JP2015184250A - Online deterioration diagnosis device and method of power cable - Google Patents

Online deterioration diagnosis device and method of power cable Download PDF

Info

Publication number
JP2015184250A
JP2015184250A JP2014063468A JP2014063468A JP2015184250A JP 2015184250 A JP2015184250 A JP 2015184250A JP 2014063468 A JP2014063468 A JP 2014063468A JP 2014063468 A JP2014063468 A JP 2014063468A JP 2015184250 A JP2015184250 A JP 2015184250A
Authority
JP
Japan
Prior art keywords
power cable
reference signal
phase
current
frequency component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014063468A
Other languages
Japanese (ja)
Other versions
JP6248740B2 (en
Inventor
末長 清佳
Kiyoyoshi Suenaga
清佳 末長
淳起 藤井
Junki Fujii
淳起 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014063468A priority Critical patent/JP6248740B2/en
Publication of JP2015184250A publication Critical patent/JP2015184250A/en
Application granted granted Critical
Publication of JP6248740B2 publication Critical patent/JP6248740B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To highly accurately diagnose insulation deterioration due to water tree while a power cable to be diagnosed is kept in an online state.SOLUTION: An online deterioration diagnosis device of a power cable comprises current detection means for detecting leakage current Ie flowing in a ground line of a shield conductor of a power cable, reference signal generation means for generating a reference signal, phase adjustment means for adjusting a phase θ of the reference signal, and specific frequency component extraction means for accepting inputs of the reference signal generated by the reference signal generation means and the leakage current Ie detected by the current detection means and outputting an absolute value |I| having the same frequency component as the reference signal, of the leakage current Ie.

Description

本発明は、絶縁体として架橋ポリエチレンを備えた電力ケーブルの絶縁劣化の状況をオンラインで劣化診断する電力ケーブルのオンライン劣化診断装置及び電力ケーブルのオンライン劣化診断方法に関する。   The present invention relates to an on-line deterioration diagnosis device for a power cable and an on-line deterioration diagnosis method for a power cable that diagnose deterioration of the power cable having a cross-linked polyethylene as an insulator online.

従来より、工場やビルなどの水分のある環境に、絶縁体として架橋ポリエチレンを備えた電力ケーブル(CVケーブル、国際的にはXLPEケーブルとも呼ばれる)が布設されると、電力ケーブルの絶縁体に水トリーと呼ばれる劣化が発生することが知られている。   Conventionally, when a power cable (CV cable, also internationally called XLPE cable) equipped with cross-linked polyethylene as an insulator is laid in an environment with moisture such as a factory or a building, water is applied to the insulator of the power cable. It is known that deterioration called a tree occurs.

水トリーは、架橋ポリエチレンを備えた電力ケーブルの開発当初、架橋ポリエチレンの製造過程で湿式架橋を行っていた事が主な原因とされ、近年では、乾式架橋を行うことで、水トリーによる劣化は克服されたと言われてきた。しかしながら、乾式架橋で製造された電力ケーブルであっても、使用開始後数十年を経過すると、水トリーによる劣化が始まる事が明らかになった。そのため、水トリーによる絶縁体の劣化を診断する技術が求められている。   Water trees are mainly caused by wet crosslinking in the process of producing cross-linked polyethylene at the beginning of the development of power cables equipped with cross-linked polyethylene. In recent years, dry-crosslinking has overcome deterioration caused by water trees. Has been said to have been. However, it has been clarified that even a power cable manufactured by dry crosslinking begins to deteriorate due to a water tree after several decades have passed since the start of use. Therefore, there is a need for a technique for diagnosing deterioration of an insulator caused by a water tree.

電力ケーブルの水トリー劣化の診断技術としては、設備を停電させて、電力ケーブルをオフラインとした状態で診断を行う残留電荷法や、逆吸収電流法がある。   There are a residual charge method and a reverse absorption current method for diagnosing power tree water tree degradation in a state where the power is turned off and the power cable is off-line.

しかしながら、このような方法では、診断にあたって設備を停電させて、電力ケーブルを電路から離線する工事が必要であり、診断に要する費用と時間が多大なものとなる。また、GIS等の設備に接続された電力ケーブルでは、容易に離線することができず、水トリー劣化の診断をすることができない。   However, in such a method, it is necessary to perform a construction in which the equipment is blacked out and the power cable is disconnected from the electric circuit for diagnosis, and the cost and time required for the diagnosis become enormous. Also, power cables connected to facilities such as GIS cannot be easily disconnected and cannot diagnose water tree degradation.

特許文献1には、診断対象の電力ケーブルの絶縁体の誘電損を測定し、測定された誘電損と正常な電力ケーブルの絶縁体の誘電損とを比較して電力ケーブルの劣化を診断する手法が開示されている。具体的には、特許文献1では、診断対象の電力ケーブルの絶縁体の誘電損を測定する際に、交流電圧を信号源とし、診断対象の電力ケーブルに流れる電流を測定信号として検出し、交流電圧に対して90°位相が遅れた逆加算信号を発生させて測定信号に加算し、交流電圧を参照信号とした特定周波数成分抽出手段に入力して、特定周波数成分抽出手段の出力が最小になるように逆加算信号の大きさを調整して、その出力の大きさから誘電損を算出している。   Japanese Patent Application Laid-Open No. 2004-228561 measures a dielectric loss of an insulator of a power cable to be diagnosed and compares the measured dielectric loss with a dielectric loss of an insulator of a normal power cable to diagnose the deterioration of the power cable. Is disclosed. Specifically, in Patent Document 1, when measuring the dielectric loss of an insulator of a power cable to be diagnosed, an AC voltage is used as a signal source, and a current flowing through the power cable to be diagnosed is detected as a measurement signal. A reverse addition signal that is 90 ° out of phase with respect to the voltage is generated and added to the measurement signal, and the AC voltage is input to the specific frequency component extraction means using the reference signal, and the output of the specific frequency component extraction means is minimized. The magnitude of the inverse addition signal is adjusted so that the dielectric loss is calculated from the magnitude of the output.

特許文献2には、少なくとも2種類の電圧値の交流電圧を電力ケーブルに印加し、交流電圧及び交流電圧を電力ケーブルに印加したときに得られる損失電流に含まれる高調波成分の交流電圧基本波成分に対する重畳位相を測定し、少なくとも2種類の交流電圧を印加したときの損失電流に含まれる高調波成分の重畳位相の変化の程度を用いて、電力ケーブルの劣化を診断する手法が提案されている。   In Patent Document 2, an AC voltage fundamental wave of a harmonic component contained in a loss current obtained by applying an AC voltage of at least two kinds of voltage values to a power cable and applying the AC voltage and the AC voltage to the power cable. A method for diagnosing power cable degradation using the degree of change in the superimposed phase of harmonic components included in the loss current when at least two types of AC voltages are applied is measured. Yes.

特許第2535292号公報Japanese Patent No. 2535292 特開平11−6854号公報Japanese Patent Laid-Open No. 11-6854

特許文献1の手法では、診断対象の電力ケーブルに検出用抵抗を接続し、この検出用抵抗に流れる電流を測定信号として用いている。そのため、診断対象の電力ケーブルに検出用抵抗を接続する際には、電力ケーブルをオフラインとしなければならない。また、特許文献1の手法では、診断対象の電力ケーブルに与えられる交流電圧を参照電圧として特定周波数成分抽出手段に入力している。しかしながら、オンラインの電力ケーブルには、数千ボルトという高電圧が負荷されているため、オンラインの状態の交流電圧を、参照電圧としてそのまま用いることができない。そのため、特許文献1の手法では、診断時にも、電力ケーブルをオフラインとして、診断用の小さな交流電圧を参照電圧として用いる必要があり、電力ケーブルのオンライン診断を行うことができない。   In the method of Patent Document 1, a detection resistor is connected to a power cable to be diagnosed, and a current flowing through the detection resistor is used as a measurement signal. Therefore, when connecting the detection resistor to the power cable to be diagnosed, the power cable must be off-line. In the method disclosed in Patent Document 1, an AC voltage applied to a power cable to be diagnosed is input to a specific frequency component extracting unit as a reference voltage. However, since an online power cable is loaded with a high voltage of several thousand volts, an online AC voltage cannot be used as a reference voltage as it is. Therefore, in the method of Patent Document 1, it is necessary to take the power cable off-line and use a small AC voltage for diagnosis as a reference voltage at the time of diagnosis, and it is impossible to perform online diagnosis of the power cable.

特許文献2の手法は、電力ケーブルに少なくとも2種類以上の交流電圧を印加しなければならず、一定電圧が印加されている電力ケーブルのオンライン劣化診断には適用することができない。また、特許文献2の手法では、試料(電力ケーブルの絶縁体)と標準コンデンサに交流電圧を印加し、ブリッジ回路により、試料に流れる電流から電源電圧位相より90°進んだ成分を除去し、損失電流を検出している。しかしながら、ブリッジ回路では、電流値が大きく異なる電源電圧位相より90°進んだ成分と損失電流とを精度よく分離することができない。   The method of Patent Document 2 must apply at least two or more types of AC voltages to the power cable, and cannot be applied to online deterioration diagnosis of a power cable to which a constant voltage is applied. In the method of Patent Document 2, an AC voltage is applied to a sample (insulator of a power cable) and a standard capacitor, and a component advanced by 90 ° from the power supply voltage phase is removed from the current flowing through the sample by a bridge circuit. Current is detected. However, in the bridge circuit, it is not possible to accurately separate the component and the loss current that are advanced by 90 ° from the power supply voltage phase having greatly different current values.

本発明は、このような問題に対してなされたものであり、精度よく電力ケーブルのオンライン劣化診断が可能な電力ケーブルのオンライン劣化診断装置及び電力ケーブルのオンライン劣化診断方法を提供することを目的とする。   The present invention has been made for such a problem, and an object of the present invention is to provide an on-line deterioration diagnosis device for an electric power cable and an on-line deterioration diagnosis method for an electric power cable that can accurately diagnose on-line deterioration of an electric power cable. To do.

本発明は、上記のような目的を達成するために、以下のような特徴を有している。
[1]電力ケーブルの遮蔽導体の接地線に流れる漏れ電流Ieを検出する電流検出手段と、
基準信号を発生させる基準信号発生手段と、
基準信号の位相θを調整する位相調整手段と、
基準信号発生手段によって発生された基準信号と、電流検出手段で検出された漏れ電流Ieとを入力し、漏れ電流Ieのうち基準信号と同一の周波数成分の絶対値|I|を出力する特定周波数成分抽出手段と、
を有する電力ケーブルのオンライン劣化診断装置。
[2]充電電流Icと損失電流Irからなる漏れ電流Ieから、損失電流Irを抽出する制御装置を備えた[1]に記載の電力ケーブルのオンライン劣化診断装置。
[3]制御装置は、
基準信号発生手段を用いて、基準信号の周波数を、電力ケーブルに流れる電流の基本波成分と同一周波数に設定すると共に、位相調整手段を用いて、基準信号の位相θを、特定周波数成分抽出手段から出力される絶対値|I|が最大|Ic|となる位相θcに調整し、
基準信号の位相θを、位相θcから90°遅れた位相θrに調整し、このときの特定周波数成分抽出手段から出力される絶対値|Ir|に基づいて電力ケーブルの劣化診断を行う[2]に記載の電力ケーブルのオンライン劣化診断装置。
[4]制御装置は、|Ir|と|Ic|の関係に基づいて電力ケーブルの劣化診断を行う[3]に記載の電力ケーブルのオンライン劣化診断装置。
[5]電流検出手段は、着脱式貫通型の計測用交流器である[1]乃至[4]のうちいずれかに記載の電力ケーブルのオンライン劣化診断装置。
[6]電力ケーブルの遮蔽導体の接地線に流れる漏れ電流Ieを検出し、
基準信号と、検出された漏れ電流Ieとを入力し、漏れ電流Ieのうち基準信号と同一の周波数成分の電流の絶対値|I|を出力する特定周波数成分抽出手段から出力される絶対値|I|が最大|Ic|となるように、基準信号の位相θを位相θcに調整し、
基準信号の位相θを、位相θcから90°遅れた位相θrに調整し、このときの特定周波数成分抽出手段から出力される絶対値|Ir|に基づいて電力ケーブルの劣化診断を行う電力ケーブルのオンライン劣化診断方法。
[7]|Ir|と|Ic|の関係に基づいて電力ケーブルの劣化診断を行う[6]に記載の電力ケーブルのオンライン劣化診断方法。
In order to achieve the above object, the present invention has the following features.
[1] current detection means for detecting a leakage current Ie flowing through the ground line of the shield conductor of the power cable;
A reference signal generating means for generating a reference signal;
Phase adjusting means for adjusting the phase θ of the reference signal;
The reference frequency generated by the reference signal generation means and the leakage current Ie detected by the current detection means are input, and the specific frequency that outputs the absolute value | I | of the same frequency component as the reference signal in the leakage current Ie Component extraction means;
An on-line degradation diagnosis device for power cables having
[2] The on-line deterioration diagnosis device for a power cable according to [1], including a control device that extracts a loss current Ir from a leakage current Ie including a charging current Ic and a loss current Ir.
[3] The control device
The reference signal generating means is used to set the frequency of the reference signal to the same frequency as the fundamental wave component of the current flowing in the power cable, and the phase adjusting means is used to extract the phase θ of the reference signal from the specific frequency component extracting means. Is adjusted to a phase θc at which the absolute value | I |
The phase θ of the reference signal is adjusted to a phase θr delayed by 90 ° from the phase θc, and the deterioration diagnosis of the power cable is performed based on the absolute value | Ir | output from the specific frequency component extraction means at this time [2] The online degradation diagnosis device for power cables as described in 1.
[4] The power cable online deterioration diagnosis device according to [3], wherein the control device performs power cable deterioration diagnosis based on a relationship between | Ir | and | Ic |.
[5] The on-line deterioration diagnosis device for a power cable according to any one of [1] to [4], wherein the current detection means is a detachable through-type measuring AC device.
[6] Detect the leakage current Ie flowing through the ground line of the shield conductor of the power cable,
The reference signal and the detected leakage current Ie are input, and the absolute value output from the specific frequency component extraction means that outputs the absolute value | I | of the current component of the same frequency component as the reference signal in the leakage current Ie. The phase θ of the reference signal is adjusted to the phase θc so that I | becomes maximum | Ic |
The phase θ of the reference signal is adjusted to the phase θr delayed by 90 ° from the phase θc, and the power cable is diagnosed for deterioration based on the absolute value | Ir | output from the specific frequency component extraction means at this time. Online degradation diagnosis method.
[7] The power cable online deterioration diagnosis method according to [6], wherein the power cable deterioration diagnosis is performed based on a relationship between | Ir | and | Ic |.

本発明に係る電力ケーブルの劣化診断装置及び電力ケーブルの劣化診断方法によれば、診断対象の電力ケーブルをオンラインの状態としたまま、水トリーによる絶縁劣化を精度よく診断することができる。   According to the power cable deterioration diagnosis device and the power cable deterioration diagnosis method according to the present invention, it is possible to accurately diagnose insulation deterioration due to a water tree while the power cable to be diagnosed is in an online state.

診断対象となる電力ケーブルの構成を示す図である。It is a figure which shows the structure of the power cable used as a diagnostic object. 水トリー劣化が発生するメカニズムを示す図である。It is a figure which shows the mechanism in which water tree degradation generate | occur | produces. 本発明の実施の形態に係る電力ケーブルのオンライン劣化診断装置の構成を示す図である。It is a figure which shows the structure of the online degradation diagnosis apparatus of the power cable which concerns on embodiment of this invention.

以下、添付した図面を参照し、本発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

はじめに、本発明の原理について説明する。   First, the principle of the present invention will be described.

図1は、診断対象の電力ケーブルの構成を示す図である。導体1の外周には、順に、絶縁体2、遮蔽導体3、被覆材4が設けられている。絶縁体2は、架橋ポリエチレンにより構成されている。絶縁体2には、水トリーによる劣化が発生する。遮蔽導体3は、接地されている。この接地線に流れる電流を、漏れ電流Ieとする。このように構成された電力ケーブルの導体1には、例えば、数千ボルトといった高電圧が負荷される。   FIG. 1 is a diagram illustrating a configuration of a power cable to be diagnosed. On the outer periphery of the conductor 1, an insulator 2, a shielding conductor 3, and a covering material 4 are provided in this order. The insulator 2 is made of cross-linked polyethylene. The insulator 2 is deteriorated by a water tree. The shield conductor 3 is grounded. The current flowing through the ground line is referred to as a leakage current Ie. A high voltage such as several thousand volts is loaded on the conductor 1 of the power cable configured as described above.

図2は、水トリー劣化が発生するメカニズムを示す図である。電力ケーブルが地下に埋設されるなど、周囲に水分のある環境に布設されると、絶縁体2に水が浸透する。絶縁体2に水が浸透すると、絶縁体2に数μm程度の空洞5が発生する。   FIG. 2 is a diagram illustrating a mechanism in which water tree deterioration occurs. If the power cable is laid in an underground environment such as underground, water penetrates into the insulator 2. When water penetrates into the insulator 2, a cavity 5 of about several μm is generated in the insulator 2.

空洞5は、時間の経過とともに樹枝状に成長する。この樹枝状の空洞は、水トリー6と呼ばれる。この劣化が進むと、例えば使用開始後約30年で絶縁破壊に至る。   The cavity 5 grows in a dendritic shape over time. This dendritic cavity is called a water tree 6. As this deterioration progresses, for example, dielectric breakdown occurs approximately 30 years after the start of use.

本発明では、このように発生する水トリーによる劣化の程度を、電力ケーブルに高電圧を負荷したままオンラインで診断することができる、電力ケーブルのオンライン劣化診断装置及びオンライン劣化診断方法を提案する。   The present invention proposes an on-line deterioration diagnosis device and an on-line deterioration diagnosis method for a power cable that can diagnose the degree of deterioration caused by a water tree in this manner online with a high voltage applied to the power cable.

遮蔽導体3に流れる漏れ電流Ieは、静電容量成分から漏れた電流Ic(以下、充電電流Ic)と抵抗成分から漏れた電流Ir(以下、損失電流Ir)の合成電流として表すことができる。充電電流Icは、導体1の電圧に対して90°位相が進んで流れ、損失電流Irは、導体1の電圧と同位相で流れる。   The leakage current Ie flowing through the shielding conductor 3 can be expressed as a combined current of a current Ic leaked from the capacitance component (hereinafter, charging current Ic) and a current Ir leaked from the resistance component (hereinafter referred to as loss current Ir). The charging current Ic flows with a 90 ° phase advance with respect to the voltage of the conductor 1, and the loss current Ir flows with the same phase as the voltage of the conductor 1.

Ie=Ic+Ir
導体1と遮蔽導体3との間には、絶縁体2が挟まれており、導体1、遮蔽導体3及び絶縁体2によって、一種のコンデンサが形成されていると考えることができる。導体1の電圧によって、このコンデンサを介して充電電流Icが流れる。そのため、漏れ電流Ieの主な成分は充電電流Icである。
Ie = Ic + Ir
It can be considered that the insulator 2 is sandwiched between the conductor 1 and the shield conductor 3, and a kind of capacitor is formed by the conductor 1, the shield conductor 3, and the insulator 2. The charging current Ic flows through this capacitor due to the voltage of the conductor 1. Therefore, the main component of the leakage current Ie is the charging current Ic.

電力ケーブルの絶縁体2が水トリーにより劣化すると、損失電流Irが大きくなることが知られている。この損失電流Irは、非線形性を有している。そのため、接地線に流れる漏れ電流Ieから、損失電流Irの成分を抽出することで、電力ケーブルの劣化診断を行うことができる。しかしながら、損失電流Irの大きさは、充電電流Icの100分の1以下であり、漏れ電流Ieから、損失電流Irを精度よく抽出しなければならない。   It is known that the loss current Ir increases when the insulator 2 of the power cable is deteriorated by the water tree. This loss current Ir has non-linearity. Therefore, it is possible to diagnose the deterioration of the power cable by extracting the component of the loss current Ir from the leakage current Ie flowing through the ground line. However, the magnitude of the loss current Ir is 1/100 or less of the charging current Ic, and the loss current Ir must be accurately extracted from the leakage current Ie.

本発明に係る実施の形態では、以下のような装置を用いて、漏れ電流Ieから、主な成分である充電電流Icを取り除き、微小な損失電流Irを抽出している。   In the embodiment according to the present invention, a charging current Ic, which is a main component, is removed from the leakage current Ie and a minute loss current Ir is extracted using the following apparatus.

図3は、本発明の実施の形態に係る電力ケーブルのオンライン劣化診断装置の構成を示す図である。   FIG. 3 is a diagram showing a configuration of the power cable online deterioration diagnosis device according to the embodiment of the present invention.

電力ケーブルのオンライン劣化診断装置は、電流検出手段11、特定周波数成分抽出手段12、基準信号発生手段13、位相調整手段14を備えている。なお、図3では、電力ケーブルを構成する導体1を実線で、遮蔽導体3を点線で示している。   The power cable online deterioration diagnosis apparatus includes a current detection unit 11, a specific frequency component extraction unit 12, a reference signal generation unit 13, and a phase adjustment unit 14. In FIG. 3, the conductor 1 constituting the power cable is indicated by a solid line, and the shielding conductor 3 is indicated by a dotted line.

電流検出手段11は、診断対象となる電力ケーブルの接地線に取り付けられ、漏れ電流Ieを検出する。電流検出手段11は、着脱式貫通型の交流用変流器を使用することができる。   The current detection means 11 is attached to the ground line of the power cable to be diagnosed and detects the leakage current Ie. As the current detection means 11, a detachable through-type AC current transformer can be used.

特定周波数成分抽出手段12は、電流検出手段11によって検出された漏れ電流Ieと、基準信号発生手段13から基準信号を入力する。特定周波数成分抽出手段12は、入力した漏れ電流Ieに含まれる、基準信号の周波数と同一周波数成分の電流の絶対値|I|を出力する。特定周波数成分抽出手段12としては、ロックインアンプを用いることができる。   The specific frequency component extraction unit 12 receives the leakage current Ie detected by the current detection unit 11 and the reference signal from the reference signal generation unit 13. The specific frequency component extraction unit 12 outputs the absolute value | I | of the current having the same frequency component as the frequency of the reference signal included in the input leakage current Ie. As the specific frequency component extraction means 12, a lock-in amplifier can be used.

基準信号発生手段13は、任意の周波数の基準信号を発生させる。基準信号発生手段13には、位相調整手段14が接続されている。位相調整手段14は、基準信号の位相θを調整する。   The reference signal generator 13 generates a reference signal having an arbitrary frequency. A phase adjustment unit 14 is connected to the reference signal generation unit 13. The phase adjusting unit 14 adjusts the phase θ of the reference signal.

次に、このように構成された装置を用いた電力ケーブルのオンライン劣化診断方法について説明する。   Next, an on-line degradation diagnosis method for power cables using the apparatus configured as described above will be described.

診断対象となる電力ケーブルの接地線に電流検出手段11を取り付け、図3の装置を電力ケーブルにセットする。   The current detection means 11 is attached to the ground line of the power cable to be diagnosed, and the apparatus shown in FIG. 3 is set on the power cable.

基準信号発生手段13により、出力する基準信号の周波数を、診断対象の電力ケーブルが接続されている電力系統の周波数と同じ周波数に設定する(ステップ1)。例えば、診断対象の電力ケーブルが接続されている電力系統の周波数が60Hzであれば、基準信号の周波数を60Hzに調整する。   The reference signal generator 13 sets the frequency of the reference signal to be output to the same frequency as that of the power system to which the power cable to be diagnosed is connected (step 1). For example, if the frequency of the power system to which the power cable to be diagnosed is connected is 60 Hz, the frequency of the reference signal is adjusted to 60 Hz.

これにより、特定周波数成分抽出手段12からは、漏れ電流Ieに含まれる、電力ケーブルの基本波成分の周波数と同一の周波数成分の電流の絶対値|I|が出力される。   As a result, the specific frequency component extraction unit 12 outputs the absolute value | I | of the current having the same frequency component as the frequency of the fundamental component of the power cable, which is included in the leakage current Ie.

この状態で、特定周波数成分抽出手段12から出力される絶対値|I|が、最大になるように位相調整手段14の位相θを調整する。上述のように、漏れ電流Ieの主な成分は、充電電流Icであるため、絶対値|I|が最大となるように位相θを調整することで、充電電流Icの位相と、特定周波数成分抽出手段12から出力される信号の位相を一致させる(ステップ2)。位相を調整した後の、特定周波数成分抽出手段12から出力される周波数成分の絶対値|I|と、そのときの位相調整手段14の位相θを、絶対値|Ic|、位相θcとする。   In this state, the phase θ of the phase adjusting unit 14 is adjusted so that the absolute value | I | output from the specific frequency component extracting unit 12 becomes maximum. Since the main component of the leakage current Ie is the charging current Ic as described above, the phase of the charging current Ic and the specific frequency component are adjusted by adjusting the phase θ so that the absolute value | I | The phase of the signal output from the extracting means 12 is matched (step 2). The absolute value | I | of the frequency component output from the specific frequency component extraction unit 12 after the phase adjustment and the phase θ of the phase adjustment unit 14 at that time are defined as an absolute value | Ic | and a phase θc.

位相調整手段14を操作し、位相θcから90°遅れた位相に、基準信号の位相θを調整する(ステップ3)。このときに特定周波数成分抽出手段12から出力される絶対値|I|と、そのときの位相調整手段14の位相θを、絶対値|Ir|と位相θrとする。この絶対値|Ir|と位相θrは、損失電流Irに相当する。そして、絶対値|Ir|に基づいて、電力ケーブルの劣化診断を行う(ステップ4)。   The phase adjusting means 14 is operated to adjust the phase θ of the reference signal to a phase delayed by 90 ° from the phase θc (step 3). At this time, the absolute value | I | output from the specific frequency component extracting unit 12 and the phase θ of the phase adjusting unit 14 at that time are defined as an absolute value | Ir | and a phase θr. The absolute value | Ir | and the phase θr correspond to the loss current Ir. Then, based on the absolute value | Ir |, the deterioration diagnosis of the power cable is performed (step 4).

例えば、ステップ4においては、|Ir|/|Ic|を算出する。そして、|Ir|/|Ic|を予め設定したしきい値と比較し、|Ir|/|Ic|がこのしきい値よりも大きい場合には、診断対象の電力ケーブルの絶縁体2に、水トリーによる劣化が生じていると判断する。   For example, in step 4, | Ir | / | Ic | is calculated. Then, | Ir | / | Ic | is compared with a preset threshold value. If | Ir | / | Ic | is larger than this threshold value, the insulator 2 of the power cable to be diagnosed Judge that water tree has deteriorated.

具体的には、IEEE Std 400−2001によると|Ir|/|Ic|が0.4%以上で要注意、1.0%で水トリーによる異常が発生していると判断することができるとされている。   Specifically, according to IEEE Std 400-2001, when | Ir | / | Ic | is 0.4% or more, it is necessary to be careful, and when 1.0%, it can be determined that an abnormality due to a water tree has occurred. Has been.

このような電力ケーブルの計測及び判断を3相のケーブルそれぞれに対して実施し、電力ケーブルの診断を行う。   Such measurement and determination of the power cable are performed for each of the three-phase cables to diagnose the power cable.

なお、上記の説明では、算出した|Ir|/|Ic|に基づいて水トリーによる劣化を判断したが、診断にあたっては、|Ic|を用いなくてもよい。例えば、絶対値|Ir|と電力ケーブルに流れる電流値によって定めたしきい値とを比較して水トリーによる劣化を判断してもよい。また、診断にあたって|Ic|を用いる場合であっても、|Ir|と|Ic|との関係に基づいていれば、どのような値を用いて電力ケーブルの診断を行ってもよい。   In the above description, the deterioration due to the water tree is determined based on the calculated | Ir | / | Ic |. However, | Ic | may not be used for diagnosis. For example, the deterioration due to the water tree may be determined by comparing the absolute value | Ir | with a threshold value determined by the current value flowing through the power cable. Even when | Ic | is used for diagnosis, the power cable may be diagnosed using any value as long as it is based on the relationship between | Ir | and | Ic |.

このように、本実施の形態では、特定周波数成分抽出手段12を用いることで、漏れ電流Ieのうち充電電流Icを精度よく抽出し、その結果、損失電流Irを精度よく検出することができる。そのため、電力ケーブルがオンラインの状態において損失電流Irに重畳するノイズ(充電電流Ic)の影響を、精度よく除去することができる。   As described above, in the present embodiment, by using the specific frequency component extracting unit 12, the charging current Ic is accurately extracted from the leakage current Ie, and as a result, the loss current Ir can be detected with high accuracy. Therefore, the influence of noise (charging current Ic) superimposed on the loss current Ir when the power cable is online can be accurately removed.

また、漏れ電流Ieのうち、最も大きな電流成分である充電電流Icを基準として、その充電電流Icに対して90°位相が遅れて流れる損失電流Irを計測するため、電力ケーブルの導体1に流れる電圧信号を計測することなく、接地線に流れる漏れ電流Ieを計測するだけで、電力ケーブルの劣化診断を行うことができる。そのため、電力ケーブルを停電させる必要がなく、オンラインとした状態で電力ケーブルの診断を行うことができる。   In addition, the leakage current Ir that flows with a 90 ° phase delay with respect to the charging current Ic is measured with reference to the charging current Ic that is the largest current component of the leakage current Ie, and therefore flows in the conductor 1 of the power cable. Without measuring the voltage signal, the deterioration diagnosis of the power cable can be performed only by measuring the leakage current Ie flowing through the ground line. Therefore, there is no need to power out the power cable, and the power cable can be diagnosed in an online state.

また、本実施の形態では、電流検出手段11として着脱式貫通型の計測用変流器を用いることにより、回路を開放することなく、安全に診断を行うことができる。   Further, in the present embodiment, by using a detachable through-type measuring current transformer as the current detection means 11, diagnosis can be performed safely without opening the circuit.

なお、ステップ1〜ステップ4の処理は、人為的に行うように構成してもよく、オンライン劣化診断装置にコンピュータ(制御装置)を設け、ステップ1〜ステップ5のうちの任意の処理をコンピュータにより自動的に行うように構成してもよい。   In addition, you may comprise so that the process of step 1-step 4 may be performed artificially, a computer (control apparatus) is provided in an online degradation diagnosis apparatus, and arbitrary processes of step 1-step 5 are performed by a computer. You may comprise so that it may carry out automatically.

また、上記の説明では、電力ケーブルのオンライン劣化診断装置及び劣化診断方法として説明したが、電力ケーブルのオンライン劣化診断方法をコンピュータにより実行させるプログラムとして構成してもよい。   In the above description, the power cable online deterioration diagnosis device and the deterioration diagnosis method have been described. However, the power cable online deterioration diagnosis method may be configured as a program that is executed by a computer.

1 導体
2 絶縁体
3 遮蔽導体
4 被覆材
5 空洞
6 水トリー
11 電流検出手段
12 特定周波数成分抽出手段
13 基準信号発生手段
14 位相調整手段
DESCRIPTION OF SYMBOLS 1 Conductor 2 Insulator 3 Shielding conductor 4 Cover material 5 Cavity 6 Water tree 11 Current detection means 12 Specific frequency component extraction means 13 Reference signal generation means 14 Phase adjustment means

Claims (7)

電力ケーブルの遮蔽導体の接地線に流れる漏れ電流Ieを検出する電流検出手段と、
基準信号を発生させる基準信号発生手段と、
基準信号の位相θを調整する位相調整手段と、
基準信号発生手段によって発生された基準信号と、電流検出手段で検出された漏れ電流Ieとを入力し、漏れ電流Ieのうち基準信号と同一の周波数成分の電流の絶対値|I|を出力する特定周波数成分抽出手段と、
を有する電力ケーブルのオンライン劣化診断装置。
Current detection means for detecting a leakage current Ie flowing in the ground line of the shield conductor of the power cable;
A reference signal generating means for generating a reference signal;
Phase adjusting means for adjusting the phase θ of the reference signal;
The reference signal generated by the reference signal generation means and the leakage current Ie detected by the current detection means are input, and the absolute value | I | of the current having the same frequency component as the reference signal is output from the leakage current Ie. Specific frequency component extraction means;
An on-line degradation diagnosis device for power cables having
充電電流Icと損失電流Irからなる漏れ電流Ieから、損失電流Irを抽出する制御装置を備えた請求項1に記載の電力ケーブルのオンライン劣化診断装置。   The on-line deterioration diagnosis device for a power cable according to claim 1, further comprising a control device that extracts a loss current Ir from a leakage current Ie composed of a charging current Ic and a loss current Ir. 制御装置は、
基準信号発生手段を用いて、基準信号の周波数を、電力ケーブルに流れる電流の基本波成分と同一周波数に設定すると共に、位相調整手段を用いて、基準信号の位相θを、特定周波数成分抽出手段から出力される絶対値|I|が最大|Ic|となる位相θcに調整し、
基準信号の位相θを、位相θcから90°遅れた位相θrに調整し、このときの特定周波数成分抽出手段から出力される絶対値|Ir|に基づいて電力ケーブルの劣化診断を行う請求項2に記載の電力ケーブルのオンライン劣化診断装置。
The control device
The reference signal generating means is used to set the frequency of the reference signal to the same frequency as the fundamental wave component of the current flowing in the power cable, and the phase adjusting means is used to extract the phase θ of the reference signal from the specific frequency component extracting means. Is adjusted to a phase θc at which the absolute value | I |
The phase θ of the reference signal is adjusted to a phase θr delayed by 90 ° from the phase θc, and the deterioration diagnosis of the power cable is performed based on the absolute value | Ir | output from the specific frequency component extracting means at this time. The online degradation diagnosis device for power cables as described in 1.
制御装置は、|Ir|と|Ic|の関係に基づいて電力ケーブルの劣化診断を行う請求項3に記載の電力ケーブルのオンライン劣化診断装置。   4. The on-line deterioration diagnosis device for a power cable according to claim 3, wherein the control device performs deterioration diagnosis of the power cable based on a relationship between | Ir | and | Ic |. 電流検出手段は、着脱式貫通型の計測用交流器である請求項1乃至4のうちいずれかに記載の電力ケーブルのオンライン劣化診断装置。   The on-line degradation diagnosis device for a power cable according to any one of claims 1 to 4, wherein the current detection means is a detachable through-type measuring AC device. 電力ケーブルの遮蔽導体の接地線に流れる漏れ電流Ieを検出し、
基準信号と、検出された漏れ電流Ieとを入力し、漏れ電流Ieのうち基準信号と同一の周波数成分の電流の絶対値|I|を出力する特定周波数成分抽出手段から出力される絶対値|I|が最大|Ic|となるように、基準信号の位相θを位相θcに調整し、
基準信号の位相θを、位相θcから90°遅れた位相θrに調整し、このときの特定周波数成分抽出手段から出力される絶対値|Ir|に基づいて電力ケーブルの劣化診断を行う電力ケーブルのオンライン劣化診断方法。
Detect the leakage current Ie flowing through the grounding wire of the shield conductor of the power cable
The reference signal and the detected leakage current Ie are input, and the absolute value output from the specific frequency component extraction means that outputs the absolute value | I | of the current component of the same frequency component as the reference signal in the leakage current Ie. The phase θ of the reference signal is adjusted to the phase θc so that I | becomes maximum | Ic |
The phase θ of the reference signal is adjusted to the phase θr delayed by 90 ° from the phase θc, and the power cable is diagnosed for deterioration based on the absolute value | Ir | output from the specific frequency component extraction means at this time. Online degradation diagnosis method.
|Ir|と|Ic|の関係に基づいて電力ケーブルの劣化診断を行う請求項6に記載の電力ケーブルのオンライン劣化診断方法。   The power cable online deterioration diagnosis method according to claim 6, wherein the power cable deterioration diagnosis is performed based on a relationship between | Ir | and | Ic |.
JP2014063468A 2014-03-26 2014-03-26 On-line degradation diagnosis device for power cable and on-line degradation diagnosis method for power cable Active JP6248740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014063468A JP6248740B2 (en) 2014-03-26 2014-03-26 On-line degradation diagnosis device for power cable and on-line degradation diagnosis method for power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014063468A JP6248740B2 (en) 2014-03-26 2014-03-26 On-line degradation diagnosis device for power cable and on-line degradation diagnosis method for power cable

Publications (2)

Publication Number Publication Date
JP2015184250A true JP2015184250A (en) 2015-10-22
JP6248740B2 JP6248740B2 (en) 2017-12-20

Family

ID=54350922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014063468A Active JP6248740B2 (en) 2014-03-26 2014-03-26 On-line degradation diagnosis device for power cable and on-line degradation diagnosis method for power cable

Country Status (1)

Country Link
JP (1) JP6248740B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105300829A (en) * 2015-11-24 2016-02-03 国网江西省电力科学研究院 Rapid detection method of insulation quality performance of crosslinked polyethylene cable
CN107506511A (en) * 2017-06-21 2017-12-22 太原理工大学 Mining XLPE cable leakage current dynamic analysing method based on finite element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108761298B (en) * 2018-09-05 2020-08-11 国网河北省电力有限公司电力科学研究院 Insulation detection test method for distribution cable

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129173A (en) * 1974-09-04 1976-03-12 Mitsubishi Electric Corp ROEIDENRYUKENSHUTSUSOCHI
JPS5735767A (en) * 1980-08-13 1982-02-26 Toshiba Corp Leakage current detector for arrester
JPH01118377U (en) * 1988-01-29 1989-08-10
JPH01257279A (en) * 1988-04-06 1989-10-13 Tohoku Electric Power Co Inc Cable diagnosing apparatus
JPH02122284A (en) * 1988-11-01 1990-05-09 Sumitomo Metal Ind Ltd Diagnostic device for deterioration of cable
JPH05256894A (en) * 1992-03-03 1993-10-08 Mitsubishi Cable Ind Ltd Method for diagnosing insulation deterioration of power cable
JPH06331665A (en) * 1993-05-18 1994-12-02 Mitsubishi Denki Bill Techno Service Kk Diagnostic monitoring system for insulation of power cable

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129173A (en) * 1974-09-04 1976-03-12 Mitsubishi Electric Corp ROEIDENRYUKENSHUTSUSOCHI
JPS5735767A (en) * 1980-08-13 1982-02-26 Toshiba Corp Leakage current detector for arrester
JPH01118377U (en) * 1988-01-29 1989-08-10
JPH01257279A (en) * 1988-04-06 1989-10-13 Tohoku Electric Power Co Inc Cable diagnosing apparatus
JPH02122284A (en) * 1988-11-01 1990-05-09 Sumitomo Metal Ind Ltd Diagnostic device for deterioration of cable
JPH05256894A (en) * 1992-03-03 1993-10-08 Mitsubishi Cable Ind Ltd Method for diagnosing insulation deterioration of power cable
JPH06331665A (en) * 1993-05-18 1994-12-02 Mitsubishi Denki Bill Techno Service Kk Diagnostic monitoring system for insulation of power cable

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105300829A (en) * 2015-11-24 2016-02-03 国网江西省电力科学研究院 Rapid detection method of insulation quality performance of crosslinked polyethylene cable
CN107506511A (en) * 2017-06-21 2017-12-22 太原理工大学 Mining XLPE cable leakage current dynamic analysing method based on finite element
CN107506511B (en) * 2017-06-21 2020-05-08 太原理工大学 Finite element-based dynamic analysis method for leakage current of mine XLPE cable

Also Published As

Publication number Publication date
JP6248740B2 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
JP5349036B2 (en) Insulation diagnostic system
EP2827159B1 (en) Partial discharge measurement system and partial discharge measurement method by repeated impulse voltage
US8963556B2 (en) System and method for detecting excess voltage drop in three-phase AC circuits
JP6296689B2 (en) Uninterruptible insulation deterioration diagnosis method for power cables
US10598718B2 (en) Method and device for insulation fault location having an adaptive test current determination
JP6169711B2 (en) Conductor detection in the cable strip process.
JP6248740B2 (en) On-line degradation diagnosis device for power cable and on-line degradation diagnosis method for power cable
JP2020528153A (en) Non-contact voltage converter
Dao et al. A comparative study of partial discharges under power and very low frequency voltage excitation
JP2011252778A (en) Method for detecting partial discharge of electrical device using magnetic field probe
RU2734164C1 (en) Method of detecting single-phase earth faults in distribution network connections
JP2011242206A (en) Insulation deterioration diagnosis method and insulation deterioration diagnosis device of power cable
JP3869283B2 (en) Method for removing inductive noise in power cable deterioration diagnosis and power cable test apparatus
JP2007271542A (en) Insulation deterioration diagnosis method and insulation deterioration diagnosis device of power cable
JP6322681B2 (en) Measurement method of dielectric loss tangent of power cable
Zhou et al. Fault location for aircraft distribution systems using harmonic impedance estimation
Ramesh et al. Failure studies of polymeric insulating materials using sliding mode observer
Morsalin et al. Diagnostic testing of power cable insulation for reliable smart grid operation
Avinash et al. High frequency tan delta measurement method for 132kv transmission underground cables
AU2021208878B2 (en) Method and device for personal protection during high-voltage testing
JP4469763B2 (en) High voltage power cable insulation diagnosis and monitoring device
JP6626766B2 (en) Measurement method of nth harmonic current
JP2002196030A (en) Method for diagnosing deterioration of power cable
KR101844825B1 (en) Non-destructive safety eqiupment dielectric test apparatus and method
JP2742636B2 (en) Diagnosis method for insulation deterioration of power cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171106

R150 Certificate of patent or registration of utility model

Ref document number: 6248740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250