JP2017229197A - Synchronization tester and automatic synchronous input device - Google Patents

Synchronization tester and automatic synchronous input device Download PDF

Info

Publication number
JP2017229197A
JP2017229197A JP2016125394A JP2016125394A JP2017229197A JP 2017229197 A JP2017229197 A JP 2017229197A JP 2016125394 A JP2016125394 A JP 2016125394A JP 2016125394 A JP2016125394 A JP 2016125394A JP 2017229197 A JP2017229197 A JP 2017229197A
Authority
JP
Japan
Prior art keywords
synchronous
phase
voltage
charging current
synchronization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016125394A
Other languages
Japanese (ja)
Other versions
JP6142051B1 (en
Inventor
俊幸 竹田
Toshiyuki Takeda
俊幸 竹田
博幸 遠藤
Hiroyuki Endo
博幸 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denken KK
Original Assignee
Denken KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denken KK filed Critical Denken KK
Priority to JP2016125394A priority Critical patent/JP6142051B1/en
Application granted granted Critical
Publication of JP6142051B1 publication Critical patent/JP6142051B1/en
Publication of JP2017229197A publication Critical patent/JP2017229197A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve detection accuracy of a phase difference based on charge current through a power cable on a synchronous input condition by eliminating difficulty in laying a signal cable or danger in removing an instrument transformer in a hot-line state and by eliminating the need for an instrument transformer on the power generator side or on the power distribution line side in conventional synchronization testers or automatic synchronous input devices when a synchronous power generator is temporarily installed.SOLUTION: In detecting a phase difference of a synchronous input condition in performing system paralleling on a power system and a synchronous power generator, the synchronous condition including a voltage difference, a frequency difference, and the phase difference, a phase on the synchronous power generator side is detected on the basis of a fundamental wave component of ground charge current on the synchronous power generator side. Utilization of the ground charge current on the synchronous power generator side eliminates the conventional need for an instrument transformer on the synchronous power generator side and improves detection accuracy of a phase difference based on charge current through a power cable.SELECTED DRAWING: Figure 1

Description

本願発明は、同期発電機を系統連系運転する際に、遮断器の投入操作に使用する同期検定器、及び自動同期投入装置に関する。   The present invention relates to a synchronous tester and an automatic synchronous input device used for a circuit breaker operation when a synchronous generator is connected to a grid.

同期発電機を電力系統に系統連系させる場合、同期発電機と系統との間において、同期投入時の突入電流を小さくするために、必要許容電圧差、許容周波数差、及び位相差が小さいことが求められる。   When the synchronous generator is connected to the power grid, the required allowable voltage difference, allowable frequency difference, and phase difference must be small in order to reduce the inrush current at the time of synchronous switching between the synchronous generator and the grid. Is required.

同期発電機を電力系統に接続する場合、発電機と系統の双方に計器用変圧器またはコンデンサ型分圧器を設け、各出力を同期検定器あるいは自動同期投入装置等の同期装置に入力して、発電機と系統間の同期状態の判定や、発電機を系統に接続する同期投入が行われている。同期投入は、発電機と系統の間において、電圧差、周波数差、及び位相差が許容範囲となった状態で並列用開閉器を閉にすることによって行なっている。   When connecting a synchronous generator to the power system, both the generator and the system are provided with an instrument transformer or a capacitor-type voltage divider, and each output is input to a synchronous device such as a synchronous tester or an automatic synchronous input device. Judgment of the synchronization state between the generator and the system, and synchronous input for connecting the generator to the system are performed. Synchronous input is performed by closing the parallel switch with the voltage difference, frequency difference, and phase difference within the allowable range between the generator and the system.

図6は発電機を仮設した場合の自動同期投入装置の一構成を説明するためのブロック図である。
系統側の母線102と配電線103との間は開閉器105Aを介して接続され、発電機107と配電線103との間は開閉器105Bを介して接続されている。母線102には計器用変圧器106Aが既設され、配電線103には計器用変圧器106Bが仮設接続される。発電機107は、遮断器104B及び開閉器105Bを介して配電線103と接続される。
FIG. 6 is a block diagram for explaining a configuration of an automatic synchronous charging apparatus when a generator is temporarily installed.
The bus 102 on the system side and the distribution line 103 are connected via a switch 105A, and the generator 107 and the distribution line 103 are connected via a switch 105B. An instrument transformer 106 A is already installed on the bus 102, and an instrument transformer 106 B is temporarily connected to the distribution line 103. The generator 107 is connected to the distribution line 103 via the circuit breaker 104B and the switch 105B.

自動同期投入装置101は、母線102側と発電機側である配電線103側の間において、電圧差、周波数差、及び位相差を判定してこれらの差分が許容範囲となった状態を判定し、母線102と開閉器105Aとの間に設けた遮断器104Aを閉じて母線102を配電線103に接続することによって同期投入を行う。なお、開閉器は通常の負荷電流を開閉する仕様を備え、遮断器は開閉器の機能に加えて短絡電流のような大電流に対しても安全に開閉する仕様を備える。   The automatic synchronizer 101 determines a voltage difference, a frequency difference, and a phase difference between the bus 102 side and the distribution line 103 side that is the generator side, and determines a state in which these differences are within an allowable range. The circuit breaker 104 </ b> A provided between the bus 102 and the switch 105 </ b> A is closed, and the bus 102 is connected to the distribution line 103 to perform synchronization. The switch has a specification for opening and closing a normal load current, and the circuit breaker has a specification for safely opening and closing even a large current such as a short circuit current in addition to the function of the switch.

自動同期投入装置101は、計器用変圧器106Aの二次側を接続することによって、母線102側の電圧、周波数、及び位相の情報を取得する。
一方、自動同期投入装置101は、発電機107から配電線側に設置されている計器用変圧器106Cの二次側を接続することによって、あるいは仮設の計器用変圧器106Bの二次側を接続することによって、発電機107側あるいは配電線103側の電圧、周波数、及び位相の情報を入力する。図6において、計器用変圧器106Cの接続は信号用ケーブルAで行い、仮設の計器用変圧器106Bの接続は信号用ケーブルBで行う。母線側との比較は信号用ケーブルA又は信号用ケーブルBの何れかの接続を用いることができる。
The automatic synchronizer 101 obtains voltage, frequency, and phase information on the bus 102 side by connecting the secondary side of the instrument transformer 106A.
On the other hand, the automatic synchronous input device 101 connects the secondary side of the instrument transformer 106C installed on the distribution line side from the generator 107, or connects the secondary side of the temporary instrument transformer 106B. By doing so, the voltage, frequency, and phase information on the generator 107 side or the distribution line 103 side is input. In FIG. 6, connection of the instrument transformer 106 </ b> C is performed by the signal cable A, and connection of the temporary instrument transformer 106 </ b> B is performed by the signal cable B. For comparison with the bus side, either the signal cable A or the signal cable B can be used.

自動同期投入装置101は、同期検定器111及び同期投入回路112を備える。同期検定器111には、計器用変圧器106Aの二次側、及び仮設の計器用変圧器106B又は計器用変圧器106Cの二次側が接続される。同期検定器111は、母線側と、発電機側あるいは配電線側との間において電圧差、周波数差、及び位相差を検出し、これらの差分が許容範囲であるかに基づいて同期投入条件を判定する。同期投入回路112は、同期検定器111の判定結果に基づいて遮断器104Aを開閉する(例えば、特許文献1)。
The automatic synchronizer 101 includes a synchronizer 111 and a synchronizer 112. The synchronous tester 111 is connected to the secondary side of the instrument transformer 106A and the secondary side of the temporary instrument transformer 106B or the instrument transformer 106C. The synchronous tester 111 detects a voltage difference, a frequency difference, and a phase difference between the bus side and the generator side or the distribution line side, and sets the synchronization input condition based on whether these differences are within an allowable range. judge. The synchronization input circuit 112 opens and closes the circuit breaker 104A based on the determination result of the synchronization tester 111 (for example, Patent Document 1).

図6において、変電所等の事故や作業の際に仮設した発電機107によって配電線103に送電している場合、復旧時に、仮設発電機による供給を止め、母線からの供給を再開する際、配電線への給電を停止することなく実施するには、遮断器104Aを閉じて配電線103を系統に同期投入した後、仮設した発電機107を配電線103から切離す。   In FIG. 6, when power is being transmitted to the distribution line 103 by the temporary generator 107 in the event of an accident or work at a substation or the like, at the time of recovery, when the supply by the temporary generator is stopped and the supply from the bus is resumed, In order to carry out power supply to the distribution line without stopping, the circuit breaker 104 </ b> A is closed and the distribution line 103 is synchronously inserted into the system, and then the temporary generator 107 is disconnected from the distribution line 103.

配電線の線路間の位相比較を行う相判別において、配電システム等において、受電線(ケーブル、架線)、変圧器、母線連絡ケーブルの交換後に相判別を行う際に、負荷の切り替えに伴う作業の労力や時間の低減や、高電圧回路への検相器の直接接続による危険性の低下を目的として、相判別の比較の対象となる線路の位相を電力ケーブルの充電電流に基づいて検出し、その位相を基準側線路の位相と比較することによって相判別を行うことが提案されている(特許文献2)。   In phase discrimination for phase comparison between distribution lines, when performing phase discrimination after replacement of receiving lines (cables, overhead lines), transformers, and bus connection cables in distribution systems, etc. For the purpose of reducing labor and time, and reducing the danger due to the direct connection of the phase detector to the high voltage circuit, the phase of the line to be compared for phase discrimination is detected based on the charging current of the power cable, It has been proposed to perform phase discrimination by comparing the phase with the phase of the reference side line (Patent Document 2).

特公平5−84130号Japanese Patent Publication No. 5-84130 特公平6−40115号No. 6-40115

図6において、発電機の配電線側に設置されている計器用変圧器106Cの二次側信号用ケーブルAを用いて仮設の発電機107の電力状態を同期検定器111へ入力する場合には、発電機の設置場所や環境によっては信号用ケーブルAの敷設が難しい場合がある。   In FIG. 6, when the power state of the temporary generator 107 is input to the synchronous tester 111 using the secondary signal cable A of the instrument transformer 106C installed on the distribution line side of the generator. Depending on the location and environment of the generator, it may be difficult to lay the signal cable A.

図6において、仮設の計器用変圧器106Bの二次側信号用ケーブルBを用いて配電線の電力状態を同期検定器111へ入力する構成では、仮設の計器用変圧器106Bを遮断器104Aの配電線側に設置する必要があるため、遮断器104Aを閉じて投入を行って復旧した後、仮設した計器用変圧器106Bの取外しを活線状態で行なうことになり危険を伴う。   In FIG. 6, in the configuration in which the power state of the distribution line is input to the synchronous tester 111 using the secondary signal cable B of the temporary instrument transformer 106B, the temporary instrument transformer 106B is connected to the circuit breaker 104A. Since it is necessary to install on the distribution line side, after the circuit breaker 104A is closed and turned on to recover, the temporary instrument transformer 106B is removed in a live state, which is dangerous.

上記した信号用ケーブルの敷設の困難性や、活線状態における計器用変圧器の取外しの危険性の問題は、発電機側あるいは配電線側の電力状態の検出を計器用変圧器を用いて行うことに起因している。   The above-mentioned difficulty in laying signal cables and the risk of removing the instrument transformer in a live state are detected using the instrument transformer to detect the power state on the generator side or distribution line side. It is due to that.

そのため、従来の同期検定器や自動同期投入装置は、信号用ケーブルの敷設の困難性や、活線状態における計器用変圧器の取外しの危険性において課題があり、この課題の解決が求められている。   For this reason, conventional synchronous testers and automatic synchronous insertion devices have problems in the difficulty of laying signal cables and the risk of removing instrument transformers in a live state, and there is a need to solve this problem. Yes.

従来の同期検定器や自動同期投入装置において、特許文献2の相判別を行う相判別の技術を適用させ、計器用変圧器による電圧に代えて電力ケーブルの充電電流を用いることによって、同期検定や自動同期投入を行うには、検出できる位相差の精度が不十分であるという問題がある。特許文献2に示される相判別は、比較側線路と基準側線路と間において単に位相関係を判別するに止まり位相差を求める技術ではない。   By applying the phase discrimination technique of phase discrimination described in Patent Document 2 in the conventional synchronous tester and automatic synchronous input device, and using the charging current of the power cable instead of the voltage by the instrument transformer, There is a problem that the accuracy of the phase difference that can be detected is insufficient to perform automatic synchronization. The phase discrimination disclosed in Patent Document 2 is not a technique for merely determining the phase relationship between the comparison-side line and the reference-side line and determining the phase difference.

同期発電機を系統連系運転する際において、遮断器の投入時における同期検定や自動同期投入では、同期投入条件として発電機側と系統側との位相差が許容範囲内にあることが求められるのに対して、相判別は、比較側線路と基準側線路間における相関係の判定が主たる目的であるため、位相差については高い精度は求められていない。   When operating a synchronous generator in a grid-connected operation, the phase verification between the generator side and the system side is required to be within an allowable range as a synchronous closing condition for synchronous verification and automatic synchronous closing when the circuit breaker is turned on. On the other hand, the phase discrimination is mainly intended to determine the phase relationship between the comparison-side line and the reference-side line, and thus high accuracy is not required for the phase difference.

そのため、同期発電機を系統連系運転する際の同期検定や自動同期投入において、従来の同期検定器や自動同期投入装置に、特許文献2のケーブルの充電電流に基づく相判別の技術を単に適用しただけでは、求められる精度の同期投入条件を得ることはできない。   Therefore, in the synchronous verification and automatic synchronous charging when the synchronous generator is connected to the grid, the technology of phase discrimination based on the charging current of the cable of Patent Document 2 is simply applied to the conventional synchronous verification device and automatic synchronous charging device. It is not possible to obtain the synchronous input condition with the required accuracy only by doing.

同期検定を行うためには、測定信号の波形歪み等による影響を最小化する必要がある。特に、電力ケーブルの充電電流は高調波成分により大きく歪むという特性がある。充電電流の波形の正の部分を矩形波にする位相比較方式では、高調波成分による歪みが大きい場合には矩形波形のゼロ点が移動してしまい、同期点の特定が難しくなり、同期発電機が同期から外れた状態で投入の要因にもなり得る。   In order to perform the synchronization verification, it is necessary to minimize the influence of the waveform distortion of the measurement signal. In particular, the charging current of the power cable has a characteristic that it is greatly distorted by harmonic components. In the phase comparison method in which the positive part of the charging current waveform is a rectangular wave, the zero point of the rectangular waveform moves when the distortion due to the harmonic component is large, making it difficult to identify the synchronization point. May become a factor of input in a state out of synchronization.

そこで、本願発明は前記した従来の問題点を解決し、従来の同期検定器や自動同期投入装置における信号用ケーブルの敷設の困難性や、活線状態における計器用変圧器の取外しの危険性を解消し、発電機側あるいは配電線側の計器用変圧器を不要とすることを目的とする。   Therefore, the present invention solves the above-mentioned conventional problems, and eliminates the difficulty of laying signal cables in the conventional synchronous tester and automatic synchronous feeder, and the risk of removing the instrument transformer in a live line state. The purpose is to eliminate the need for an instrument transformer on the generator side or distribution line side.

また、同期投入条件において、電力ケーブルの充電電流に基づく位相差の検出において精度の向上を目的とする。   It is another object of the present invention to improve accuracy in detecting a phase difference based on a charging current of a power cable under a synchronous input condition.

本願発明の同期検定器及び自動同期投入装置は、電力系統と同期発電機とを系統並列する際の同期投入条件である電圧差、周波数差、及び位相差の内、位相差の検出において、同期発電機側の対地充電電流の基本波成分に基づいて同期発電機側の位相を検出するものであり、同期発電機側の対地充電電流を用いることによって、従来必要としていた同期発電機側の計器用変圧器を不要とする。これによって、信号用ケーブルの敷設の困難性や、活線状態における計器用変圧器の取外しの危険性を解消する。また、対地充電電流の基本波成分に基づくことによって、充電電流に含まれる高周波成分による誤差を排除して、位相差の検出精度を向上させることができる。   The synchronous tester and the automatic synchronous input device of the present invention are synchronized in the detection of the phase difference among the voltage difference, the frequency difference, and the phase difference, which are the synchronous input conditions when the power system and the synchronous generator are paralleled. The synchronous generator side phase detector detects the phase on the synchronous generator side based on the fundamental wave component of the ground charging current on the generator side. No transformer is required. This eliminates the difficulty of laying the signal cable and the risk of removing the instrument transformer in a live state. Further, based on the fundamental wave component of the ground charging current, errors due to high frequency components included in the charging current can be eliminated, and the phase difference detection accuracy can be improved.

(同期検定器)
本願発明の同期検出器は、系統並列する電力系統と同期発電機の同期状態を検定する同期検定器において、
(a)同期発電機側の対地充電電流の基本波成分に基づいて、同期発電機と接続する配
電線の配線電圧の位相に対応した配線位相信号を検出する位相検出手段
(b)配線位相信号と系統側の系統電圧の系統位相信号とに基づいて、系統電圧の位相
と配線電圧の位相との位相差を検出する位相差検出手段
(c)位相差に基づいて同期点を演算する同期点演算手段とを備える。
(Synchronous tester)
The synchronous detector of the present invention is a synchronous tester for verifying the synchronous state of the power system and the synchronous generator in parallel with the system,
(A) Phase detection means for detecting a wiring phase signal corresponding to the phase of the wiring voltage of the distribution line connected to the synchronous generator based on the fundamental wave component of the ground charging current on the synchronous generator side. (B) The wiring phase signal. And phase difference detection means for detecting a phase difference between the phase of the system voltage and the phase of the wiring voltage based on the system phase signal of the system voltage on the system side and (c) a synchronization point for calculating a synchronization point based on the phase difference And an arithmetic means.

位相検出手段、位相差検出手段、及び同期点演算手段は、コンピュータの演算処理によるソフトウエア処理で実現する他、ハードウエアによる回路構成で実現することができ、ソフトウエア処理で実現する際には、CPU、及び信号処理をCPUに行わせるプログラムを備えたメモリ等を含む演算回路で構成することができる。また、ハードウエアによる回路構成は、DSP等による専用回路を構成してもよい。   The phase detection means, the phase difference detection means, and the synchronization point calculation means can be realized by software processing by computer calculation processing or by hardware circuit configuration. , A CPU, and an arithmetic circuit including a memory or the like provided with a program for causing the CPU to perform signal processing. The circuit configuration by hardware may be a dedicated circuit such as a DSP.

位相検出手段は、同期発電機と接続する配電線の配線電圧の位相に対応した配線位相信号の検出において、入力信号として同期発電機側の対地充電電流の基本波成分を用いる。基本波成分に基づくことによって、対地充電電流に含まれる高周波成分によるノイズ信号を排除することができる。   The phase detection means uses the fundamental wave component of the ground charging current on the synchronous generator side as an input signal in the detection of the wiring phase signal corresponding to the phase of the wiring voltage of the distribution line connected to the synchronous generator. Based on the fundamental wave component, it is possible to eliminate a noise signal due to a high frequency component contained in the ground charging current.

位相検出手段は、対地充電電流の基本波成分を抽出する基本波抽出手段を備える。基本波抽出手段は、対地充電電流が有する周波数成分から系統電圧の周波数域の周波数成分の抽出を、デジタル信号処理及びアナログ信号処理の各態様によって行うことができる。対地充電電流の基本波成分は、系統電圧の周波数域の周波数成分であって、系統並列する電力系統の基本波と同じ周波数成分とすることができる。   The phase detection means includes fundamental wave extraction means for extracting a fundamental wave component of the ground charging current. The fundamental wave extracting means can extract the frequency component in the frequency region of the system voltage from the frequency component of the ground charging current by each aspect of digital signal processing and analog signal processing. The fundamental wave component of the ground charging current is a frequency component in the frequency region of the system voltage, and can be the same frequency component as the fundamental wave of the power system in parallel with the system.

本願発明では対地充電電流の信号から抽出した基本波成分で位相比較を行なうことにより、高調波を含んだ電流波形でもあっても位相誤差を数度以内で検出することが可能となる。   In the present invention, phase comparison is performed with the fundamental wave component extracted from the signal of the ground charging current, so that it is possible to detect the phase error within several degrees even for a current waveform including harmonics.

・デジタル信号処理による態様:
デジタル信号処理による基本波抽出手段は、対地充電電流をサンプリングして得られる離散的なサンプリング値について、離散フーリエ変換、あるいはデジタルフィルタによるローパスフィルタ処理によって対地充電電流の基本波成分を抽出する。
-Aspect by digital signal processing:
The fundamental wave extraction means by digital signal processing extracts the fundamental wave component of the ground charging current from the discrete sampling value obtained by sampling the ground charging current by discrete Fourier transform or low-pass filter processing by a digital filter.

・アナログ信号処理による態様:
アナログ信号処理による基本波抽出手段は、対地充電電流をアナログフィルタによるローパスフィルタ処理することによって対地充電電流の基本波成分を抽出する。
・ Analog signal processing mode:
The fundamental wave extraction means by analog signal processing extracts the fundamental wave component of the ground charging current by subjecting the ground charging current to low-pass filtering using an analog filter.

対地充電電流は配電線の接地用導線に流れる電流を用いることができ、より詳細には、配電線に設けた配電線引出用電力ケーブルに接続した金属シース用接地用導線に流れる電流を用いる。金属シース用接地用導線に流れる対地充電電流は、金属シース用接地用導線に電流測定用変流器を設けることで検出することができる。   As the ground charging current, the current flowing in the grounding conductor of the distribution line can be used. More specifically, the current flowing in the grounding conductor for the metal sheath connected to the power cable for drawing the distribution line provided in the distribution line is used. The ground charging current flowing through the metal sheath grounding conductor can be detected by providing a current measuring current transformer in the metal sheath grounding conductor.

(自動同期投入装置)
本願発明の自動同期投入装置は、同期発電機を電力系統に系統並列する自動同期投入装置において、本願発明の同期検定器と、本願発明の同期検定器が備える同期点演算手段が演算する同期点に基づいて、同期発電機を電力系統に系統並列させる同期投入指令信号を出力する同期投入回路とを備える。
(Automatic synchronization device)
The automatic synchronizer of the present invention is an automatic synchronizer in which a synchronous generator is system-paralleled to a power system, and the synchronous point calculated by the synchronous tester of the present invention and the synchronous point calculation means provided in the synchronous tester of the present invention. And a synchronous input circuit for outputting a synchronous input command signal for causing the synchronous generator to be system-parallel to the electric power system.

以上説明したように、本願発明の同期検定器及び自動同期投入装置は、従来の同期検定器や自動同期投入装置における信号用ケーブルの敷設の困難性や、活線状態における計器用変圧器の取外しの危険性を解消し、発電機側あるいは配電線側の計器用変圧器を不要とすることができる。   As described above, the synchronous tester and the automatic synchronizer of the present invention are difficult to lay the signal cable in the conventional synchronizer and automatic synchronizer and the removal of the instrument transformer in the live state. This eliminates the danger of power generation and eliminates the need for an instrument transformer on the generator side or distribution line side.

また、本願発明の同期検定器及び自動同期投入装置は、同期投入条件において、電力ケーブルの充電電流に基づく位相差の検出において精度を向上させることができる。   Moreover, the synchronous tester and the automatic synchronous input device of the present invention can improve the accuracy in detecting the phase difference based on the charging current of the power cable under the synchronous input condition.

本願発明の同期検定器及び自動同期投入装置の概略構成を説明するためのブロック図である。It is a block diagram for demonstrating schematic structure of the synchronous tester and automatic synchronous injection | throwing-in apparatus of this invention. 本願発明の同期検定器及び自動同期投入装置の構成例を説明するためのブロック図である。It is a block diagram for demonstrating the example of a structure of the synchronous tester and automatic synchronous injection | throwing-in apparatus of this invention. 本願発明の演算処理部の機能を説明するためのブロック図である。It is a block diagram for demonstrating the function of the arithmetic processing part of this invention. 本願発明の同期検定器及び自動同期投入装置の信号例を説明するための図である。It is a figure for demonstrating the signal example of the synchronous tester of this invention, and an automatic synchronous injection | throwing-in apparatus. 本願発明の同期検定器及び自動同期投入装置の他の構成例を説明するためのブロック図である。It is a block diagram for demonstrating the other structural example of the synchronous tester and automatic synchronous injection | throwing-in apparatus of this invention. 従来の発電機仮設時に於ける自動同期投入装置の一構成を説明するためのブロック図である。It is a block diagram for demonstrating one structure of the automatic synchronous injection | throwing-in apparatus in the time of the conventional generator temporary installation.

以下、本願発明の実施の形態について、図を参照しながら詳細に説明する。以下、図1を用いて本願発明の同期検定器及び自動同期投入装置の概略構成を説明し、図2を用いて本願発明の同期検定器及び自動同期投入装置の構成例を説明し、図3を用いて本願発明の演算処理部の機能を説明し、図4を用いて本願発明の同期検定器及び自動同期投入装置の信号例を説明し、図5を用いて本願発明の同期検定器及び自動同期投入装置の他の構成例を説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Hereinafter, the schematic configuration of the synchronous tester and the automatic synchronous input device of the present invention will be described with reference to FIG. 1, and the configuration example of the synchronous tester and the automatic synchronous input device of the present invention will be described with reference to FIG. Is used to explain the function of the arithmetic processing unit of the present invention, FIG. 4 is used to explain an example of the signal of the synchronous tester and the automatic synchronization input device of the present invention, and FIG. Another configuration example of the automatic synchronization input device will be described.

[同期検定器及び自動同期投入装置の概略構成]
図1は本願発明の同期検定器及び自動同期投入装置の一構成を説明するためのブロック図である。
[Schematic configuration of synchronous tester and automatic synchronous input device]
FIG. 1 is a block diagram for explaining a configuration of a synchronous tester and an automatic synchronous input device of the present invention.

系統側の母線2と配電線3との間は遮断器4Aと開閉器5Aを介して接続され、同期発電機50と配電線3との間は遮断器4Bと開閉器5Bを介して接続されている。母線2には電圧取得手段9が既設され、配電線3には、R相、S相、及びT相の各相について配電線引出用電力ケーブル6A,6B,6Cが設けられ、配電線引出用電力ケーブル6A,6B,6Cには各相について配電線引出用電力ケーブルの金属シース接地用導線7A,7B,7Cが接続される。各金属シース接地用導線7A,7B,7Cには対地充電電流測定用変流器8A,8B,8Cが設けられ、各対地充電電流測定用変流器8A,8B,8Cは各金属シース接地用導線7A,7B,7Cに流れる対地充電電流を測定する。   The bus 2 on the system side and the distribution line 3 are connected via a circuit breaker 4A and a switch 5A, and the synchronous generator 50 and the distribution line 3 are connected via a circuit breaker 4B and a switch 5B. ing. Voltage acquisition means 9 is already installed in the bus 2, and power distribution cables 6A, 6B, 6C are provided in the distribution line 3 for each of the R phase, S phase, and T phase. The power cables 6A, 6B, and 6C are connected to the metal sheath grounding conductors 7A, 7B, and 7C of the distribution line drawing power cable for each phase. Each metal sheath grounding conductor 7A, 7B, 7C is provided with grounding current measuring current transformers 8A, 8B, 8C, and each grounding current measuring current transformer 8A, 8B, 8C is for grounding each metal sheath. The ground charging current flowing through the conductors 7A, 7B, 7C is measured.

各相の対地充電電流の周波数及び位相は、配電線3の各相の電圧の周波数と位相に対応している。本願発明の同期検定器は、この対地充電電流と配電線電圧との間において、周波数及び位相は対応関係にあることを利用して、配電線電圧を測定することに代えて対地充電電流を測定することによって、配電線の周波数及び位相を検出する。同期発電機50は、遮断器4B及び開閉器5Bを介して配電線3と接続される。   The frequency and phase of the ground charging current of each phase correspond to the frequency and phase of the voltage of each phase of the distribution line 3. The synchronous tester of the present invention uses the fact that the frequency and phase are in a correspondence relationship between the ground charging current and the distribution line voltage, and measures the ground charging current instead of measuring the distribution line voltage. By doing so, the frequency and phase of the distribution line are detected. The synchronous generator 50 is connected to the distribution line 3 through the circuit breaker 4B and the switch 5B.

自動同期投入装置20は、図6で示した構成と同様に、母線側と同期発電機側である配電線3側の間において、電圧差、周波数差、及び位相差を判定してこれらの差分が許容範囲となった状態を判定し、母線2と開閉器5Aとの間に設けた遮断器4Aを閉じて母線2を配電線3に接続することによって同期投入を行う。なお、開閉器は通常の負荷電流を開閉する仕様を備え、遮断器は開閉器の機能に加えて短絡電流のような大電流に対しても安全に開閉する仕様を備える。   As in the configuration shown in FIG. 6, the automatic synchronous input device 20 determines a voltage difference, a frequency difference, and a phase difference between the bus side and the distribution line 3 side that is the synchronous generator side, and these differences. Is determined to be within the allowable range, and the circuit breaker 4A provided between the bus 2 and the switch 5A is closed, and the bus 2 is connected to the distribution line 3 to perform synchronization. The switch has a specification for opening and closing a normal load current, and the circuit breaker has a specification for safely opening and closing even a large current such as a short circuit current in addition to the function of the switch.

自動同期投入装置20は、電圧取得手段9の計器用変圧器の二次側を接続することによって、母線2側の電圧、周波数、及び位相の情報を取得する。一方、自動同期投入装置20は、配電線3の対地充電電流を入力することによって、同期発電機50側あるいは配電線3側の周波数、及び位相の情報を入力する。電圧取得手段9は計器用変圧器またはあるいはコンデンサ型分圧器を用いて母線電圧を測定する他、電圧計によって各相間の線間電圧を測定してもよい。   The automatic synchronization input device 20 acquires the voltage, frequency, and phase information on the bus 2 side by connecting the secondary side of the voltage transformer of the voltage acquisition means 9. On the other hand, the automatic synchronous input device 20 inputs the frequency and phase information on the side of the synchronous generator 50 or the distribution line 3 by inputting the ground charging current of the distribution line 3. In addition to measuring the bus voltage using a voltage transformer or a capacitor-type voltage divider, the voltage acquisition means 9 may measure the line voltage between the phases using a voltmeter.

自動同期投入装置20は、同期検定器1及び同期投入回路21を備える。同期検定器1には電圧取得手段9の計器用変圧器の二次電圧と、対地充電電流測定用変流器8A,8B,8Cの二次側が接続される。また、同期発電機50側あるいは配電線3側の電圧情報が入力される。同期発電機50からの電圧情報は、図示しない通信手段によって送信することができる。同期検定器1は、母線側と、同期発電機側あるいは配電線側との間において電圧差、周波数差、及び位相差を検出し、これらの差分が許容範囲であるかに基づいて同期投入条件を判定する。同期投入回路21は、同期検定器1の判定結果に基づいて遮断器4Aを閉とする。   The automatic synchronization input device 20 includes a synchronization tester 1 and a synchronization input circuit 21. The synchronous tester 1 is connected to the secondary voltage of the instrument transformer of the voltage acquisition means 9 and the secondary side of the ground charging current measuring current transformers 8A, 8B, 8C. Further, voltage information on the side of the synchronous generator 50 or the distribution line 3 is input. The voltage information from the synchronous generator 50 can be transmitted by communication means (not shown). The synchronization tester 1 detects a voltage difference, a frequency difference, and a phase difference between the bus side and the synchronous generator side or the distribution line side, and based on whether these differences are within an allowable range, Determine. The synchronization input circuit 21 closes the circuit breaker 4A based on the determination result of the synchronization tester 1.

同期検定器1は、同期発電機50側の電力ケーブルの対地充電電流の基本波成分に基づいて、同期発電機50と接続する配電線3の配線電圧の位相に対応した配線位相信号を検出する位相検出手段1Aと、配線位相信号と系統側の系統電圧の系統位相信号とに基づいて、系統電圧の位相と配線電圧の位相との位相差を検出する位相差検出手段1Bと、位相差検出手段1Bで検出した位相差に基づいて同期点を演算する同期点演算手段1Cとを備える。   The synchronous tester 1 detects a wiring phase signal corresponding to the phase of the wiring voltage of the distribution line 3 connected to the synchronous generator 50 based on the fundamental wave component of the ground charging current of the power cable on the synchronous generator 50 side. Phase detection means 1A, phase difference detection means 1B for detecting the phase difference between the phase of the system voltage and the phase of the wiring voltage based on the wiring phase signal and the system phase signal of the system voltage on the system side, and phase difference detection Synchronization point calculation means 1C for calculating a synchronization point based on the phase difference detected by the means 1B.

対地充電電流の基本波成分の抽出は基本波抽出手段1Eによって行うことができる。基本波抽出手段1Eは、同期検定器1内に設ける構成とする他、同期検定器1の外側に設ける構成としてもよい。   The fundamental wave component of the ground charge current can be extracted by the fundamental wave extracting means 1E. The fundamental wave extracting means 1E may be provided outside the synchronization tester 1 in addition to the configuration provided inside the synchronization tester 1.

同期検定手段1Dは、同期点演算手段1Cで演算した同期点情報によって系統側と同期発電機側との間の位相差と共に、同期発電機50側あるいは配電線3側の周波数と系統側の系統周波数との周波数差、同期発電機50の電圧と系統側の系統電圧との電圧差に基づいて同期投入条件を判定する。   The synchronization verification means 1D uses the synchronization point information calculated by the synchronization point calculation means 1C, along with the phase difference between the system side and the synchronous generator side, and the frequency on the synchronous generator 50 side or the distribution line 3 side and the system side system. Based on the frequency difference from the frequency and the voltage difference between the voltage of the synchronous generator 50 and the system voltage on the system side, the synchronization application condition is determined.

同期検定器1は、同期検定手段1Dが同期投入条件を判定すると、同期検定信号を同期投入回路21に出力する。同期投入回路21は同期検定信号を受けると、同期投入指令を継電器10に出力する。継電器10は同期投入指令を入力すると、遮断器4Aを閉とする。   The synchronization tester 1 outputs a synchronization verification signal to the synchronization input circuit 21 when the synchronization verification unit 1D determines the synchronization input condition. When receiving the synchronization verification signal, the synchronization input circuit 21 outputs a synchronization input command to the relay 10. The relay 10 closes the circuit breaker 4 </ b> A when receiving the synchronous input command.

[同期検定器及び自動同期投入装置の構成例]
同期検定器及び自動同期投入装置の構成例、及び同期検定器が行う演算処理について図2及び図3を用いて説明する。
[Configuration example of synchronous tester and automatic synchronous injection device]
A configuration example of the synchronization tester and the automatic synchronization input device, and a calculation process performed by the synchronization tester will be described with reference to FIGS.

図2に示す同期検定器及び自動同期投入装置の構成例は、図1で示した概略構成図において、同期検定器1及び同期発電機の構成例、及び自動同期投入装置20の周辺回路の構成例について示している。   The configuration example of the synchronous tester and the automatic synchronization input device shown in FIG. 2 is the same as the configuration example of the synchronous verification device 1 and the synchronous generator in the schematic configuration diagram shown in FIG. An example is shown.

図2において、同期検定器1は、系統電圧の情報を計器用変圧器9a又は非接地変圧器9bの電圧取得手段9で取得した母線の対地電圧Vrn又は線間電圧Vlを入力し、配電線3の接地用導線7A〜7Cに設けた変流器8A〜8Cで取得した対地充電電流を入力し、同期発電機50から電圧信号Vgを入力する。   In FIG. 2, the synchronous tester 1 inputs the ground voltage Vrn or the line voltage Vl of the bus line obtained by the voltage obtaining means 9 of the voltage transformer 9a or the non-grounded transformer 9b as the system voltage information, and the distribution line The ground charging current acquired by the current transformers 8A to 8C provided in the grounding conductors 7A to 7C of 3 is input, and the voltage signal Vg is input from the synchronous generator 50.

電圧取得手段9において、計器用変圧器9aとして接地型計器用変圧器あるいはコンデンサ型分圧器を用いて母線の対地電圧を測定する他、非接地変圧器9bによって各相間の線間電圧を測定してもよい。   In the voltage acquisition means 9, the ground voltage of the bus is measured using a grounded-type instrument transformer or a capacitor-type voltage divider as the instrument transformer 9 a, and the line voltage between the phases is measured by the non-grounded transformer 9 b. May be.

(同期検定器の構成)
同期検定器1は、入力信号の振幅を合わせるためのレベル変換回路11A〜11Dを備える。
(Configuration of synchronous tester)
The synchronization tester 1 includes level conversion circuits 11A to 11D for adjusting the amplitude of an input signal.

レベル変換回路11Aは、電圧取得手段9から取得して母線2の電圧情報を入力信号として入力し、信号レベルを所定レベルに変換する。計器用変圧器9aとして接地型計器用変圧器(EVT)またはコンデンサ型分圧器(PD)を用いる場合には、一次・二次側を星形結線として中性点を接地し、各相と中性点間の電圧(相電圧)が測定され、非接地変圧器9bとして非接地型計器変圧器(VT)を用いることによって線間電圧Vlが測定される。   The level conversion circuit 11A receives the voltage information of the bus 2 obtained from the voltage acquisition means 9 as an input signal, and converts the signal level to a predetermined level. When using a grounded-type instrument transformer (EVT) or a capacitor-type voltage divider (PD) as the instrument transformer 9a, the neutral point is grounded using the primary and secondary sides as star connections, The voltage between the sex points (phase voltage) is measured, and the line voltage Vl is measured by using a non-grounded instrument transformer (VT) as the non-grounded transformer 9b.

電圧取得手段9によって取得される電圧は、相電圧と線間電圧では信号レベルに√3倍の違いがあり、位相も(π/6)異なる。レベル変換回路11Aは、後段のマルチプレクサでの信号処理を扱い易くするため電圧取得手段9で取得した信号レベルを変換する。   The voltage acquired by the voltage acquisition means 9 has a signal level difference of √3 times and a phase difference of (π / 6) between the phase voltage and the line voltage. The level conversion circuit 11A converts the signal level acquired by the voltage acquisition unit 9 in order to make it easy to handle the signal processing in the subsequent stage multiplexer.

レベル変換回路11B,11C,及び11Dは、変流器8A〜8Cで取得した接地用導線7A〜7Cの対地充電電流を入力信号として入力し、信号レベルを所定レベルに変換する。対地充電電流は、母線側と同期発電機側との間における周波数差及び位相差の同期条件の判定に用いる他、母線側と同期発電機側の各相における位相ずれに基づく電力ケーブルの健全性の判定に用いる。レベル変換回路11B,11C,及び11Dは、各対地充電電流の信号レベルを合わせることによって、上記した同期条件及び健全性の判定の精度を向上させることができる。   The level conversion circuits 11B, 11C, and 11D input the ground charging currents of the grounding conductors 7A to 7C acquired by the current transformers 8A to 8C as input signals, and convert the signal level to a predetermined level. The ground charging current is used to determine the synchronization condition of the frequency difference and phase difference between the bus side and the synchronous generator side, and the soundness of the power cable based on the phase shift in each phase on the bus side and the synchronous generator side Used to determine The level conversion circuits 11B, 11C, and 11D can improve the accuracy of the above-described synchronization condition and soundness determination by matching the signal level of each ground charging current.

図2では、レベル変換回路11BによってR相の対地充電電流Irの信号レベルを変換して、周波数差及び位相差の同期条件の判定に用い、レベル変換回路11C,11DによってS相及びT相の対地充電電流Is、Itの信号レベルを変換して、健全性の判定に用いる例を示しているが、同期条件及び健全性の判定に用いる対地充電電流の組み合わせはこの組み合わせに限られるものではない。   In FIG. 2, the signal level of the R-phase ground charging current Ir is converted by the level conversion circuit 11B and used to determine the synchronization condition of the frequency difference and the phase difference, and the S-phase and T-phase are converted by the level conversion circuits 11C and 11D. Although the example which converts the signal level of ground charging current Is and It and uses it for the judgment of soundness is shown, the combination of the ground charging current used for judgment of a synchronous condition and soundness is not restricted to this combination .

同期検定器1は、レベル変換回路11A〜11Dからの入力信号を演算処理部13で逐次デジタル信号処理ためにマルチプレクサ12を備える。マルチプレクサ12は、レベル変換回路11A〜11Dから入力される入力信号を演算処理部13に順次入力する。演算処理部13に入力する順序は任意に設定することができる。   The synchronous tester 1 includes a multiplexer 12 for sequentially processing input signals from the level conversion circuits 11A to 11D by the arithmetic processing unit 13. The multiplexer 12 sequentially inputs the input signals input from the level conversion circuits 11 </ b> A to 11 </ b> D to the arithmetic processing unit 13. The order of input to the arithmetic processing unit 13 can be arbitrarily set.

(演算処理部の機能)
演算処理部13は、母線側の電圧(Vrn,Vl)、同期発電機側の電圧信号Vgと対地充電電流Ir,Is,Itを入力し、母線側と同期発電機側との間の電圧差、周波数差、及び位相差に基づいて同期条件を判定する他、同期発電機の電圧、周波数を制御する制御信号をする。また、電力ケーブルに流れる対地充電電流に基づいて各相電流の健全性を判定する。同期発電機側の電圧信号Vgは通信手段により入力することができる。
(Function of the processing unit)
The arithmetic processing unit 13 inputs the bus side voltage (Vrn, Vl), the synchronous generator side voltage signal Vg and the ground charging currents Ir, Is, It, and the voltage difference between the bus side and the synchronous generator side. In addition to determining the synchronization condition based on the frequency difference and the phase difference, a control signal for controlling the voltage and frequency of the synchronous generator is used. Further, the soundness of each phase current is determined based on the ground charging current flowing through the power cable. The voltage signal Vg on the synchronous generator side can be input by communication means.

演算処理部13は、マルチプレクサ12の出力信号をデジタル信号に変換するA/D変換器13a、演算処理を行うCPU13b、CPU13bに所定処理を実行させるためのプログラムが格納されたROM13c、演算処理の結果を一次記憶するRAM13dをバス13eに接続することで構成される。   The arithmetic processing unit 13 includes an A / D converter 13a that converts an output signal of the multiplexer 12 into a digital signal, a CPU 13b that performs arithmetic processing, a ROM 13c that stores a program for causing the CPU 13b to execute predetermined processing, and a result of the arithmetic processing Is connected to a bus 13e.

図3は演算処理部13による演算処理の概要を説明するためのブロック図である。同期検定手段13Lは、系統並列する電力系統と同期発電機の同期状態について、電圧差、周波数差、及び位相差の同期条件を検定し、同期点を検出して同期点信号を出力する。同期条件の検定は、基本波抽出手段13Dvによって母線電圧Vから抽出した基本波を用いて行う。   FIG. 3 is a block diagram for explaining the outline of the arithmetic processing by the arithmetic processing unit 13. The synchronization verification means 13L tests the synchronization conditions of the voltage difference, the frequency difference, and the phase difference for the synchronization state of the power system and the synchronous generator in parallel, detects the synchronization point, and outputs the synchronization point signal. The verification of the synchronization condition is performed using the fundamental wave extracted from the bus voltage V by the fundamental wave extraction means 13Dv.

電圧差の同期条件は、電圧検出手段13Aで検出した母線電圧Vと、同期発電機の電圧信号Vgとを電圧比較手段13Hで比較し、電圧差が予め定められた許容値内であるいか否かによって検定する。   The voltage difference synchronization condition is determined by comparing the bus voltage V detected by the voltage detection means 13A and the voltage signal Vg of the synchronous generator by the voltage comparison means 13H, and whether or not the voltage difference is within a predetermined allowable value. Test by

周波数差の同期条件は、周波数検出手段13Bで検出した母線側電圧の周波数と、周波数検出手段13Eで検出した対地充電電流Irの基本波の周波数とを周波数比較手段13Iで比較し、周波数差が予め定められた許容値内であるいか否かによって検定する。対地充電電流Irの基本波は、基本波抽出手段13Drによって対地充電電流Irから抽出することができる。   The frequency difference synchronization condition is as follows: the frequency of the bus side voltage detected by the frequency detector 13B and the frequency of the fundamental wave of the ground charging current Ir detected by the frequency detector 13E are compared by the frequency comparator 13I. The test is performed based on whether or not the value is within a predetermined allowable value. The fundamental wave of the ground charging current Ir can be extracted from the ground charging current Ir by the fundamental wave extracting means 13Dr.

基本波抽出手段13Drは、対地充電電流のサンプリング値を離散フーリエ変換する演算処理によって基本波を抽出する。周波数検出手段13Eは、基本波抽出手段13Drで抽出した基本波に基づいて同期発電機側の周波数を検出する。なお、図3では、同期検定に用いる対地充電電流としてR相の対地充電電流Irを用いる例を示しているが、S相あるいはT相の対地充電電流Is、Itを用いて基本波を抽出してもよい。   The fundamental wave extraction unit 13Dr extracts a fundamental wave by an arithmetic process that performs discrete Fourier transform on the sampling value of the ground charging current. The frequency detector 13E detects the frequency on the synchronous generator side based on the fundamental wave extracted by the fundamental wave extractor 13Dr. FIG. 3 shows an example in which the R-phase ground charging current Ir is used as the ground charging current used for the synchronization verification, but the fundamental wave is extracted using the S-phase or T-phase ground charging currents Is and It. May be.

位相差の同期条件は、位相検出手段13Cで検出した母線側電圧の位相と、位相検出手段13F及び移相手段13Gで検出した対地充電電流Irの基本波から得られた同期発電機側の位相である配電線側の位相とを位相差比較手段13Jで比較し、位相差が予め定められた許容値内であるいか否かによって検定する。移相手段13Gは対地充電電流Irから得た位相を(π/2)だけ遅らせる処理を行う。これは、対地充電電流Irの位相は電力ケーブルの対地静電容量による電流であるため、配電線3のR相の電圧より(π/2)進みとなるので、対地充電電流Irから得た位相を(π/2)だけ遅らせることによって配電線側の位相である配電線側のR相電圧の位相と同相とするためである。   The synchronization condition of the phase difference is that the phase of the synchronous generator side obtained from the phase of the bus side voltage detected by the phase detection means 13C and the fundamental wave of the ground charging current Ir detected by the phase detection means 13F and the phase shift means 13G. The phase on the distribution line side is compared by the phase difference comparison means 13J, and it is verified whether the phase difference is within a predetermined allowable value. The phase shift means 13G performs a process of delaying the phase obtained from the ground charging current Ir by (π / 2). This is because the phase of the ground charging current Ir is a current due to the ground capacitance of the power cable, and therefore is (π / 2) ahead of the voltage of the R phase of the distribution line 3, so the phase obtained from the ground charging current Ir Is delayed by (π / 2) so as to be in phase with the phase of the R-phase voltage on the distribution line side, which is the phase on the distribution line side.

同期検定手段13Lは、電圧比較手段13Hから電圧差を入力し、周波数比較手段13Iから周波数差を入力し、位相差比較手段13Jから位相差を入力して、同期条件を判定する。同期条件が判定された場合には、同期点信号を同期投入回路21に出力する。同期投入回路21は同期投入指令信号を継電器10に送って作動させて遮断器4Aを閉じ、同期発電機が接続されている配電線を母線に同期投入する。   The synchronization verification unit 13L receives the voltage difference from the voltage comparison unit 13H, the frequency difference from the frequency comparison unit 13I, and the phase difference from the phase difference comparison unit 13J, and determines the synchronization condition. When the synchronization condition is determined, a synchronization point signal is output to the synchronization input circuit 21. The synchronous closing circuit 21 is operated by sending a synchronous closing command signal to the relay 10, closes the circuit breaker 4A, and synchronously inputs the distribution line connected to the synchronous generator to the bus.

(自動同期投入装置)
自動同期投入装置20は、同期検定器1と、同期検定器1の同期点信号を受けて同期投入指令信号を継電器10に出力する同期投入回路21とを備える。継電器10は、同期投入指令信号を受けて作動し遮断器4Aを閉じ、同期発電機が接続されている配電線を母線に同期投入する。
(Automatic synchronization device)
The automatic synchronizer 20 includes a synchronizer 1 and a synchronizer 21 that receives a synchronization point signal from the synchronizer 1 and outputs a synchronizer command signal to the relay 10. The relay 10 operates in response to the synchronous input command signal, closes the circuit breaker 4A, and synchronously supplies the distribution line connected to the synchronous generator to the bus.

(健全性判定)
配電線側の電力ケーブルの健全性を判定するために、対地充電電流Ir,Is,Itの各相間の位相が所定関係にあるかを検出する。健全性の目安は、例えば母線電圧を相電圧として入力した場合、R相の電圧と(π/2)遅れ側に移相後のR相の対地充電電流Irの位相差が±Δθの範囲にあり、母線電圧のR相の電圧と移相後のS相の対地充電電流Isの位相差が(2π/3)±Δθの範囲にあり、母線電圧のR相の電圧と移相後のT相の対地充電電流Itの位相差が(4π/3)±Δθの範囲にあり、かつ、各相の対地充電電流Ir,Is,Itの差分が所定範囲(例えば、10%)内とすることができる。母線電圧を線間電圧で入力した場合、位相差を(π/6)加算して計算すれば良い。
(Health assessment)
In order to determine the soundness of the power cable on the distribution line side, it is detected whether the phases between the phases of the ground charging currents Ir, Is, It are in a predetermined relationship. For example, when the bus voltage is input as the phase voltage, the phase difference between the R phase voltage and the R phase ground charging current Ir after the phase shift to the (π / 2) delay side is within a range of ± Δθ. Yes, the phase difference between the R phase voltage of the bus voltage and the ground charging current Is of the S phase after the phase shift is in the range of (2π / 3) ± Δθ, and the R phase voltage of the bus voltage and the T phase after the phase shift. The phase difference of the ground charging current It of the phase is in the range of (4π / 3) ± Δθ, and the difference of the ground charging currents Ir, Is, It of each phase is within a predetermined range (for example, 10%). Can do. When the bus voltage is input as a line voltage, the phase difference may be calculated by adding (π / 6).

健全性の確認のために、対地充電電流Isについては基本波抽出手段13Ds、位相検出手段13Fs、移相手段13Gsを備え、対地充電電流Itについては基本波抽出手段13Dt、位相検出手段13Ft、移相手段13Gtを備える。   In order to confirm the soundness, the ground charging current Is is provided with a fundamental wave extracting means 13Ds, a phase detecting means 13Fs, and a phase shifting means 13Gs, and the ground charging current It is provided with a fundamental wave extracting means 13Dt, a phase detecting means 13Ft, and a phase shifting means 13Ft. Phase means 13Gt is provided.

さらに、健全性判定手段13Kによって、各相について移相後に対地充電電流Ir,Is,及びItの位相と、位相検出手段13Cで得られる系統位相信号の位相とを比較して位相差を求め、位相差が所定の許容範囲内であるか否かを判定する。   Further, the soundness judgment means 13K compares the phase of the ground charging currents Ir, Is, and It after the phase shift for each phase with the phase of the system phase signal obtained by the phase detection means 13C to obtain a phase difference, It is determined whether or not the phase difference is within a predetermined allowable range.

(同期発電機の制御)
演算処理部13は、上記した同期検定に係る信号処理の他に、同期発電機の電圧を制御する電圧制御信号を出力する電圧制御手段13M、同期発電機の周波数を制御する周波数制御信号を出力する周波数制御手段13Nを備え、同期発電機の電圧、周波数を制御する。同期発電機との間の信号の受渡しは無線通信で行うことができる。
(Synchronous generator control)
The arithmetic processing unit 13 outputs a voltage control means 13M for outputting a voltage control signal for controlling the voltage of the synchronous generator, and a frequency control signal for controlling the frequency of the synchronous generator, in addition to the signal processing related to the synchronous test described above. Frequency control means 13N for controlling the voltage and frequency of the synchronous generator. Delivery of signals to and from the synchronous generator can be performed by wireless communication.

また、表示制御手段13Oを設けることができ、電圧比較手段13H、周波数比較手段13I、及び位相差比較手段13Jの各出力に基づいて表示信号を出力し、電圧状態、周波数状態、及び位相状態を、表示信号出力回路31を介して表示手段32に表示させる。   Further, a display control means 13O can be provided, and a display signal is output based on the outputs of the voltage comparison means 13H, the frequency comparison means 13I, and the phase difference comparison means 13J, and the voltage state, the frequency state, and the phase state are displayed. The image is displayed on the display means 32 via the display signal output circuit 31.

(同期発電機の構成)
図2において、同期発電機50は開閉器5Bを介して配電線3に接続される。なお、同期発電機50は遮断器4Bを内蔵させる構成としてもよい。
(Synchronous generator configuration)
In FIG. 2, the synchronous generator 50 is connected to the distribution line 3 via the switch 5B. In addition, the synchronous generator 50 is good also as a structure which incorporates the circuit breaker 4B.

同期発電機50は、発電電圧を制御する自動電圧調整器50a、周波数を制御するガバナ50bを備え、同期検定器1から送られた電圧制御信号、周波数制御信号を送受信回路50cを介して入力し、電圧、周波数の制御を行う。また、送受信回路50cは同期発電機50の電圧信号Vgを送受信回路41を介して同期検定器1に送る。   The synchronous generator 50 includes an automatic voltage regulator 50a for controlling the generated voltage and a governor 50b for controlling the frequency, and inputs the voltage control signal and the frequency control signal sent from the synchronous tester 1 through the transmission / reception circuit 50c. Control the voltage and frequency. The transmission / reception circuit 50 c sends the voltage signal Vg of the synchronous generator 50 to the synchronous tester 1 via the transmission / reception circuit 41.

(信号例)
図4は本発明の同期検定器の信号例であり、6.6KVの母線の対地電圧Vrn、R相の対地充電電流Ir、S相の対地充電電流Is、T相の対地充電電流Itを示している。R相の対地充電電流Irは母線の対地電圧Vrnに対してπ/2だけ位相が進んでおり、対地充電電流Irをπ/2だけ位相を遅らせることによって母線の対地電圧Vrnの位相を得ることができる。またR相、S相、及びT相の対地充電電流Ir,Is,Itはそれぞれ2π/3だけ位相がずれている。
(Signal example)
FIG. 4 is a signal example of the synchronous tester of the present invention, and shows the ground voltage Vrn of the 6.6 KV bus, the R-phase ground charging current Ir, the S-phase ground charging current Is, and the T-phase ground charging current It. Yes. The phase of the R-phase ground charging current Ir is advanced by π / 2 with respect to the ground voltage Vrn of the bus, and the phase of the ground voltage Vrn of the bus is obtained by delaying the phase of the ground charging current Ir by π / 2. Can do. Further, the ground charge currents Ir, Is, It of the R phase, the S phase, and the T phase are shifted in phase by 2π / 3.

[同期検定器及び自動同期投入装置の他の構成例]
図5は同期検定器及び自動同期投入装置の他の構成例を説明するためのブロック図であり、対地充電電流から基本波を抽出する構成において、図3に示す演算処理部13内の基本波抽出手段13Dr,13Ds,13Dtに変えて、基本波抽出回路14によって行う点で相違している。その他の構成については図2に示した構成と同様とすることができる。
[Another configuration example of synchronous tester and automatic synchronous injection device]
FIG. 5 is a block diagram for explaining another configuration example of the synchronous tester and the automatic synchronous input device. In the configuration for extracting the fundamental wave from the ground charging current, the fundamental wave in the arithmetic processing unit 13 shown in FIG. The difference is that the fundamental wave extraction circuit 14 performs the extraction means 13Dr, 13Ds, and 13Dt. Other configurations can be the same as those shown in FIG.

基本波抽出回路14は、対地充電電流 Ir,Is,Itをアナログ信号処理して基本波を抽出する。基本波抽出回路14の一構成例はローパスフィルタ回路であり、ローパスフィルタ処理によって基本波の周波数帯域の周波数成分を取りだして、対地充電電流が有する周波数成分から系統電圧の周波数域の周波数成分を抽出する。   The fundamental wave extraction circuit 14 performs analog signal processing on the ground charging currents Ir, Is, It and extracts a fundamental wave. One configuration example of the fundamental wave extraction circuit 14 is a low-pass filter circuit, which extracts frequency components in the frequency band of the fundamental wave by low-pass filter processing and extracts frequency components in the frequency band of the system voltage from the frequency components of the ground charging current. To do.

なお、本願発明は前記各実施の形態に限定されるものではない。本願発明の趣旨に基づいて種々変形することが可能であり、これらを本願発明の範囲から排除するものではない。   The present invention is not limited to the above embodiments. Various modifications can be made based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

本願発明の同期検定器、自動同期投入装置は、仮設発電機又は配電線の電圧、周波数情報を得るための計器用変圧器等を必要としないので、仮設発電機付属の計器用変圧器の2次信号ケーブル敷設、又は配電線への計器用変圧器の仮設に関わる問題点を回避できるため、発電機設置場所の制約が少なくなり、仮設から本設に切換える場合に、不要な停電を回避出来る等の利点を有するので、利用範囲は広がる。   Since the synchronous tester and the automatic synchronous input device of the present invention do not require a voltage transformer or a voltage transformer for obtaining information on the frequency and frequency of the temporary power generator, 2 of the voltage transformer attached to the temporary power generator. Since problems related to the laying of the next signal cable or temporary installation of the instrument transformer on the distribution line can be avoided, restrictions on the generator installation location are reduced, and unnecessary power outages can be avoided when switching from temporary installation to main installation. The range of use is widened.

1 同期検定器
1A 位相検出手段
1B 位相差検出手段
1C 同期点演算手段
1D 同期検定手段
1E 基本波抽出手段
2 母線
3 配電線
4A,4B 遮断器
5A,5B 開閉器
6A,6B,6C 配電線引出用電力ケーブル
7A,7B,7C 金属シース接地用導線
8A,8B,8C 対地充電電流測定用変流器
9 電圧取得手段
9a 計器用変圧器
9b 非接地変圧器
10 継電器
11A-11D レベル変換回路
12 マルチプレクサ
13 演算処理部
13A 電圧検出手段
13B 周波数検出手段
13C 位相検出手段
13Dv,13Dr,13Ds,13Dt 基本波抽出手段
13E 周波数検出手段
13F,13Fs,13Ft 位相検出手段
13G,13Gs,13Gt 移相手段
13H 電圧比較手段
13I 周波数比較手段
13J 位相差比較手段
13K 健全性判定手段
13L 同期検定手段
13M 電圧制御手段
13N 周波数制御手段
13O 表示制御手段
13a A/D変換器
13b CPU
13c ROM
13d RAM
13e バス
14 基本波抽出回路
20 自動同期投入装置
21 同期投入回路
31 表示信号出力回路
32 表示手段
41 送受信回路
50 同期発電機
50a 自動電圧調整器
50b ガバナ
50c 送受信回路
101 自動同期投入装置
102 母線
103 配電線
104A,104B 遮断器
105A,105B 閉器
106A,106B 計器用変圧器
107 発電機
111 同期検定器
112 同期投入回路
A 信号用ケーブル
B 信号用ケーブル
Ir,Is,It 対地充電電流
V 母線電圧
Vg 電圧信号
Vl 線間電圧
Vrn 対地電圧
DESCRIPTION OF SYMBOLS 1 Synchronization tester 1A Phase detection means 1B Phase difference detection means 1C Synchronization point calculation means 1D Synchronization verification means 1E Fundamental wave extraction means 2 Bus 3 Distribution line 4A, 4B Breaker 5A, 5B Switch 6A, 6B, 6C Distribution line lead-out Power cable 7A, 7B, 7C Metal sheath grounding conductor 8A, 8B, 8C Current transformer for measuring ground charging current 9 Voltage acquisition means 9a Instrument transformer 9b Ungrounded transformer 10 Relay 11A-11D Level conversion circuit 12 Multiplexer 13 arithmetic processing unit 13A voltage detection means 13B frequency detection means 13C phase detection means 13Dv, 13Dr, 13Ds, 13Dt fundamental wave extraction means 13E frequency detection means 13F, 13Fs, 13Ft phase detection means 13G, 13Gs, 13Gt phase shift means 13H voltage comparison Means 13I Frequency comparison means 13J Phase difference comparison means 13 Soundness determination unit 13L synchronization test unit 13M voltage controller 13N frequency control means 13O display control unit 13a A / D converter 13b CPU
13c ROM
13d RAM
13e bus 14 fundamental wave extraction circuit 20 automatic synchronization input device 21 synchronization input circuit 31 display signal output circuit 32 display means 41 transmission / reception circuit 50 synchronous generator 50a automatic voltage regulator 50b governor 50c transmission / reception circuit 101 automatic synchronization input device 102 bus 103 distribution Electric wire 104A, 104B Circuit breaker 105A, 105B Closure 106A, 106B Instrument transformer 107 Generator 111 Synchronous tester 112 Synchronous input circuit A Signal cable B Signal cable Ir, Is, It Grounding current V Bus voltage Vg Voltage Signal Vl Line voltage Vrn Ground voltage

Claims (6)

系統並列する電力系統と同期発電機の同期状態を検定する同期検定器において、
同期発電機側の対地充電電流の基本波成分に基づいて、同期発電機と接続する配電線の配線電圧の位相に対応した配線位相信号を検出する位相検出手段と、
前記配線位相信号と前記系統側の系統電圧の系統位相信号とに基づいて、系統電圧の位相と配線電圧の位相との位相差を検出する位相差検出手段と、
前記位相差に基づいて同期点を演算する同期点演算手段とを備える同期検出器。
In the synchronous tester that verifies the synchronization status of the parallel power system and the synchronous generator,
Phase detection means for detecting a wiring phase signal corresponding to the phase of the wiring voltage of the distribution line connected to the synchronous generator based on the fundamental wave component of the ground charging current on the synchronous generator side;
Based on the wiring phase signal and the system phase signal of the system voltage on the system side, phase difference detection means for detecting a phase difference between the phase of the system voltage and the phase of the wiring voltage;
A synchronization detector comprising synchronization point calculation means for calculating a synchronization point based on the phase difference.
前記位相検出手段、位相差検出手段、及び同期点演算手段を、コンピュータの演算処理で実行する演算回路を備える、請求項1に記載の同期検定器。   The synchronous tester according to claim 1, further comprising an arithmetic circuit that executes the phase detection unit, the phase difference detection unit, and the synchronization point calculation unit by a calculation process of a computer. 前記位相検出手段は、対地充電電流の基本波成分を抽出する基本波抽出手段を備え、
前記基本波抽出手段は、
対地充電電流のサンプリング値の離散フーリエ変換、又は対地充電電流のローパスフィルタ処理によって、対地充電電流が有する周波数成分から系統電圧の周波数域の周波数成分を抽出する、請求項2に記載の同期検定器。
The phase detection means includes fundamental wave extraction means for extracting a fundamental wave component of the ground charging current,
The fundamental wave extracting means includes
The synchronous tester according to claim 2, wherein a frequency component in a frequency range of the system voltage is extracted from a frequency component of the ground charging current by discrete Fourier transform of a sampling value of the ground charging current or low-pass filter processing of the ground charging current. .
前記位相検出手段は、対地充電電流の基本波成分を抽出する基本波抽出手段を備え、
前記基本波抽出手段は、対地充電電流のフーリエ級数展開によって、対地充電電流が有する周波数成分から系統電圧の周波数域の周波数成分を抽出する、請求項1に記載の同期検定器。
The phase detection means includes fundamental wave extraction means for extracting a fundamental wave component of the ground charging current,
The synchronous tester according to claim 1, wherein the fundamental wave extracting means extracts a frequency component in a frequency region of the system voltage from a frequency component of the ground charging current by Fourier series expansion of the ground charging current.
前記対地充電電流は前記配電線の接地用導線に流れる電流である、請求項1から4の何れか一つに記載の同期検定器。   The synchronous tester according to any one of claims 1 to 4, wherein the ground charging current is a current flowing through a grounding conductor of the distribution line. 同期発電機を電力系統に系統並列する自動同期投入装置において、
請求項1から5の何れか一つに記載の同期検定器と、
前記同期点演算手段が演算する同期点に基づいて、同期発電機を電力系統に系統並列させる同期投入指令信号を出力する同期投入回路とを備える、自動同期投入装置。



In the automatic synchronous injection device that parallel-synchronizes the synchronous generator with the power system,
A synchronous tester according to any one of claims 1 to 5;
An automatic synchronizer, comprising a synchronizer circuit for outputting a synchronizer command signal for causing the synchronous generator to system-parallel to the power system based on the synchronous point calculated by the synchronous point calculator.



JP2016125394A 2016-06-24 2016-06-24 Synchronous tester and automatic synchronizer Active JP6142051B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016125394A JP6142051B1 (en) 2016-06-24 2016-06-24 Synchronous tester and automatic synchronizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016125394A JP6142051B1 (en) 2016-06-24 2016-06-24 Synchronous tester and automatic synchronizer

Publications (2)

Publication Number Publication Date
JP6142051B1 JP6142051B1 (en) 2017-06-07
JP2017229197A true JP2017229197A (en) 2017-12-28

Family

ID=59011956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016125394A Active JP6142051B1 (en) 2016-06-24 2016-06-24 Synchronous tester and automatic synchronizer

Country Status (1)

Country Link
JP (1) JP6142051B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114422287B (en) * 2021-12-09 2023-07-07 福建星云电子股份有限公司 Microsecond-level charge and discharge synchronous control method and system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02280630A (en) * 1989-04-21 1990-11-16 Terasaki Denki Sangyo Kk Automatic synchronous making device
JPH0823635A (en) * 1994-07-05 1996-01-23 Toshiba Corp Device for operating non-utility power generating facility
JP4779777B2 (en) * 2006-04-06 2011-09-28 株式会社日立製作所 Flicker suppression device
JP2009142005A (en) * 2007-12-04 2009-06-25 Panasonic Corp System-interconnected inverter controller and control method

Also Published As

Publication number Publication date
JP6142051B1 (en) 2017-06-07

Similar Documents

Publication Publication Date Title
Preston et al. New settings-free fault location algorithm based on synchronised sampling
CN101915884B (en) Identification method of ground fault phases in three-phase ungrounded system and identification device thereof
JP7006237B2 (en) A system with a protective device for the power supply system
CN102472780A (en) Method and device for monitoring the state of an electrical network
BRPI1004893A2 (en) phase identification system and method for identifying phase information
EP3299828A1 (en) Electrical fault detection
KR20020017390A (en) Apparatus and method for locating fault distance in a power double circuit transmision line
JP6540028B2 (en) Phase determination support apparatus for AC three-phase electrical path, phase determination apparatus and method
CN106018991A (en) Power distribution network ferroresonance and single phase earth fault calculating analysis method and device
CN107831378B (en) Device and method for detecting compensation effect of arc suppression coil
CN105182156B (en) Based on waveform visualization synchronous loop device for detecting polarity and detection method
US9621569B1 (en) Method and apparatus for detecting cyber attacks on an alternating current power grid
Bhandari et al. Real-time signal-to-noise ratio estimation by universal grid analyzer
JP6142051B1 (en) Synchronous tester and automatic synchronizer
JP5926419B1 (en) Phase loss detector
JP5020508B2 (en) Ground fault direction detector
WO2017140691A1 (en) Apparatus for determination of a ground fault and associated method
RU2771222C1 (en) Method for determining a damaged feeder in case of single phase to ground fault in a distribution electrical network
JP2017093069A (en) Ground fault detector
RU2734164C1 (en) Method of detecting single-phase earth faults in distribution network connections
KR102343931B1 (en) Active underground power cable line tester and testing method
KR20130035766A (en) System for analyzing failure of hvdc
JP3869283B2 (en) Method for removing inductive noise in power cable deterioration diagnosis and power cable test apparatus
RU2660221C2 (en) Method and system of switchgear testing for use in electric power transmission equipment
JP4921246B2 (en) Ground fault distance relay

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170508

R150 Certificate of patent or registration of utility model

Ref document number: 6142051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250