JP2017228689A - Substrate transfer mode determination method, substrate transfer mode determination program, and component mounter - Google Patents

Substrate transfer mode determination method, substrate transfer mode determination program, and component mounter Download PDF

Info

Publication number
JP2017228689A
JP2017228689A JP2016124596A JP2016124596A JP2017228689A JP 2017228689 A JP2017228689 A JP 2017228689A JP 2016124596 A JP2016124596 A JP 2016124596A JP 2016124596 A JP2016124596 A JP 2016124596A JP 2017228689 A JP2017228689 A JP 2017228689A
Authority
JP
Japan
Prior art keywords
transport
substrate
component mounting
component
mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016124596A
Other languages
Japanese (ja)
Other versions
JP6685186B2 (en
Inventor
順也 松野
Junya Matsuno
順也 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP2016124596A priority Critical patent/JP6685186B2/en
Publication of JP2017228689A publication Critical patent/JP2017228689A/en
Application granted granted Critical
Publication of JP6685186B2 publication Critical patent/JP6685186B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To allow a component to be effectively mounted when mounting the component by using two mounting parts to a substrate held by two transferring prats arranged in parallel.SOLUTION: A component mounter comprises: two transfer parts arranged in parallel that transfer a substrate in a predetermined substrate transfer direction; and two mounting parts that mount a component at predetermined component mounting places of the substrate held by the difference transfer parts. A substrate transfer mode determination method sets an exclusive region in accordance with a boundary part of the different substrate held by the two transfer parts, and determines a transfer mode of the substrate in the component mounter that retires one of the two mounting parts from the exclusive region while the other is entering the exclusive region. On the basis of a position relationship of each component mounting place and the excluding region in the two substrates in which the component will be mounted during an overlapping period in the component mounter, the transfer mode of the two substrates by the two transfer parts is determined.SELECTED DRAWING: Figure 3

Description

この発明は、並列に配列された2個の搬送部のそれぞれが搬送する基板に部品を実装する部品実装技術に関するものである。   The present invention relates to a component mounting technique for mounting a component on a substrate transported by each of two transport units arranged in parallel.

従来、部品供給部が供給する部品を実装ヘッドにより基板に実装する部品実装機が知られている。また、かかる部品実装機では、基板への部品実装を効率的に行うために種々の工夫がなされている。例えばXYテーブルにより所定の実装位置に移動させた基板に部品を実装する特許文献1の部品実装機は、XYテーブルによる駆動距離が短くなるように基板を回転させることで、基板を実装位置へ速やかに移動させる。また、基板搬送方向に直列に配列された複数の部品実装機が基板搬送方向へ順番に搬入される基板に部品を実装する特許文献2の基板製造システムは、基板の回転角度を適宜変更してから基板を各部品実装機に搬入することでスループットの向上を図っている。   2. Description of the Related Art Conventionally, a component mounter that mounts a component supplied by a component supply unit on a substrate using a mounting head is known. Moreover, in such a component mounting machine, various devices are made in order to efficiently mount components on a board. For example, the component mounter of Patent Document 1 that mounts a component on a board that has been moved to a predetermined mounting position by an XY table rotates the board so that the driving distance by the XY table is shortened, thereby quickly moving the board to the mounting position. Move to. In addition, the substrate manufacturing system of Patent Document 2 in which a plurality of component mounting machines arranged in series in the substrate transport direction mount components on a substrate that is sequentially loaded in the substrate transport direction changes the rotation angle of the substrate as appropriate. In order to improve throughput, the board is carried into each component mounting machine.

特開2001−024396号公報JP 2001-024396 A 特開2014−032989号公報JP 2014-032989 A 特開2013−084646号公報JP2013-084646A

ところで、特許文献3の部品実装機では、並列に配列された2個の搬送部(レーン)のそれぞれが基板を搬入・保持し、2個の実装部(実装ヘッド)がこれら搬送部に保持された互いに異なる基板に部品を実装する。特に特許文献3では、2個の実装部の相互干渉を回避するために2個の実装部の同時進入が禁止された排他領域が設定され、一方の実装部が排他領域に進入している間は他方の実装部が排他領域から退避する。このような制御を引き続き行う部品実装機では、基板の搬送態様によっては、他方の実装部が排他領域から退避して部品実装を待機する待機時間が長くなり、部品実装の効率が低下する場合があった。しかしながら、特許文献1〜3では、特にこの点については考慮されていなかった。   By the way, in the component mounting machine of Patent Document 3, each of the two transport units (lanes) arranged in parallel carries in and holds the substrate, and the two mounting units (mounting heads) are held by these transport units. Components are mounted on different boards. In particular, in Patent Document 3, an exclusive area in which simultaneous entry of two mounting parts is prohibited is set in order to avoid mutual interference between two mounting parts, and one mounting part enters the exclusive area. The other mounting unit saves from the exclusive area. In a component mounting machine that continues such control, depending on the board transport mode, the other mounting unit may evacuate from the exclusive area and wait for component mounting, which may reduce component mounting efficiency. there were. However, Patent Documents 1 to 3 do not particularly consider this point.

この発明は上記課題に鑑みなされたものであり、並列に配列された2個の搬送部が保持する基板に2個の実装部を用いて部品実装を行うに際して、部品実装の効率化を図ることを可能とする技術の提供を目的とする。   The present invention has been made in view of the above problems, and is intended to improve the efficiency of component mounting when component mounting is performed using two mounting portions on a board held by two transport units arranged in parallel. The purpose is to provide technology that enables

この発明に係る基板搬送態様決定方法は、それぞれ所定の基板搬送方向に基板を搬送する並列に配置された2個の搬送部と、それぞれ異なる搬送部に保持される基板の所定の部品実装箇所に部品を実装する2個の実装部とを備え、2個の搬送部それぞれが保持する互いに異なる基板の境界部分に対応して排他領域を設定し、2個の実装部のうち一方を排他領域に進入させる間は他方を排他領域から退避させる部品実装機における基板の搬送態様を決定する基板搬送態様決定方法であって、部品実装機で重複した期間に部品を実装予定の2枚の基板それぞれの部品実装箇所と排他領域との位置関係に基づき、部品実装機の2個の搬送部による2枚の基板の搬送態様を決定する。   The substrate transfer mode determination method according to the present invention includes two transfer units arranged in parallel, each transferring a substrate in a predetermined substrate transfer direction, and predetermined component mounting locations on the substrates held by different transfer units. Two mounting parts for mounting components, and setting an exclusive area corresponding to the boundary part of different boards held by the two transport parts, and setting one of the two mounting parts as an exclusive area A board transfer mode determination method for determining a board transfer mode in a component mounter that retracts the other from an exclusive area while entering, wherein each of the two boards that are scheduled to mount components in a period overlapped by the component mounter Based on the positional relationship between the component mounting location and the exclusive area, the transfer mode of the two boards by the two transfer units of the component mounter is determined.

この発明に係る基板搬送態様決定プログラムは、上記の基板搬送態様決定方法をコンピューターに実行させる。   The substrate transport mode determination program according to the present invention causes a computer to execute the above-described substrate transport mode determination method.

この発明に係る部品実装機は、それぞれ所定の基板搬送方向に基板を搬送する並列に配置された2個の搬送部と、互いに異なる搬送部が保持する基板の所定の部品実装箇所に部品を実装する2個の実装部と、2個の搬送部それぞれが保持する互いに異なる基板の境界部分に対応して排他領域を設定し、2個の実装部のうち一方を排他領域に進入させる間は他方を排他領域から退避させる制御部とを備え、制御部は、重複した期間に部品を実装予定の2枚の基板を、上記の基板搬送態様決定方法で決定された搬送態様で2個の搬送部により搬送する。   The component mounter according to the present invention mounts a component on a predetermined component mounting portion of a substrate held by two transport units arranged in parallel, each transporting a substrate in a predetermined substrate transport direction, and a different transport unit. The exclusive area is set corresponding to the boundary part of the two different mounting parts and the different substrates held by the two transport parts, and the other one of the two mounting parts is entered into the exclusive area while the other And a control unit that evacuates the substrate from the exclusive area, and the control unit is configured to transfer the two substrates on which the components are to be mounted in the overlapping period in the transport mode determined by the substrate transport mode determination method. Transport by.

このように構成された本発明(基板搬送態様決定方法、基板搬送態様決定プログラム、部品実装機)では、部品実装機で重複した期間に部品を実装予定の2枚の基板それぞれの部品実装箇所と排他領域との位置関係に基づき、部品実装機の2個の搬送部による2枚の基板の搬送態様を決定する。したがって、部品実装機で搬送・保持される2枚の基板それぞれの部品実装箇所と排他領域との位置関係が適切となるように、2枚の基板の搬送態様を決定することができ、その結果、部品実装の効率化を図ることが可能となっている。   In the present invention configured as described above (board transfer mode determination method, board transfer mode determination program, and component mounter), the component mounting locations of each of the two boards that are scheduled to mount components in the overlapping period in the component mounter Based on the positional relationship with the exclusive area, the transfer mode of the two boards by the two transfer units of the component mounter is determined. Therefore, it is possible to determine the transport mode of the two boards so that the positional relationship between the component mounting location and the exclusive area of each of the two boards transported and held by the component mounter is appropriate. Thus, it is possible to improve the efficiency of component mounting.

また、2枚の基板それぞれの部品実装箇所と排他領域との位置関係に基づき、2枚の基板のそれぞれが搬送部で保持される際の垂直軸回りの角度を決定するように、基板搬送態様決定方法を構成しても良い。かかる構成では、部品実装機で搬送・保持される2枚の基板それぞれの部品実装箇所と排他領域との位置関係が適切となるように、2枚の基板のそれぞれが搬送部で保持される際の角度を決定することができ、その結果、部品実装の効率化を図ることが可能となっている。   Further, based on the positional relationship between the component mounting location and the exclusive area of each of the two boards, the board transport mode is determined so as to determine the angle about the vertical axis when each of the two boards is held by the transport section. A determination method may be configured. In such a configuration, when each of the two substrates is held by the transfer unit so that the positional relationship between the component mounting location and the exclusive area of each of the two substrates transferred and held by the component mounting machine is appropriate. As a result, it is possible to increase the efficiency of component mounting.

また、2枚の基板それぞれの部品実装箇所と排他領域との位置関係に基づき、2個の搬送部のうちから2枚の基板の一方の搬入先と他方の搬入先とを決定するように、基板搬送態様決定方法を構成しても良い。かかる構成では、部品実装機で搬送・保持される2枚の基板それぞれの部品実装箇所と排他領域との位置関係が適切となるように、2枚の基板のそれぞれの搬送先を2個の搬送部のうちから決定することができ、その結果、部品実装の効率化を図ることが可能となっている。   Moreover, based on the positional relationship between the component mounting locations and the exclusive area of each of the two boards, so as to determine one carry-in destination and the other carry-in destination of the two boards from the two transport units, You may comprise the board | substrate conveyance aspect determination method. In such a configuration, two transport destinations of each of the two boards are transported so that the positional relationship between the component mounting location and the exclusive area of each of the two boards transported and held by the component mounting machine is appropriate. As a result, the efficiency of component mounting can be improved.

また、基板搬送方向に直列に配列された複数の部品実装機のそれぞれが、基板搬送方向に搬送される同一の基板の複数の部品実装箇所のうち実装担当箇所への部品実装を分担する部品実装システムにおいて各部品実装機で重複した期間に部品を実装予定の2枚の基板の搬送態様を決定するに際しては、各部品実装機における2枚の基板それぞれの実装担当箇所と排他領域との位置関係に基づき、各部品実装機の2個の搬送部による2枚の基板の搬送態様を決定するように、基板搬送態様決定方法を構成しても良い。これによって、直列に配置された複数の部品実装機を備える部品実装システムにおいて、部品実装機で搬送・保持される2枚の基板それぞれの部品実装箇所と排他領域との位置関係が適切となるように、2枚の基板の搬送態様を決定することができ、その結果、部品実装の効率化を図ることが可能となっている。   In addition, each of a plurality of component mounting machines arranged in series in the board transfer direction shares the component mounting to the mounting charge part among the plurality of parts mounting places on the same board transferred in the board transfer direction. When determining the transport mode of two boards on which components are to be mounted in the system during the overlapping period of each component mounter, the positional relationship between the mounting positions of each of the two boards in each component mounter and the exclusive area Based on the above, the board transfer mode determination method may be configured to determine the mode of transfer of the two boards by the two transfer units of each component mounting machine. As a result, in a component mounting system including a plurality of component mounting machines arranged in series, the positional relationship between the component mounting location and the exclusive area of each of the two boards transported and held by the component mounting machine is appropriate. In addition, it is possible to determine the conveyance mode of the two boards, and as a result, it is possible to improve the efficiency of component mounting.

この際、複数の部品実装機のうちの一の部品実装機において2枚の基板それぞれの実装担当箇所と排他領域との位置関係に基づき2個の搬送部による2枚の基板の搬送態様を決定する処理を各部品実装機について実行することで、2枚の基板の搬送態様を部品実装機毎に決定するように、基板搬送態様決定方法を構成しても良い。   At this time, in one component mounting machine among the plurality of component mounting machines, the transfer mode of the two boards by the two transfer units is determined based on the positional relationship between the mounting positions of the two boards and the exclusive area. By executing the processing to be performed for each component mounter, the substrate transport mode determination method may be configured to determine the transport mode of two substrates for each component mounter.

あるいは、部品実装部における2個の搬送部のうち一方側の搬送部を一方搬送部とし、他方側の搬送部を他方搬送部としたとき、複数の部品実装機それぞれの一方搬送部で構成される第1搬送レーンと、複数の部品実装機それぞれの他方搬送部で構成される第2搬送レーンとの間で基板の入れ換えを行わず、第1搬送レーンおよび第2搬送レーンのそれぞれは搬入された基板の角度を維持するとの条件下で、各部品実装機における2枚の基板それぞれの実装担当箇所と排他領域との位置関係に基づき、各部品実装機の2個の搬送部による2枚の基板の搬送態様を決定するように、基板搬送態様決定方法を構成しても良い。   Alternatively, when one of the two transfer units in the component mounting unit is set as one transfer unit and the other transfer unit is set as the other transfer unit, each of the plurality of component mounting machines includes one transfer unit. The first transfer lane and the second transfer lane are loaded without switching the board between the first transfer lane and the second transfer lane configured by the other transfer unit of each of the plurality of component mounting machines. The two mounting parts of each component mounting machine are used to transfer two sheets based on the positional relationship between the mounting area of each of the two boards in each component mounting machine and the exclusive area under the condition that the angle of the board is maintained. The substrate transport mode determination method may be configured to determine the substrate transport mode.

以上のように、本発明によれば、部品実装機で搬送・保持される2枚の基板それぞれの部品実装箇所と排他領域との位置関係が適切となるように、2枚の基板の搬送態様を決定することができ、その結果、部品実装の効率化を図ることが可能となっている。   As described above, according to the present invention, two boards are transported so that the positional relationship between the component mounting location and the exclusive area of each of the two boards transported and held by the component mounter is appropriate. As a result, it is possible to improve the efficiency of component mounting.

本発明に係る基板搬送態様決定方法の適用対象となる部品実装機を備えた部品実装システムの構成を模式的に示す平面図である。It is a top view which shows typically the structure of the component mounting system provided with the component mounting machine used as the application object of the board | substrate conveyance aspect determination method which concerns on this invention. 図1に示す部品実装システムの主要な電気的構成を示すブロック図である。It is a block diagram which shows the main electrical structures of the component mounting system shown in FIG. 図1の部品実装機に対して実行可能な基板搬送態様の適切化処理の例を示すフローチャートである。It is a flowchart which shows the example of the optimization process of the board | substrate conveyance aspect which can be performed with respect to the component mounting machine of FIG. 複数の搬送態様について求められた予想実装時間をテーブル形式で示す図である。It is a figure which shows the estimated mounting time calculated | required about the some conveyance aspect in a table format. 図3のフローチャートの実行結果の一例を模式的に示す図である。It is a figure which shows typically an example of the execution result of the flowchart of FIG. 本発明に係る基板搬送態様決定方法の適用対象となる部品実装機を備えた部品実装システムの他の例の構成を模式的に示す平面図である。It is a top view which shows typically the structure of the other example of the component mounting system provided with the component mounting machine used as the application object of the board | substrate conveyance mode determination method which concerns on this invention. 本発明に係る基板搬送態様決定方法の適用対象となる部品実装機を備えた部品実装システムの別の例の構成を模式的に示す平面図である。It is a top view which shows typically the structure of another example of the component mounting system provided with the component mounting machine used as the application object of the board | substrate conveyance aspect determination method which concerns on this invention. 図7の部品実装システムが備える部品実装機に対して実行可能な基板搬送態様の適切化処理の例を示すフローチャートである。It is a flowchart which shows the example of the optimization process of the board | substrate conveyance aspect which can be performed with respect to the component mounting machine with which the component mounting system of FIG. 搬送態様調整装置の別の例を模式的に示す図である。It is a figure which shows typically another example of a conveyance aspect adjustment apparatus.

図1は本発明に係る基板搬送態様決定方法の適用対象となる部品実装機を備えた部品実装システムの構成を模式的に示す平面図である。図2は図1に示す部品実装システムの主要な電気的構成を示すブロック図である。なお、図1では、Z方向が鉛直方向であり、X方向およびY方向がそれぞれ水平方向であるXYZ直交座標軸が示されている。両図に示すように、部品実装システム1は、部品実装機10とサーバーコンピューター9とを備える。   FIG. 1 is a plan view schematically showing a configuration of a component mounting system including a component mounter that is an application target of a substrate transport mode determining method according to the present invention. FIG. 2 is a block diagram showing the main electrical configuration of the component mounting system shown in FIG. In FIG. 1, XYZ orthogonal coordinate axes in which the Z direction is the vertical direction and the X direction and the Y direction are horizontal directions are shown. As shown in both drawings, the component mounting system 1 includes a component mounter 10 and a server computer 9.

図1に示すように、部品実装機10は、Y方向の一方側に設けられた第1部品供給部2aと、Y方向の他方側に設けられた第2部品供給部2bとを備える。各部品供給部2a、2bでは、複数のフィーダー21がX方向に並んで取り付けられており、各フィーダー21が先端の部品取出部22に部品Eを供給する。なお、部品Eには、半導体集積回路装置、トランジスタ、コンデンサおよび抵抗などの小型の電子部品が含まれる。   As shown in FIG. 1, the component mounter 10 includes a first component supply unit 2 a provided on one side in the Y direction and a second component supply unit 2 b provided on the other side in the Y direction. In each component supply unit 2a, 2b, a plurality of feeders 21 are attached side by side in the X direction, and each feeder 21 supplies a component E to the component extraction unit 22 at the tip. The component E includes small electronic components such as a semiconductor integrated circuit device, a transistor, a capacitor, and a resistor.

また、部品実装機10は、第1部品供給部2aと第2部品供給部2bとの間で並列に配列された第1搬送部3aと第2搬送部3bとを備える。こうしてY方向に隣り合う第1搬送部3aおよび第2搬送部3bのうち、第1搬送部3aは第1部品供給部2a側に配置され、第2搬送部3bは、第2部品供給部2b側に配置されている。換言すれば、第1部品供給部2aは、Y方向において第1搬送部3aを挟んで第2搬送部3bの逆側に配置され、第2部品供給部2bは、Y方向において第2搬送部3bを挟んで第1搬送部3aの逆側に配置されている。これら搬送部3a、3bのそれぞれは、基板搬送方向であるX方向にこの順で並ぶ第1コンベアユニット31、第2コンベアユニット32および第3コンベアユニット33で構成され、基板Bをほぼ水平に支持しつつX方向へ搬送する。これらコンベアユニット31、32、33のそれぞれは、Y方向に間隔を空けて並ぶ一対のコンベア35、35を有し、コンベア35、35のY方向の間隔が基板BのY方向への幅に応じて変更可能となっている。   The component mounting machine 10 includes a first transport unit 3a and a second transport unit 3b arranged in parallel between the first component supply unit 2a and the second component supply unit 2b. Thus, of the first transport unit 3a and the second transport unit 3b adjacent in the Y direction, the first transport unit 3a is arranged on the first component supply unit 2a side, and the second transport unit 3b is the second component supply unit 2b. Arranged on the side. In other words, the first component supply unit 2a is disposed on the opposite side of the second conveyance unit 3b across the first conveyance unit 3a in the Y direction, and the second component supply unit 2b is the second conveyance unit in the Y direction. Arranged on the opposite side of the first transport unit 3a across 3b. Each of the transfer units 3a and 3b includes a first conveyor unit 31, a second conveyor unit 32, and a third conveyor unit 33 arranged in this order in the X direction, which is the substrate transfer direction, and supports the substrate B substantially horizontally. Then, it is conveyed in the X direction. Each of these conveyor units 31, 32, 33 has a pair of conveyors 35, 35 arranged at intervals in the Y direction, and the intervals in the Y direction of the conveyors 35, 35 correspond to the width of the substrate B in the Y direction. Can be changed.

この第1搬送部3aでは、第1コンベアユニット31がX方向の上流側から基板Bを搬入すると、第2コンベアユニット32がこの基板Bを第1コンベアユニット31から受け取って所定の作業位置(図1における基板B脳位置)に搬入・保持する。また、後述する第1ヘッドユニット4aが作業位置の基板Bへの部品実装を完了すると、第2コンベアユニット32が基板Bを作業位置からX方向の下流側へ搬送し、第3コンベアユニット33がこの基板Bを第2コンベアユニット32から受け取ってX方向の下流側へ搬出する。こうして、第1搬送部3aは、作業位置への基板Bの搬入、作業位置での基板Bの保持、および作業位置からの基板Bの搬出を実行する。同様に第2搬送部3bも、作業位置への基板Bの搬入、作業位置での基板Bの保持、および作業位置からの基板Bの搬出を実行する。   In the first transport unit 3a, when the first conveyor unit 31 carries the substrate B from the upstream side in the X direction, the second conveyor unit 32 receives the substrate B from the first conveyor unit 31 and receives a predetermined work position (see FIG. (B substrate B brain position in 1). Further, when the first head unit 4a described later completes the component mounting on the board B at the work position, the second conveyor unit 32 conveys the board B from the work position to the downstream side in the X direction, and the third conveyor unit 33 The substrate B is received from the second conveyor unit 32 and carried out downstream in the X direction. In this way, the first transport unit 3a carries in the substrate B into the work position, holds the substrate B at the work position, and carries out the substrate B from the work position. Similarly, the second transport unit 3b also carries the substrate B into the work position, holds the substrate B at the work position, and carries out the substrate B from the work position.

さらに、部品実装機10は、第1部品供給部2aに対応して設けられた第1ヘッドユニット4aと、第2部品供給部2bに対応して設けられた第2ヘッドユニット4bとを備える。また、部品実装機10は、第1ヘッドユニット4aおよび第2ヘッドユニット4bを支持するために、それぞれX方向に延設された第1支持部5aおよび第2支持部5bを備える。第1支持部5aおよび第2支持部5bのそれぞれは、X方向に延びるボールネジ51と、ボールネジ51を回転させるX軸モーター52とを有する。そして、第1支持部5aは、X軸モーター52によりボールネジ51を回転させることでボールネジ51のナット511に取り付けられた第1ヘッドユニット4aをX方向へ駆動し、第2支持部5bは、X軸モーター52によりボールネジ51を回転させることでボールネジ51のナット511に取り付けられた第2ヘッドユニット4bをX方向へ駆動する。   Further, the component mounter 10 includes a first head unit 4a provided corresponding to the first component supply unit 2a, and a second head unit 4b provided corresponding to the second component supply unit 2b. In addition, the component mounter 10 includes a first support portion 5a and a second support portion 5b extending in the X direction in order to support the first head unit 4a and the second head unit 4b. Each of the first support portion 5a and the second support portion 5b includes a ball screw 51 extending in the X direction and an X-axis motor 52 that rotates the ball screw 51. The first support portion 5a rotates the ball screw 51 by the X-axis motor 52 to drive the first head unit 4a attached to the nut 511 of the ball screw 51 in the X direction, and the second support portion 5b By rotating the ball screw 51 by the shaft motor 52, the second head unit 4b attached to the nut 511 of the ball screw 51 is driven in the X direction.

また、第1支持部5aおよび第2支持部5bはY軸モーター53(リニアモータ)によってY軸レール54に沿ってY方向に移動可能である。すなわち、第1支持部5aおよび第2支持部5bの両端部には、界磁コイルがリニアモータの可動子として取り付けられている。一方、Y軸レール54では、複数の永久磁石がY方向に沿って配列されてリニアモータの固定子として機能する。そして、第1支持部5aの可動子に電流が供給されると、第1支持部5aが第1ヘッドユニット4aを伴ってY方向に移動し、第2支持部5bの可動子に電流が供給されると、第2支持部5bが第2ヘッドユニット4bを伴ってY方向に移動する。こうして、第1ヘッドユニット4aおよび第2ヘッドユニット4bのそれぞれは、第1搬送部3aおよび第2搬送部3bの上方をXY方向に移動可能である。   The first support portion 5a and the second support portion 5b are movable in the Y direction along the Y-axis rail 54 by a Y-axis motor 53 (linear motor). That is, field coils are attached to both end portions of the first support portion 5a and the second support portion 5b as movers of the linear motor. On the other hand, in the Y-axis rail 54, a plurality of permanent magnets are arranged along the Y direction and function as a stator of the linear motor. When a current is supplied to the mover of the first support portion 5a, the first support portion 5a moves in the Y direction with the first head unit 4a, and a current is supplied to the mover of the second support portion 5b. Then, the second support portion 5b moves in the Y direction with the second head unit 4b. Thus, each of the first head unit 4a and the second head unit 4b can move in the XY directions above the first transport unit 3a and the second transport unit 3b.

第1ヘッドユニット4aおよび第2ヘッドユニット4bのそれぞれは、X方向に並ぶ8本の実装ヘッド41を有する。そして、第1ヘッドユニット4aおよび第2ヘッドユニット4bのうち、第1部品供給部2a側の第1ヘッドユニット4aは第1部品供給部2aが供給する部品Eを吸着して、第1搬送部3aにより作業位置に保持される基板Bに移載する。一方、第2部品供給部2b側の第2ヘッドユニット4bは第2部品供給部2bが供給する部品Eを吸着して、第2搬送部3bにより作業位置に保持される基板Bに移載する。   Each of the first head unit 4a and the second head unit 4b has eight mounting heads 41 arranged in the X direction. Of the first head unit 4a and the second head unit 4b, the first head unit 4a on the first component supply unit 2a side adsorbs the component E supplied by the first component supply unit 2a, and the first transport unit 3a is transferred to the substrate B held at the working position. On the other hand, the second head unit 4b on the second component supply unit 2b side adsorbs the component E supplied by the second component supply unit 2b and transfers it to the substrate B held at the work position by the second transport unit 3b. .

そして、上記の機械的構成を制御するために、部品実装機10は、装置各部を制御する制御部100を備える(図2)。この制御部100は、CPU(Central Processing Unit)やRAM(Random Access Memory)等で構成されたコンピューターである演算処理部110と、実装プログラムPmや各種データを記憶する記憶部120と、各モーターの駆動を制御するモーター制御部130と、外部との通信を行う通信制御部140とを有する。そして、演算処理部110は実装プログラムPmに従ってモーター制御部130に所定の制御動作を実行させることで、第1搬送部3aおよび第2搬送部3bのコンベアユニット31、32、33の駆動を制御したり、第1支持部5aおよび第2支持部5bのモーター52、53の駆動を制御したりする。これによって、制御部100は基板Bの部品実装を実行する。   And in order to control said mechanical structure, the component mounting machine 10 is provided with the control part 100 which controls each part of an apparatus (FIG. 2). The control unit 100 includes an arithmetic processing unit 110 that is a computer composed of a CPU (Central Processing Unit), a RAM (Random Access Memory), and the like, a storage unit 120 that stores a mounting program Pm and various data, and a motor for each motor. It has a motor control unit 130 that controls driving and a communication control unit 140 that communicates with the outside. And the arithmetic processing part 110 controls the drive of the conveyor units 31, 32, and 33 of the 1st conveyance part 3a and the 2nd conveyance part 3b by making the motor control part 130 perform predetermined control operation according to the mounting program Pm. Or driving of the motors 52 and 53 of the first support part 5a and the second support part 5b is controlled. Thereby, the control unit 100 executes component mounting of the board B.

ちなみに、第1搬送部3aが作業位置に保持する基板Bと第2搬送部3bが作業位置に保持する基板BとはY方向に互いに隣接し、第1ヘッドユニット4aおよび第2ヘッドユニット4bはこうして隣接する2枚の基板Bにそれぞれ部品実装を行う。そこで、第1ヘッドユニット4aおよび第2ヘッドユニット4bの相互干渉を防止するため、制御部100は、これらの基板Bの境界部分Bbに対して排他領域Reを設定し、第1ヘッドユニット4aおよび第2ヘッドユニット4bの排他領域Reへの同時進入を禁止する。この排他領域Reは、第1搬送部3aにより保持される基板Bと、第2搬送部3bに保持される基板Bとの境界部分に重複するように設定される。こうして設定された排他領域Reは、第1搬送部3aに保持される基板Bの第2搬送部3b側の端部と、第2搬送部3bに保持される第2搬送部3bに保持される基板Bの第1搬送部3a側の端部とに重複する。そして、制御部100は、第1ヘッドユニット4aおよび第2ヘッドユニット4bのうち一方を排他領域Reに進入させている期間は他方は排他領域Reから退避させる。これによって、第1ヘッドユニット4aと第2ヘッドユニット4bとの相互干渉が防止される。   Incidentally, the substrate B held by the first transfer unit 3a at the work position and the substrate B held by the second transfer unit 3b at the work position are adjacent to each other in the Y direction, and the first head unit 4a and the second head unit 4b are In this way, component mounting is performed on each of two adjacent boards B. Therefore, in order to prevent mutual interference between the first head unit 4a and the second head unit 4b, the control unit 100 sets an exclusive area Re for the boundary portion Bb of these substrates B, and the first head unit 4a and Simultaneous entry of the second head unit 4b into the exclusive area Re is prohibited. The exclusive area Re is set so as to overlap the boundary portion between the substrate B held by the first transfer unit 3a and the substrate B held by the second transfer unit 3b. The exclusive area Re thus set is held by the end on the second transfer unit 3b side of the substrate B held by the first transfer unit 3a and the second transfer unit 3b held by the second transfer unit 3b. It overlaps with the end of the substrate B on the first transfer unit 3a side. Then, the control unit 100 retracts the other of the first head unit 4a and the second head unit 4b from the exclusive area Re during the period during which one of the first head unit 4a and the second head unit 4b is entered into the exclusive area Re. This prevents mutual interference between the first head unit 4a and the second head unit 4b.

また、制御部100は、基板Bの部品の実装手順を規定する実装プログラムPmを、通信制御部140を介してサーバーコンピューター9から受信して、記憶部120に保存する。このサーバーコンピューター9は、CPUやRAM等で構成されたコンピューターである演算処理部910と、基板データDbや後述の基板搬送態様最適化プログラムPbを記憶する記憶部920と、部品実装機10の通信制御部140との間で通信を行う通信制御部930とを備える。そして、基板Bの表面の各部品実装箇所の位置や、部品実装箇所に実装する部品の種類等を示す基板データDbに基づき、サーバーコンピューター9の演算処理部910が実装プログラムPmを作成し、通信制御部930を介して部品実装機10の制御部100に送信する。   In addition, the control unit 100 receives a mounting program Pm that defines the mounting procedure of components on the board B from the server computer 9 via the communication control unit 140 and stores the mounting program Pm in the storage unit 120. The server computer 9 includes an arithmetic processing unit 910 that is a computer configured with a CPU, a RAM, and the like, a storage unit 920 that stores board data Db and a board transfer mode optimization program Pb described later, and communication between the component mounter 10. A communication control unit 930 that performs communication with the control unit 140. Based on the board data Db indicating the position of each component mounting location on the surface of the board B, the type of component mounted on the component mounting location, etc., the arithmetic processing unit 910 of the server computer 9 creates a mounting program Pm, The data is transmitted to the control unit 100 of the component mounter 10 via the control unit 930.

さらに、サーバーコンピューター9は、部品実装機10が備える第1搬送部3aおよび第2搬送部3bによるほぼ水平な基板Bの搬送態様を適切化して、その結果をユーザーインターフェース94に表示する。これによって、ユーザーは、ユーザーインターフェース94での表示結果に応じて基板Bを部品実装システム1に搬入するための段取りを実行できる。続いては、サーバーコンピューター9による基板搬送態様の適切化処理について説明する。   Furthermore, the server computer 9 optimizes the substantially horizontal board B transfer mode by the first transfer unit 3a and the second transfer unit 3b included in the component mounter 10, and displays the result on the user interface 94. Accordingly, the user can execute a setup for carrying the board B into the component mounting system 1 in accordance with the display result on the user interface 94. Subsequently, the process of optimizing the substrate transport mode by the server computer 9 will be described.

図3は図1の部品実装機に対して実行可能な基板搬送態様の適切化処理の例を示すフローチャートである。このフローチャートは部品実装システム1で重複した期間に部品を実装予定の2枚の基板Bの第1搬送部3aおよび第2搬送部3bによる搬送態様を適切化するものであり、サーバーコンピューター9の演算処理部910が基板搬送態様最適化プログラムPbに基づく演算を行うことで実行される。なお、図3のフローチャートでは、第1搬送部3aを第1搬送レーンと示し、第2搬送部3bを第2搬送レーンと示した。   FIG. 3 is a flowchart showing an example of optimization processing of the board conveyance mode that can be executed for the component mounting machine of FIG. This flowchart is for optimizing the transport mode of the first transport unit 3a and the second transport unit 3b for the two boards B on which components are to be mounted in the overlapping period in the component mounting system 1, and the calculation of the server computer 9 It is executed by the processing unit 910 performing a calculation based on the substrate transport mode optimization program Pb. In the flowchart of FIG. 3, the first transport unit 3a is shown as a first transport lane, and the second transport unit 3b is shown as a second transport lane.

ここで、基板Bの搬送態様とは、
・第1搬送部3aが作業位置で基板Bを保持する角度(基板角度θa(m))
・第2搬送部3bが作業位置で基板Bを保持する角度(基板角度θb(n))
・第1搬送部3aおよび第2搬送部3bのうちの各基板Bの搬入先
を含む概念である。ここで、基板角度θa(m)、θb(n)は基板Bの法線に平行な軸(換言すれば、鉛直方向Zに平行となる垂直軸)回りの回転角度であり、本実施形態では、基板角度θa(m)としては、θa(1)=0度、θa(2)=90度、θa(3)=180度、およびθa(4)=270度の4通りがあり、基板角度θb(n)としては、θb(1)=0度、θb(2)=90度、θb(3)=180度、およびθb(4)=270度の4通りがある。なお、基板Bが取りうる各姿勢のうち、いずれの姿勢を基板角度θa(m)、θb(n)が0度である姿勢とするかは、例えばユーザーの作業等により予めサーバーコンピューター9に設定されている。
Here, the conveyance mode of the substrate B is:
The angle at which the first transport unit 3a holds the substrate B at the work position (substrate angle θa (m))
The angle at which the second transport unit 3b holds the substrate B at the work position (substrate angle θb (n))
-It is a concept including the loading destination of each board | substrate B among the 1st conveyance parts 3a and the 2nd conveyance parts 3b. Here, the substrate angles θa (m) and θb (n) are rotation angles around an axis parallel to the normal line of the substrate B (in other words, a vertical axis parallel to the vertical direction Z). There are four substrate angles θa (m), θa (1) = 0 degrees, θa (2) = 90 degrees, θa (3) = 180 degrees, and θa (4) = 270 degrees. There are four types of θb (n): θb (1) = 0 degrees, θb (2) = 90 degrees, θb (3) = 180 degrees, and θb (4) = 270 degrees. Of the postures that can be taken by the substrate B, which one of the postures the substrate angles θa (m) and θb (n) are 0 degrees is set in the server computer 9 in advance by, for example, the user's work. Has been.

ステップS101では、第2搬送部3bでの基板角度θb(n)が初期角度θb(1)に設定され、ステップS102では、第1搬送部3aでの基板角度θa(m)が初期角度θa(1)に設定される。そして、部品実装システム1で重複した期間に部品を実装予定の2枚の基板Bのうち、一方の搬入先が第1搬送部3aに設定され、他方の搬入先が第2搬送部3bに設定される(ステップS103)。こうしてステップS101〜S103によって基板Bの搬送態様が設定されると、部品実装システム1が当該搬送態様で搬送された各基板Bに対して実装プログラムPmに従って部品実装を行うシミュレーションを演算処理部910が演算により実行する(ステップS104)。特に、このシミュレーションでは、第1ヘッドユニット4aおよび第2ヘッドユニット4bのうち一方が排他領域Reに進入している期間は他方は排他領域Reから退避する。そして、このステップS104では、2枚の基板Bの両方への部品実装を完了するのに要する予想実装時間がシミュレーション結果から求められて、記憶部920に記憶される。   In step S101, the substrate angle θb (n) in the second transport unit 3b is set to the initial angle θb (1), and in step S102, the substrate angle θa (m) in the first transport unit 3a is set to the initial angle θa ( 1). Of the two boards B on which components are to be mounted in the overlapping period in the component mounting system 1, one carry-in destination is set in the first transport unit 3a, and the other transport-in destination is set in the second transport unit 3b. (Step S103). When the transport mode of the board B is thus set in steps S101 to S103, the arithmetic processing unit 910 performs a simulation in which the component mounting system 1 performs component mounting on each board B transported in the transport mode according to the mounting program Pm. The calculation is executed (step S104). In particular, in this simulation, during the period when one of the first head unit 4a and the second head unit 4b is in the exclusive area Re, the other is withdrawn from the exclusive area Re. In this step S104, the expected mounting time required to complete component mounting on both of the two boards B is obtained from the simulation result and stored in the storage unit 920.

こうして、一の搬送態様について予想実装時間が求まると、搬送態様を変更して同様のシミュレーションを行って予想実装時間を求める。つまり、ステップS105では、各基板Bの搬送先を第1搬送部3aと第2搬送部3bとの間で入れ換えることで、基板Bの搬送態様が変更される。これによって、ステップS103で設定された搬送先とは反対の搬送先に2枚の基板Bそれぞれが搬送されると設定される。そして、ステップS106では、上記のステップS104と同様にシミュレーションが行われ、ステップS105で変更した搬送態様で搬送された2枚の基板Bの両方の部品実装が完了するのに要する予想実装時間が求められて、記憶部920に記憶される。   Thus, when the expected mounting time is obtained for one transport mode, the transport mode is changed and a similar simulation is performed to determine the predicted mounting time. That is, in step S105, the transport mode of the substrate B is changed by switching the transport destination of each substrate B between the first transport unit 3a and the second transport unit 3b. Thereby, it is set that each of the two substrates B is transported to the transport destination opposite to the transport destination set in step S103. In step S106, a simulation is performed in the same manner as in step S104 described above, and the expected mounting time required to complete the mounting of both components of the two boards B transported in the transport mode changed in step S105 is obtained. And stored in the storage unit 920.

ステップS107では、第1搬送部3aが基板Bを保持する際の4通りの基板角度θa(m)を識別するためのパラメーターmが最大値(=4)であるか判断され、パラメーターmが最大値未満であれば(ステップS107で「NO」)、ステップS108に進む。一方、パラメーターmが最大値であれば(ステップS107で「YES」)、ステップS109に進む。ここでは、パラメーターmは最大値未満であるため、ステップS108に進み、パラメーターmがインクリメントされる。つまり、ステップS108では、第1搬送部3aでの基板角度θa(m)を変更することで、基板Bの搬送態様が変更される。そして、パラメーターmが最大値となるまでステップS103〜S106を上記と同様に繰り返し実行することで、第1搬送部3aでの基板角度θa(m)および各基板Bの搬入先が互いに異なる複数の搬送態様について、予想実装時間が求まる。   In step S107, it is determined whether or not the parameter m for identifying the four substrate angles θa (m) when the first transport unit 3a holds the substrate B is the maximum value (= 4). If it is less than the value (“NO” in step S107), the process proceeds to step S108. On the other hand, if the parameter m is the maximum value (“YES” in step S107), the process proceeds to step S109. Here, since the parameter m is less than the maximum value, the process proceeds to step S108, and the parameter m is incremented. That is, in step S108, the transport mode of the substrate B is changed by changing the substrate angle θa (m) in the first transport unit 3a. Then, by repeatedly executing steps S103 to S106 in the same manner as described above until the parameter m reaches the maximum value, the substrate angle θa (m) in the first transport unit 3a and the loading destination of each substrate B are different from each other. For the transport mode, the expected mounting time is obtained.

パラメーターmが最大値となると(ステップS107で「YES」)、第2搬送部3bが基板Bを保持する4通りの基板角度θb(n)を識別するためのパラメーターnが最大値(=4)であるか判断され、パラメーターnが最大値未満であれば(ステップS109で「NO」)、ステップS110に進む。一方、パラメーターnが最大値であれば(ステップS109で「YES」)、ステップS111に進む。ここでは、パラメーターnは最大値未満であるため、ステップS110に進み、パラメーターnがインクリメントされる。つまり、ステップS110では、第2搬送部3bでの基板角度θb(n)を変更することで、基板Bの搬送態様が変更される。そして、パラメーターnが最大値となるまで、ステップS103〜S108を上記と同様に繰り返し実行することで、第1搬送部3aでの基板角度θa(m)、第2搬送部3bでの基板角度θb(n)および各基板Bの搬入先が互いに異なる複数の搬送態様について、予想実装時間が求まる(図4)。   When the parameter m reaches the maximum value (“YES” in step S107), the parameter n for identifying the four substrate angles θb (n) at which the second transport unit 3b holds the substrate B is the maximum value (= 4). If the parameter n is less than the maximum value (“NO” in step S109), the process proceeds to step S110. On the other hand, if the parameter n is the maximum value (“YES” in step S109), the process proceeds to step S111. Here, since the parameter n is less than the maximum value, the process proceeds to step S110 and the parameter n is incremented. That is, in step S110, the transport mode of the substrate B is changed by changing the substrate angle θb (n) in the second transport unit 3b. Then, by repeatedly executing steps S103 to S108 in the same manner as described above until the parameter n reaches the maximum value, the substrate angle θa (m) at the first transport unit 3a and the substrate angle θb at the second transport unit 3b. For (n) and a plurality of transport modes in which the destinations of the respective substrates B are different from each other, an expected mounting time is obtained (FIG. 4).

ここで、図4は複数の搬送態様について求められた予想実装時間をテーブル形式で示す図である。以上の演算を行うことで、記憶部920には図4に示すデータが保存される。そして、パラメーターnが最大値となり(ステップS109で「YES」)、図4に示すデータが全て揃うと、ステップS111に進む。このステップS111では、複数の搬送態様それぞれについて求められた図4に示す予想実装時間のうちから最短の予想実装時間に対応する搬送態様が、部品実装機10の第1搬送部3aおよび第2搬送部3bで実際に各基板Bを搬送する際の基板搬送態様に採用される。こうして、図3のフローチャートが終了すると、サーバーコンピューター9は、ステップS111で採用した基板搬送態様で基板Bを搬送するための段取り作業を実行するようにユーザーインターフェース94に表示を行う。   Here, FIG. 4 is a diagram showing the expected mounting times obtained for a plurality of transport modes in a table format. The data shown in FIG. 4 is stored in the storage unit 920 by performing the above calculation. Then, the parameter n becomes the maximum value (“YES” in step S109), and when all the data shown in FIG. 4 are prepared, the process proceeds to step S111. In step S111, the transport mode corresponding to the shortest expected mounting time among the predicted mounting times shown in FIG. 4 obtained for each of the plurality of transport modes is the first transport unit 3a and the second transport of the component mounter 10. This is adopted in the substrate transport mode when each substrate B is actually transported by the section 3b. When the flowchart of FIG. 3 is completed in this way, the server computer 9 displays on the user interface 94 so as to execute the setup work for transporting the substrate B in the substrate transport mode adopted in step S111.

図5は図3のフローチャートの実行結果の一例を模式的に示す図である。同図では、基板Bの表面のうち、部品Eを実装する予定の部品実装箇所Lが示されている。同図に示す「ワーストモード」では、第1搬送部3aに保持される基板Bの全部品実装箇所Lが排他領域Reに含まれるとともに、第2搬送部3bに保持される基板Bの全部品実装箇所Lが排他領域Reに含まれる。そのため、第1ヘッドユニット4aおよび第2ヘッドユニット4bは同時には排他領域Reに入ることはできず、それぞれが時間をずらして個別に排他領域Reに進入する回数が多く、これらが排他領域Reでの部品実装を待機する時間も長くなる傾向にある。一方、同図に示す「ベストモード」では、第1搬送部3aに保持される基板Bの全部品実装箇所Lが排他領域Reの外に位置するとともに、第2搬送部3bに保持される基板Bの全部品実装箇所Lが排他領域Reの外に位置する。こうして各基板Bの部品実装箇所Lと排他領域Reとの位置関係が適切化されているため、第1ヘッドユニット4aおよび第2ヘッドユニット4bのそれぞれが時間をずらして排他領域Reに進入する必要が無く、同時に全部品実装箇所Lに進入することができ、これらヘッドユニット4a、4bが排他領域Reでの部品実装を待機する時間も無い。このように図3の基板搬送態様適切化処理によれば、排他領域Reに含まれる部品実装箇所Lの数が抑制されるように基板Bの搬送態様が決定され、さらに言えば、複数の搬送態様のうち、排他領域Reに含まれる部品実装箇所Lの数が最少となる一の搬送態様が選択・採用される。   FIG. 5 is a diagram schematically showing an example of the execution result of the flowchart of FIG. In the figure, a component mounting location L where a component E is to be mounted is shown on the surface of the substrate B. In the “worst mode” shown in the figure, all component mounting locations L of the substrate B held by the first transfer unit 3a are included in the exclusive area Re, and all components of the substrate B held by the second transfer unit 3b are included. The mounting location L is included in the exclusive area Re. For this reason, the first head unit 4a and the second head unit 4b cannot enter the exclusive area Re at the same time, and each of them enters the exclusive area Re individually at different times, and these are the exclusive areas Re. There is a tendency that the time for waiting for the mounting of the parts becomes longer. On the other hand, in the “best mode” shown in the figure, all component mounting locations L of the substrate B held by the first transfer unit 3a are located outside the exclusive area Re, and the substrate held by the second transfer unit 3b. All component mounting locations L of B are located outside the exclusive area Re. Thus, since the positional relationship between the component mounting location L of each board B and the exclusive area Re is appropriate, each of the first head unit 4a and the second head unit 4b needs to enter the exclusive area Re with a time lag. The head units 4a and 4b are not allowed to wait for component mounting in the exclusive area Re at the same time. As described above, according to the board transfer mode optimization process of FIG. 3, the transfer mode of the board B is determined so that the number of component mounting locations L included in the exclusive area Re is suppressed. Among the modes, one transport mode in which the number of component mounting locations L included in the exclusive area Re is minimized is selected and adopted.

以上に説明した実施形態では、互いに異なる複数の搬送態様それぞれについて、各搬送態様で搬送された2枚の基板Bに部品実装を行った場合がシミュレーションされる。特にこのシミュレーションでは、第1ヘッドユニット4aおよび第2ヘッドユニット4bのうち一方が排他領域Reに進入している期間は他方は排他領域Reから退避する。そして、各搬送態様について行ったシミュレーション結果に基づき、予想実装時間が最短となる搬送態様で2枚の基板Bを搬送すると決定される。   In the embodiment described above, a case is simulated in which component mounting is performed on two substrates B transported in each transport mode for each of a plurality of transport modes different from each other. In particular, in this simulation, during the period when one of the first head unit 4a and the second head unit 4b enters the exclusive area Re, the other retreats from the exclusive area Re. And based on the simulation result performed about each conveyance aspect, it determines with conveying the two board | substrates B by the conveyance aspect which becomes the shortest estimated mounting time.

つまり、かかる方法では、部品実装機10で重複した期間に部品Eを実装予定の2枚の基板Bそれぞれの部品実装箇所Lと排他領域Reとの位置関係に基づき、部品実装機10の第1搬送部3aおよび第2搬送部3bによる当該2枚の基板Bの搬送態様が決定される。したがって、部品実装機10で搬送・保持される2枚の基板Bそれぞれ部品実装箇所Lと排他領域Reとの位置関係が適切となるように、2枚の基板Bの搬送態様を決定することができ、その結果、部品実装の効率化を図ることが可能となっている。   That is, in this method, the first of the component mounter 10 is based on the positional relationship between the component mounting location L and the exclusive area Re of each of the two boards B on which the component E is to be mounted in the overlapping period of the component mounter 10. The transport mode of the two substrates B by the transport unit 3a and the second transport unit 3b is determined. Therefore, it is possible to determine the transport mode of the two substrates B so that the positional relationship between the component mounting location L and the exclusive area Re is appropriate for each of the two substrates B transported and held by the component mounter 10. As a result, it is possible to improve the efficiency of component mounting.

また、2枚の基板Bそれぞれの部品実装箇所Lと排他領域Reとの位置関係に基づき、2枚の基板Bのそれぞれが第1搬送部3aおよび第2搬送部3bで保持される際の基板角度θa(m)、θb(n)が決定される。したがって、2枚の基板Bそれぞれの部品実装箇所Lと排他領域Reとの位置関係が適切となるように、2枚の基板Bのそれぞれが第1搬送部3a・第2搬送部3bで保持される際の基板角度θa(m)、θb(n)を決定することができ、その結果、部品実装の効率化を図ることが可能となっている。   Further, based on the positional relationship between the component mounting locations L of the two substrates B and the exclusive region Re, the substrates when the two substrates B are held by the first transport unit 3a and the second transport unit 3b, respectively. The angles θa (m) and θb (n) are determined. Therefore, each of the two substrates B is held by the first transport unit 3a and the second transport unit 3b so that the positional relationship between the component mounting location L and the exclusive area Re of each of the two substrates B is appropriate. Board angles θa (m) and θb (n) can be determined, and as a result, the efficiency of component mounting can be improved.

また、図3に示した基板搬送態様適切化処理のステップS104、S106のシミュレーションでは、第1ヘッドユニット4aおよび第2ヘッドユニット4bのうち一方が排他領域Reに進入している期間は他方は排他領域Reから退避する。このようなシミュレーションを行った結果に基づき採用される基板搬送態様は、2枚の基板Bそれぞれの部品実装箇所Lと排他領域Reとの位置関係に基づき、第1搬送部3aおよび第2搬送部3bのうちから2枚の基板Bの一方の搬入先と他方の搬入先とを決定したものとなる。つまり、図5に具体例を示したように、排他領域Reに含まれる部品実装箇所Lが多いワーストモードではなく、排他領域Reに含まれる部品実装箇所Lが無いベストモードが選択される。こうして、2枚の基板Bそれぞれの部品実装箇所Lと排他領域Reとの位置関係が適切となるように、2枚の基板Bのそれぞれの搬送先を第1搬送部3aおよび第2搬送部3bのうちから決定することができ、その結果、部品実装の効率化を図ることが可能となっている。   Further, in the simulation of steps S104 and S106 of the substrate transfer mode optimization processing shown in FIG. 3, the other is exclusive during the period when one of the first head unit 4a and the second head unit 4b enters the exclusive area Re. Evacuate from area Re. The board transfer mode employed based on the result of such a simulation is based on the positional relationship between the component mounting locations L of the two boards B and the exclusive area Re, and the first transfer unit 3a and the second transfer unit. One carry-in destination and the other carry-in destination of the two substrates B are determined from 3b. That is, as shown in a specific example in FIG. 5, the best mode without the component mounting locations L included in the exclusive region Re is selected instead of the worst mode in which the component mounting locations L included in the exclusive region Re are many. Thus, the first transport unit 3a and the second transport unit 3b are transported to the respective transport destinations of the two substrates B so that the positional relationship between the component mounting locations L and the exclusive regions Re of the two substrates B is appropriate. As a result, the efficiency of component mounting can be improved.

ところで、上記実施形態では、1台の部品実装機10を備える部品実装システム1を例に挙げて説明を行った。しかしながら、X方向に直列に並ぶ複数の部品実装機10を備える部品実装システム1において基板Bの搬送態様を決定するに際しても、上記の基板搬送態様適切化処理を用いることができる。   By the way, in the said embodiment, the component mounting system 1 provided with the one component mounting machine 10 was mentioned as an example, and it demonstrated. However, when determining the transport mode of the substrate B in the component mounting system 1 including the plurality of component mounters 10 arranged in series in the X direction, the above-described substrate transport mode optimization process can be used.

図6は本発明に係る基板搬送態様決定方法の適用対象となる部品実装機を備えた部品実装システムの他の例の構成を模式的に示す平面図である。同図に示すように、この部品実装システム1では、3台の部品実装機10がX方向に直列に配置されており、3台の部品実装機10が同一の基板Bの複数の部品実装箇所Lへの部品実装を分担して行う。なお、同図では、これら3台の部品実装機10を区別するために、X方向の上流側から異なる符合10A、10B、10Cが付されている。また、部品実装機10A〜10C内に保持される基板Bの表面に示された白抜きの部品実装箇所Lは、該当する部品実装機10A〜10Cが部品実装を担当する部品実装箇所Lを示す。つまり、部品実装機10Aは部品実装箇所Laへの部品実装を担当し、部品実装機10Bは部品実装箇所Lbへの部品実装を担当し、部品実装機10cは部品実装箇所Lcへの部品実装を担当する。また、ハッチングが施された部品実装箇所Lは、X方向の上流側の部品実装機10により部品が実装済みの部品実装箇所Lを示す。   FIG. 6 is a plan view schematically showing the configuration of another example of a component mounting system provided with a component mounting machine to which the substrate transfer mode determining method according to the present invention is applied. As shown in the figure, in this component mounting system 1, three component mounters 10 are arranged in series in the X direction, and the three component mounters 10 have a plurality of component mounting locations on the same board B. The component mounting to L is shared. In the figure, in order to distinguish these three component mounting machines 10, different symbols 10A, 10B, and 10C are given from the upstream side in the X direction. Moreover, the white component mounting location L shown on the surface of the substrate B held in the component mounting machines 10A to 10C indicates the component mounting location L in which the corresponding component mounting machines 10A to 10C are responsible for component mounting. . That is, the component mounter 10A is in charge of component mounting at the component mounting location La, the component mounter 10B is in charge of component mounting at the component mounting location Lb, and the component mounter 10c is in charge of component mounting at the component mounting location Lc. Handle. A hatched component mounting location L indicates a component mounting location L on which components have been mounted by the upstream component mounting machine 10 in the X direction.

この部品実装システム1は、X方向に隣り合う2台の部品実装機10、10の間に、搬送態様調整装置7を備える。各搬送態様調整装置7は、第1搬送部71aと、Y方向で第1搬送部71aに隣り合う第2搬送部71bとを有する。こうして並列に配列された第1搬送部71aおよび第2搬送部71bのそれぞれは、Y方向に間隔を空けて配置された一対のコンベア72、72を有し、これらコンベア72、72によってX方向へ基板Bを搬送する。そして、各搬送態様調整装置7では、第1搬送部71aがX方向の上流側の部品実装機10の第1搬送部3aから受け取った基板Bを一時的に保持した後に、X方向の下流側の部品実装機10の第1搬送部3aに搬送するとともに、第2搬送部71bがX方向の上流側の部品実装機10の第2搬送部3bから受け取った基板Bを一時的に保持した後に、X方向の下流側の第2搬送部3bに搬送する。   The component mounting system 1 includes a transport mode adjusting device 7 between two component mounters 10 and 10 adjacent in the X direction. Each conveyance mode adjustment device 7 includes a first conveyance unit 71a and a second conveyance unit 71b adjacent to the first conveyance unit 71a in the Y direction. Each of the first transport unit 71a and the second transport unit 71b arranged in parallel in this way has a pair of conveyors 72 and 72 arranged at intervals in the Y direction, and these conveyors 72 and 72 move in the X direction. The substrate B is transferred. And in each conveyance mode adjustment apparatus 7, after the 1st conveyance part 71a temporarily hold | maintains the board | substrate B received from the 1st conveyance part 3a of the upstream component mounting machine 10 of a X direction, it is a downstream of a X direction. After the second transfer unit 71b temporarily holds the substrate B received from the second transfer unit 3b of the component mounting machine 10 on the upstream side in the X direction. , And transported to the second transport unit 3b on the downstream side in the X direction.

さらに、各搬送態様調整装置7は、第1搬送部71aあるいは第2搬送部71bから基板Bをピックアップして回転可能なスカラーロボット74を有する。このスカラーロボット74は、特開2014−032989号公報(特許文献2)に記載のスカラーロボットと同様の構成を具備する。つまり、スカラーロボット74は、ベース部741と、基端部がベース部741に回転可能に取り付けられて水平方向に延びる第1アーム742と、第1アーム742の先端部に回転可能に取り付けられて水平方向に延びる第2アーム743とを有する。さらに、スカラーロボット74は第2アーム743の先端部に吸着ヘッド744を有し、第1アーム742および第2アーム743の回転角度を調整することで対象基板Bの直上に移動させた吸着ヘッド744の吸着により基板Bをピックアップする。   Further, each transport mode adjusting device 7 includes a scalar robot 74 that can pick up and rotate the substrate B from the first transport unit 71a or the second transport unit 71b. The scalar robot 74 has the same configuration as the scalar robot described in Japanese Patent Application Laid-Open No. 2014-032989 (Patent Document 2). That is, the scalar robot 74 has a base portion 741, a first arm 742 whose base end portion is rotatably attached to the base portion 741 and extending in the horizontal direction, and a tip portion of the first arm 742 that is rotatably attached. And a second arm 743 extending in the horizontal direction. Further, the scalar robot 74 has a suction head 744 at the tip of the second arm 743, and the suction head 744 moved right above the target substrate B by adjusting the rotation angles of the first arm 742 and the second arm 743. The substrate B is picked up by suction.

このような各搬送態様調整装置7は、第1搬送部71a、第2搬送部71bおよびスカラーロボット74を用いて、基板Bの回転角度を変更したり、第1搬送レーン8aと第2搬送レーン8bとの間で基板Bを入れ換えたりすることができる。つまり、基板Bの回転角度の変更は、基板Bをピックアップするスカラーロボット74の吸着ヘッド744を回転させることで基板Bを回転させた後に、基板Bを第1搬送部71aあるいは第2搬送部71bに載置することで実行できる。また、基板Bの入れ換えは、第1搬送部71aおよび第2搬送部71bのうち一方が基板Bを保持しつつ他方が空いている状態で、スカラーロボット74により一方からピックアップした基板Bを他方に移載することで実行できる。   Each such transport mode adjusting device 7 uses the first transport unit 71 a, the second transport unit 71 b, and the scalar robot 74 to change the rotation angle of the substrate B, and the first transport lane 8 a and the second transport lane. The substrate B can be exchanged with 8b. In other words, the rotation angle of the substrate B is changed by rotating the suction head 744 of the scalar robot 74 that picks up the substrate B and then rotating the substrate B, and then transferring the substrate B to the first transport unit 71a or the second transport unit 71b. It can be executed by placing it on. In addition, the replacement of the substrate B is performed by changing the substrate B picked up from one side by the scalar robot 74 while one of the first transfer unit 71a and the second transfer unit 71b holds the substrate B and the other is empty. It can be executed by transferring.

このように部品実装システム1では、X方向に直列に配列された第1搬送部3a、71a、3a、71a、3aが第1搬送レーン8aを構成し、X方向に直列に配列された第2搬送部3b、71b、3b、71b、3bが第2搬送レーン8bを構成している。そして、部品実装システム1は、並列に配列された第1搬送レーン8aおよび第2搬送レーン8bのそれぞれで基板BをX方向に搬送しつつ各部品実装機10により基板Bに部品Eを実装する。この際、部品実装システム1は、各部品実装機10に基板Bを搬入する前に、基板Bの基板角度θa(m)、θb(n)や、搬入先となる第1搬送部3a・第2搬送部3bを搬送態様調整装置7により適宜調整できる。   Thus, in the component mounting system 1, the first transport units 3a, 71a, 3a, 71a, 3a arranged in series in the X direction constitute the first transport lane 8a, and the second transport units arranged in series in the X direction. The conveyance units 3b, 71b, 3b, 71b, and 3b constitute a second conveyance lane 8b. Then, the component mounting system 1 mounts the component E on the substrate B by each component mounter 10 while transporting the substrate B in the X direction in each of the first transport lane 8a and the second transport lane 8b arranged in parallel. . At this time, the component mounting system 1 sets the board angles θa (m) and θb (n) of the board B and the first transport unit 3a and the first destination to be carried in before the board B is carried into each component mounter 10. 2 The conveyance part 3b can be suitably adjusted with the conveyance aspect adjustment apparatus 7. FIG.

そこで、この部品実装システム1が備えるサーバーコンピューター9は、各部品実装機10での基板Bの搬送態様を、図3に示した基板搬送態様適切化処理により適切化する。具体的には、各部品実装機10A〜10Cにおいて2枚の基板Bそれぞれの実装担当箇所La〜Lcと排他領域Reとの位置関係に基づき第1搬送部3aおよび第2搬送部3bによる2枚の基板Bの搬送態様を決定する処理(基板搬送適切化処理)を、部品実装機10A〜10Cのそれぞれに対して個別に行う。これによって、2枚の基板Bの搬送態様が部品実装機10毎に決定されて、ユーザーインターフェース94に表示される。   Therefore, the server computer 9 included in the component mounting system 1 optimizes the transport mode of the board B in each component mounter 10 by the board transport mode optimization process shown in FIG. Specifically, in each of the component mounting machines 10A to 10C, two sheets by the first transport unit 3a and the second transport unit 3b based on the positional relationship between the mounting positions La to Lc of the two substrates B and the exclusive area Re. The process for determining the transport mode of the board B (board transport optimization process) is individually performed for each of the component mounting machines 10A to 10C. As a result, the conveyance mode of the two boards B is determined for each component mounter 10 and displayed on the user interface 94.

こうして、各部品実装機10での第1搬送部3aおよび第2搬送部3bによる2枚の基板Bの搬送態様が適切化された結果、部品実装機10A、10B、10Cのそれぞれでは、実装担当箇所La、Lb、Lcと排他領域Reとの位置関係が適切化されている。具体的には、部品実装機10Aでは、第1搬送部3aおよび第2搬送部3bに保持される基板Bの部品実装箇所Lのうち当該実装機10Aが実装を担当する全実装担当箇所Laが排他領域Reから外れている。同様に部品実装機10B、10Cにおいても、実装担当箇所Lb、Lcが排他領域Reから外れている。このように、図6に示す例においても、排他領域Reに含まれる部品実装箇所Lの数が抑制されるように基板Bの搬送態様が決定され、さらに言えば、複数の搬送態様のうち、排他領域Reに含まれる部品実装箇所Lの数が最少となる一の搬送態様が選択・採用される。   Thus, as a result of optimizing the transfer mode of the two substrates B by the first transfer unit 3a and the second transfer unit 3b in each component mounter 10, each component mounter 10A, 10B, 10C is in charge of mounting. The positional relationship between the locations La, Lb, and Lc and the exclusive area Re is optimized. Specifically, in the component mounting machine 10A, all the mounting positions La that the mounting machine 10A is in charge of mounting out of the component mounting positions L of the board B held by the first transfer unit 3a and the second transfer unit 3b. It is out of the exclusive area Re. Similarly, in the component mounters 10B and 10C, the mounting positions Lb and Lc are out of the exclusive area Re. As described above, also in the example illustrated in FIG. 6, the transport mode of the board B is determined so that the number of component mounting locations L included in the exclusive region Re is suppressed. One conveyance mode in which the number of component mounting locations L included in the exclusive area Re is minimized is selected and adopted.

このように図6に示す例では、各部品実装機10A〜10Cにおける2枚の基板Bそれぞれの実装担当箇所La、Lb、Lcと排他領域Reとの位置関係に基づき、各部品実装機10A〜10Cの第1搬送部3aおよび第2搬送部3bによる基板Bの搬送態様が決定される。これによって、直列に配置された複数の部品実装機10A〜10Cを備える部品実装システム1において、部品実装機10A〜10Cで搬送・保持される2枚の基板Bそれぞれの部品実装箇所Lと排他領域Reとの位置関係が適切となるように、2枚の基板Bの搬送態様を決定することができ、その結果、部品実装の効率化を図ることが可能となっている。   As described above, in the example illustrated in FIG. 6, the component mounters 10 </ b> A to 10 </ b> A to 10 </ b> C are based on the positional relationship between the mounting positions La, Lb, and Lc of the two boards B and the exclusive area Re. The transfer mode of the substrate B by the first transfer unit 3a and the second transfer unit 3b of 10C is determined. As a result, in the component mounting system 1 including a plurality of component mounting machines 10A to 10C arranged in series, the component mounting locations L and the exclusive areas of the two boards B transported and held by the component mounting machines 10A to 10C. The transfer mode of the two boards B can be determined so that the positional relationship with Re is appropriate, and as a result, the efficiency of component mounting can be improved.

図7は本発明に係る基板搬送態様決定方法の適用対象となる部品実装機を備えた部品実装システムの別の例の構成を模式的に示す平面図である。図8は図7の部品実装システムが備える部品実装機に対して実行可能な基板搬送態様の適切化処理の例を示すフローチャートである。図8では図3と共通するステップについては同じ符号が付されている。   FIG. 7 is a plan view schematically showing the configuration of another example of a component mounting system provided with a component mounting machine to which the substrate transfer mode determining method according to the present invention is applied. FIG. 8 is a flowchart showing an example of the optimization process of the board transfer mode that can be executed for the component mounter provided in the component mounting system of FIG. In FIG. 8, steps that are the same as those in FIG.

図7の例が図6の例と異なる点は、搬送態様調整装置7を具備しない点である。このように図7の例では、搬送態様調整装置7を具備しないため、部品実装機10B、10Cへの搬入前に、基板Bの角度を変更することはできない。ただし、部品実装機10Aへの搬入前、換言すれば第1搬送レーン8aおよび第2搬送レーン8bへの搬入前であれば、基板Bの角度を変更可能である。そこで、サーバーコンピューター9は図8の基板搬送態様適切化処理を実行する。   The example of FIG. 7 is different from the example of FIG. 6 in that the conveyance mode adjusting device 7 is not provided. Thus, in the example of FIG. 7, since the conveyance mode adjustment device 7 is not provided, the angle of the board B cannot be changed before being loaded into the component mounters 10 </ b> B and 10 </ b> C. However, the angle of the board B can be changed before carrying into the component mounting machine 10A, in other words, before carrying into the first transport lane 8a and the second transport lane 8b. Therefore, the server computer 9 executes the substrate transfer mode optimization process of FIG.

上述と同様にステップS101、S102を実行することで、第2搬送レーン8bに搬入・保持される基板Bの基板角度θb(n)と、第1搬送レーン8aに搬入・保持される基板Bの基板角度θa(m)とが設定される。こうして基板Bの搬送態様が設定されると、当該搬送態様で第1搬送レーン8aおよび第2搬送レーン8bにより基板Bを搬送しつつ部品実装機10A〜10Cのそれぞれで部品実装を行った場合がシミュレーションされる(ステップS201)。こうしてステップS201では、ステップ部品実装機10A〜10Cそれぞれの予想実装時間が求められて、記憶部920に記憶される。そして、ステップS202では、部品実装システム1全体における予想サイクルタイムがステップS201で求めた部品実装機10A〜10Cの予想実装時間から算出される。   By executing steps S101 and S102 in the same manner as described above, the substrate angle θb (n) of the substrate B carried in and held in the second transport lane 8b and the substrate B carried in and held in the first transport lane 8a A substrate angle θa (m) is set. When the transport mode of the substrate B is set in this way, there is a case where component mounting is performed by each of the component mounting machines 10A to 10C while transporting the substrate B by the first transport lane 8a and the second transport lane 8b in the transport mode. Simulation is performed (step S201). Thus, in step S201, the expected mounting times of the step component mounting machines 10A to 10C are obtained and stored in the storage unit 920. In step S202, the expected cycle time in the entire component mounting system 1 is calculated from the expected mounting times of the component mounting machines 10A to 10C obtained in step S201.

そして、基板角度θa(m)が最大値となるまでパラメーターmをインクリメントしながらステップS201、S202を繰り返し(ステップS107、S108)、さらに基板角度θb(n)が最大値となるまでパラメーターnをインクリメントしながらステップS201、S202、S107、S108を繰り返す(ステップS109、S110)。これによって、第1搬送レーン8aでの基板角度θa(m)、および第2搬送レーン8bでの基板角度θb(n)が互いに異なる複数の搬送態様について、予想サイクルタイムが求まる。そして、ステップS203では、複数の搬送態様それぞれについて求められた予想サイクルタイムのうちから最短の予想サイクルタイムに対応する搬送態様が、部品実装システム1の第1搬送レーン8aおよび第2搬送レーン8bで実際に各基板Bを搬送する際の基板搬送態様に採用される。こうして、図8のフローチャートが終了すると、サーバーコンピューター9は、ステップS203で採用した基板搬送態様で基板Bを搬送するための段取り作業を実行するようにユーザーインターフェース94に表示を行う。   Then, steps S201 and S202 are repeated while incrementing the parameter m until the substrate angle θa (m) reaches the maximum value (steps S107 and S108), and the parameter n is incremented until the substrate angle θb (n) reaches the maximum value. However, steps S201, S202, S107, and S108 are repeated (steps S109 and S110). As a result, the expected cycle time is obtained for a plurality of transfer modes in which the substrate angle θa (m) in the first transfer lane 8a and the substrate angle θb (n) in the second transfer lane 8b are different from each other. In step S203, the transport mode corresponding to the shortest expected cycle time among the predicted cycle times obtained for each of the plurality of transport modes is the first transport lane 8a and the second transport lane 8b of the component mounting system 1. This is adopted for the substrate transfer mode when each substrate B is actually transferred. When the flowchart of FIG. 8 is completed in this way, the server computer 9 displays on the user interface 94 so as to execute the setup work for transporting the substrate B in the substrate transport mode adopted in step S203.

このように図7の部品実装システム1は、第1搬送レーン8aおよび第2搬送レーン8bは、それぞれに搬入された基板Bを相互の間で入れ換えず、さらにそれぞれに搬入された基板Bの基板角度θa(m)、θb(n)を維持するとの制約条件を有する。そこで、図8の基板搬送態様適切化処理では、この制約条件の下で、各部品実装機10A、10B、10Cでの2枚の基板Bの実装担当箇所La、Lb、Lcと排他領域Reとの位置関係に基づき各部品実装機10A、10B、10Cの第1搬送部3aおよび第2搬送部3bによる2枚の基板Bの搬送態様が決定される。   As described above, in the component mounting system 1 of FIG. 7, the first transport lane 8 a and the second transport lane 8 b do not interchange the board B loaded into each other, and the board B of the board B loaded into each other. There is a constraint that the angles θa (m) and θb (n) are maintained. Therefore, in the board transfer mode optimization processing of FIG. 8, under this restriction condition, the mounting positions La, Lb, Lc of the two boards B in each of the component mounting machines 10A, 10B, 10C and the exclusive area Re Based on the positional relationship, the transfer mode of the two substrates B by the first transfer unit 3a and the second transfer unit 3b of each of the component mounting machines 10A, 10B, and 10C is determined.

こうして第1搬送レーン8aおよび第2搬送レーン8bによる2枚の基板Bの搬送態様が適切化された結果、部品実装箇所Lと排他領域Reとの位置関係が適切化されている。つまり、図7に示すように、部品実装機10A、10Bでは、第1搬送部3aおよび第2搬送部3bに保持される基板Bの部品実装箇所Lのうち当該実装機10A、10Bが実装を担当する全実装担当箇所Laが排他領域Reから外れている。ただし、上述の制約条件が存在するため、部品実装機10Cでは、当該実装機10Cが実装を担当する実装担当箇所Lcが排他領域Reに含まれている。ただし、部品実装システム1全体では、排他領域Re内に位置する部品実装箇所Lの数が抑えられており、サイクルタイムの短縮化が図られている。つまり、図7および図8に示す例では、部品実装システム1全体、換言すれば全ての部品実装機10A〜10Bにおいて、排他領域Reに含まれる部品実装箇所Lの数が抑制されるように基板Bの搬送態様が決定され、さらに言えば、複数の搬送態様のうち、排他領域Reに含まれる部品実装箇所Lの数が最少となる一の搬送態様が選択・採用される。   Thus, as a result of optimizing the transport mode of the two boards B by the first transport lane 8a and the second transport lane 8b, the positional relationship between the component mounting location L and the exclusive region Re is optimized. That is, as shown in FIG. 7, in the component mounting machines 10 </ b> A and 10 </ b> B, the mounting machines 10 </ b> A and 10 </ b> B are mounted among the component mounting locations L of the board B held by the first transport unit 3 a and the second transport unit 3 b. All the mounting positions La in charge are out of the exclusive area Re. However, since the above-described constraint conditions exist, in the component mounting machine 10C, the mounting area Lc that the mounting machine 10C is responsible for mounting is included in the exclusive area Re. However, in the entire component mounting system 1, the number of component mounting locations L located in the exclusive area Re is reduced, and the cycle time is shortened. That is, in the example shown in FIGS. 7 and 8, the board is arranged so that the number of component mounting places L included in the exclusive area Re is suppressed in the entire component mounting system 1, in other words, in all the component mounting machines 10 </ b> A to 10 </ b> B. The transport mode of B is determined. More specifically, among the multiple transport modes, one transport mode in which the number of component mounting locations L included in the exclusive area Re is minimized is selected and adopted.

このように図7および図8に示す例では、各部品実装機10A〜10Cにおける2枚の基板Bそれぞれの実装担当箇所La、Lb、Lcと排他領域Reとの位置関係に基づき、各部品実装機10A〜10Cの第1搬送部3aおよび第2搬送部3bによる基板Bの搬送態様が決定される。これによって、直列に配置された複数の部品実装機10A〜10Cを備える部品実装システム1において、部品実装機10A〜10Cで搬送・保持される2枚の基板Bそれぞれの部品実装箇所Lと排他領域Reとの位置関係が適切となるように、2枚の基板Bの搬送態様を決定することができ、その結果、部品実装の効率化を図ることが可能となっている。   As described above, in the example shown in FIGS. 7 and 8, each component mounting is performed based on the positional relationship between the mounting positions La, Lb, Lc of the two boards B and the exclusive area Re in each of the component mounting machines 10A to 10C. The transport mode of the substrate B by the first transport unit 3a and the second transport unit 3b of the machines 10A to 10C is determined. As a result, in the component mounting system 1 including a plurality of component mounting machines 10A to 10C arranged in series, the component mounting locations L and the exclusive areas of the two boards B transported and held by the component mounting machines 10A to 10C. The transfer mode of the two boards B can be determined so that the positional relationship with Re is appropriate, and as a result, the efficiency of component mounting can be improved.

このように上記実施形態では、部品実装機10が本発明の「部品実装機」の一例に相当し、第1搬送部3aおよび第2搬送部3bが本発明の「2個の搬送部」の一例に相当し、第1ヘッドユニット4aおよび第2ヘッドユニット4bが本発明の「2個の実装部」の一例に相当し、制御部100が本発明の「制御部」の一例に相当し、図6あるいは図7に示した部品実装システム1が本発明の「部品実装システム」の一例に相当し、第1搬送部3aが本発明の「一方搬送部」の一例に相当し、第2搬送部3bが本発明の「他方搬送部」の一例に相当し、第1搬送レーン8aが本発明の「第1搬送レーン」の一例に相当し、第2搬送レーン8bが本発明の「第2搬送レーン」の一例に相当し、基板搬送態様最適化プログラムPbが本発明の「基板搬送態様決定プログラム」の一例に相当し、サーバーコンピューター9が本発明の「コンピューター」の一例に相当し、基板Bが本発明の「基板」の一例に相当し、X方向が本発明の「基板搬送方向」の一例に相当し、境界部分Bbが本発明の「境界部分」の一例の相当し、排他領域Reが本発明の「排他領域」の一例に相当し、部品Eが本発明の「部品」の一例に相当し、部品実装箇所Lが本発明の「部品実装箇所」の一例に相当し、実装担当箇所La、Lb、Lcのそれぞれが本発明の「実装担当箇所」の一例に相当し、図中に適宜示したZ軸が本発明の「垂直軸」の一例に相当する。   Thus, in the above embodiment, the component mounting machine 10 corresponds to an example of the “component mounting machine” of the present invention, and the first transport unit 3a and the second transport unit 3b are the “two transport units” of the present invention. It corresponds to an example, the first head unit 4a and the second head unit 4b correspond to an example of "two mounting parts" of the present invention, the control unit 100 corresponds to an example of "control part" of the present invention, The component mounting system 1 shown in FIG. 6 or 7 corresponds to an example of the “component mounting system” of the present invention, the first transport unit 3a corresponds to an example of the “one transport unit” of the present invention, and the second transport. The section 3b corresponds to an example of the “other transport section” of the present invention, the first transport lane 8a corresponds to an example of the “first transport lane” of the present invention, and the second transport lane 8b corresponds to the “second transport lane” of the present invention. It corresponds to an example of “transport lane”, and the substrate transport mode optimization program Pb is the “substrate The server computer 9 corresponds to an example of the “computer” of the present invention, the substrate B corresponds to an example of the “substrate” of the present invention, and the X direction corresponds to the “substrate” of the present invention. The boundary portion Bb corresponds to an example of the “boundary portion” of the present invention, the exclusive area Re corresponds to an example of the “exclusive area” of the present invention, and the component E corresponds to the “transport direction”. The component mounting location L corresponds to an example of the “component mounting location” of the present invention, and each of the mounting positions La, Lb, and Lc corresponds to an example of the “mounting location” of the present invention. The Z axis shown as appropriate in the figure corresponds to an example of the “vertical axis” of the present invention.

なお、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したものに対して種々の変更を加えることが可能である。例えば図3の基板搬送態様適切化処理では、基板角度θa(m)、θb(n)および基板Bの搬入先のそれぞれが異なる複数の搬送態様を設定し、これらの搬送態様のうちから最適な一の搬送態様が選択・採用されていた。しかしながら、複数の搬送態様を設定するにあたり、基板角度θa(m)、θb(n)および基板Bの搬入先の両方の組み合わせる必要は必ずしも無く、これらのうちの一方を変更しつつ他方を固定しても良い。つまり、基板角度θa(m)、θb(n)および基板Bのうち一方が互いに異なる複数の搬送態様を設定して、これらの搬送態様のうちから最適な一の搬送態様を選択・採用するように、基板搬送態様適切化処理を実行しても良い。   The present invention is not limited to the above-described embodiment, and various modifications can be made to the above-described one without departing from the spirit of the present invention. For example, in the substrate transfer mode optimization process of FIG. 3, a plurality of transfer modes with different substrate angles θa (m) and θb (n) and the transfer destinations of the substrate B are set, and the optimal transfer mode is selected from these transfer modes. One transport mode was selected and adopted. However, in setting a plurality of transfer modes, it is not always necessary to combine both the substrate angles θa (m), θb (n) and the substrate B destination, and the other is fixed while changing one of them. May be. That is, a plurality of transport modes, one of which is different from the substrate angles θa (m), θb (n), and the substrate B, are set, and one optimal transport mode is selected and adopted from these transport modes. In addition, the substrate transfer mode optimization processing may be executed.

また、図6に示す部品実装システム1において、基板角度θa(m)、θb(n)を固定して、搬送態様の変更を基板Bの搬送先の入れ換えでのみ行う場合には、搬送態様調整装置7を図9に示すように構成しても良い。ここで、図9は搬送態様調整装置の別の例を模式的に示す図である。同図の搬送態様調整装置7では、スカラーロボット74は具備されない代わりに、第1搬送部71aおよび第2搬送部71bがそれぞれのコンベア72、72の間隔を保ったままY方向へ移動可能となっている。そして、X方向の下流側の部品実装機10の第1搬送部3aおよび第2搬送部3bのうち、基板Bの搬入先を入れ換えるにあたっては次の動作が実行される。   Further, in the component mounting system 1 shown in FIG. 6, when the board angles θa (m) and θb (n) are fixed and the transfer mode is changed only by changing the transfer destination of the board B, the transfer mode adjustment is performed. The device 7 may be configured as shown in FIG. Here, FIG. 9 is a diagram schematically illustrating another example of the transport mode adjusting device. In the transport mode adjusting apparatus 7 in the figure, the first robot 71a and the second transport 71b can move in the Y direction while maintaining the interval between the conveyors 72 and 72, instead of being provided with the scalar robot 74. ing. Then, the following operation is executed when the loading destination of the board B is replaced in the first transport unit 3a and the second transport unit 3b of the component mounting machine 10 on the downstream side in the X direction.

まず、第1搬送部71aがX方向の上流側の部品実装機10(図9では図示せず)の第1搬送部3aとX方向に一列に並び、第2搬送部71bがX方向の上流側の部品実装機10の第2搬送部3bとX方向に一列に並ぶ。そして、X方向の上流側の部品実装機10から2枚の基板Bが搬出されるのに伴って、第1搬送部71aが部品実装機10の第1搬送部3aから基板Bを受け取り、第2搬送部71bが部品実装機10の第2搬送部3bから基板Bを受け取る。   First, the first transport unit 71a is aligned with the first transport unit 3a of the upstream component mounter 10 (not shown in FIG. 9) in the X direction, and the second transport unit 71b is upstream in the X direction. It is arranged in a row in the X direction with the second transport section 3b of the component mounting machine 10 on the side. Then, as the two substrates B are unloaded from the component mounting machine 10 on the upstream side in the X direction, the first transport unit 71a receives the substrate B from the first transport unit 3a of the component mounting machine 10, and The second transport unit 71 b receives the board B from the second transport unit 3 b of the component mounting machine 10.

続いて、図9の(A)欄に示すように、第1搬送部71aおよび第2搬送部71bがY方向の一方側へ移動して、第2搬送部71bがX方向の下流側の部品実装機10の第1搬送部3aとX方向に一列に並び、第2搬送部71bからこの第1搬送部3aへ基板Bが受け渡される。続いて、図9の(B)欄に示すように、第1搬送部71aおよび第2搬送部71bがY方向の他方側へ移動して、第1搬送部71aがX方向の下流側の部品実装機10の第2搬送部3bとX方向に一列に並び、第1搬送部71aからこの第2搬送部3bへ基板Bが受け渡される。こうして、基板Bの搬入先を切り換えることができる。   Subsequently, as shown in the column (A) of FIG. 9, the first transport unit 71 a and the second transport unit 71 b move to one side in the Y direction, and the second transport unit 71 b is a downstream component in the X direction. The first transfer unit 3a of the mounting machine 10 is aligned with the first transfer unit 3a in the X direction, and the substrate B is transferred from the second transfer unit 71b to the first transfer unit 3a. Subsequently, as shown in the column (B) of FIG. 9, the first transport unit 71a and the second transport unit 71b move to the other side in the Y direction, and the first transport unit 71a is a downstream component in the X direction. The second transfer unit 3b of the mounting machine 10 is arranged in a row in the X direction, and the substrate B is transferred from the first transfer unit 71a to the second transfer unit 3b. In this way, the loading destination of the substrate B can be switched.

また、基板角度θa(m)、θb(n)が異なる複数の搬送態様を設定するに際して、基板角度θa(m)、θb(n)が取りうる値は上記の4通りに限られず、4通りより少なくても多くても良い。   Further, when setting a plurality of transport modes having different substrate angles θa (m) and θb (n), the values that can be taken by the substrate angles θa (m) and θb (n) are not limited to the above four types, but four types. It may be less or more.

また、図5に示した例では、排他領域Reに含まれる部品実装箇所Lが無いモードがベストモードに選択されていた。しかしながら、複数の搬送態様のいずれにおいても、排他領域Reに1個以上の部品実装箇所Lが含まれる場合も生じうる。このような場合には、複数の搬送態様のうち、排他領域Reに含まれる部品実装箇所Lの個数が最小となるモードをベストモードに選択すれば良い。   In the example shown in FIG. 5, the mode without the component mounting location L included in the exclusive area Re is selected as the best mode. However, in any of the plurality of transport modes, there may be a case where one or more component mounting locations L are included in the exclusive area Re. In such a case, a mode in which the number of component mounting locations L included in the exclusive area Re is minimized among the plurality of transport modes may be selected as the best mode.

また、上記の基板搬送態様適切化処理では、予想実装時間をシミュレーションした結果に基づき、基板Bの搬送態様が決定されていた。しかしながら、例えば複数の搬送態様のそれぞれで排他領域Reに含まれる部品実装箇所Lの個数を確認し、この個数が最少となる搬送態様を選択・採用するように基板搬送態様適切化処理を実行しても良い。   Moreover, in said board | substrate conveyance aspect optimization process, the conveyance aspect of the board | substrate B was determined based on the result of having simulated the estimated mounting time. However, for example, the number of component mounting locations L included in the exclusive area Re is confirmed in each of the plurality of transfer modes, and the board transfer mode optimization process is executed so as to select and adopt the transfer mode that minimizes the number. May be.

1…部品実装システム、
8a…第1搬送レーン、
8b…第2搬送レーン、
10…部品実装機、
3a…第1搬送部、
3b…第2搬送部、
4a…第1ヘッドユニット、
4b…第2ヘッドユニット、
100…制御部、
9…サーバーコンピューター、
Pb…基板搬送態様最適化プログラム、
B…基板、
Bb…境界部分、
Re…排他領域、
L…部品実装箇所、
La、Lb、Lc…実装担当箇所、
X…X方向、
Z…Z方向(垂直軸)、
E…部品
1 ... Component mounting system,
8a ... 1st conveyance lane,
8b ... the second transport lane,
10: Component mounting machine,
3a ... 1st conveyance part,
3b ... the second transport unit,
4a ... 1st head unit,
4b ... the second head unit,
100 ... control unit,
9 ... Server computer,
Pb: substrate transport mode optimization program,
B ... Substrate,
Bb ... boundary part,
Re ... Exclusive area,
L ... Part mounting location,
La, Lb, Lc ... place in charge of mounting,
X ... X direction,
Z ... Z direction (vertical axis),
E ... Parts

Claims (8)

それぞれ所定の基板搬送方向に基板を搬送する並列に配置された2個の搬送部と、それぞれ異なる前記搬送部に保持される基板の所定の部品実装箇所に部品を実装する2個の実装部とを備え、前記2個の搬送部それぞれが保持する互いに異なる基板の境界部分に対応して排他領域を設定し、前記2個の実装部のうち一方を前記排他領域に進入させる間は他方を前記排他領域から退避させる部品実装機における基板の搬送態様を決定する基板搬送態様決定方法であって、
前記部品実装機で重複した期間に部品を実装予定の2枚の基板それぞれの前記部品実装箇所と前記排他領域との位置関係に基づき、前記部品実装機の前記2個の搬送部による前記2枚の基板の搬送態様を決定する基板搬送態様決定方法。
Two transport units arranged in parallel for transporting a substrate in a predetermined substrate transport direction, and two mounting units for mounting a component at a predetermined component mounting position of a substrate held by each of the different transport units; An exclusive area corresponding to a boundary portion between different substrates held by each of the two transport sections, and while one of the two mounting sections enters the exclusive area, the other is A board transfer mode determination method for determining a board transfer mode in a component mounter that is retracted from an exclusive area,
The two sheets by the two transport units of the component mounter based on the positional relationship between the component mounting location and the exclusive area of each of the two boards on which components are to be mounted in the overlapping period of the component mounter. Substrate transport mode determination method for determining the transport mode of the substrate.
前記2枚の基板それぞれの前記部品実装箇所と前記排他領域との位置関係に基づき、前記2枚の基板のそれぞれが前記搬送部で保持される際の垂直軸回りの角度を決定する請求項1に記載の基板搬送態様決定方法。   The angle about a vertical axis when each of the two boards is held by the transport unit is determined based on a positional relationship between the component mounting location of each of the two boards and the exclusive area. A method for determining a substrate transfer mode according to the above. 前記2枚の基板それぞれの前記部品実装箇所と前記排他領域との位置関係に基づき、前記2個の搬送部のうちから前記2枚の基板の一方の搬入先と他方の搬入先とを決定する請求項1または2に記載の基板搬送態様決定方法。   Based on the positional relationship between the component mounting location of each of the two boards and the exclusive area, one of the two boards and one of the two boards are determined from the two transport sections. The substrate transfer mode determination method according to claim 1 or 2. 前記基板搬送方向に直列に配列された複数の前記部品実装機のそれぞれが、前記基板搬送方向に搬送される同一の基板の複数の前記部品実装箇所のうち実装担当箇所への部品実装を分担する部品実装システムにおいて前記各部品実装機で重複した期間に部品を実装予定の前記2枚の基板の搬送態様を決定する請求項1ないし3のいずれか一項に記載の基板搬送態様決定方法であって、
前記各部品実装機における前記2枚の基板それぞれの前記実装担当箇所と前記排他領域との位置関係に基づき、前記各部品実装機の前記2個の搬送部による前記2枚の基板の搬送態様を決定する基板搬送態様決定方法。
Each of the plurality of component mounting machines arranged in series in the board conveying direction shares component mounting to a mounting charge part among the plurality of component mounting parts of the same board conveyed in the board conveying direction. 4. The board transfer mode determination method according to claim 1, wherein a transfer mode of the two boards on which components are scheduled to be mounted is determined in a component mounting system in a period overlapped by each of the component mounting machines. And
Based on the positional relationship between the mounting area and the exclusive area of each of the two boards in each of the component mounters, the transport mode of the two boards by the two transport units of the component mounters A substrate transfer mode determination method to be determined.
前記複数の部品実装機のうちの一の部品実装機において前記2枚の基板それぞれの前記実装担当箇所と前記排他領域との位置関係に基づき前記2個の搬送部による前記2枚の基板の搬送態様を決定する処理を前記各部品実装機について実行することで、前記2枚の基板の搬送態様を前記部品実装機毎に決定する請求項4に記載の基板搬送態様決定方法。   In the component mounter of the plurality of component mounters, the two substrates are transported by the two transport units based on the positional relationship between the mounting area and the exclusive area of each of the two substrates. The board | substrate conveyance aspect determination method of Claim 4 which determines the conveyance aspect of the said 2 board | substrate for every said component mounting machine by performing the process which determines an aspect about each said component mounting machine. 前記部品実装部における前記2個の搬送部のうち一方側の搬送部を一方搬送部とし、他方側の搬送部を他方搬送部としたとき、前記複数の部品実装機それぞれの前記一方搬送部で構成される第1搬送レーンと、前記複数の部品実装機それぞれの前記他方搬送部で構成される第2搬送レーンとの間で基板の入れ換えを行わず、前記第1搬送レーンおよび前記第2搬送レーンのそれぞれは搬入された基板の角度を維持するとの条件下で、前記各部品実装機における前記2枚の基板それぞれの前記実装担当箇所と前記排他領域との位置関係に基づき、前記各部品実装機の前記2個の搬送部による前記2枚の基板の搬送態様を決定する請求項4に記載の基板搬送態様決定方法。   Of the two transport units in the component mounting unit, when one transport unit is one transport unit and the other transport unit is the other transport unit, the one transport unit of each of the plurality of component mounting machines The first transfer lane and the second transfer are not performed between the first transfer lane that is configured and the second transfer lane that is configured by the other transfer unit of each of the plurality of component mounting machines. Each component mounting is based on the positional relationship between the mounting area and the exclusive area of each of the two boards in each of the component mounting machines under the condition that each of the lanes maintains the angle of the board that has been loaded. The substrate transport mode determination method according to claim 4, wherein a transport mode of the two substrates by the two transport units of the machine is determined. 請求項1ないし6のいずれか一項に記載の基板搬送態様決定方法をコンピューターに実行させる基板搬送態様決定プログラム。   A substrate transfer mode determination program for causing a computer to execute the substrate transfer mode determination method according to claim 1. それぞれ所定の基板搬送方向に基板を搬送する並列に配置された2個の搬送部と、
互いに異なる前記搬送部が保持する基板の所定の部品実装箇所に部品を実装する2個の実装部と、
前記2個の搬送部それぞれが保持する互いに異なる基板の境界部分に対応して排他領域を設定し、前記2個の実装部のうち一方を前記排他領域に進入させる間は他方を前記排他領域から退避させる制御部と
を備え、
前記制御部は、重複した期間に部品を実装予定の2枚の基板を、請求項1ないし6のいずれか一項に記載の基板搬送態様決定方法で決定された搬送態様で前記2個の搬送部により搬送する部品実装機。
Two transport units arranged in parallel, each transporting a substrate in a predetermined substrate transport direction;
Two mounting parts for mounting components at predetermined component mounting positions on the board held by the different transport parts;
An exclusive area is set corresponding to a boundary portion between different substrates held by each of the two transport units, and one of the two mounting units is moved from the exclusive area while entering the exclusive area. A control unit for evacuation,
The said control part carries two said board | substrates by the conveyance aspect determined by the board | substrate conveyance aspect determination method as described in any one of Claim 1 thru | or 6 by which two board | substrates which are going to mount components in the overlap period. Component mounter that transports by part.
JP2016124596A 2016-06-23 2016-06-23 Board transfer mode determination method, board transfer mode determination program, component mounter Active JP6685186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016124596A JP6685186B2 (en) 2016-06-23 2016-06-23 Board transfer mode determination method, board transfer mode determination program, component mounter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016124596A JP6685186B2 (en) 2016-06-23 2016-06-23 Board transfer mode determination method, board transfer mode determination program, component mounter

Publications (2)

Publication Number Publication Date
JP2017228689A true JP2017228689A (en) 2017-12-28
JP6685186B2 JP6685186B2 (en) 2020-04-22

Family

ID=60892090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016124596A Active JP6685186B2 (en) 2016-06-23 2016-06-23 Board transfer mode determination method, board transfer mode determination program, component mounter

Country Status (1)

Country Link
JP (1) JP6685186B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021052137A (en) * 2019-09-26 2021-04-01 ヤマハ発動機株式会社 Position determination method of common standing position, position determination device, and position determination program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021052137A (en) * 2019-09-26 2021-04-01 ヤマハ発動機株式会社 Position determination method of common standing position, position determination device, and position determination program
JP7229889B2 (en) 2019-09-26 2023-02-28 ヤマハ発動機株式会社 POSITIONING METHOD, POSITIONING DEVICE, AND POSITIONING PROGRAM FOR COMMON STANDING POSITION

Also Published As

Publication number Publication date
JP6685186B2 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
JP6267127B2 (en) Setup change method and setup change device
JP6109178B2 (en) Optimization program and board-to-board work system
US9078385B2 (en) Component mounting method and component mounting apparatus
JP2013030578A (en) Electronic component mounting system and electronic component mounting method
JP4728423B2 (en) Electronic component mounting method and electronic component mounting machine
JP6153594B2 (en) Component mounting system and bulk component determination method used therefor
JP6685186B2 (en) Board transfer mode determination method, board transfer mode determination program, component mounter
JP5970659B2 (en) Electronic component mounting system and electronic component mounting method
KR101530249B1 (en) Component mounting apparatus, component mounting method
JP7017574B2 (en) Component mounting method and component mounting device
JP6599270B2 (en) Surface mounter and printed circuit board transport method
JP6606465B2 (en) Component mounting machine, component mounting method
JP6604604B2 (en) Substrate production method and substrate production condition determination method
JP2012094925A (en) Method for mounting electronic component
JP6039742B2 (en) Electronic circuit component mounting method and electronic circuit component mounting system
JP7266944B2 (en) COMPONENT MOUNTING CONTROL DEVICE, COMPONENT MOUNTING CONTROL METHOD
JP4226715B2 (en) Surface mount component mounting machine and electronic component supply method
JP2012146791A (en) Electronic circuit component mounting method and electronic circuit component mounting system
JP2023059408A (en) Production facility controller and control method
JP6606668B2 (en) Component mounting method
JP6475245B2 (en) Substrate production method and substrate production condition determination method
JP2015225977A (en) Component mounting device, component mounting method and correction method of implementation data
JP2010073828A (en) Mounting method of electronic part
JP2010073829A (en) Mounting method of electronic part
JP2001189597A (en) Method for mounting electronic parts

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170714

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200331

R150 Certificate of patent or registration of utility model

Ref document number: 6685186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250