1のステップが、画像化装置50の回転軸を決定することを含む画像化装置50の画質パラメータの校正を実行してもよい。別法では、校正が先に実行されたならば、画像化装置50が校正を必要としなくてもよいし、校正データが校正ファイルに保存され得る。
ステップ310で、画像走査手順が開始され脱着可能に装着された校正ツール110が、画像化装置50の放射線ユニット51を用いて照射される。
ステップ320で、校正ツール110の基準物112の断面写像を含む少なくとも1つの2次元画像が、画像走査手順中に画像化装置50の検出器52を用いて撮影される。
ステップ330で、各基準物112の写像又は投影の画像座標dxyが、撮影された画像に特定されるか決定される。上述したように、各対象112に対する点が決定され、これは、各対象の投影が決定されることを示す。対象112の大きさにより、それらの投影が画素よりも大きい画像の中の領域を占め、よって中心点を表す点を特定するのに効率的である。たとえば、閾値が用いられて、投影を背景から分離する。投影が水平にも鉛直にも重ならないように、基準物112が校正ツール110上に配置される。図4参照のこと。重ならない方向における合計及び隣接非ゼロ領域の特定が実行される。この手順が、図4で示されるように、セグメント化された一辺の各々に対し両方の方向で繰り返される。分類された点が関心の結果の領域に見い出される。たとえば質量算定の中心がこの目的に用いられる。
ステップ340で、画像化ユニット51に対する基準物112の位置rsdが、基準物画像座標dxy、及び画像化ユニット又はX線源51に対する検出器52の位置rsdに基づき決定されるか計算される。
ステップ350で、画像化ユニット51に対する校正ツール110の原点oの位置が取得され、又は、画像化ユニット51と校正ツールの原点oとの間のベクトルrsoが取得される。本発明の実施例で、画像化ユニット51と校正ツールの原点との間のベクトルrsoが計算され、本発明の別の実施例において、画像化ユニット51と校正ツールの原点oとの間のベクトルrsoが予め決定される。
ステップ360で、定位座標系における校正ツール110の位置と画像化装置座標系における校正ツール110の位置との間の並進及び回転の位置差を含む変換が、たとえば上述の式(1)〜(33)を用いて計算される。一般に、計算が、画像化ユニット51に対する基準物の位置rsd、画像化座標系における基準物の位置ro’b、及び画像化ユニット51に対する校正ツール110の原点oの位置rsoに基づく。SADが予め決定されていない場合、変換が計算される同じ時間に、SADが計算される。次のステップにおいて、計算された変換が放射線治療システム1に対する画像化装置50を校正する為に用いられ得る。
さて、図9に移り、放射線治療システムにおける治療計画又は治療に関する患者の画像を撮影する為の、画像化装置50を校正する本発明に係る方法の別の実施例のステップが説明される。方法が、たとえば、図2に説明されたようなシステムにおいて実行されてもよい。第1のステップで、画像化装置50の回転軸を決定することを含む画像化装置50の画質パラメータの校正が実行されてもよい。別法では、校正が先に実行されたならば、画像化装置50が校正を必要としなくてもよいし、校正データが校正ファイルに保存され得る。
ステップ410で、画像走査手順が開始され脱着可能に装着された校正ツール110が画像化装置50の放射線ユニット51を用いて照射される。
ステップ420で、校正ツール110の基準物112の断面写像を含む少なくとも1つの2次元画像が、画像走査手順中に画像化装置50の検出器52を用いて撮影される。
ステップ430で、各基準物112の写像又は投影の画像座標dxyが撮影された画像に特定されるか決定される。上述したように、各対象112に対する点が決定され、これは、各対象の投影が決定されることを示す。対象112の大きさにより、それらの投影が、画素よりも大きい画像の中の領域を占め、よって中心点を表す点を特定するのに効率的である。たとえば、閾値が用いられて、投影を背景から分離する。投影が水平にも鉛直にも重ならないように、基準物112が校正ツール110上に配置される図4参照のこと。重ならない方向における合計及び隣接非ゼロ領域の特定が実行される。この手順がセグメント化された一辺の各々に対し図4に示されるように両方の方向で繰り返される。分類された点が関心の結果の領域に見い出される。たとえば質量算定の中心がこの目的に用いられる。
ステップ440で、基準物位置と画像化ユニット51の位置との間のベクトルrsbは、それぞれの基準物画像座標dxy、及び基準物位置と画像化ユニット51の位置との間のベクトルrsbがそれぞれの基準物112に対して基準物画像座標dxyと画像化ユニット51の位置との間のベクトルrsdと平行であるとの前提に基づいて決定される。
ステップ450で、画像化ユニット51に対する校正ツール110の原点oの位置が取得され、又は、画像化ユニット51と校正ツールの原点oとの間のベクトルrsoが取得される。本発明の実施例で、画像化ユニット51と校正ツールの原点oとの間のベクトルrsoが計算され、本発明の別の実施例において、画像化ユニット51と校正ツールの原点oとの間のベクトルrsoが予め決定される。
ステップ460で、定位座標系における校正ツール110の位置と画像化装置座標系における校正ツール110の位置との間の並進及び回転の位置差を含む変換が、変換を計算する際に、たとえば上述の式(1)〜(33)を用いて、基準物位置と画像化ユニット51の位置とのベルトルrsd、及び基準物画像座標dxy及び画像化ユニット51の位置との間のベクトルrsbの関係も用いて計算される。SADが予め決定されていない場合、変換が計算されるのと同じ時間にSADが計算される。
次のステップにおいて、計算された変換が放射線治療システム1に対する画像化装置50を校正する為に用いられ得る。
本発明が、これらの例示の実施例を用いて上述されたが、当業者が理解するように、それらの変態、改善及び複合は、添付の特許請求の範囲に定義されるように本発明の範囲から逸脱しないで為される。

Claims (18)

  1. 放射線治療システム(1)に対し、患者の画像を撮影する画像化装置(50)を校正する方法であって、前記放射線治療システムが、固定放射線焦点を有する放射線治療ユニット(10)、及び前記放射線治療ユニット(10)における前記固定焦点に対し患者を位置決めする位置決め装置(20)を備え、前記方法が、
    前記画像化装置(50)の放射線ユニット(51)を用いて、画像走査手順中に、少なくとも1つの基準物を備える校正ツール(110)に電離放射線を照射するステップであって、前記校正ツール(110)及び前記少なくとも1つの基準物(112)が、定位座標系において知られる位置を有する、ステップと、
    前記画像走査手順中に、前記画像化装置(50)の検出器(52)を用いて、前記校正ツール(110)の基準物(112)の断面写像を含む少なくとも1つの2次元画像を撮影するステップと、
    前記撮影された画像において、各基準物(112)の前記写像の画像座標(dxy)を決定するステップと、
    前記画像化ユニット(51)に対する前記校正ツール(110)の原点(o)の位置(rso)を取得するステップと、
    前記定位座標系における前記校正ツール(110)の位置と画像化装置座標系における前記校正ツール(110)の位置との間の変換を計算するステップと
    を含み、
    前記計算が、前記基準物画像座標(dxy)、前記校正ツール(110)の原点(o)に対する前記定位座標系における前記基準物(112)の位置(rob)、及び前記画像化ユニット(51)に対する前記校正ツール(110)の前記原点(o)の前記位置(rso)に基づいている、方法。
  2. 前記画像化ユニット(51)に対する前記校正ツール(110)の原点(o)の位置(rso)を取得するステップは、前記画像化ユニット(51)に対する前記校正ツール(110)の前記原点(o)の前記位置(rso)を計算するステップを含む、請求項1に記載の方法。
  3. 前記画像化ユニット(51)に対する前記基準物(112)の位置(rsd)を、前記基準物画像座標(dxy)及び前記画像化ユニット(51)に対する前記検出器(52)の位置(rsd)に基づいて決定するステップと、
    前記変換を、前記画像化ユニット(51)に対する前記基準物の位置(rsd)、前記画像化座標系における前記基準物の位置(ro’b)、及び前記画像化ユニット(51)に対する前記校正ツールの位置(rso)に基づいて計算するステップと
    をさらに含む、請求項1又は2に記載の方法。
  4. 前記変換の計算が、前記画像化ユニット(51)と前記検出器(52)との間の距離(SDD)、及び前記定位座標系における前記検出器の位置と前記画像化ユニット座標系における前記検出器の位置との間の検出器の回転にさらに基づいている、請求項1から3までのいずれか一項に記載の方法。
  5. 前記基準物位置と前記画像化ユニット(51)の位置との間のベクトル(rsb)を、前記それぞれの基準物画像座標(dxy)、及び、前記基準物位置と前記画像化ユニット(51)の前記位置との間の前記ベクトル(rsb)が各基準物(112)に対し前記基準物画像座標(dxy)と前記画像化ユニット(51)の位置との間のベクトル(rsd)に平行であるとの前提に基づいて決定するステップと、
    前記変換を計算する際に、前記基準物位置と前記画像化ユニット(51)の前記位置との間の前記ベクトル(rsd)と、前記基準物画像座標(dxy)と前記画像化ユニット(51)の位置との間の前記ベクトル(rsb)との間の関係を用いるステップと、
    をさらに含む、請求項1から4までのいずれか一項に記載の方法。
  6. 前記画像化ユニット(51)に対する前記基準物画像座標(dxy)への前記ベクトル(rsd)と、前記画像化ユニット(51)に対する前記基準物位置の前記ベクトル(rsb)との間の関係をスカラとして定義するステップと、
    前記スカラの値を、前記画像化ユニット(51)に対する前記基準物の位置(rsd)、前記画像化座標系における前記基準物の位置(ro’b)、及び前記画像化ユニット(51)に対する前記校正ツールの位置(rso)に基づいて決定するステップと
    をさらに含む、請求項5に記載の方法。
  7. 前記画像化装置座標系における前記校正ツール(110)の原点(o)に対する前記基準物(112)の位置(ro’b’)を、前記定位座標系における前記校正ツール(110)の前記原点(o)に対する前記基準物の前記位置(rob)に基づいて計算するステップと、
    前記変換を、前記基準物画像座標(dxy)、前記画像化座標系における前記基準物の座標(ro’b’)、及び前記画像化ユニット(51)に対する前記校正ツールの座標(rso)に基づき計算するステップと、
    をさらに含む、請求項1から6までのいずれか一項に記載の方法。
  8. 前記定位座標系における基準物の位置と前記画像化座標系におけるその基準物の位置との間の各関係が、ベクトル回転方法を用いて、並進及び回転の変換を定義するベクトルとして計算される、請求項1から7までのいずれか一項に記載の方法。
  9. 前記位置決め装置が、前記位置決め装置(20)に対して少なくとも患者の一部分を固定する為の定位固定ユニットに脱着可能で確実に係合する固定装置(28)を含む、請求項1から8までのいずれか一項に記載の方法。
  10. 放射線治療システム(1)に対し、患者の画像を撮影する為の画像化装置(50)を校正する装置であって、前記放射線治療システムが、固定放射線焦点を有する放射線治療ユニット(10)、及び前記放射線治療ユニット(10)における前記固定焦点に対し患者を位置決めする位置決め装置(20)を備え、
    前記画像化装置(50)が、画像走査手順中に、放射線ユニット(51)を用いて少なくとも1つの基準物を備える校正ツール(110)に電離放射線を照射するように構成され、前記校正ツール(110)及び前記少なくとも1つの基準物(112)が定位座標系において知られる位置を有し、
    前記画像化装置(50)が、前記画像走査手順中に、検出器(52)を用いて前記校正ツール(110)の基準物(112)の断面写像を含む少なくとも1つの2次元画像を撮影するように構成され、
    処理ユニット(120)が、
    前記撮影された画像において、各基準物(112)の前記写像の画像座標(dxy)を決定し、
    前記画像化ユニット(51)に対する前記校正ツール(110)の原点(o)の位置(rso)を取得し、
    前記定位座標系における前記校正ツール(110)の位置と画像化装置座標系における前記校正ツール(110)の位置との間の変換を計算し、前記計算が、前記基準物画像座標(dxy)、前記校正ツール(110)の原点(o)に対する前記定位座標系における前記基準物(112)の位置(rob)、及び前記画像化ユニット(51)に対する前記校正ツール(110)の前記原点(o)の位置(rso)に基づく、
    装置。
  11. 前記処理ユニット(120)が、前記画像化ユニット(51)に対する前記校正ツール(110)の前記原点(o)の前記位置(rso)を計算するようにさらに構成されている、請求項10に記載の装置。
  12. 前記処理ユニット(120)が、
    前記画像化ユニット(51)に対する前記基準物(112)の位置(rsd)を、前記基準物画像座標(dxy)及び前記画像化ユニット(51)に対する前記検出器(52)の位置(rsd)に基づいて決定し、
    前記変換を、前記画像化ユニットに(51)対する前記基準物の位置(rsd)、前記画像化座標系における前記基準物の位置(ro’b)、及び前記画像化ユニット(51)に対する前記校正ツールの位置(rso)に基づいて計算する
    ようにさらに構成されている、請求項10又は11に記載の装置。
  13. 前記処理ユニット(120)が、前記画像化ユニット(51)と前記検出器(52)との間の距離(SDD)、及び前記定位座標系における前記検出器の位置と前記画像化ユニット座標系における前記検出器の位置との間の検出器の回転に基づいて、前記変換を計算するようにさらに構成されている、請求項10から12までのいずれか一項に記載の装置。
  14. 前記処理ユニット(120)が、
    前記基準物位置と前記画像化ユニット(51)の位置との間のベクトル(rsb)を、前記それぞれの基準物画像座標(dxy)、及び、前記基準物位置と前記画像化ユニット(51)の前記位置との間の前記ベクトル(rsb)が各基準物(112)に対し前記基準物画像座標(dxy)と前記画像化ユニット(51)の位置との間のベクトル(rsd)に平行であるとの前提に基づいて決定し、
    前記変換を計算する際に、前記基準物位置と前記画像化ユニット(51)の前記位置との間の前記ベクトル(rsd)と、前記基準物画像座標(dxy)と前記画像化ユニット(51)の位置との間の前記ベクトル(rsb)との間の関係を用いる
    ようにさらに構成されている、請求項10から13までのいずれか一項に記載の装置。
  15. 前記処理ユニット(120)が、
    前記画像化ユニット(51)に対する前記基準物画像座標(dxy)への前記ベクトル(rsd)と、前記画像化ユニット(51)に対する前記基準物の位置の前記ベクトル(rsb)との間の関係をスカラとして定義し、
    前記スカラの値を、前記画像化ユニット(51)に対する前記基準物の位置(rsd)、前記画像化座標系における前記基準物の位置(ro’b)、及び前記画像化ユニット(51)に対する前記校正ツールの位置(rso)に基づいて決定する
    ようにさらに構成されている、請求項14に記載の装置。
  16. 前記処理ユニット(120)が、
    前記画像化装置座標系における前記校正ツール(110)の原点(o)に対する前記基準物(112)の位置(ro’b’)を、前記定位座標系における前記校正ツール(110)の前記原点(o)に対する前記基準物の前記位置(rob)に基づいて計算し、
    前記変換を、前記基準物画像座標(dxy)、前記画像化座標系における前記基準物の座標(ro’b’)、及び前記画像化ユニット(51)に対する前記校正ツールの座標(rso)に基づいて計算する
    ようにさらに構成されている、請求項10から15までのいずれか一項に記載の装置。
  17. 前記定位座標系における基準物の位置と前記画像化座標系におけるその基準物の位置との間の各関係が、ベクトル回転方法を用いて、並進及び回転の変換を定義するベクトルとして計算される、請求項10から16までのいずれか一項に記載の装置。
  18. 前記位置決め装置が、前記位置決め装置(20)に対して少なくとも患者の一部分を固定する為の定位固定ユニットに脱着可能で確実に係合する固定装置(28)を含む、請求項10から17までのいずれか一項に記載の装置。
JP2016562872A 2014-04-15 2014-04-15 校正の方法及びシステム Pending JP2017511213A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2014/057659 WO2015158372A1 (en) 2014-04-15 2014-04-15 Method and system for calibration

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2019004340U Continuation JP3225139U (ja) 2019-11-15 2019-11-15 校正のシステム
JP2019207115A Division JP2020039893A (ja) 2019-11-15 2019-11-15 校正の方法及びシステム

Publications (2)

Publication Number Publication Date
JP2017511213A true JP2017511213A (ja) 2017-04-20
JP2017511213A5 JP2017511213A5 (ja) 2017-06-08

Family

ID=50513245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016562872A Pending JP2017511213A (ja) 2014-04-15 2014-04-15 校正の方法及びシステム

Country Status (5)

Country Link
US (1) US11179134B2 (ja)
EP (1) EP3131629B1 (ja)
JP (1) JP2017511213A (ja)
CN (1) CN106255531B (ja)
WO (1) WO2015158372A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2530790B (en) * 2014-10-02 2016-10-19 Vision Rt Ltd Method of calibrating a patient monitoring system for use with a radiotherapy treatment apparatus
US10223792B2 (en) * 2017-02-02 2019-03-05 Elekta Ab (Publ) System and method for detecting brain metastases
CN107707815B (zh) * 2017-09-26 2019-10-15 北京金山安全软件有限公司 一种图像处理方法、装置、电子设备及存储介质
GB2568544B (en) * 2017-11-21 2019-11-13 Elekta ltd Methods and systems for checking alignment of components of a radiotherapy system
CN108937987B (zh) * 2018-05-22 2021-07-02 上海联影医疗科技股份有限公司 一种确定模体中标记物位置的方法和系统
CN109908497B (zh) * 2019-04-01 2021-11-30 上海联影医疗科技股份有限公司 坐标校准装置、系统、方法及介质
CN112085797A (zh) * 2019-06-12 2020-12-15 通用电气精准医疗有限责任公司 3d相机-医疗成像设备坐标系校准系统和方法及其应用
CN110752029B (zh) * 2019-10-21 2020-08-28 北京推想科技有限公司 一种病灶的定位方法及装置
CN111514476B (zh) * 2020-04-30 2022-03-15 江苏瑞尔医疗科技有限公司 一种用于x射线图像引导系统中的校准方法
US11311747B2 (en) 2020-07-16 2022-04-26 Uih America, Inc. Systems and methods for isocenter calibration
WO2022141399A1 (zh) * 2020-12-31 2022-07-07 西安大医集团股份有限公司 焦点验证方法、计划验证方法、系统、装置及存储介质
WO2023044614A1 (en) * 2021-09-22 2023-03-30 Abb Schweiz Ag Method and electronic device for calibrating robot
CN116850484B (zh) * 2023-08-17 2024-03-26 迈胜医疗设备有限公司 图像引导系统及校准装置、位置校准方法、放射治疗设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006051216A (ja) * 2004-08-12 2006-02-23 Mitsubishi Heavy Ind Ltd 放射線治療装置、放射線治療装置用治療台、及び放射線治療装置の座標校正方法
US20080232664A1 (en) * 2007-03-20 2008-09-25 Yoshihiko Nagamine Couch positioning system for radiotherapy, treatment plan unit, and couch positioning unit
WO2012146301A1 (en) * 2011-04-29 2012-11-01 Elekta Ab (Publ) Method for calibration and qa
JP2013192702A (ja) * 2012-03-19 2013-09-30 Hokkaido Univ 放射線治療制御装置および放射線治療制御プログラム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE522710C2 (sv) 2002-07-05 2004-03-02 Elekta Ab Strålterapiapparat med flera uppsättningar hål i kollimatorringen där förskjutbara plattor bestämmer vilka håluppsättningar som strålkällorna ska använda, samt metod att variera strålfältet
US7147373B2 (en) * 2003-08-08 2006-12-12 University Health Network Method and system for calibrating a source and detector instrument
US7936859B2 (en) * 2007-02-15 2011-05-03 Elekta Ab (Publ) Method of calibrating a radiation therapy system
EP2119397B1 (de) * 2008-05-15 2013-12-18 Brainlab AG Bestimmung einer Kalibrier-Information für ein Röntgengerät
US8335363B2 (en) * 2009-06-16 2012-12-18 Jefferson Science Associates, Llc Method for image reconstruction of moving radionuclide source distribution
US20130229495A1 (en) * 2012-03-01 2013-09-05 Ali-Reza Bani-Hashemi Method for calibrating an imaging system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006051216A (ja) * 2004-08-12 2006-02-23 Mitsubishi Heavy Ind Ltd 放射線治療装置、放射線治療装置用治療台、及び放射線治療装置の座標校正方法
US20080232664A1 (en) * 2007-03-20 2008-09-25 Yoshihiko Nagamine Couch positioning system for radiotherapy, treatment plan unit, and couch positioning unit
JP2008228966A (ja) * 2007-03-20 2008-10-02 Hitachi Ltd 放射線治療用ベッド位置決めシステム、治療計画装置及びベッド位置決め装置
WO2012146301A1 (en) * 2011-04-29 2012-11-01 Elekta Ab (Publ) Method for calibration and qa
JP2013192702A (ja) * 2012-03-19 2013-09-30 Hokkaido Univ 放射線治療制御装置および放射線治療制御プログラム

Also Published As

Publication number Publication date
US20170027540A1 (en) 2017-02-02
US11179134B2 (en) 2021-11-23
CN106255531B (zh) 2019-07-26
CN106255531A (zh) 2016-12-21
EP3131629B1 (en) 2020-01-08
EP3131629A1 (en) 2017-02-22
WO2015158372A1 (en) 2015-10-22

Similar Documents

Publication Publication Date Title
US11179134B2 (en) Method and system for calibration
US11633629B2 (en) Method of calibration of a stereoscopic camera system for use with a radio therapy treatment apparatus
Yan et al. A phantom study on the positioning accuracy of the Novalis Body system
US8503745B2 (en) System and method for automatic registration between an image and a subject
Adler Jr et al. Image-guided robotic radiosurgery
EP2285279B1 (en) Automatic patient positioning system
EP2701802B1 (en) Method for calibration and qa
US7715606B2 (en) Marker system and method of using the same
US8417318B2 (en) Calibrating tracking systems to remove position-dependent bias
US20150036793A1 (en) Radiotherapy system
US11224765B2 (en) Method of calibrating a patient monitoring system for use with a radiotherapy treatment apparatus
JP6565080B2 (ja) 放射線治療装置、その作動方法及びプログラム
JP2022009850A (ja) 校正の方法及びシステム
US20220054199A1 (en) Robotic surgery systems and surgical guidance methods thereof
KR101027099B1 (ko) 컴퓨터 단층촬영장치의 위치보정데이터 측정방법 및 위치보정방법
JP2008148964A (ja) 放射線治療用複合装置およびアライメント補正用データ作成方法
KR102619994B1 (ko) 의용 화상 처리 장치, 기억 매체, 의용 장치, 및 치료 시스템
JP3225139U (ja) 校正のシステム
CN111615413B (zh) 摆位方法、装置及放射治疗系统
Chae et al. Coordinates tracking and augmented reality system using bipolar X-ray fluoroscopy and stereo vision for image-guided neurosurgery
Hadley Video-based patient positioning for external beam radiation therapy.
García Vázquez Advances in navigation and intraoperative imaging for intraoperative electron radiotherapy
Huang et al. Henry Ford Health System Scholarly Common s

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170412

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180404

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180629

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181019

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191115

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191218

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200116