JP2017501415A - 原子炉制御棒の管理 - Google Patents

原子炉制御棒の管理 Download PDF

Info

Publication number
JP2017501415A
JP2017501415A JP2016543579A JP2016543579A JP2017501415A JP 2017501415 A JP2017501415 A JP 2017501415A JP 2016543579 A JP2016543579 A JP 2016543579A JP 2016543579 A JP2016543579 A JP 2016543579A JP 2017501415 A JP2017501415 A JP 2017501415A
Authority
JP
Japan
Prior art keywords
control rod
manifold
force
drive shaft
drive assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016543579A
Other languages
English (en)
Other versions
JP6476193B2 (ja
Inventor
エリック ポール ヤング、
エリック ポール ヤング、
タマス ロバート リスカイ、
タマス ロバート リスカイ、
Original Assignee
ニュースケール パワー エルエルシー
ニュースケール パワー エルエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニュースケール パワー エルエルシー, ニュースケール パワー エルエルシー filed Critical ニュースケール パワー エルエルシー
Publication of JP2017501415A publication Critical patent/JP2017501415A/ja
Application granted granted Critical
Publication of JP6476193B2 publication Critical patent/JP6476193B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/06Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
    • G21C7/08Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section by displacement of solid control elements, e.g. control rods
    • G21C7/12Means for moving control elements to desired position
    • G21C7/14Mechanical drive arrangements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/32Integral reactors, i.e. reactors wherein parts functionally associated with the reactor but not essential to the reaction, e.g. heat exchangers, are disposed inside the enclosure with the core
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • G21C9/02Means for effecting very rapid reduction of the reactivity factor under fault conditions, e.g. reactor fuse; Control elements having arrangements activated in an emergency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

原子炉制御棒駆動アセンブリが、駆動シャフトに結合されて当該駆動シャフトを、第1の力で炉容器の内容積の一部分を通るように双方向に付勢するべく動作可能な制御棒駆動機構と、当該駆動シャフトに結合された制御棒マニホルドと、当該制御棒駆動機構の動作に基づいて当該炉容器の内容積において複数の位置間で調整可能な、当該制御棒マニホルドに結合された複数の制御棒と、当該制御棒駆動機構と当該複数の制御棒との間に位置決めされた少なくとも一つの可変強度継手とを含む。

Description

本開示は一般に、原子炉制御棒を管理するシステム及び方法に関する。
関連出願の相互参照
本願は、2013年12月31日出願の米国仮特許出願第61/922,285号、及び2014年2月18日出願の米国特許出願第14/182,809号の優先権を主張する。双方の出願の内容は全体がここに参照として組み入れられる。
発電用原子炉は、反応性を制御する中性子吸収棒に依存する。伝統的に棒は、炉心の中に複数組で挿入され、一組の棒が、制御棒付きの燃料集合体のそれぞれに対応する。制御棒は、炉心内で生じる核分裂を(少なくとも部分的に)制御するべく炉心の中を動くことができる。いくつかの炉設計では、制御棒駆動機構が一次系圧力バウンダリの一側に配置される一方、制御棒は、炉心内において当該圧力バウンダリの反対側に配置される。他の設計では、駆動機構が圧力バウンダリの一部をなす。通常動作中、棒は、当該棒をさらに炉心内へと挿入する力、又は当該制御棒を炉心から取り除く力のいずれかを与える駆動機構によって炉心内に位置決めされる。駆動機構はまた、制御棒を、炉心内にいくつかの挿入程度で保持する。
米国特許出願公開第2013/0272464(A1)号明細書
一般的実装において、原子炉制御棒駆動アセンブリが、駆動シャフトに結合されて当該駆動シャフトを、第1の力で炉容器の内容積の一部分を通るように双方向に付勢するべく動作可能な制御棒駆動機構と、当該駆動シャフトに結合された制御棒マニホルドと、当該制御棒駆動機構の動作に基づいて当該炉容器の内容積において複数の位置間で調整可能な、当該制御棒マニホルドに結合された複数の制御棒と、当該制御棒駆動機構と当該複数の制御棒との間に位置決めされた少なくとも一つの可変強度継手とを含む。
当該一般的実装と組み合わせ可能な第1側面において、可変強度継手は、第1の力よりも大きい破損強度であって、異常動作事象に起因して当該複数の制御棒に作用する当該第1の力より大きな第2の力よりも小さい破損強度を含む。
上記側面のいずれかと組み合わせ可能な第2側面において、第2の力は、第1の力よりも桁数が一桁大きい。
上記側面のいずれかと組み合わせ可能な第3側面において、破損強度は、第1の力よりも大きくかつ第2の力よりも小さい第3の力であって、SCRAM事象に起因して複数の制御棒に作用する第3の力よりも大きい。
上記側面のいずれかと組み合わせ可能な第4側面において、第1の力及び第3の力は第1方向に向けられ、第2の力は、第1方向とは反対の第2方向に向けられる。
上記側面のいずれかと組み合わせ可能な第5側面において、破損強度は、大きさが第1方向において第1の力よりも大きくかつ第2方向において第2の力よりも小さい方向依存の破損強度である。
上記側面のいずれかと組み合わせ可能な第6側面において、制御棒駆動機構は、炉容器の外部に位置決めされる。
上記側面のいずれかと組み合わせ可能な第7側面において、駆動シャフトの一部分が可変強度継手を含む。
上記側面のいずれかと組み合わせ可能な第8側面において、駆動シャフトの当該一部分は、制御棒マニホルドの近くの、駆動シャフトの遠位端に配置される。駆動シャフトの遠位端は、制御棒駆動機構に結合された当該駆動シャフトの近位端の反対側にある。
上記側面のいずれかと組み合わせ可能な第9側面において、可変強度継手は、せん断リング、スナップリング、又は駆動シャフトの小径化部分の少なくとも一つを含む。
上記側面のいずれかと組み合わせ可能な第10側面において、複数の制御棒の少なくとも一つの制御棒の一部分が可変強度継手を含む。
上記側面のいずれかと組み合わせ可能な第11側面において、制御棒の少なくとも一つの制御棒の当該一部分は制御棒マニホルドの近くにある。
上記側面のいずれかと組み合わせ可能な第12側面において、可変強度継手は、せん断リング、スナップリング、又は駆動シャフトの小径化部分の少なくとも一つを含む。
他の一般的な側面において、核制御棒排出事象を管理する方法が、駆動シャフトによって制御棒駆動機構に結合された制御棒マニホルドを、炉容器の一部分を通るように第1方向に第1の力で動かすことと、当該制御棒マニホルドに結合された中性子吸収棒の当該炉容器における位置を、当該制御棒マニホルドの動きに基づいて第1方向に調整することと、異常動作事象に応答して、当該中性子吸収棒、当該制御棒マニホルド又は当該駆動シャフトの少なくとも一つに作用する、第1の力よりも大きな第2の力を、第1方向とは反対の第2方向に受けることと、第2の力を受けたことに応答して、当該制御棒マニホルドから駆動シャフト又は当該中性子吸収棒から制御棒マニホルドの少なくとも一つを可変強度継手によって結合解除することとを含む。
当該一般的実装と組み合わせ可能な第1側面において、当該制御棒マニホルドから駆動シャフト又は当該中性子吸収棒から制御棒マニホルドの少なくとも一つを可変強度継手によって結合解除することは、当該制御棒マニホルドから駆動シャフトを結合解除することを含む。
上記側面のいずれかと組み合わせ可能な第2側面において、当該制御棒マニホルドから駆動シャフトを結合解除することは、当該駆動シャフトを当該制御棒マニホルドに結合するスナップリングの破断と、当該駆動シャフトを当該制御棒マニホルドに結合するせん断リングのせん断と、当該制御棒マニホルドに結合された当該駆動シャフトの一部分における当該駆動シャフトの破断との少なくとも一つを含む。
上記側面のいずれかと組み合わせ可能な第3側面において、当該制御棒マニホルドから駆動シャフト又は当該中性子吸収棒から制御棒マニホルドの少なくとも一つを可変強度継手によって結合解除することは、当該中性子吸収棒から制御棒マニホルドを結合解除することを含む。
上記側面のいずれかと組み合わせ可能な第4側面において、当該中性子吸収棒から制御棒マニホルドを結合解除することは、当該中性子吸収棒を当該制御棒マニホルドに結合するスナップリングの破断と、当該中性子吸収棒を当該制御棒マニホルドに結合するせん断リングのせん断と、当該制御棒マニホルドに結合された当該中性子吸収棒の一部分における当該中性子吸収棒の破断との少なくとも一つを含む。
上記側面のいずれかと組み合わせ可能な第5側面において、第2の力は、当該制御棒マニホルドに結合された駆動シャフトの他端と反対側にある当該駆動シャフトの一端と、第1方向を向く制御棒マニホルドの表面との少なくとも一つに作用する液圧を含む。
上記側面のいずれかと組み合わせ可能な第6側面において、可変強度継手は、第1の力よりも大きくかつ第2の力よりも小さい破損強度を含む。
他の一般的な実装において、原子炉制御棒駆動アセンブリが、制御棒駆動機構と、当該駆動機構に結合された駆動シャフトと、当該駆動シャフトに第1接続部によって結合されたマニホルドとを含み、当該マニホルドは、制御棒を当該マニホルドに結合する第2接続部を含み、第1接続部又は第2接続部の少なくとも一方が可変強度接続部である。
当該一般的実装と組み合わせ可能な第1側面において、可変強度接続部は、第1方向に画定された第1破損強度と、第1方向とは反対の第2方向に画定された第2破損強度とを含み、当該第1破損強度は当該第2破損強度よりも大きい。
上記側面のいずれかと組み合わせ可能な第2側面において、第1破損強度は、第2破損強度よりも桁数が少なくとも一桁大きい。
上記側面のいずれかと組み合わせ可能な第3側面において、当該桁数は少なくとも2桁である。
上記側面のいずれかと組み合わせ可能な第4側面において、可変強度接続部は、第1破損強度以上の第1方向の力で破損し、かつ、第2破損強度以上の第2方向の力で破損するせん断部材を含む。
本開示に記載の様々な実装は、以下の特徴のゼロ、一つ、いくつか又はすべてを含み得る。例えば、本開示に係る原子炉制御棒駆動アセンブリは、制御棒排出事象の場合に炉心損傷を防止するのに役立つ。制御棒駆動アセンブリはまた、排出事象中に炉容器のような圧力障壁の突破を防止するのにも役立つ。他の例として、制御棒駆動アセンブリは、かかる事象を防止し又は防止補助する一方、原子炉システムの通常(例えば非事故)動作中に中性子吸収棒の通常動作の動きを与える。さらに他の例として、制御棒駆動アセンブリは、付加的な突破(例えば、発生し得る炉心損傷からもたらされる圧力バウンダリの、排出事象のきっかけとなり得る初期突破)を防止し又は防止補助する。例えば、制御棒駆動アセンブリは、反応度挿入及び炉心損傷を停止し又は停止補助する。したがって、炉心溶融物からの付加的な突破を防止することができる。
本明細書に記載される主題の一以上の実装の詳細が、添付図面及び以下の説明に記載される。本主題の他の特徴、側面及び利点が、当該説明、図面及び特許請求の範囲から明らかとなる。
原子炉制御棒駆動アセンブリを含む原子炉システムの一例を示すブロック図である。 原子炉制御棒駆動アセンブリの一実装例を示す。 図3A〜3Bは、原子炉制御棒駆動アセンブリの一実装例の複数部分の詳細図を示す。 原子炉システムにおける排出事象を管理する一方法例を説明するフローチャートである。
本開示は、原子炉制御棒駆動アセンブリを説明する。これは、いくつかの側面において、排出事象に応答して中性子吸収制御棒及び/又は駆動アセンブリ部分の排出を防止し又は防止補助する。例えば、駆動アセンブリの2以上の部分が、排出力に応答して、駆動アセンブリ部分又は制御棒の排出を防止し又は防止補助するべく破断する可変強度接続部又は継手によって一緒に結合される。
図1は、原子炉制御棒駆動アセンブリ25(その一部が図1に示される)を含む原子炉システム100(例えば原子炉)を例示するブロック図である。いくつかの側面において、原子炉システム100は、商用電源加圧水炉である。これは、一次冷却材の(例えば自然の)循環を利用して炉心を冷却し、当該炉心から一以上の熱交換器を介して二次冷却材へと熱を伝達する。二次冷却材(例えば水)は、ひとたび(例えば水蒸気、過熱蒸気等へと)加熱されると、凝縮されて一以上の熱交換器へと戻るまでに蒸気タービン等のような発電機器を駆動することができる。
原子炉システム100に関し、炉心20は、(例えば円筒状又はカプセル状の)炉容器70の底部に位置決めされる。炉心20は、一定量の核燃料集合体又は棒(例えば、制御棒との組み合わせで、制御された核反応をもたらす核分裂物質)、及び随意的に一以上の制御棒(図示せず)を含む。いくつかの実装において、原子炉システム100は、通常動作中又は緊急事態であっても、原子炉100の安全動作が、操作員の介入又は監督なしで、少なくとも一定の予め定められた時間、確実に維持されるように物理法則を用いる(例えば一次冷却材用の循環ポンプが存在しない)受動動作システムによって設計される。(例えば円筒状又はカプセル状の)格納容器10が、炉容器70を取り囲み、図示の例では、炉ベイ5内の水位線90(これはベイ5の頂面35に又はその直下に存在し得る)の下方のような、炉プールの中に部分的に又は完全に浸漬される。炉容器70及び格納容器10間の容積は、炉容器70から炉プールへの熱伝達を低減させるべく部分的又は完全に真空にされる。しかしながら、他の実装では、炉及び格納容器間の熱伝達を増加させるべく、炉容器70と格納容器10との間の容積には、少なくとも部分的に気体及び/又は液体が満たされ得る。
例示の実装において、炉心20は、ホウ素又は他の添加剤を含み得る水のような液体内に浸漬される。この水は、炉心の表面に接触した後、チャネル30の中へと上昇する。加熱された冷却材の上方の動きは、チャネル30(例えばライザー30)内の矢印40(例えば一次冷却材40)によって代表される。冷却材は、熱交換器50及び60の頂部を超えて移動し、炉容器70の内壁沿いの対流により下方へと引っ張られるので、冷却材が熱交換器50及び60に熱を与えることが許容される。炉容器の底部に到達した後、炉心20との接触により冷却材の加熱がもたらされ、当該冷却材は再びチャネル30を通って上昇する。熱交換器50及び60は、図1において2つの別個の要素として示されるが、熱交換器50及び60は、チャネル30の少なくとも一部に巻き付く任意数のらせん状コイルを代表し得る。
例示の実装において、原子炉モジュールの通常動作は、加熱された冷却材がチャネル30を通って上昇し、熱交換器50及び60に接触する態様で進行する。熱交換器50及び60との接触後、冷却材は、熱サイホンプロセスを誘導する態様で炉容器90の底に向かって沈む。図1の例では、炉容器70内の冷却材は大気圧を上回る圧力のままであるから、当該冷却材は、蒸発(例えば沸騰)することなく高温を維持することができる。
例示の実装において、熱交換器50及び60内の冷却材の温度が上昇すると、当該冷却材は沸騰を開始する。熱交換器50及び60内の冷却材が沸騰し始めると、水蒸気のような蒸発した冷却材が、蒸気の熱ポテンシャルエネルギーを電気エネルギーに変換する一以上のタービンを駆動するべく使用される。例示の実装において、冷却材は凝縮後、熱交換器50及び60の基部近くの位置へと戻る。
例示の実装において、反射体15及び炉容器70間のダウンカマー領域により、ライザー30及び炉容器70間のアニュラスにおいて、容器70の上端(例えば熱交換器50、60を通過した後)及び容器70の下端(例えば炉心20の下方)から一次冷却材40が流れる流体経路が得られる。流体経路は一次冷却材40を導く。一次冷却材40は、炉心20を通って再循環されて反射体15の少なくとも一つの表面に対流接触し、反射体15を冷却する
原子炉システムの一特定例が図1に示されるにもかかわらず、システム100はまた、(例えば沸騰水炉においてのような)一次冷却材ループ又は(例えば加圧水炉においてのような)二次冷却ループのいずれかにおいて水を沸騰させるべく利用される熱を与える原子炉心を含む任意のタイプの原子力発電システムであり得る。水蒸気のような蒸発した冷却材が、熱ポテンシャルエネルギーを電気エネルギーに変換する一以上のタービンを駆動するべく使用される。冷却材は凝縮後、再び原子炉心から熱エネルギーを除去するべく原子炉心へと戻される。すなわち、原子炉システム100は、本開示に係る制御棒駆動アセンブリを含む任意の原子力発電システムの一例である。
一部分が図1に示される制御棒駆動アセンブリ25は、例示のような(図2に詳細が示される)、一以上の制御棒45を保持するマニホルドに接続されたシャフトを含む。一般に、制御棒駆動アセンブリ25は、原子炉システム100の動作中、炉心20に対して制御棒45の位置を調整する(例えば動かす)。例えば、(例えば事故事象中ではない)通常動作中、制御棒駆動アセンブリ25は、炉心内の制御棒45の位置を調整することにより、システム100における特定の温度、圧力又は他の変数を維持する。
制御棒駆動アセンブリ25はまた、制御棒45の「排出」事象のような所定の事故事象に対処するべく設計される。例えば、圧力バウンダリ(例えば炉容器70)の突破は、相対的に炉心20から離れる方向を向く表面を、相対的に炉心70に向かう方向の表面に作用する圧力よりも小さい圧力にさらす。この圧力差により、制御棒45を炉心20から「排出」する駆動力がもたらされる。この排出事故は典型的に、通常時に駆動アセンブリ25によって制御棒45が炉心20に対して挿入又は除去される時間よりも短い時間にわたって生じる。したがって、「排出」事故中の制御棒45の加速度は通常動作中よりも大きく、通常動作中に当該棒45を動かすべく及ぼされる力は、想定排出事故シナリオ中のものよりも小さい。想定排出事故中の制御棒45の相対的に迅速な除去により、それに関連した、炉心20への損傷のポテンシャルを伴う迅速な反応度の挿入がもたらされる。
例示の駆動アセンブリ25が、起因事象(例えば排出事象)が制御棒45の炉心20からの十分な除去をもたらすのを防止する(例えば、又は防止補助する)結果、炉心損傷を防止し又は防止補助する。例示の駆動アセンブリ25は、制御棒45とマニホルドとの間の及び/又は駆動シャフトとマニホルドとの間の(いくつかの例のように)可変強度結合又は接続部を含む。一つ又は複数の可変強度接続部を、増加した除去力が起因事象に基づいて存在する場合に駆動アセンブリ25と制御棒45とが結合解除される(又は駆動アセンブリ25の複数部分が結合解除される)ように設計することができる。すなわち、駆動アセンブリ25は、通常動作中に受けるものと同様の任意の駆動力に対しては確実に制御棒45に接続することができる一方で、排出事故事象中に受けるさらに大きな力のもとでは制御棒45から接続解除することができる。かかる大きな力での接続解除により、駆動アセンブリ45は、炉心損傷を防止し又は防止補助することに加え、排出事象中における圧力バウンダリ(例えば炉容器70)の付加的な突破を防止し又は防止補助する。
(例えば排出事象にはない)通常動作中の制御棒駆動アセンブリ25の一分析例において、駆動アセンブリ25による制御棒45の動きは、(例えば排出事象と比べて)相対的に遅く、可変強度接続部には加速度に起因する無視できる程度の力が存在する。例えば、特定の可変強度接続部にかかる通常力は、駆動アセンブリ25(及びいくつかの側面において制御棒45)の重量にすぎない。駆動アセンブリ25が、大ざっぱに3.66メートル(12フィート)とみなされる場合、駆動アセンブリ25の排出時間は典型的に約160msとなる。可変強度接続部にかかる計算された力は、表1のようになる(SI単位)。
Figure 2017501415
この例において、駆動アセンブリ25にかかる排出力は、駆動アセンブリ25にかかる通常動作力よりもずっと大きい。例示のように、例えば、排出事故シナリオのもとでの力は、通常動作シナリオのもとでの力の約16倍である。したがって、可変強度接続部は、通常動作中は無傷のままである一方、排出事故中には破断又はせん断するように設計される。可変強度接続部の(例えば通常動作中における)好ましくない破断又はせん断は、駆動アセンブリ25に作用する力の規模の差異ゆえに、生じる可能性が低い。
図2は、原子炉制御棒駆動アセンブリ200の一実装例を示す。これは、原子炉システム(例えば原子炉システム100)の一部分において例示される。例示のように、制御棒駆動アセンブリ200は、駆動機構205、駆動アクチュエータ220、駆動シャフト210及びマニホルド215を含む。示される駆動アセンブリ200は、炉容器70の中に取り付けられて制御棒45に結合されるように例示される。この図において制御棒45は、原子炉システムの炉心20の中へと少なくとも部分的に挿入されるように例示される。
例示の実施形態において、駆動機構205のアクチュエータ220は、制御システム225に通信可能に結合される。一般に、制御システム225は、原子炉システム100の一以上のセンサからの情報(例えば、温度、圧力、フラックス、弁状態、ポンプ状態又は他の情報)を受信し、かかる情報に基づいてアクチュエータ220を制御して駆動機構205にエネルギーを与える。いくつかの実装において、制御システム225は、原子炉システムの主要制御器(すなわち、プロセッサベースの電子デバイス又は他の電子制御器)である。例えば、主要制御器は、各制御弁におけるスレーブ制御器に通信可能に結合されたマスタ制御器である。いくつかの実装において、制御システム225は、比例積分導関数(PID)制御器、ASIC(特定用途向け集積回路)、マイクロプロセッサベースの制御器、又は任意の他の適切な制御器である。いくつかの実装において、制御システム225は、分散型制御システムのすべて又は一部である。
例示の駆動機構205は、(例えば、ねじ留めで)駆動シャフト210に結合され、アクチュエータ220の動作に応答して駆動シャフト210のマニホルド215を上昇又は下降させることにより、炉容器70(例えば炉心20の中)における制御棒45の位置を調整するべく動作可能である。いくつかの側面において、駆動機構205は、(例えば排出事象を除く)通常動作中にのみ駆動アセンブリ200及び制御棒45の動きを制御する。すなわち、駆動機構205は、駆動シャフト210及びマニホルド215を、(上述のように)排出事象中の駆動アセンブリ200の動きよりもゆっくりと動かす。例示の実装において、駆動機構205の作動は、駆動シャフト210を(例えば炉心20から離れ又は炉心20に向かうように)上又は下へと駆動する力を及ぼして制御棒45の位置を調整する。
いくつかの実装において、駆動機構205は、駆動シャフト210及びマニホルド215を動かす確実な力を及ぼすことはなく、下向きの重力に対向するようにコンポーネントを支持するだけである。例えば、制御棒45は、重力に起因する自身の重量を受けてマニホルド215から懸架される。挿入を目的として、駆動機構205は、マニホルド215が置かれた箇所又は高さを動かす。ここには、重力に対向する関連支持体が配置される。動きに対しては、機構205が、重力に対向する力の量を低減するので、棒45を炉心20の中に挿入する正味の力が存在する。例えば、制御棒45を挿入するための力は、頂部に取り付けられた駆動機構205(図示のように)に対する重力であるが、底部に取り付けられた駆動機構における重力に対向する確実な力ともなり得る(双方とも本開示により意図される)。
駆動シャフト210は、一以上の制御棒45に結合されたように例示されるマニホルド215に結合される。図示のように、駆動シャフト210は、可変強度接続部235においてマニホルド215に結合される。制御棒45もまた、可変強度接続部230においてマニホルド215に結合される。一般に、各可変強度接続部(230及び235)は、駆動アセンブリ200の2つのコンポーネントの接合部に配置された継手である。例示の実装において各継手は、棒45を破断又はせん断なしに一以上の方向に確実に動かすべく、通常動作(例えば、マニホルド215の位置を調整する駆動機構205の動作)が機能する間に及ぼされる力に持ちこたえる。さらに、例示の実装において各継手は、排出事象中に及ぼされる力に、破断又はせん断なしには持ちこたえることができない。
いくつかの側面において、可変強度接続部(230又は235)における継手の強度は、方向依存である。例えば、可変強度接続部(230又は235)は、特定の方向に及ぼされる特定の力に破断なく持ちこたえるように設計されるが、反対方向に及ぼされるずっと大きな力に破断なく持ちこたえるように設計される。すなわち、一例において、可変強度接続部(230又は235)は、制御棒45を(例えば炉心20から離れるように)除去する方向において強度のバリエーションを有するが、制御棒45を(例えば炉心20に向かうように)挿入する方向においてはそうではない。これにより、駆動シャフト210の重量、又は駆動機構205による任意の付加的駆動力が、炉トリップ(例えばSCRAM事象)中に制御棒45を炉心20の中へと有効に駆動することができる。すなわち、可変強度接続部(230又は235)は、棒45を炉心20の中へと駆動するときには破断又はせん断しない。当該接続部は、駆動シャフト210が棒45を炉心20から除去しているときの動き方向においてのみ可変な強度を有するからである。
図2が、駆動シャフト210とマニホルド215との間、及び制御棒45とマニホルド215との間に可変強度接続部を示すにもかかわらず、いくつかの実装においては、駆動シャフト210とマニホルド215との間にのみ可変強度接続部が存在してよい。例えば、駆動シャフト210及びマニホルド215間に可変強度接続部が存在しない側面において、これらのコンポーネントは強固に接続される(例えば溶接等による)。他の側面において、制御棒45とマニホルド215との間には可変強度接続部のみが存在し得る。
図3A〜3Bは、原子炉制御棒駆動アセンブリ200の実装例の複数部分の詳細図を示す。図3Aは例えば、駆動シャフト210及びマニホルド215間の可変強度接続部の詳細図を示す。例示のように、駆動シャフト210の一端が、マニホルド215内に作られたポケット250の中に挿入される。駆動シャフト210の一部分は、切り欠き265(例えば小径化部分)を含み、マニホルド215は、せん断部材260が位置決めされる環状リングを画定する切り欠き255を含む。いくつかの側面において、せん断部材260は、駆動シャフト210をマニホルド215に確実に係合させるせん断リング又はスナップリング(又は締り嵌め若しくは他の破断可能接続部)である。この例において、せん断部材260及びその切り欠き265/255は、駆動シャフト210及びマニホルド215間に可変強度接続部を形成する。
通常動作において、(例えば駆動機構205からの)力が駆動シャフト210に及ぼされる結果、マニホルド215に結合された制御棒45を炉心20の中へと動かす動きが(例えば炉心20に向かう)下方向を向く。SCRAM事象中においても、駆動シャフト210には(例えば炉心20に向かう)下方向の力が及ぼされ、マニホルド215に結合された制御棒45が、(例えば当該事象を止めるべく極めて迅速に)炉心20の中へと動く。SCRAM事象中のこの力は、通常動作中に及ぼされる力よりもずっと大きい。すなわち、駆動シャフト210及びマニホルド215間の可変強度接続部は、炉心20に向かう方向に力が及ぼされる場合の通常動作中及びSCRAM事象中の力に(破断又はせん断なしに)持ちこたえる。
排出事故の事象において、炉心20に対向する方向の力(例えば炉心20内の冷却材からの液圧力)が、駆動シャフト210の端263に及ぼされる。例えば、図示のように、端263に隣接するマニホルド215にはアパチャが形成されるので、駆動シャフト210の端263に圧力を及ぼすための流体(例えば冷却材)の流体経路が画定される。上述のように、この力は、通常動作中に駆動シャフト210に及ぼされる力よりもずっと大きい。すなわち、駆動シャフト210及びマニホルド215間の可変強度接続部は、炉心20に対向する方向に及ぼされる排出事象の力に基づいて破断又はせん断する。
図3Bは、制御棒45及びマニホルド215間の可変強度接続部の詳細図を示す。例示のように、各制御棒45の一端が、マニホルド215内に作られたポケット250の中に挿入される。制御棒45の一部分は、切り欠き270(例えば小径化部分)を含み、マニホルド215は、せん断部材260が位置決めされる環状リングをともに画定する切り欠き255を含む。いくつかの実装において、せん断部材260は、確実に制御棒45をマニホルド215に係合させるせん断リング又はスナップリング(又は締り嵌め若しくは他の破断可能接続部)である。この例において、せん断部材260及び切り欠き255/270は、制御棒45及びマニホルド215間の可変強度接続部を形成する。
通常動作の一例において、(例えば駆動機構205からの)下方向の力が駆動シャフト210に及ぼされ、制御棒45を炉心20の中へと動かすべくマニホルド215(及び後に制御棒45)へと伝達される。SCRAM事象中においても、この力が駆動シャフト210に及ぼされ、マニホルド215を介して制御棒45へと伝達されるので、制御棒45が、(例えば当該事象を止めるべく極めて迅速に)炉心20の中へと動く。SCRAM事象中のこの力は、通常動作中に及ぼされる力よりもずっと大きい。すなわち、制御棒45及びマニホルド215間の可変強度接続部は、炉心20に向かう方向に力が及ぼされる場合の通常動作中及びSCRAM事象中の力に(破断又はせん断なしに)持ちこたえる。
排出事故の事象において、炉心20に対向する方向の力(例えば炉心20内の冷却材からの液圧力)が、例えば制御棒45の底面に及ぼされる。これは、棒45及びマニホルド215(さらには駆動シャフト210)を高速度で上方に付勢するべく作用する。上述のように、この力は、通常動作中に駆動シャフト210に及ぼされる力よりもずっと大きい。すなわち、制御棒45及びマニホルド215間の可変強度接続部は、炉心20に対向する方向に及ぼされる排出事象の力に基づいて破断又はせん断する。
図4は、原子炉システムにおける排出事象を管理する方法400の一例を説明するフローチャートである。方法400は、例えば、制御棒駆動アセンブリ200を含む図1の原子炉システム100又は本開示に係る制御棒駆動アセンブリを含む他の適切な原子炉システムを使用して行われる。
ステップ402において、制御棒マニホルドが、(例えば制御棒駆動機構によって)第1方向に第1の力によって動かされる。いくつかの実装において、第1方向は、原子炉システムの炉心の方を向き得る。当該動きの力(及び速度)は、(例えば排出事象の力と比べて)相対的に無視できる程度である。いくつかの実装において、第1方向の力は、SCRAM事象中のような、制御棒マニホルドが(通常動作の動きと比べて)相対的に迅速に動く場合に、相対的に大きい。
ステップ404において、原子炉システムの炉容器における中性子吸収棒又は制御棒が、制御棒マニホルドの動きに基づいて第1方向に(例えば炉心に向かって)調整される。例えば、いくつかの例において、制御棒はマニホルドに結合され、当該マニホルドはさらに、制御棒駆動機構に結合された駆動シャフトに結合される。もちろん、いくつかの実装において駆動機構は、通常動作中に制御棒の位置を双方向に調整することができる。
ステップ406において、異常事象(例えば排出事象)に応答して、制御棒案内アセンブリ少なくとも一部分、及び/又は一つ若しくは複数の制御棒に作用する第2の力を受ける。いくつかの実装において、第2の力は、高圧力のもとにある(例えば炉心を通って流れる冷却材の)液圧によって生成される。液圧は、駆動シャフトの一端(例えば軸方向面)に作用する。この一端は、圧力バウンダリの近くに又は圧力バウンダリにある制御アセンブリの中の他端と反対側にある。いくつかの実装において、液圧は、制御棒マニホルドの底面(例えば第1方向を向く面)に作用する。液圧は、制御棒及び駆動アセンブリを炉心から離れるように付勢するべく作用する。いくつかの実装において、第2の力は第1の力よりも、例えば、少なくとも2倍大きい。
ステップ408において、第2の力に応答して、制御棒駆動アセンブリの一部分が、第2の力よりも小さな破損強度を有する可変強度継手によって結合解除される。いくつかの実装において、可変強度継手は、駆動シャフト及びマニホルド間に位置決めされる。
ひとたび可変強度継手が第2の力に応答して破損すると、駆動アセンブリ及び/又は制御棒の複数部分が、炉心から排出されずに炉心内に留まる。いくつかの実装において、可変強度継手は、制御棒及びマニホルド間に位置決めされる。いくつかの実装において、可変強度は、駆動シャフト及び駆動機構間に位置決めされる。
いくつかの実装において、可変強度継手は、スナップリング(又は他の破断可能接続部)を含む。可変強度継手はまた、せん断リングも含む。可変強度継手において結合解除することは、例えば、駆動アセンブリの複数部分を結合解除するためのスナップリングの破断又はせん断リングのせん断を含む。他の可変強度継手は、例えば、第2強度又は低減寸法若しくは破損部分で破断可能なせん断ピンを含む。
本明細書及び特許請求の範囲を通しての「前」、「後」、「上」、「頂」、「下」、「底」、「超」、「上方」及び「下方」のような用語の使用は、ここに記載されるシステムの様々なコンポーネント及び他の要素の相対位置を記載することを目的とする。同様に、水平又は鉛直の用語のいずれの使用も、システムの様々なコンポーネント及びここに記載される他の要素の相対的な配向を記載することを目的とする。特記しない限り、かかる用語の使用は、地球の重力若しくは地球の地表の方向、又はシステム及び他の要素が動作、製造及び移送中に置かれる他の特定の位置若しくは配向に対する、システム又は任意の他のコンポーネントの特定の位置又は配向を意味するわけではない。
一定数の実装が説明された。それにもかかわらず、様々な修正をなし得ることが理解される。例えば、開示の方法のステップが異なるシーケンスで行われた場合、開示のシステムにおけるコンポーネントが異なる態様で組み合わされた場合、又は当該コンポーネントが他のコンポーネントによって置換又は補完された場合でも、有利な結果を達成することができる。したがって、他の実装も以下の特許請求の範囲内にある。

Claims (26)

  1. 原子炉制御棒駆動アセンブリであって、
    駆動シャフトに結合されて前記駆動シャフトを、第1の力で炉容器の内容積の一部分を通るように双方向に付勢するべく動作可能な制御棒駆動機構と、
    前記駆動シャフトに結合された制御棒マニホルドと、
    前記制御棒駆動機構の動作に基づいて前記炉容器の内容積において複数の位置間で調整可能な、前記制御棒マニホルドに結合された複数の制御棒と、
    前記制御棒駆動機構と前記複数の制御棒との間に位置決めされた少なくとも一つの可変強度継手と
    を含む原子炉制御棒駆動アセンブリ。
  2. 前記可変強度継手は、前記第1の力よりも大きい破損強度であって、異常動作事象に起因して前記複数の制御棒に作用する前記第1の力より大きな第2の力よりも小さい破損強度を含む請求項1の原子炉制御棒駆動アセンブリ。
  3. 前記第2の力は、前記第1の力よりも桁数が一桁大きい請求項2の原子炉制御棒駆動アセンブリ。
  4. 前記破損強度は、前記第1の力よりも大きくかつ前記第2の力よりも小さい第3の力であって、SCRAM事象に起因して前記複数の制御棒に作用する第3の力よりも大きい請求項2の原子炉制御棒駆動アセンブリ。
  5. 前記第1の力及び第3の力は第1方向に向けられ、
    前記第2の力は、前記第1方向とは反対の第2方向に向けられる請求項4の原子炉制御棒駆動アセンブリ。
  6. 前記破損強度は、大きさが前記第1方向において前記第1の力よりも大きくかつ前記第2方向において前記第2の力よりも小さい方向依存の破損強度を含む請求項5の原子炉制御棒駆動アセンブリ。
  7. 前記制御棒駆動機構は、前記炉容器の外部に位置決めされる請求項1の原子炉制御棒駆動アセンブリ。
  8. 前記駆動シャフトの一部分が前記可変強度継手を含む請求項1の原子炉制御棒駆動アセンブリ。
  9. 前記駆動シャフトの前記一部分は、前記制御棒マニホルドの近くの、前記駆動シャフトの遠位端に配置され、
    前記駆動シャフトの遠位端は、前記制御棒駆動機構に結合された前記駆動シャフトの近位端の反対側にある請求項8の原子炉制御棒駆動アセンブリ。
  10. 前記可変強度継手は、せん断リング、スナップリング、又は前記駆動シャフトの小径化部分の少なくとも一つを含む請求項9の原子炉制御棒駆動アセンブリ。
  11. 前記複数の制御棒の少なくとも一つの制御棒の一部分が前記可変強度継手を含む請求項1の原子炉制御棒駆動アセンブリ。
  12. 前記少なくとも一つの制御棒の前記一部分は前記制御棒マニホルドの近くにある請求項11の原子炉制御棒駆動アセンブリ。
  13. 前記可変強度継手は、せん断リング、スナップリング、又は前記駆動シャフトの小径化部分の少なくとも一つを含む請求項12の原子炉制御棒駆動アセンブリ。
  14. 前記制御棒駆動機構は、底部に取り付けられた制御棒駆動機構を含む請求項1の原子炉制御棒駆動アセンブリ。
  15. 核制御棒排出事象を管理する方法であって、
    駆動シャフトによって制御棒駆動機構に結合された制御棒マニホルドを、炉容器の一部分を通るように第1方向に第1の力で動かすことと、
    前記制御棒マニホルドに結合された中性子吸収棒の前記炉容器における位置を、前記制御棒マニホルドの動きに基づいて前記第1方向に調整することと、
    異常動作事象に応答して、前記中性子吸収棒、前記制御棒マニホルド又は前記駆動シャフトの少なくとも一つに作用する、前記第1の力よりも大きな第2の力を、前記第1方向とは反対の第2方向に受けることと、
    前記第2の力を受けたことに応答して、前記制御棒マニホルドから前記駆動シャフト又は前記中性子吸収棒から前記制御棒マニホルドの少なくとも一つを可変強度継手によって結合解除することと
    を含む方法。
  16. 前記制御棒マニホルドから前記駆動シャフト又は前記中性子吸収棒から前記制御棒マニホルドの少なくとも一つを可変強度継手によって結合解除することは、前記制御棒マニホルドから前記駆動シャフトを結合解除することを含む請求項15の方法。
  17. 前記制御棒マニホルドから前記駆動シャフトを結合解除することは、
    前記駆動シャフトを前記制御棒マニホルドに結合するスナップリングの破断と、
    前記駆動シャフトを前記制御棒マニホルドに結合したせん断リングのせん断と、
    前記制御棒マニホルドに結合された前記駆動シャフトの一部分における前記駆動シャフトの破断と
    の少なくとも一つを含む請求項16の方法。
  18. 前記制御棒マニホルドから前記駆動シャフト又は前記中性子吸収棒から前記制御棒マニホルドの少なくとも一つを可変強度継手によって結合解除することは、前記中性子吸収棒から前記制御棒マニホルドを結合解除することを含む請求項15の方法。
  19. 前記中性子吸収棒から前記制御棒マニホルドを結合解除することは、
    前記中性子吸収棒を前記制御棒マニホルドに結合するスナップリングの破断と、
    前記中性子吸収棒を前記制御棒マニホルドに結合するせん断リングのせん断と、
    前記制御棒マニホルドに結合された前記中性子吸収棒の一部分における前記中性子吸収棒の破断と
    の少なくとも一つを含む請求項18の方法。
  20. 前記第2の力は、
    前記制御棒マニホルドに結合された前記駆動シャフトの他端と反対側にある前記駆動シャフトの一端と、
    前記第1方向を向く前記制御棒マニホルドの表面と
    の少なくとも一つに作用する液圧を含む請求項15の方法。
  21. 前記可変強度継手は、前記第1の力よりも大きくかつ前記第2の力よりも小さい破損強度を含む請求項15の方法。
  22. 原子炉制御棒駆動アセンブリであって、
    制御棒駆動機構と、
    前記駆動機構に結合された駆動シャフトと、
    前記駆動シャフトに第1接続部によって結合されたマニホルドと
    を含み、
    前記マニホルドは、制御棒を前記マニホルドに結合する第2接続部を含み、
    前記第1接続部又は前記第2接続部の少なくとも一方が可変強度接続部である原子炉制御棒駆動アセンブリ。
  23. 前記可変強度接続部は、
    第1方向に画定された第1破損強度と、
    前記第1方向とは反対の第2方向に画定された第2破損強度と
    を含み、
    前記第1破損強度は前記第2破損強度よりも大きい請求項22の原子炉制御棒駆動アセンブリ。
  24. 前記第1破損強度は、前記第2破損強度よりも桁数が少なくとも一桁大きい請求項23の原子炉制御棒駆動アセンブリ。
  25. 前記桁数は少なくとも2桁である請求項24の原子炉制御棒駆動アセンブリ。
  26. 前記可変強度接続部は、前記第1破損強度以上の前記第1方向の力で破損し、かつ、前記第2破損強度以上の前記第2方向の力で破損するせん断部材を含む請求項22の原子炉制御棒駆動アセンブリ。
JP2016543579A 2013-12-31 2014-12-23 原子炉制御棒駆動アセンブリと、核制御棒排出事象を管理する方法 Active JP6476193B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361922285P 2013-12-31 2013-12-31
US61/922,285 2013-12-31
US14/182,809 2014-02-18
US14/182,809 US9721682B2 (en) 2013-12-31 2014-02-18 Managing nuclear reactor control rods
PCT/US2014/072229 WO2015156848A2 (en) 2013-12-31 2014-12-23 Managing nuclear reactor control rods

Publications (2)

Publication Number Publication Date
JP2017501415A true JP2017501415A (ja) 2017-01-12
JP6476193B2 JP6476193B2 (ja) 2019-02-27

Family

ID=53482566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016543579A Active JP6476193B2 (ja) 2013-12-31 2014-12-23 原子炉制御棒駆動アセンブリと、核制御棒排出事象を管理する方法

Country Status (9)

Country Link
US (1) US9721682B2 (ja)
EP (1) EP3092651B1 (ja)
JP (1) JP6476193B2 (ja)
KR (1) KR102404176B1 (ja)
CN (1) CN105814642B (ja)
BR (1) BR112016015160A2 (ja)
CA (1) CA2929577C (ja)
PL (1) PL3092651T3 (ja)
WO (1) WO2015156848A2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10847272B2 (en) * 2016-12-30 2020-11-24 Nuscale Power, Llc Control rod drive mechanism (CRDM) with remote disconnect mechanism
US10755826B2 (en) 2017-11-10 2020-08-25 Nugen, Llc Integrated system for converting nuclear energy into electrical, rotational, and thermal energy
FR3077919B1 (fr) * 2018-02-09 2020-03-06 Societe Technique Pour L'energie Atomique Architecture de reacteur nucleaire integre limitant les contraintes appliquees aux mecanismes integres
WO2020068146A1 (en) * 2018-09-25 2020-04-02 Nuscale Power, Llc Control rod drive mechanism with heat pipe cooling
CN112102970B (zh) * 2019-12-24 2021-04-23 四川大学 一种控制棒驱动机构及反应堆控制系统
CN111933314B (zh) * 2020-08-07 2022-05-10 上海核工程研究设计院有限公司 一种核反应堆非能动停堆装置
US11421589B1 (en) 2021-05-18 2022-08-23 Nugen, Llc Integrated system for converting nuclear energy into electrical, mechanical, and thermal energy

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51110197A (ja) * 1975-02-18 1976-09-29 Diamond Power Speciality
JPS54134897U (ja) * 1978-03-13 1979-09-19
JPS5522191A (en) * 1978-07-27 1980-02-16 Commissariat Energie Atomique Nuclear reactor control rod drive mechanism
JPS62126387A (ja) * 1985-09-12 1987-06-08 ウエスチングハウス エレクトリック コ−ポレ−ション 可燃性吸収棒の取付ジヨイント
JPH0210298A (ja) * 1988-03-02 1990-01-16 Westinghouse Electric Corp <We> 制御棒スパイダ組立体
US4904443A (en) * 1988-06-02 1990-02-27 General Electric Company Control rod drive with upward removable drive internals
JPH04120498A (ja) * 1990-09-11 1992-04-21 Mitsubishi Atom Power Ind Inc 原子炉における制御棒飛出し防止装置
JPH05215883A (ja) * 1992-02-03 1993-08-27 Toshiba Corp 制御棒集合体
JP2002202393A (ja) * 2000-12-27 2002-07-19 Kawasaki Heavy Ind Ltd 受動的炉停止機構
JP2010522849A (ja) * 2007-03-13 2010-07-08 エアバス・ユ―ケ―・リミテッド ジョイントで用いるための構成部材の準備
JP2014521944A (ja) * 2011-07-29 2014-08-28 アレヴァ ゲゼルシャフト ミット ベシュレンクテル ハフツング 原子炉の制御棒案内管と駆動ハウジング管との間の接続

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3597939A (en) * 1969-06-25 1971-08-10 Atomic Energy Commission Control assembly for a nuclear reactor including an offset coupling
US4820475A (en) * 1985-09-12 1989-04-11 Westinghouse Electric Corp. Burnable absorber rod push out attachment joint
JPS63290989A (ja) * 1987-05-22 1988-11-28 Hitachi Ltd 制御棒駆動機構
US5361279A (en) * 1993-06-14 1994-11-01 General Electric Company Internal control rod drive for a BWR
US6418178B1 (en) * 2001-04-16 2002-07-09 General Electric Company Control rod coupling assembly for a nuclear reactor
JP5398254B2 (ja) * 2008-12-19 2014-01-29 株式会社東芝 制御棒・燃料支持金具取扱装置
US8811562B2 (en) * 2010-03-12 2014-08-19 Babcock & Wilcox Nuclear Operations Group, Inc. Control rod drive mechanism for nuclear reactor
US8526563B2 (en) * 2010-08-24 2013-09-03 Babcock & Wilcox Mpower, Inc. Terminal elements for coupling connecting rods and control rods in control rod assemblies for a nuclear reactor
US8953732B2 (en) * 2010-12-09 2015-02-10 Westinghouse Electric Company Llc Nuclear reactor internal hydraulic control rod drive mechanism assembly
US10102933B2 (en) * 2012-04-13 2018-10-16 Bwxt Mpower, Inc. Control rod assembly impact limiter
WO2014025700A2 (en) * 2012-08-06 2014-02-13 Holtec International, Inc. Fail-safe control rod drive system for nuclear reactor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51110197A (ja) * 1975-02-18 1976-09-29 Diamond Power Speciality
JPS54134897U (ja) * 1978-03-13 1979-09-19
JPS5522191A (en) * 1978-07-27 1980-02-16 Commissariat Energie Atomique Nuclear reactor control rod drive mechanism
JPS62126387A (ja) * 1985-09-12 1987-06-08 ウエスチングハウス エレクトリック コ−ポレ−ション 可燃性吸収棒の取付ジヨイント
JPH0210298A (ja) * 1988-03-02 1990-01-16 Westinghouse Electric Corp <We> 制御棒スパイダ組立体
US4904443A (en) * 1988-06-02 1990-02-27 General Electric Company Control rod drive with upward removable drive internals
JPH04120498A (ja) * 1990-09-11 1992-04-21 Mitsubishi Atom Power Ind Inc 原子炉における制御棒飛出し防止装置
JPH05215883A (ja) * 1992-02-03 1993-08-27 Toshiba Corp 制御棒集合体
JP2002202393A (ja) * 2000-12-27 2002-07-19 Kawasaki Heavy Ind Ltd 受動的炉停止機構
JP2010522849A (ja) * 2007-03-13 2010-07-08 エアバス・ユ―ケ―・リミテッド ジョイントで用いるための構成部材の準備
JP2014521944A (ja) * 2011-07-29 2014-08-28 アレヴァ ゲゼルシャフト ミット ベシュレンクテル ハフツング 原子炉の制御棒案内管と駆動ハウジング管との間の接続

Also Published As

Publication number Publication date
CN105814642A (zh) 2016-07-27
BR112016015160A2 (pt) 2017-08-08
CA2929577C (en) 2022-05-03
CA2929577A1 (en) 2015-10-15
WO2015156848A2 (en) 2015-10-15
JP6476193B2 (ja) 2019-02-27
KR20160105445A (ko) 2016-09-06
PL3092651T3 (pl) 2020-06-01
EP3092651A4 (en) 2017-08-09
WO2015156848A3 (en) 2015-12-03
EP3092651A2 (en) 2016-11-16
CN105814642B (zh) 2018-10-12
KR102404176B1 (ko) 2022-05-31
EP3092651B1 (en) 2019-11-20
US9721682B2 (en) 2017-08-01
US20150187446A1 (en) 2015-07-02

Similar Documents

Publication Publication Date Title
JP6476193B2 (ja) 原子炉制御棒駆動アセンブリと、核制御棒排出事象を管理する方法
JP6349443B2 (ja) 原子炉に使用される熱除去システム
KR100966854B1 (ko) 부분잠김형 열교환기를 사용하는 소듐냉각 고속로의 완전 피동형 잔열제거계통
US8638898B2 (en) Emergency core cooling system for pressurized water reactor
JP2014506998A5 (ja)
CA2870903C (en) Auxiliary condenser system for decay heat removal in a nuclear reactor system
JP2014521927A (ja) 加圧器バッフルプレート及びそれを使用する加圧水型原子炉(pwr)
US9583221B2 (en) Integrated emergency core cooling system condenser for pressurized water reactor
US20130070887A1 (en) Reactor adapted for mitigating loss-of-coolant accident and mitigation method thereof
JP2019012073A (ja) 原子炉モジュール
Park et al. Effect of SAMG entry condition on operator action time for severe accident mitigation
CN109478432B (zh) 具有借助于浮体进行干预的关机杆的核反应堆
US10726960B2 (en) Nuclear reactor safety system
CN109478433B (zh) 控制杆和关机杆在芯和芯的支撑结构外部的核反应堆
US20160099082A1 (en) Fissionable material energy extraction apparatus system and method
Van Tuyle et al. Examining the Inherent Safety of PRISM, SAFR, and the MHTGR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190204

R150 Certificate of patent or registration of utility model

Ref document number: 6476193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250