JP2017223178A - Pipe device - Google Patents

Pipe device Download PDF

Info

Publication number
JP2017223178A
JP2017223178A JP2016120055A JP2016120055A JP2017223178A JP 2017223178 A JP2017223178 A JP 2017223178A JP 2016120055 A JP2016120055 A JP 2016120055A JP 2016120055 A JP2016120055 A JP 2016120055A JP 2017223178 A JP2017223178 A JP 2017223178A
Authority
JP
Japan
Prior art keywords
pipe
phase space
gas phase
liquid
mother
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016120055A
Other languages
Japanese (ja)
Other versions
JP6768367B2 (en
Inventor
晴天 今野
Harutaka Konno
晴天 今野
朝倉 大輔
Daisuke Asakura
大輔 朝倉
威夫 須賀
Takeo Suga
威夫 須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2016120055A priority Critical patent/JP6768367B2/en
Publication of JP2017223178A publication Critical patent/JP2017223178A/en
Application granted granted Critical
Publication of JP6768367B2 publication Critical patent/JP6768367B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To minimize an aperture of pipe without making a gas-phase space on an upstream side of a base pipe and a gas-phase space on a downstream side into a closed state, at a confluent part of liquid flowing in the base pipe arranged obliquely and liquid flowing in a branch pipe connected to the base pipe from above.SOLUTION: A pipe system includes a base pipe 11 arranged obliquely and configured to flow liquid Lha in a state of having a gas-phase space, and a branch pipe 12 connected to the base pipe 11 from above and configured to flow liquid Lhb in a state of having a gas-phase space and make the liquid Lhb confluent with the liquid Lha flowing in the base pipe 11. Gas-phase spaces on an upstream side and a downstream side with respect to a confluent part of the liquid Lha, Lhb from the base pipe 11 and branch pipe 12 always communicate with each other through an internal bypass pipe 13.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、液体を、気相空間を維持した状態で搬送するための配管装置に関する。   Embodiments of the present invention relate to a piping device for transporting a liquid while maintaining a gas phase space.

例えば、火力・原子力等の発電所におけるタービン及び発電機の回転体の軸受けには、摩擦によるエネルギ損失や発熱を減少させ、部品の焼きつきを防ぐことを目的とし、潤滑油(以下「油」)による滑り軸受け方法が採用されている。   For example, bearings for rotating bodies of turbines and generators in power plants such as thermal power and nuclear power are used to reduce energy loss and heat generation due to friction and prevent seizure of parts. The sliding bearing method is adopted.

前記軸受けに供給される油は、「軸受潤滑油系統」と呼ばれる油配管が配置されることで搬送されている。   The oil supplied to the bearing is conveyed by arranging an oil pipe called a “bearing lubricating oil system”.

図11は、従来の発電プラントの一般的な軸受潤滑油系統を示す概略図であり、同図(A)はその全体図、同図(B)はそのa矢視図である。   FIG. 11 is a schematic view showing a general bearing lubricating oil system of a conventional power plant. FIG. 11A is an overall view thereof, and FIG.

図11を参照して系統内の油の流れについて、以下(1)〜(5)と順次説明する。
(1)油を貯蔵する主油タンク31を起点とし、当該主油タンク31の油(低温)Lcは、循環ポンプ32で吸い上げられて昇圧され、上り勾配の供給管33および枝管33a,33bを経由して、タービンロータ34もしくは発電機の回転軸(シャフト)35を支える各軸受け36a,36bに供給される。
(2)前記軸受36a,36bでは、回転軸35と軸受36a,36bとの間に油Lcを注入することで、当該軸受36a,36bでの潤滑を促すと同時に回転軸35との摩擦で発生した熱を除去する。
(3)前記軸受36a,36bでの潤滑・除熱の役目を終えた油(高温)Lhは、当該各軸受け36a,36bからの戻り枝管12a,12bおよび下り勾配の戻り油管37(戻り油母管11)を通って、再び前記主油タンク31に戻って来る。なお、前記供給管33と戻り油管37は、油Lc(Lh)が可燃性流体であることへの安全対策から、従来、しばしば内側に供給管、外側に戻り管という二重構造の管で設計されることが多かったが、近年は夫々別々の一重管で設計されることが一般化している。
(4)前記主油タンク31には、一般に、熱交換器である油冷却器(オイルクーラ)39が当該主油タンク31と併設、若しくは内蔵されており、同主油タンク31に戻って来た昇温後の油(高温)Lhは、循環ポンプ38により前記油冷却器(オイルクーラ)39に循環されて降温され、一定の温度の油(低温)Lcとなるように制御される。
(5)前記主油タンク31には、ブロア(バキュームポンプ)40が設置されており、同主油タンク31内の空気を大気に排出することで、主油タンク31内の圧力を負圧に保持し、前記戻り油管37(戻り油母管11)から各戻り枝管12a,12bを介して各軸受部36a,36bを負圧にする。これにより、前記各軸受部36a,36bのシール部分からの油ミストの外部への飛散を防止するのと同時に、同軸受部36a,36bの周辺にタービン34から漏出した蒸気や発電機から漏出した冷却用ガスを吸引し排出している。
With reference to FIG. 11, the flow of oil in the system will be sequentially described as (1) to (5) below.
(1) Starting from the main oil tank 31 for storing oil, the oil (low temperature) Lc in the main oil tank 31 is sucked up by the circulation pump 32 and pressurized, and the ascending supply pipe 33 and branch pipes 33a and 33b Then, the bearings 36a and 36b that support the turbine rotor 34 or the rotating shaft (shaft) 35 of the generator are supplied.
(2) In the bearings 36a and 36b, oil Lc is injected between the rotary shaft 35 and the bearings 36a and 36b, thereby facilitating the lubrication of the bearings 36a and 36b and at the same time being generated by friction with the rotary shaft 35. Remove heat.
(3) The oil (high temperature) Lh that has finished the roles of lubrication and heat removal in the bearings 36a and 36b is returned to the return branch pipes 12a and 12b and the descending return oil pipe 37 (return oil) from the bearings 36a and 36b. It returns to the main oil tank 31 again through the mother pipe 11). The supply pipe 33 and the return oil pipe 37 are conventionally designed as a double-structured pipe, often a supply pipe on the inside and a return pipe on the outside, for safety measures to ensure that the oil Lc (Lh) is a flammable fluid In recent years, it has become common to design with separate single tubes.
(4) The main oil tank 31 is generally provided with an oil cooler (oil cooler) 39, which is a heat exchanger, along with or built in the main oil tank 31, and returns to the main oil tank 31. After the temperature rise, the oil (high temperature) Lh is circulated to the oil cooler (oil cooler) 39 by the circulation pump 38 and the temperature is lowered to control the oil (low temperature) Lc at a constant temperature.
(5) The main oil tank 31 is provided with a blower (vacuum pump) 40. By discharging the air in the main oil tank 31 to the atmosphere, the pressure in the main oil tank 31 is made negative. The bearing portions 36a, 36b are made negative pressure from the return oil pipe 37 (return oil mother pipe 11) through the return branch pipes 12a, 12b. As a result, oil mist from the seal portions of the bearing portions 36a and 36b is prevented from being scattered to the outside, and at the same time, the steam leaked from the turbine 34 and the generator around the bearing portions 36a and 36b. Cooling gas is sucked and discharged.

なお、実際の発電プラントにおける発電機は複数機併設される一方、前記主油タンク31を起点とする軸受潤滑油系統は共用されるのが一般的であるため、前記図11で示した軸受部36a,36bも発電機の数に応じてより多く存在し、これにより多数の戻り枝管12a,12b,…が前記戻り油管37(戻り油母管11)に繋がる構成になる。   In addition, since a plurality of generators in an actual power plant are provided side by side, a bearing lubricating oil system starting from the main oil tank 31 is generally shared, so the bearing portion shown in FIG. 36a and 36b are also more present depending on the number of generators, whereby a large number of return branch pipes 12a, 12b,... Are connected to the return oil pipe 37 (return oil mother pipe 11).

次に、実際の発電プラントにおける軸受潤滑油系統の配置・設計思想について、以下(1)〜(5)に説明する。
(1)主油タンク31の位置は軸受け部36a,36b,…の位置よりも下方になるよう配置されるのが一般的である。主油タンク31から軸受け部36a,36b,…への油Lcの「供給管33」は上り勾配の配管で構成され、油Lcは循環ポンプ32によって供給される。一方、軸受け部36a,36b,…からの油Lhの「戻り油管37」は下り勾配の配管で構成され、油Lhを重力により再び主油タンク31に戻す設計思想となっている。
(2)よって、プラント停止等で循環ポンプ32が停止しした場合、系統内を循環していた油Lc(Lh)は重力で主油タンク31に戻って来る。
(3)供給管33については、循環ポンプ32の出口に逆止弁が設置され、ポンプ停止後、供給管33内の油Lcは直ぐには主油タンク31に逆流しない。しかし時間経過とともに前記逆止弁及び温度計オリフィスからリークしながら主油タンク31に戻って来る。
(4)軸受け部36a,36b,…においては、前述した通り、外部への油(ミスト)漏れを防止すると共に不要な気体やガスを吸引して排出する必要があるので、同軸受け部36a,36b,…を負圧に保たなければならない。そして、前記軸受け部36a,36b,…を負圧にする手段の一つとして、前述した通り、軸受潤滑油系統の起点かつ最下流である主油タンク31の器内圧をバキュームポンプ(ブロア)40等で一括負圧に保つ方法が採用される。従って、軸受け部36a,36b,…と主油タンク31との間の戻り油管37(戻り油母管11)および戻り枝管12a,12b,…からなる配管内は、常に気相空間が保たれた液面流れにすることが必須になる。
(5)すなわち、前記軸受潤滑油系統の油管の設計は、供給配管(33,33a,33b,…)と戻り配管(37,11,12a,12b,…)とで設計思想が異なり、供給管33,33a,33b,…は満油流れ、戻り油管37,11,12a,12b,…は液面(自由表面)を持った流れとなる様に設計する。供給管33,33a,33b,…内は循環ポンプ32による昇圧で満油となるが、戻り油管37,11,12a,12b,…内は軸受け部36a,36b,…を常に負圧に保つ必要から、全管に渡って自由液面がある空間部を維持し、主油タンク31から軸受け部36a,36b,…までの気相空間の圧力が常時同じになるように設計しなければならない。
Next, the arrangement and design concept of the bearing lubricant system in an actual power plant will be described below in (1) to (5).
(1) Generally, the position of the main oil tank 31 is arranged to be lower than the positions of the bearing portions 36a, 36b,. The “supply pipe 33” of the oil Lc from the main oil tank 31 to the bearing portions 36 a, 36 b,... Is configured by an upwardly inclined pipe, and the oil Lc is supplied by the circulation pump 32. On the other hand, the “return oil pipe 37” of the oil Lh from the bearing portions 36a, 36b,... Is constituted by a downwardly inclined pipe, and has a design concept of returning the oil Lh to the main oil tank 31 again by gravity.
(2) Therefore, when the circulation pump 32 stops due to a plant stop or the like, the oil Lc (Lh) circulating in the system returns to the main oil tank 31 by gravity.
(3) For the supply pipe 33, a check valve is installed at the outlet of the circulation pump 32, and the oil Lc in the supply pipe 33 does not flow back to the main oil tank 31 immediately after the pump is stopped. However, as time passes, it returns to the main oil tank 31 while leaking from the check valve and the thermometer orifice.
(4) As described above, in the bearing portions 36a, 36b,..., It is necessary to prevent oil (mist) leakage to the outside and suck and discharge unnecessary gas or gas. 36b, ... must be kept at a negative pressure. As one of means for making the bearings 36a, 36b,... Negative pressure, as described above, the internal pressure of the main oil tank 31 that is the starting point and the most downstream of the bearing lubricating oil system is used as a vacuum pump (blower) 40. A method of keeping the negative pressure at once is adopted. Therefore, the gas phase space is always maintained in the pipe composed of the return oil pipe 37 (return oil mother pipe 11) and the return branch pipes 12a, 12b, ... between the bearing portions 36a, 36b, ... and the main oil tank 31. It is essential that the liquid flow.
(5) That is, the design of the oil pipe of the bearing lubricating oil system differs between the supply pipe (33, 33a, 33b,...) And the return pipe (37, 11, 12a, 12b,...). 33, 33a, 33b,... Are designed to be a full oil flow, and the return oil pipes 37, 11, 12a, 12b,... Are designed to have a liquid surface (free surface). The inside of the supply pipes 33, 33a, 33b,... Is filled with pressure by the circulation pump 32, but the inside of the return oil pipes 37, 11, 12a, 12b,... Needs to keep the bearing portions 36a, 36b,. Therefore, it is necessary to maintain a space with a free liquid level over the entire pipe, and to design the gas phase space from the main oil tank 31 to the bearings 36a, 36b,.

このため、従来の戻り油管37(戻り油母管11)の口径は、例えば前記戻り枝管12a,12b,…からの油Lhの合流があっても、管内満油による閉塞が発生しないように、シェジーの式等の流体の公式に基づいて十分余裕のある口径にするのが設計標準となっている。   For this reason, the diameter of the conventional return oil pipe 37 (return oil mother pipe 11) is such that, for example, even if the oil Lh from the return branch pipes 12a, 12b,. Based on fluid formulas such as the Chezi formula, the design standard is to have a sufficiently large diameter.

特許第4970228号公報Japanese Patent No. 4970228 特開2003−222294号公報JP 2003-222294 A

前記軸受潤滑油系統の従来の戻り油管37(戻り油母管11)の口径は、その設計標準から最大1000mmと大口径となっており、発電プラントのコンパクト化や建設容易性、低コスト化の面で妨げとなっている。   The diameter of the conventional return oil pipe 37 (return oil mother pipe 11) of the bearing lubricating oil system is a large diameter of 1000 mm at the maximum from the design standard, which makes the power plant more compact, easier to construct, and lower in cost. This is a hindrance.

そこで、前記戻り油管37(戻り油母管11)の口径をできる限り小径にすることが考えられるが、小径にすればするほど、当然ながら当該戻り油管37(戻り油母管11)内を全管に渡って常に自由液面がある空間部として維持するのが困難になる。   Therefore, it is conceivable to reduce the diameter of the return oil pipe 37 (return oil mother pipe 11) as much as possible, but naturally, the smaller the diameter is, the more the entire return oil pipe 37 (return oil mother pipe 11) is. It becomes difficult to maintain the space where there is always a free liquid level across the tube.

図12は、前記軸受潤滑油系統においてプラント運転中に各軸受け部からの戻り油(支流)Lhbが母管11へと合流した際に発生する可能性のある管内閉塞の状態を示す図である。   FIG. 12 is a diagram showing a state of blockage in the pipe that may occur when return oil (branch) Lhb from each bearing unit joins the mother pipe 11 during plant operation in the bearing lubricant system. .

図12に示すように、下り勾配θの戻り油母管11を矢印aに示すように流れている戻り油Lhaに対して、上方から接続されている戻り枝管12から矢印bに示すように戻り油Lhbが落下合流した場合、当該戻り油Lha,Lhbの合流部において、特にその上流側に滞りが生じやすく、母管11の口径に余裕がないと管内閉塞が発生する。この場合、母管11における前記合流部の上流側の気相空間と下流側の気相空間とが遮断され当該各空間圧力P1とP2を同じに保つことができない。   As shown in FIG. 12, as indicated by an arrow b from a return branch pipe 12 connected from above with respect to the return oil Lha flowing through the return oil mother pipe 11 having a downward slope θ as indicated by an arrow a. When the return oil Lhb drops and merges, in the merged portion of the return oils Lha and Lhb, stagnation is particularly likely to occur at the upstream side, and if the diameter of the mother pipe 11 is not sufficient, blockage in the pipe occurs. In this case, the gas phase space on the upstream side and the gas phase space on the downstream side of the junction in the mother pipe 11 are blocked, and the space pressures P1 and P2 cannot be kept the same.

よって、前記発電プラントの軸受潤滑油系統の場合には、その軸受け部36a,36b,…を負圧に維持できなくなり、油ミストの飛散防止や不要気体(水素等)の吸引・排出を行なうことができない状態になる可能性がある。   Therefore, in the case of the bearing lubricating oil system of the power plant, the bearing portions 36a, 36b,... Cannot be maintained at a negative pressure, and oil mist is prevented from scattering and unnecessary gas (hydrogen, etc.) is sucked and discharged. May not be possible.

本発明が解決しようとする課題は、傾斜して配置された母管に流れる液体と当該母管に上方から接続された枝管に流れる液体との合流部において、母管上流側の気相空間と下流側の気相空間とが閉塞状態になることなく、当該配管の口径を最小化することが可能になる配管装置を提供することである。   The problem to be solved by the present invention is that a gas phase space on the upstream side of the mother pipe at the junction of the liquid flowing in the inclined mother pipe and the liquid flowing in the branch pipe connected to the mother pipe from above. It is to provide a piping device capable of minimizing the diameter of the piping without closing the gas phase space on the downstream side.

実施形態に係る配管装置は、傾斜して配置され気相空間を有する状態で液体を流す母管と、この母管に上方から接続され、気相空間を有する状態で液体を流し当該液体を前記母管に流れる液体に合流させる枝管と、前記母管と枝管による液体の合流部より上流側の気相空間と下流側の気相空間とを常時連通させる配管手段とを備えたことを特徴としている。   The piping device according to the embodiment includes a mother pipe that is arranged in an inclined manner and allows a liquid to flow in a state having a gas phase space, and is connected to the mother pipe from above and flows a liquid in a state that has a gas phase space. A branch pipe that joins the liquid flowing in the mother pipe, and a piping means that always connects the gas phase space upstream and the gas phase space downstream from the liquid junction of the mother pipe and the branch pipe. It is a feature.

実施形態に係る配管装置によれば、傾斜して配置された母管に流れる液体と当該母管に上方から接続された枝管に流れる液体との合流部において、母管上流側の気相空間と下流側の気相空間とが閉塞状態になることなく、当該配管の口径を最小化することが可能になる。   According to the piping apparatus according to the embodiment, the gas phase space on the upstream side of the mother pipe at the junction of the liquid flowing in the mother pipe arranged at an inclination and the liquid flowing in the branch pipe connected to the mother pipe from above. It is possible to minimize the diameter of the pipe without closing the downstream gas phase space.

第1実施形態の配管装置を示す断面図であり、同図(A)は構成説明図、同図(B)は作用説明図。It is sectional drawing which shows the piping apparatus of 1st Embodiment, The figure (A) is a structure explanatory drawing, The figure (B) is an effect explanatory drawing. 第2実施形態の配管装置を示す断面図であり、同図(A)は構成説明図、同図(B)は作用説明図。It is sectional drawing which shows the piping apparatus of 2nd Embodiment, The figure (A) is a structure explanatory drawing, The figure (B) is an effect explanatory drawing. 前記第2実施形態の配管装置における他の実施例を示す断面図。Sectional drawing which shows the other Example in the piping apparatus of the said 2nd Embodiment. 第3実施形態の配管装置を示す断面図であり、同図(A)は構成説明図、同図(B)は作用説明図。It is sectional drawing which shows the piping apparatus of 3rd Embodiment, The figure (A) is a structure explanatory drawing, The figure (B) is an effect explanatory drawing. 第4実施形態の配管装置を示す断面図であり、同図(A)は構成説明図、同図(B)は作用説明図。It is sectional drawing which shows the piping apparatus of 4th Embodiment, The figure (A) is a structure explanatory drawing, The figure (B) is an effect explanatory drawing. 第5実施形態の配管装置を示す断面図であり、同図(A)は構成説明図、同図(B)は作用説明図。It is sectional drawing which shows the piping apparatus of 5th Embodiment, The figure (A) is a structure explanatory drawing, The figure (B) is an effect explanatory drawing. 第6実施形態の配管装置(実施例1)を示す断面図であり、同図(A)は構成説明図、同図(B)は作用説明図。It is sectional drawing which shows the piping apparatus (Example 1) of 6th Embodiment, The figure (A) is a structure explanatory drawing, The figure (B) is an effect | action explanatory drawing. 第6実施形態の配管装置(実施例2)を示す断面図であり、同図(A)は構成説明図、同図(B)は作用説明図。It is sectional drawing which shows the piping apparatus (Example 2) of 6th Embodiment, The figure (A) is a structure explanatory drawing, The same figure (B) is an effect | action explanatory drawing. 第7実施形態の配管装置(実施例1)を示す断面図であり、同図(A)は構成説明図、同図(B)は作用説明図。It is sectional drawing which shows the piping apparatus (Example 1) of 7th Embodiment, The figure (A) is a structure explanatory drawing, The figure (B) is an effect | action explanatory drawing. 第7実施形態の配管装置(実施例2)を示す断面図であり、同図(A)は構成説明図、同図(B)は作用説明図。It is sectional drawing which shows the piping apparatus (Example 2) of 7th Embodiment, The figure (A) is a structure explanatory drawing, The same figure (B) is an effect | action explanatory drawing. 第8実施形態の配管装置(実施例1)を示す断面図であり、同図(A)は構成説明図、同図(B)は作用説明図。It is sectional drawing which shows the piping apparatus (Example 1) of 8th Embodiment, The figure (A) is a structure explanatory drawing, The same figure (B) is an effect | action explanatory drawing. 第8実施形態の配管装置(実施例2)を示す断面図であり、同図(A)は構成説明図、同図(B)は作用説明図。It is sectional drawing which shows the piping apparatus (Example 2) of 8th Embodiment, The figure (A) is a structure explanatory drawing, The same figure (B) is an effect | action explanatory drawing. 第9実施形態の配管装置(実施例1)を示す断面図であり、同図(A)は構成説明図、同図(B)は作用説明図。It is sectional drawing which shows the piping apparatus (Example 1) of 9th Embodiment, The figure (A) is a structure explanatory drawing, The figure (B) is an effect | action explanatory drawing. 第9実施形態の配管装置(実施例2)を示す断面図であり、同図(A)は構成説明図、同図(B)は作用説明図。It is sectional drawing which shows the piping apparatus (Example 2) of 9th Embodiment, The figure (A) is a structure explanatory drawing, The same figure (B) is an effect | action explanatory drawing. 従来の発電プラントの一般的な軸受潤滑油系統を示す概略図であり、同図(A)はその全体図、同図(B)はそのa矢視図。It is the schematic which shows the general bearing lubricating oil system | strain of the conventional power plant, The figure (A) is the whole figure, The figure (B) is the a arrow view. 前記軸受潤滑油系統においてプラント運転中に各軸受け部からの戻り油(支流)Lhbが母管11へと合流した際に発生する可能性のある管内閉塞の状態を示す図。The figure which shows the state of the pipe | tube obstruction | occlusion which may generate | occur | produce when the return oil (branch) Lhb from each bearing part merges into the mother pipe 11 during plant operation in the said bearing lubricating oil system.

以下図面により本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1実施形態)
図1は、第1実施形態の配管装置を示す断面図であり、同図(A)は構成説明図、同図(B)は作用説明図である。
(First embodiment)
1A and 1B are cross-sectional views showing a piping device according to the first embodiment, in which FIG. 1A is a configuration explanatory view and FIG. 1B is an operation explanatory view.

下り勾配θで配置された戻り油母管11に戻り油枝管12が上方から接続されている。   A return oil branch pipe 12 is connected from above to a return oil mother pipe 11 arranged at a downward gradient θ.

前記戻り油母管11に矢印aに示すように戻り油Lhaが流れ、前記戻り油枝管12に矢印bに示すように流れる前記軸受け部からの戻り油Lhbが前記戻り油母管11へと合流する構成となっている。   Return oil Lha flows into the return oil mother pipe 11 as shown by an arrow a, and return oil Lhb from the bearing portion flows into the return oil branch pipe 12 as shown by an arrow b into the return oil mother pipe 11. It is configured to merge.

そして、前記戻り油母管11内部における前記戻り油枝管12との接続部(戻り油Lha,Lhbの合流部)の上流側から下流側に渡って、当該戻り油母管11内部の上部壁面に沿って内部バイパス管13を設ける。   And the upper wall surface inside the return oil mother pipe 11 from the upstream side to the downstream side of the connection part (the junction part of the return oils Lha and Lhb) with the return oil branch pipe 12 inside the return oil mother pipe 11 An internal bypass pipe 13 is provided along the line.

この内部バイパス管13は、前記戻り油母管11の内部において、前記戻り油合流部の上流側の気相空間と下流側の気相空間とを独立して連通する機能を有する。   The internal bypass pipe 13 has a function of independently communicating the gas phase space on the upstream side and the gas phase space on the downstream side of the return oil merging portion inside the return oil mother pipe 11.

すなわち、前記構成の内部バイパス管13を設けた配管装置によれば、前記戻り油Lha,Lhbの合流部の液面がその部分的な滞りにより前記戻り油母管11の上部壁面まで達する状態となっても、当該合流部上流側の気相空間圧力P1と下流側の気相空間圧力P2と前記戻り油枝管12内の気相空間圧力P3とを均一(P1=P2=P3)に維持することができ、当該戻り油母管11の口径を小さくすることが可能になる。   That is, according to the piping apparatus provided with the internal bypass pipe 13 having the above-described configuration, the liquid level of the joining portion of the return oils Lha and Lhb reaches the upper wall surface of the return oil mother pipe 11 due to the partial stagnation. Even in this case, the gas phase space pressure P1 upstream, the gas phase space pressure P2 downstream, and the gas phase space pressure P3 in the return oil branch pipe 12 are maintained uniform (P1 = P2 = P3). Therefore, the diameter of the return oil mother pipe 11 can be reduced.

ここで、前記内部バイパス管13の前記合流部上流側への長さは、当該合流部の液面が最大に上昇した状態で前記戻り油母管11の上部壁面に達する範囲よりも更に上流側となる予め設定された長さDとする。   Here, the length of the internal bypass pipe 13 toward the upstream side of the joining part is further upstream than the range reaching the upper wall surface of the return oil mother pipe 11 with the liquid level of the joining part rising to the maximum. The length D is set in advance.

なお、この第1実施形態の内部バイパス管13を設けた配管装置は、既存の戻り油母管11と戻り油枝管12との接続部を除去し、溶接部w1,w2,w3によって交換可能なT継手配管10Tとして構成してもよい。   The piping apparatus provided with the internal bypass pipe 13 of the first embodiment can be replaced by the welded parts w1, w2, and w3 by removing the connection part between the existing return oil mother pipe 11 and the return oil branch pipe 12. You may comprise as the T joint piping 10T.

(第2実施形態)
図2は、第2実施形態の配管装置を示す断面図であり、同図(A)は構成説明図、同図(B)は作用説明図である。
(Second Embodiment)
2A and 2B are cross-sectional views showing a piping device according to the second embodiment, in which FIG. 2A is a configuration explanatory view and FIG. 2B is an operation explanatory view.

この第2実施形態では、前記戻り油母管11における前記戻り油枝管12との接続部(戻り油Lha,Lhbの合流部)の上流側の内壁天井面と、前記戻り油枝管12の内壁面との間を繋ぐ外部バイパス管14を設ける。   In the second embodiment, the inner wall ceiling surface on the upstream side of the connecting portion (the joining portion of the return oils Lha and Lhb) of the return oil mother pipe 11 with the return oil branch pipe 12, and the return oil branch pipe 12 An external bypass pipe 14 is provided to connect the inner wall surface.

この外部バイパス管14は、前記戻り油母管11の前記戻り油合流部の上流側の気相空間と下流側の気相空間とを前記戻り油枝管12の気相空間を経由して連通する機能を有する。   The external bypass pipe 14 communicates the gas phase space on the upstream side and the gas phase space on the downstream side of the return oil joining portion of the return oil mother pipe 11 via the gas phase space of the return oil branch pipe 12. Has the function of

すなわち、前記構成の外部バイパス管14を設けた配管装置によれば、前記第1実施形態と同様に、前記戻り油Lha,Lhbの合流部の液面がその部分的な滞りにより前記戻り油母管11の上部壁面まで達する状態となっても、当該合流部上流側の気相空間圧力P1と下流側の気相空間圧力P2と前記戻り油枝管12内の気相空間圧力P3とを均一(P1=P2=P3)に維持することができ、当該戻り油母管11の口径を小さくすることが可能になる。   That is, according to the piping apparatus provided with the external bypass pipe 14 having the above-described configuration, the liquid level of the joining portion of the return oils Lha and Lhb is caused by the partial stagnation as in the first embodiment. Even when reaching the upper wall surface of the pipe 11, the gas phase space pressure P 1 on the upstream side of the junction, the gas phase space pressure P 2 on the downstream side, and the gas phase space pressure P 3 in the return oil branch pipe 12 are uniform. (P1 = P2 = P3) can be maintained, and the diameter of the return oil mother pipe 11 can be reduced.

ここで、前記戻り油母管11において前記外部バイパス管14の一端を接続する合流部上流側への長さは、前記第1実施形態と同様の条件により予め設定された長さDとする。   Here, in the return oil mother pipe 11, the length to the upstream side of the junction where the one end of the external bypass pipe 14 is connected is set to a length D set in advance under the same conditions as in the first embodiment.

なお、この第2実施形態の外部バイパス管14を設けた配管装置も、前記第1実施形態と同様に、溶接部w1,w2,w3によって交換可能なT継手配管10Tとして構成してもよい。   In addition, you may comprise the piping apparatus provided with the external bypass pipe 14 of this 2nd Embodiment as T joint piping 10T replaceable by welding part w1, w2, w3 similarly to the said 1st Embodiment.

図3は、前記第2実施形態の配管装置における他の実施例を示す断面図である。   FIG. 3 is a cross-sectional view showing another example of the piping device of the second embodiment.

この他の実施例では、前記戻り油枝管12における前記外部バイパス管14の接続部(開口部)を、当該戻り油枝管12の内壁に沿って下向きになるエルボ管14eにして構成するか、または前記戻り油枝管12における前記外部バイパス管14の接続部(開口部)の直上の内壁に、戻り油ガード14gを設けて構成する。   In another embodiment, the connection portion (opening) of the external bypass pipe 14 in the return oil branch pipe 12 is configured as an elbow pipe 14e that faces downward along the inner wall of the return oil branch pipe 12. Alternatively, a return oil guard 14g is provided on the inner wall of the return oil branch pipe 12 directly above the connection portion (opening) of the external bypass pipe 14.

これによれば、前記戻り油枝管12内を自由落下して流れる戻り油Lhbが、前記外部バイパス管14の開口部を塞いでしまう恐れを防止できる。   According to this, it is possible to prevent the return oil Lhb flowing freely falling in the return oil branch pipe 12 from blocking the opening of the external bypass pipe 14.

(第3実施形態)
図4は、第3実施形態の配管装置を示す断面図であり、同図(A)は構成説明図、同図(B)は作用説明図である。
(Third embodiment)
FIG. 4 is a cross-sectional view showing a piping device according to a third embodiment, where FIG. 4A is a configuration explanatory diagram and FIG. 4B is an operation explanatory diagram.

この第3実施形態では、前記戻り油母管11における前記戻り油枝管12との接続部(戻り油Lha,Lhbの合流部)の上流側の内壁天井面と下流側の天井壁面との間を繋ぐ外部バイパス管15を設ける。   In the third embodiment, between the inner wall ceiling surface on the upstream side and the ceiling wall surface on the downstream side of the connecting portion of the return oil mother pipe 11 with the return oil branch pipe 12 (the junction of the return oils Lha and Lhb). An external bypass pipe 15 is provided.

この外部バイパス管15は、前記戻り油母管11の外部を経由して、前記戻り油合流部の上流側の気相空間と下流側の気相空間とを独立して連通する機能を有する。   The external bypass pipe 15 has a function of independently communicating the gas phase space on the upstream side and the gas phase space on the downstream side of the return oil merging portion via the outside of the return oil mother pipe 11.

すなわち、前記構成の外部バイパス管15を設けた配管装置によれば、前記第1実施形態と同様に、前記戻り油Lha,Lhbの合流部の液面がその部分的な滞りにより前記戻り油母管11の上部壁面まで達する状態となっても、当該合流部上流側の気相空間圧力P1と下流側の気相空間圧力P2と前記戻り油枝管12内の気相空間圧力P3とを均一(P1=P2=P3)に維持することができ、当該戻り油母管11の口径を小さくすることが可能になる。   That is, according to the piping apparatus provided with the external bypass pipe 15 having the above-described configuration, the liquid level of the joining portion of the return oils Lha and Lhb is caused by the partial stagnation as in the first embodiment. Even when reaching the upper wall surface of the pipe 11, the gas phase space pressure P 1 on the upstream side of the junction, the gas phase space pressure P 2 on the downstream side, and the gas phase space pressure P 3 in the return oil branch pipe 12 are uniform. (P1 = P2 = P3) can be maintained, and the diameter of the return oil mother pipe 11 can be reduced.

ここで、前記戻り油母管11において前記外部バイパス管15の一端を接続する合流部上流側への長さは、前記第1実施形態と同様の条件により予め設定された長さDとする。   Here, the length to the upstream side of the junction where the one end of the external bypass pipe 15 is connected in the return oil mother pipe 11 is set to a length D set in advance under the same conditions as in the first embodiment.

なお、この第3実施形態の外部バイパス管15を設けた配管装置も、前記各実施形態と同様に、溶接部w1,w2,w3によって交換可能なT継手配管10Tとして構成してもよい。   In addition, you may comprise the piping apparatus which provided the external bypass pipe 15 of this 3rd Embodiment as T joint piping 10T replaceable by welding part w1, w2, w3 similarly to the said each embodiment.

(第4実施形態)
図5は、第4実施形態の配管装置を示す断面図であり、同図(A)は構成説明図、同図(B)は作用説明図である。
(Fourth embodiment)
FIGS. 5A and 5B are cross-sectional views showing a piping device according to a fourth embodiment. FIG. 5A is a configuration explanatory view and FIG. 5B is an operation explanatory view.

この第4実施形態では、前記戻り油母管11における前記戻り油枝管12との接続部(戻り油Lha,Lhbの合流部)の上流側の内壁天井面と、前記戻り油枝管12の一方の内壁面との間を繋ぐ第1外部バイパス管16aを設けると共に、前記戻り油母管11における下流側の内壁天井面と、前記戻り油枝管12の他方の内壁面との間を繋ぐ第2外部バイパス管16bを設ける。   In the fourth embodiment, the inner wall ceiling surface on the upstream side of the connecting portion (the joining portion of the return oils Lha and Lhb) with the return oil branch pipe 12 in the return oil mother pipe 11, and the return oil branch pipe 12 A first external bypass pipe 16a is provided to connect between one inner wall surface and the downstream inner wall ceiling surface of the return oil mother pipe 11 is connected to the other inner wall surface of the return oil branch pipe 12. A second external bypass pipe 16b is provided.

前記第1外部バイパス管16aは、前記戻り油母管11の前記戻り油合流部の上流側の気相空間と前記戻り油枝管12の気相空間を連通する機能を有し、また、前記第2外部バイパス管16bは、前記戻り油枝管12の気相空間と前記戻り油母管11の前記戻り油合流部の下流側の気相空間を連通する機能を有する。   The first external bypass pipe 16a has a function of communicating a gas phase space upstream of the return oil merging portion of the return oil mother pipe 11 and a gas phase space of the return oil branch pipe 12, The second external bypass pipe 16 b has a function of communicating the gas phase space of the return oil branch pipe 12 with the gas phase space on the downstream side of the return oil merging portion of the return oil mother pipe 11.

すなわち、前記構成の第1,第2外部バイパス管16a,16bを設けた配管装置によれば、前記戻り油Lha,Lhbの合流部の液面がその部分的な滞りにより前記戻り油母管11の上部壁面まで達し、更には前記戻り油枝管12との接続部の開口を塞ぐ状態となっても、当該戻り油母管11における合流部上流側の気相空間圧力P1と下流側の気相空間圧力P2と前記戻り油枝管12内の気相空間圧力P3とを均一(P1=P2=P3)に維持することができ、同戻り油母管11の口径を小さくすることが可能になる。   That is, according to the piping apparatus provided with the first and second external bypass pipes 16a and 16b having the above-described configuration, the return oil mother pipe 11 is caused by the partial stagnation of the liquid level at the junction of the return oils Lha and Lhb. Even when the opening of the connecting portion with the return oil branch pipe 12 is closed, the gas phase space pressure P1 on the upstream side of the joining portion in the return oil mother pipe 11 and the gas pressure on the downstream side The phase space pressure P2 and the gas phase space pressure P3 in the return oil branch pipe 12 can be maintained uniform (P1 = P2 = P3), and the diameter of the return oil mother pipe 11 can be reduced. Become.

ここで、前記戻り油母管11において前記第1外部バイパス管16aの一端を接続する合流部上流側への長さは、前記第1実施形態と同様の条件により予め設定された長さDとする。   Here, in the return oil mother pipe 11, the length to the upstream side of the joining portion that connects one end of the first external bypass pipe 16a is a length D set in advance under the same conditions as in the first embodiment. To do.

なお、この第4実施形態の第1,第2外部バイパス管16a,16bを設けた配管装置も、前記各実施形態と同様に、溶接部w1,w2,w3によって交換可能なT継手配管10Tとして構成してもよい。   In addition, the piping apparatus provided with the first and second external bypass pipes 16a and 16b of the fourth embodiment is also a T-joint pipe 10T that can be replaced by the welds w1, w2, and w3, as in the above embodiments. It may be configured.

また、この第4実施形態の他の実施例として、前記第2実施形態の他の実施例(図3参照)と同様に、前記戻り油枝管12における前記第1,第2外部バイパス管16a,16bの各接続部(開口部)を、当該戻り油枝管12の内壁に沿って下向きになるエルボ管14eにして構成するか、または前記戻り油枝管12における前記第1,第2外部バイパス管16a,16bの各接続部(開口部)の直上の内壁に、戻り油ガード14gを設けて構成してもよい。   As another example of the fourth embodiment, the first and second external bypass pipes 16a in the return oil branch pipe 12 are the same as the other examples (see FIG. 3) of the second embodiment. , 16b are configured as elbow pipes 14e that face downward along the inner wall of the return oil branch pipe 12, or the first and second external parts of the return oil branch pipe 12 You may comprise the return oil guard 14g in the inner wall immediately above each connection part (opening part) of the bypass pipes 16a and 16b.

(第5実施形態)
図6は、第5実施形態の配管装置を示す断面図であり、同図(A)は構成説明図、同図(B)は作用説明図である。
(Fifth embodiment)
FIG. 6 is a cross-sectional view showing a piping device according to a fifth embodiment. FIG. 6A is a configuration explanatory view, and FIG. 6B is an operation explanatory view.

この第5実施形態では、前記戻り油母管11と戻り油枝管12との接続部(戻り油Lha,Lhbの合流部)において、当該戻り油母管11の上流側の天井壁面から当該接続部にて屈曲した戻り油枝管12の側壁面に渡って(沿わせて)第1内部バイパス管17aを設けると共に、同戻り油母管11の下流側の天井壁面から同接続部にて屈曲した戻り油枝管12の側壁面に渡って(沿わせて)第2内部バイパス管17aを設ける。   In the fifth embodiment, the connection from the ceiling wall surface on the upstream side of the return oil mother pipe 11 at the connection part between the return oil mother pipe 11 and the return oil branch pipe 12 (joint part of the return oils Lha and Lhb). The first internal bypass pipe 17a is provided (along) along the side wall surface of the return oil branch pipe 12 bent at the portion, and bent at the connection portion from the ceiling wall surface on the downstream side of the return oil mother pipe 11 A second internal bypass pipe 17 a is provided along (in line with) the side wall surface of the return oil branch pipe 12.

前記第1内部バイパス管17aは、前記戻り油母管11の前記戻り油合流部の上流側の気相空間と前記戻り油枝管12の気相空間を連通する機能を有し、また、前記第2内部バイパス管17bは、前記戻り油枝管12の気相空間と前記戻り油母管11の前記戻り油合流部の下流側の気相空間を連通する機能を有する。   The first internal bypass pipe 17a has a function of communicating a gas phase space on the upstream side of the return oil merging portion of the return oil mother pipe 11 with a gas phase space of the return oil branch pipe 12, and The second internal bypass pipe 17 b has a function of communicating the gas phase space of the return oil branch pipe 12 with the gas phase space on the downstream side of the return oil merging portion of the return oil mother pipe 11.

すなわち、前記構成の第1,第2内部バイパス管17a,17bを設けた配管装置によれば、前記戻り油Lha,Lhbの合流部の液面がその部分的な滞りにより前記戻り油母管11の上部壁面まで達しても、当該戻り油母管11における合流部上流側の気相空間圧力P1と下流側の気相空間圧力P2と前記戻り油枝管12内の気相空間圧力P3とを均一(P1=P2=P3)に維持することができ、同戻り油母管11の口径を小さくすることが可能になる。   That is, according to the piping device provided with the first and second internal bypass pipes 17a and 17b having the above-described configuration, the return oil mother pipe 11 is caused by the partial stagnation of the liquid level at the junction of the return oils Lha and Lhb. The gas phase space pressure P1 on the upstream side of the joining portion, the gas phase space pressure P2 on the downstream side, and the gas phase space pressure P3 in the return oil branch pipe 12 are It can be kept uniform (P1 = P2 = P3), and the diameter of the return oil mother pipe 11 can be reduced.

ここで、前記戻り油母管11において前記第1内部バイパス管17aの合流部上流側への長さは、前記第1実施形態と同様の条件により予め設定された長さDとする。   Here, in the return oil mother pipe 11, the length of the first internal bypass pipe 17a to the upstream side of the merging portion is set to a length D set in advance under the same conditions as in the first embodiment.

なお、この第5実施形態の第1,第2内部バイパス管17a,17bを設けた配管装置も、前記各実施形態と同様に、溶接部w1,w2,w3によって交換可能なT継手配管10Tとして構成してもよい。   In addition, the piping device provided with the first and second internal bypass pipes 17a and 17b of the fifth embodiment is also a T-joint pipe 10T that can be replaced by the welded parts w1, w2, and w3, as in the above embodiments. It may be configured.

また、この第5実施形態の他の実施例として、前記第2実施形態の他の実施例(図3参照)と同様に、前記戻り油枝管12における前記第1,第2内部バイパス管17a,17bの各開口部の直上に、戻り油ガード14gを設けて構成してもよい。   As another example of the fifth embodiment, the first and second internal bypass pipes 17a in the return oil branch pipe 12 are the same as other examples (see FIG. 3) of the second embodiment. , 17b may be provided with a return oil guard 14g immediately above each opening.

(第6実施形態)
図7Aは、第6実施形態の配管装置(実施例1)を示す断面図であり、同図(A)は構成説明図、同図(B)は作用説明図である。
(Sixth embodiment)
FIG. 7A is a cross-sectional view showing a piping device (Example 1) of a sixth embodiment, where FIG. 7A is a configuration explanatory view, and FIG. 7B is an operation explanatory view.

図7Bは、第6実施形態の配管装置(実施例2)を示す断面図であり、同図(A)は構成説明図、同図(B)は作用説明図である。   FIG. 7B is a cross-sectional view showing the piping device (Example 2) of the sixth embodiment, where FIG. 7A is a configuration explanatory view, and FIG. 7B is an operation explanatory view.

この第6実施形態では、前記戻り油母管11における前記戻り油枝管12との接続部(戻り油Lha,Lhbの合流部)の配管を、その上流側では口径を拡げる第1エキセントリックレジューサ(偏心管継手)18aを用い、その下流側では前記拡げた口径を元に戻す第2エキセントリックレジューサ(偏心管継手)18aを用い、その間の口径のみを拡げた拡大管19Tとして構成する。   In this sixth embodiment, a first eccentric reducer (in which the diameter of the connecting portion of the return oil mother pipe 11 with the return oil branch pipe 12 (the junction of the return oils Lha and Lhb) is expanded on the upstream side ( A second eccentric reducer (eccentric pipe joint) 18a that uses the eccentric pipe joint 18a on the downstream side and returns the expanded diameter to the original is used, and an enlarged pipe 19T having only the diameter in between is expanded.

すなわち、前記拡大管19Tにより接続部を構成した配管装置によれば、当該接続部(戻り油Lha,Lhbの合流部)の口径だけを拡げることで、前記戻り油Lha,Lhbの合流部の液面がその部分的な滞りにより前記戻り油母管11の上部壁面レベルまで上昇しても、当該合流部における気相空間を維持することができ、同戻り油母管11における合流部上流側の気相空間圧力P1と下流側の気相空間圧力P2と前記戻り油枝管12内の気相空間圧力P3とを均一(P1=P2=P3)に維持することができる。よって、前記戻り油母管11の口径を小さくすることが可能になる。   That is, according to the piping device in which the connection portion is configured by the expansion pipe 19T, the liquid in the junction portion of the return oils Lha and Lhb is expanded by expanding only the diameter of the connection portion (the junction portion of the return oils Lha and Lhb). Even if the surface rises to the upper wall surface level of the return oil mother pipe 11 due to the partial stagnation, the gas phase space in the junction can be maintained, and the upstream side of the junction in the return oil mother pipe 11 can be maintained. The gas phase space pressure P1, the downstream gas phase space pressure P2, and the gas phase space pressure P3 in the return oil branch pipe 12 can be maintained uniformly (P1 = P2 = P3). Therefore, the diameter of the return oil mother pipe 11 can be reduced.

なお、この第6実施形態の接続部を拡大管19Tにしたレジューサ18a,18bを含む配管装置も、前記各実施形態と同様に、溶接部w1,w2,w3によって交換可能なT継手配管20Tとして構成してもよい。   In addition, the piping device including the reducers 18a and 18b in which the connecting portion of the sixth embodiment is an enlarged tube 19T is also used as a T-joint piping 20T that can be replaced by the welded portions w1, w2, and w3, as in the above embodiments. It may be configured.

(第7実施形態)
図8Aは、第7実施形態の配管装置(実施例1)を示す断面図であり、同図(A)は構成説明図、同図(B)は作用説明図である。
(Seventh embodiment)
FIG. 8A is a cross-sectional view showing a piping device (Example 1) of a seventh embodiment, where FIG. 8A is a configuration explanatory view and FIG. 8B is an operation explanatory view.

図8Bは、第7実施形態の配管装置(実施例2)を示す断面図であり、同図(A)は構成説明図、同図(B)は作用説明図である。   FIG. 8B is a cross-sectional view showing a piping device (Example 2) according to the seventh embodiment, where FIG. 8A is a configuration explanatory view and FIG. 8B is an operation explanatory view.

この第7実施形態では、前記戻り油母管11における前記戻り油枝管12との接続部(戻り油Lha,Lhbの合流部)の配管を、その上流側で口径を拡げるエキセントリックレジューサ(偏心管継手)18aを用い、その口径を拡げた拡大管19Tとして構成すると共に、当該拡大管19Tから下流側を同口径の戻り油母管11Lにして構成する。   In the seventh embodiment, an eccentric reducer (eccentric pipe) that expands the diameter of the pipe of the connecting part (the joining part of the return oils Lha and Lhb) of the return oil mother pipe 11 with the return oil branch pipe 12 on the upstream side thereof. The joint 18a is used as an enlarged pipe 19T having an enlarged diameter, and the downstream side of the enlarged pipe 19T is formed as a return oil mother pipe 11L having the same diameter.

すなわち、前記接続部以降の口径を拡大した配管装置によれば、前記戻り油Lha,Lhbの合流部の液面がその部分的な滞りにより前記戻り油母管11の上部壁面レベルまで上昇しても、当該合流部における気相空間を維持することができ、同戻り油母管11〜11Lにおける合流部上流側の気相空間圧力P1と下流側の気相空間圧力P2と前記戻り油枝管12内の気相空間圧力P3とを均一(P1=P2=P3)に維持することができる。よって、前記戻り油母管11の口径を小さくすることが可能になる。   That is, according to the piping device having an enlarged diameter after the connecting portion, the liquid level of the joining portion of the return oils Lha and Lhb rises to the upper wall surface level of the return oil mother pipe 11 due to the partial stagnation. Further, the gas phase space in the junction can be maintained. In the return oil mother pipes 11 to 11L, the gas phase space pressure P1 on the upstream side of the junction, the gas phase space pressure P2 on the downstream side, and the return oil branch pipe. 12 and the gas phase space pressure P3 can be kept uniform (P1 = P2 = P3). Therefore, the diameter of the return oil mother pipe 11 can be reduced.

しかも、前記接続部(合流部)以降はその戻り油Lha,Lhbの合流により油量が増すので、更に下流側に同様の接続部(合流部)がある場合でも、円滑に戻り油Lha(+Lhb,…)を流すことができる。   In addition, since the amount of oil is increased by the merging of the return oils Lha and Lhb after the connecting part (merging part), even if there is a similar connecting part (merging part) further downstream, the returning oil Lha (+ Lhb) , ...)

なお、この第7実施形態の接続部を拡大管19Tにしたレジューサ18aを含む配管装置も、前記各実施形態と同様に、溶接部w1,w2,w3によって交換可能なT継手配管20Tとして構成してもよい。   In addition, the piping device including the reducer 18a in which the connecting portion of the seventh embodiment is an enlarged tube 19T is also configured as a T-joint piping 20T that can be replaced by the welded portions w1, w2, and w3, as in the above embodiments. May be.

(第8実施形態)
図9Aは、第8実施形態の配管装置(実施例1)を示す断面図であり、同図(A)は構成説明図、同図(B)は作用説明図である。
(Eighth embodiment)
FIG. 9A is a cross-sectional view showing a piping device (Example 1) according to an eighth embodiment. FIG. 9A is a configuration explanatory view, and FIG. 9B is an operation explanatory view.

図9Bは、第8実施形態の配管装置(実施例2)を示す断面図であり、同図(A)は構成説明図、同図(B)は作用説明図である。   FIG. 9B is a cross-sectional view showing a piping device (Example 2) of the eighth embodiment, where FIG. 9A is a configuration explanatory view, and FIG. 9B is an operation explanatory view.

この第8実施形態では、前記戻り油母管11と戻り油枝管12との接続部(戻り油Lha,Lhbの合流部)の配管を、その枝管12おける接続部(合流部)の上流で母管11の上流方向に偏心して口径を拡げるエキセントリックレジューサ(偏心管継手)21を用い、同枝管12端部の口径を拡げた拡大管19T´として構成する。   In the eighth embodiment, the pipe of the connecting part (the joining part of the return oils Lha and Lhb) between the return oil mother pipe 11 and the return oil branch pipe 12 is arranged upstream of the connecting part (joining part) in the branch pipe 12. Thus, an eccentric reducer (eccentric pipe joint) 21 that is eccentric in the upstream direction of the mother pipe 11 to widen the diameter is used, and an enlarged pipe 19T ′ having an enlarged diameter at the end of the branch pipe 12 is configured.

すなわち、前記拡大管19T´により接続部を構成した配管装置によれば、当該接続部(戻り油Lha,Lhbの合流部)の枝管12側の口径だけを母管12の上流方向に拡げることで、前記戻り油Lha,Lhbの合流部の液面がその部分的な滞りにより前記戻り油母管11の上部壁面レベルまで上昇しても、当該合流部における気相空間を維持することができ、同戻り油母管11における合流部上流側の気相空間圧力P1と下流側の気相空間圧力P2と前記戻り油枝管12内の気相空間圧力P3とを均一(P1=P2=P3)に維持することができる。よって、前記戻り油母管11の口径を小さくすることが可能になる。   That is, according to the piping device in which the connecting portion is configured by the enlarged pipe 19T ′, only the diameter of the connecting portion (the joining portion of the return oils Lha and Lhb) on the branch pipe 12 side is expanded in the upstream direction of the mother pipe 12. Thus, even if the liquid level of the joining portion of the return oils Lha and Lhb rises to the upper wall surface level of the return oil mother pipe 11 due to the partial stagnation, the gas phase space in the joining portion can be maintained. In the return oil mother pipe 11, the gas phase space pressure P1 on the upstream side of the joining portion, the gas phase space pressure P2 on the downstream side, and the gas phase space pressure P3 in the return oil branch pipe 12 are uniform (P1 = P2 = P3). ) Can be maintained. Therefore, the diameter of the return oil mother pipe 11 can be reduced.

なお、この第8実施形態の接続部を拡大管19T´にしたレジューサ21を含む配管装置も、前記各実施形態と同様に、溶接部w1,w2,w3によって交換可能なT継手配管20Tとして構成してもよい。   In addition, the piping device including the reducer 21 in which the connecting portion of the eighth embodiment is an enlarged tube 19T ′ is also configured as a T-joint piping 20T that can be replaced by the welded portions w1, w2, and w3, as in the above embodiments. May be.

(第9実施形態)
図10Aは、第9実施形態の配管装置(実施例1)を示す断面図であり、同図(A)は構成説明図、同図(B)は作用説明図である。
(Ninth embodiment)
FIG. 10A is a cross-sectional view showing a piping device (Example 1) according to a ninth embodiment, where FIG. 10A is a configuration explanatory view and FIG. 10B is an operation explanatory view.

図10Bは、第9実施形態の配管装置(実施例2)を示す断面図であり、同図(A)は構成説明図、同図(B)は作用説明図である。   FIG. 10B is a cross-sectional view showing the piping device (Example 2) of the ninth embodiment, where FIG. 10A is a configuration explanatory view and FIG. 10B is an operation explanatory view.

この第9実施形態では、前記戻り油母管11における前記戻り油枝管12との接続部(戻り油Lha,Lhbの合流部)の配管を、その上流側で下方向に偏心して口径を拡げるエキセントリックレジューサ(偏心管継手)22を用い、その口径を拡げた拡大管19Tとして構成すると共に、当該拡大管19Tから下流側を同口径の戻り油母管11Lにして構成する。   In the ninth embodiment, the pipe of the connecting portion of the return oil mother pipe 11 with the return oil branch pipe 12 (the junction of the return oils Lha and Lhb) is decentered downward on the upstream side to widen the diameter. An eccentric reducer (eccentric pipe joint) 22 is used to form an enlarged pipe 19T having an enlarged diameter, and a downstream side of the enlarged pipe 19T is formed as a return oil mother pipe 11L having the same diameter.

すなわち、前記接続部以降の口径を拡大した配管装置によれば、前記戻り油Lha,Lhbの合流部の液面がその部分的な滞りにより前記戻り油母管11の口径レベルまで上昇しても、当該合流部における気相空間を維持することができ、同戻り油母管11〜11Lにおける合流部上流側の気相空間圧力P1と下流側の気相空間圧力P2と前記戻り油枝管12内の気相空間圧力P3とを均一(P1=P2=P3)に維持することができる。よって、前記戻り油母管11の口径を小さくすることが可能になる。   That is, according to the piping device having an enlarged diameter after the connecting portion, even if the liquid level of the joining portion of the return oils Lha and Lhb rises to the diameter level of the return oil mother pipe 11 due to the partial stagnation. The gas phase space in the junction can be maintained, and the gas phase space pressure P1 on the upstream side of the junction, the gas phase space pressure P2 on the downstream side, and the return oil branch pipe 12 in the return oil mother pipes 11 to 11L. The gas phase space pressure P3 can be kept uniform (P1 = P2 = P3). Therefore, the diameter of the return oil mother pipe 11 can be reduced.

しかも、前記接続部(合流部)以降は下方向に偏心して口径が拡大しているので、前記合流による管内閉塞の恐れをより効果的に防止できるばかりでなく、更に下流側に同様の接続部(合流部)が連続する場合でも、その合流により油量が増した戻り油Lha(+Lhb,…)をより円滑に流すことができる。   Moreover, since the diameter of the connecting portion (merging portion) and thereafter is deviated downward and the diameter is enlarged, not only can the risk of blockage in the pipe due to the merging be prevented more effectively, but also a similar connecting portion on the downstream side. Even when the (merging portion) continues, the return oil Lha (+ Lhb,...) Whose oil amount has increased due to the merging can be made to flow more smoothly.

なお、この第9実施形態の接続部を拡大管19Tにしたレジューサ22を含む配管装置も、前記各実施形態と同様に、溶接部w1,w2,w3によって交換可能なT継手配管20Tとして構成してもよい。   In addition, the piping device including the reducer 22 in which the connecting portion of the ninth embodiment is an enlarged pipe 19T is also configured as a T-joint piping 20T that can be replaced by the welded portions w1, w2, and w3, as in the above embodiments. May be.

したがって、前記構成の第1実施形態〜第9実施形態の配管装置(T継手配管)によれば、傾斜して配置された母管に流れる液体と当該母管に上方から接続された枝管に流れる液体との合流部において、当該合流した液体の部分的な滞りによる液面上昇が生じても、母管上流側の気相空間と下流側の気相空間、枝管上流側の気相空間の繋がりを維持することができ、その各空間圧力を均一(P1=P2=P3)に維持することができる。   Therefore, according to the piping apparatus (T-joint piping) of the first to ninth embodiments having the above-described configuration, the liquid flowing in the inclined main pipe and the branch pipe connected to the main pipe from above are provided. Even if the liquid level rises due to a partial stagnation of the merged liquid at the junction with the flowing liquid, the gas phase space on the upstream side of the mother pipe, the gas phase space on the downstream side, and the gas phase space on the upstream side of the branch pipe Can be maintained, and each space pressure can be maintained uniformly (P1 = P2 = P3).

よって、母管上流側の気相空間と下流側の気相空間とが閉塞状態になることを防止しつつ、当該配管の口径を最小化することが可能になり、発電プラントのコンパクト化や建設費用の削減を図ることができる。   Therefore, it is possible to minimize the diameter of the piping while preventing the gas phase space on the upstream side of the main pipe and the gas phase space on the downstream side from being closed, and the power plant can be made compact and constructed. Costs can be reduced.

なお、前記各実施形態の配管装置は、発電プラントの軸受潤滑油系統に用いる配管装置として説明したが、当該発電プラントに限らず、傾斜した母管11に枝管12からの液体を合流させながら流す配管系統であって、全管内に渡り常に気相空間を維持することが必須の配管系統であれば、前記各実施形態と同様に用いて同様の効果を得ることができる。   In addition, although the piping apparatus of each said embodiment was demonstrated as a piping apparatus used for the bearing lubricating oil system | strain of a power plant, it is not restricted to the said power generation plant, While making the liquid from the branch pipe 12 join the inclined mother pipe 11 If it is a piping system that flows and it is indispensable to always maintain the gas phase space in the entire pipe, it can be used in the same manner as in the above embodiments to obtain the same effect.

本願発明は、前記各実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。さらに、前記各実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組み合わせにより種々の発明が抽出され得る。例えば、各実施形態に示される全構成要件から幾つかの構成要件が削除されたり、幾つかの構成要件が異なる形態にして組み合わされても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除されたり組み合わされた構成が発明として抽出され得るものである。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention when it is practiced. Further, each of the embodiments includes inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements. For example, even if some constituent elements are deleted from all the constituent elements shown in each embodiment or some constituent elements are combined in different forms, the problems described in the column of the problem to be solved by the invention If the effects described in the column “Effects of the Invention” can be obtained, a configuration in which these constituent requirements are deleted or combined can be extracted as an invention.

10T…T継手配管、Lha,Lhb…戻り油、w1〜w3…溶接部、 11 …戻り油母管、11L…拡大戻り油母管、12 …戻り油枝管、13 …内部バイパス管、14、15…外部バイパス管、14e…エルボ管、14g…戻り油ガード、15 …外部、
16a,16b…第1,第2外部バイパス管、17a,17b…第1,第2内部バイパス管、18a,18b…第1,第2エキセントリックレジューサ、19T…(母管)拡大管、19T´…(枝管)拡大管。
10T ... T joint piping, Lha, Lhb ... return oil, w1 to w3 ... welded part, 11 ... return oil mother pipe, 11L ... enlarged return oil mother pipe, 12 ... return oil branch pipe, 13 ... internal bypass pipe, 14, 15 ... External bypass pipe, 14e ... Elbow pipe, 14g ... Return oil guard, 15 ... External,
16a, 16b ... first and second external bypass pipes, 17a, 17b ... first and second internal bypass pipes, 18a, 18b ... first and second eccentric reducers, 19T ... (mother pipe) expansion pipe, 19T '... (Branch tube) Expanded tube.

Claims (10)

傾斜して配置され気相空間を有する状態で液体を流す母管と、
この母管に上方から接続され、気相空間を有する状態で液体を流し当該液体を前記母管に流れる液体に合流させる枝管と、
前記母管と枝管による液体の合流部より上流側の気相空間と下流側の気相空間とを常時連通させる配管手段と、
を備えたことを特徴とする配管装置。
A mother pipe for flowing liquid in a state of being disposed at an angle and having a gas phase space;
A branch pipe connected to the mother pipe from above, allowing a liquid to flow in a state having a gas phase space, and joining the liquid to the liquid flowing in the mother pipe;
Piping means for always communicating the gas phase space on the upstream side and the gas phase space on the downstream side with respect to the liquid confluence portion by the mother pipe and the branch pipe;
A piping device characterized by comprising:
前記配管手段は、前記母管における前記液体の合流部より上流側と下流側との間の管内上部に沿って設けられ、当該合流部より上流側の気相空間と下流側の気相空間とを常時連通させる内部バイパス管である、
ことを特徴とする請求項1に記載の配管装置。
The piping means is provided along an upper part of the pipe between the upstream side and the downstream side of the joining portion of the liquid in the mother pipe, and a gas phase space on the upstream side and a gas phase space on the downstream side from the joining portion. Is an internal bypass pipe that always communicates
The piping apparatus according to claim 1.
前記配管手段は、前記母管における前記液体の合流部より上流側の管上部と前記枝管における前記液体の合流部より上流側の管壁との間に設けられ、当該母管の合流部より上流側の気相空間と下流側の気相空間とを前記枝管の管内空間を介して常時連通させる外部バイパス管である、
ことを特徴とする請求項1に記載の配管装置。
The piping means is provided between a pipe upper portion upstream of the liquid merging portion in the mother pipe and a pipe wall upstream of the liquid merging portion in the branch pipe, and from the merging portion of the mother pipe It is an external bypass pipe that always communicates the gas phase space on the upstream side and the gas phase space on the downstream side via the pipe internal space of the branch pipe,
The piping apparatus according to claim 1.
前記配管手段は、前記母管における前記液体の合流部より上流側の管と下流側の管との間に設けられ、当該合流部より上流側の気相空間と下流側の気相空間とを常時連通させる外部バイパス管である、
ことを特徴とする請求項1に記載の配管装置。
The piping means is provided between a pipe on the upstream side and a pipe on the downstream side of the joining part of the liquid in the mother pipe, and connects the gas phase space on the upstream side and the gas phase space on the downstream side with respect to the joining part. It is an external bypass pipe that always communicates.
The piping apparatus according to claim 1.
前記配管手段は、
前記母管における前記液体の合流部より上流側の管上部と前記枝管における前記液体の合流部より上流側の管壁との間に設けられた第1外部バイパス管と、
前記母管における前記液体の合流部より下流側の管上部と前記枝管における前記液体の合流部より上流側の管壁との間に設けられた第2外部バイパス管とを有し、
前記母管の合流部より上流側の気相空間と下流側の気相空間とを前記枝管の管内空間を介して常時連通させる、
ことを特徴とする請求項1に記載の配管装置。
The piping means is
A first external bypass pipe provided between a pipe upper part upstream of the liquid confluence part in the mother pipe and a pipe wall upstream of the liquid confluence part in the branch pipe;
A second external bypass pipe provided between a pipe upper portion on the downstream side of the liquid junction in the mother pipe and a pipe wall on the upstream side of the liquid junction in the branch pipe;
The gas phase space on the upstream side and the gas phase space on the downstream side from the joining portion of the mother pipe are always in communication with each other via the pipe internal space of the branch pipe.
The piping apparatus according to claim 1.
前記配管手段は、
前記母管における前記液体の合流部より上流側の管内上部と前記枝管における前記液体の合流部より上流側の管内側壁との間に沿って設けられた第1内部バイパス管と、
前記母管における前記液体の合流部より下流側の管内上部と前記枝管における前記液体の合流部より上流側の管内側壁との間に沿って設けられた第2内部バイパス管とを有し、
前記母管の合流部より上流側の気相空間と下流側の気相空間とを前記枝管の管内空間を介して常時連通させる、
ことを特徴とする請求項1に記載の配管装置。
The piping means is
A first internal bypass pipe provided between a pipe upper portion upstream of the liquid confluence portion in the mother pipe and a pipe inner wall upstream of the liquid confluence portion in the branch pipe;
A second internal bypass pipe provided between a pipe upper part on the downstream side of the liquid junction in the mother pipe and a pipe inner wall on the upstream side of the liquid junction in the branch pipe;
The gas phase space on the upstream side and the gas phase space on the downstream side from the joining portion of the mother pipe are always in communication with each other via the pipe internal space of the branch pipe.
The piping apparatus according to claim 1.
前記配管手段は、前記母管と枝管との接続部における前記液体の合流部において、当該母管の口径をその上流側の口径より拡大させた拡大管を有し、前記液体の合流部より上流側の気相空間と下流側の気相空間とを常時連通させることを特徴とする請求項1に記載の配管装置。   The piping means has an enlarged pipe in which the diameter of the mother pipe is larger than the diameter of the upstream side at the joining part of the liquid at the connection part between the mother pipe and the branch pipe, and from the joining part of the liquid The piping device according to claim 1, wherein the upstream gas phase space and the downstream gas phase space are always in communication. 前記配管手段は、前記母管と枝管との接続部における前記液体の合流部において、当該枝管の口径をその上流側の口径より前記母管の上流方向へ偏心させて拡大させた拡大管を有し、前記液体の合流部より上流側の気相空間と下流側の気相空間とを常時連通させることを特徴とする請求項1に記載の配管装置。   The pipe means is an enlarged pipe in which the diameter of the branch pipe is decentered in the upstream direction from the upstream diameter of the branch pipe at the junction of the liquid at the connection portion of the mother pipe and the branch pipe. The piping apparatus according to claim 1, wherein a gas phase space on the upstream side and a gas phase space on the downstream side of the junction portion of the liquid are always in communication with each other. 前記配管手段は、前記母管と枝管との接続部における前記液体の合流部において、当該母管の口径をその上流側の口径より下方へ偏心させて拡大させた拡大管を有し、前記液体の合流部より上流側の気相空間と下流側の気相空間とを常時連通させることを特徴とする請求項7に記載の配管装置。   The piping means has an enlarged pipe in which the diameter of the mother pipe is decentered downward from the diameter on the upstream side at the junction of the liquid at the connection part between the mother pipe and the branch pipe, 8. The piping apparatus according to claim 7, wherein the gas phase space on the upstream side and the gas phase space on the downstream side with respect to the liquid junction are in constant communication. 前記母管、枝管、配管手段は、発電プラントの軸受潤滑油系統に使用され、前記気相空間は負圧に保たれる、ことを特徴とする請求項1ないし請求項9の何れか1項に記載の配管装置。   The said pipe | tube, branch pipe, and a piping means are used for the bearing lubricating oil system | strain of a power plant, The said gaseous-phase space is maintained at a negative pressure, The any one of Claim 1 thru | or 9 characterized by the above-mentioned. The piping apparatus according to the item.
JP2016120055A 2016-06-16 2016-06-16 Piping equipment used in bearing lubricating oil systems for power plants Active JP6768367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016120055A JP6768367B2 (en) 2016-06-16 2016-06-16 Piping equipment used in bearing lubricating oil systems for power plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016120055A JP6768367B2 (en) 2016-06-16 2016-06-16 Piping equipment used in bearing lubricating oil systems for power plants

Publications (2)

Publication Number Publication Date
JP2017223178A true JP2017223178A (en) 2017-12-21
JP6768367B2 JP6768367B2 (en) 2020-10-14

Family

ID=60686756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016120055A Active JP6768367B2 (en) 2016-06-16 2016-06-16 Piping equipment used in bearing lubricating oil systems for power plants

Country Status (1)

Country Link
JP (1) JP6768367B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325705A (en) * 1976-08-23 1978-03-09 Toshiba Corp Means for preventing intrustion of dust into steam turbine lublicant system
JPS5554610A (en) * 1978-10-18 1980-04-22 Hitachi Ltd Structure of rotor bearing capable of preventing oil leakage
JPS6011798A (en) * 1983-06-29 1985-01-22 株式会社クボタ Aggregate pipe for drainage
JPH0357593U (en) * 1990-09-07 1991-06-03
JP2003222294A (en) * 2002-01-31 2003-08-08 Toshiba Corp Bearing oil circulating system for rotating machine and repairing method therefor
JP2004116633A (en) * 2002-09-26 2004-04-15 Fuji Electric Holdings Co Ltd Oil supplying apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325705A (en) * 1976-08-23 1978-03-09 Toshiba Corp Means for preventing intrustion of dust into steam turbine lublicant system
JPS5554610A (en) * 1978-10-18 1980-04-22 Hitachi Ltd Structure of rotor bearing capable of preventing oil leakage
JPS6011798A (en) * 1983-06-29 1985-01-22 株式会社クボタ Aggregate pipe for drainage
JPH0357593U (en) * 1990-09-07 1991-06-03
JP2003222294A (en) * 2002-01-31 2003-08-08 Toshiba Corp Bearing oil circulating system for rotating machine and repairing method therefor
JP2004116633A (en) * 2002-09-26 2004-04-15 Fuji Electric Holdings Co Ltd Oil supplying apparatus

Also Published As

Publication number Publication date
JP6768367B2 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
JP5027977B2 (en) Drain device for gas turbine support bearing
CN104220705B (en) The radial direction active clearance of gas-turbine unit controls
JP6240435B2 (en) Cooling circuit for reducing differential thermal expansion of turbine rotor and shell support
JP2016205379A (en) Gas turbine engine component with integrated heat pipe
US20130266418A1 (en) Clearance control system for a gas turbine
JP6216337B2 (en) Gas turbine with primary and secondary lubricant coolers
CN102959287A (en) Dry gas sealing structure
WO2016047159A1 (en) Bearing and bearing pad
US20150322820A1 (en) Shrouded conduit for arranging a fluid flowpath
US20190226404A1 (en) Oil pipe assembly
JP2018538487A (en) Cylindrical gear transmission mechanism
JP2017223178A (en) Pipe device
US9932898B2 (en) Drain pipe arrangement and gas turbine engine comprising a drain pipe arrangement
CN108138653B (en) Oil drainage system for bearing housing of gas turbine engine
JP6637455B2 (en) Steam turbine
Carlson et al. Design of a 1 MWth Supercritical Carbon Dioxide Primary Heat Exchanger Test System
JP6793663B2 (en) A storage sleeve for turbomachine bearings, and a turbomachine equipped with the sleeve.
ITCO20130070A1 (en) APPARATUS FOR REALIZING A FLUID SEAL IN AN INTERNAL ENVIRONMENT OF A TURBOMACHINE
KR102593506B1 (en) Case structure for gas turbine device
CN103370498B (en) The steam turbine of three shell structure forms
JP5937130B2 (en) Oil supply system
JP2016113980A (en) Steam turbine plant

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171124

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200923

R150 Certificate of patent or registration of utility model

Ref document number: 6768367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150