JP2017223005A - Muddy water processing method and muddy water processing facility of muddy water type shield driving - Google Patents

Muddy water processing method and muddy water processing facility of muddy water type shield driving Download PDF

Info

Publication number
JP2017223005A
JP2017223005A JP2016117775A JP2016117775A JP2017223005A JP 2017223005 A JP2017223005 A JP 2017223005A JP 2016117775 A JP2016117775 A JP 2016117775A JP 2016117775 A JP2016117775 A JP 2016117775A JP 2017223005 A JP2017223005 A JP 2017223005A
Authority
JP
Japan
Prior art keywords
flocculant
muddy water
flow rate
water
transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016117775A
Other languages
Japanese (ja)
Other versions
JP6775136B2 (en
Inventor
雅章 田口
Masaaki Taguchi
雅章 田口
東條 哲也
Tetsuya Tojo
哲也 東條
俊明 大下
Toshiaki Oshita
俊明 大下
務 河内
Tsutomu Kochi
務 河内
宏二 吉村
Koji Yoshimura
宏二 吉村
浩二 中村
Koji Nakamura
浩二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIROSAWA MACHINERY CO Ltd
TAC Corp
Original Assignee
HIROSAWA MACHINERY CO Ltd
TAC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIROSAWA MACHINERY CO Ltd, TAC Corp filed Critical HIROSAWA MACHINERY CO Ltd
Priority to JP2016117775A priority Critical patent/JP6775136B2/en
Publication of JP2017223005A publication Critical patent/JP2017223005A/en
Application granted granted Critical
Publication of JP6775136B2 publication Critical patent/JP6775136B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a muddy water processing method and a muddy water processing facility of a muddy water type shield driving capable of adding an appropriate amount of a coagulant to suit a change with time of a property of the muddy water.SOLUTION: A muddy water processing facility 10 of a muddy water type shield driving performs coagulant processing by adding a coagulant at a midway point of a muddy water pipe 45 while muddy water flows, and includes a coagulant pump control part 65a that controls a transfer flow amount of the coagulant to the muddy water pipe 45 transferred by coagulant transfer means 55. The coagulant pump control part 65a calculates a necessary transfer flow amount of the coagulant to the muddy water pipe 45 based on a measurement signal from a specific gravity meter 43 and a measurement signal from a flow meter 47, and controls a discharging operation of a coagulant pump 57 so that the transfer flow amount would be the calculated necessary transfer flow amount.SELECTED DRAWING: Figure 1

Description

本発明は、泥水を循環させて掘削壁面(切羽)を泥水圧によって押えながら掘削を行う泥水式シールド工法における泥水処理方法および泥水処理設備に関し、特に、泥水に対する凝集剤の添加量を制御するようにした泥水処理方法および泥水処理設備に関するものである。   The present invention relates to a muddy water treatment method and a muddy water treatment facility in a muddy water type shield method in which muddy water is circulated and the excavation wall surface (face) is held down by muddy water pressure, and more particularly, the amount of flocculant added to the muddy water is controlled. The present invention relates to a muddy water treatment method and a muddy water treatment facility.

泥水式シールド工法は、泥水式のシールド掘進機で地盤を掘り進みながらシールドドンネルを形成していく工法で、シールド掘進機のカッタ面板の直後に形成した圧力室に、加圧した泥水を、排泥管および送泥管を介して循環充填し、切羽を安定させながら機械掘りするものである。この泥水式シールド工法において、発生した掘削土砂は、泥水とともに排泥水として流体輸送され、泥水処理施設で掘削土砂が排泥水から分離され、掘削土砂が分離された泥水は再び循環再利用される。この泥水式シールド工法によれば、地盤の土質に対する適用範囲が広く、連続的な施工が可能で、坑内や立坑の設備を小型化することができる(特許文献1参照)。   The muddy water type shield method is a method of forming a shield tunnel while digging the ground with a muddy type shield machine, and pressurized muddy water into the pressure chamber formed immediately after the cutter face plate of the shield machine, It circulates and fills through a mud pipe and a mud pipe and digs machinery while stabilizing the face. In this mud type shield construction method, the generated excavated soil is fluidly transported as mud water together with the mud water, the excavated soil is separated from the discharged mud water in the mud treatment facility, and the mud water from which the excavated soil has been separated is recycled and reused. According to this muddy water type shield construction method, the application range with respect to the soil quality of the ground is wide, continuous construction is possible, and the facilities in the mine and shafts can be miniaturized (see Patent Document 1).

上記の泥水式シールド工法における泥水を凝集処理する方法としては、例えばポリ塩化アルミニウム(以下、「PAC」と称する。)のような無機系の凝集剤を使用するものが広く一般的に知られており、また、ポリジメチルジアリルアンモニウムクロライド(DMDAC)のような有機系の凝集剤をPACと併用して使用するものも知られている(特許文献2参照)。   As a method for aggregating muddy water in the muddy water type shield construction method, a method using an inorganic flocculant such as polyaluminum chloride (hereinafter referred to as “PAC”) is widely known. In addition, an organic flocculant such as polydimethyldiallylammonium chloride (DMDAC) is also used in combination with PAC (see Patent Document 2).

特開平11−256984号公報JP-A-11-256984 特開平6−182353号公報JP-A-6-182353

泥水処理の際に例えばPACを添加する場合、ある添加量において濾過水量がピークになると、それ以上添加量を増やしても濾過水量が増えず、むしろ濾過水量が低下する。したがって、凝集剤過剰添加による再利用泥水の性状悪化や、薬剤費アップ等を避けるため、適正な添加量にする必要がある。   For example, when PAC is added during muddy water treatment, if the amount of filtered water reaches a peak at a certain amount added, the amount of filtered water does not increase even if the amount added is increased further, but the amount of filtered water decreases. Therefore, in order to avoid the deterioration of the properties of reused mud due to excessive addition of the flocculant and the increase in chemical cost, it is necessary to make the addition amount appropriate.

PACの必要添加量Xpは、泥水中の懸濁粒子量(土粒子量)に比例し、泥水に含まれる懸濁粒子(SS)1トン当たりのPAC必要添加量は25kgである。
ここで、例えば、泥水の移送量Qが5.0m/min、泥水の比重γtが1.35、土粒子真比重Gsが2.65、PAC比重Gpが1.20であり、泥水が流れる泥水流路の途中でPACを添加する場合に、その泥水流路に対するPACの必要移送流量q〔m/min〕は、以下のようにして求められる。
The required addition amount Xp of PAC is proportional to the amount of suspended particles (soil particle amount) in the muddy water, and the required addition amount of PAC per ton of suspended particles (SS) contained in the muddy water is 25 kg.
Here, for example, the transfer amount Q of muddy water is 5.0 m 3 / min, the specific gravity γt of the muddy water is 1.35, the true specific gravity Gs of the soil particles is 2.65, the PAC specific gravity Gp is 1.20, and the muddy water flows. When PAC is added in the middle of the muddy water flow path, the required transfer flow rate q [m 3 / min] of PAC to the muddy water flow path is determined as follows.

まず、泥水1m中の土粒子重量Wsを下記の式を用いて求める。
Ws=Gs・〔(γt−1)/(Gs−1)〕・V
Gsは2.65、γtは1.35、Vは1であるので、Wsは以下のようにして求められる。
Ws=2.65×〔(1.35−1)/(2.65−1)〕×1
=0.562t/m
次に、泥水移送重量Woを下記の式を用いて求める。
Wo=Q・Ws
Qは5.0、Wsは0.562であるので、Woは以下のようにして求められる。
Wo=5.0×0.562=2.810t/min
PACの移送重量をWpとすると、下記の2つの式が成立する。
Wp=q・Gp
Xp=Wp/Wo
これら2つの式からPACの必要移送流量qは下記の式で表すことができる。
q=Xp・Wo/Gp
Xpは25、Woは2.810、Gpは1200であるので、qは以下のようにして求められる。
q=25×2.810/1200
=0.059m/min(60L/min)
First, the soil particle weight Ws in 1 m 3 of muddy water is obtained using the following formula.
Ws = Gs · [(γt−1) / (Gs−1)] · V
Since Gs is 2.65, γt is 1.35, and V is 1, Ws is obtained as follows.
Ws = 2.65 × [(1.35-1) / (2.65-1)] × 1
= 0.562 t / m 3
Next, the muddy water transfer weight Wo is obtained using the following formula.
Wo = Q · Ws
Since Q is 5.0 and Ws is 0.562, Wo is obtained as follows.
Wo = 5.0 × 0.562 = 2.810 t / min
If the transfer weight of PAC is Wp, the following two equations are established.
Wp = q · Gp
Xp = Wp / Wo
From these two equations, the required transfer flow rate q of PAC can be expressed by the following equation.
q = Xp · Wo / Gp
Since Xp is 25, Wo is 2.810, and Gp is 1200, q is obtained as follows.
q = 25 × 2.810 / 1200
= 0.059 m 3 / min (60 L / min)

ところで、上記の泥水式シールド工法において、シールド掘進機の掘進区間では、粘性土が主体の領域があったり、砂礫が主体の領域があったり、数種類の土質が入り混じったような領域があったりするなど、地盤の性状が変化することがあり、この場合、泥水の性状が変動し、泥水の比重が時間的に大きく変動することになる。   By the way, in the muddy water type shield construction method, there are areas where the clay excavation machine is mainly composed of viscous soil, there are areas mainly composed of gravel, and there are areas where several kinds of soil are mixed. The properties of the ground may change. In this case, the properties of the muddy water will fluctuate, and the specific gravity of the muddy water will fluctuate greatly over time.

従来の泥水処理方式では、PACの必要移送流量qを上記のようにして求めた0.059m/min(60L/min)で一定に固定するため、泥水の性状が一定で泥水の比重が1.35程度で推移する場合はPAC添加量が適正となるものの、泥水の性状が時間的に変動するに伴い泥水の比重が大きく変化する場合、PAC添加量が過剰になったり、逆に過少になったりすることがあり、PAC添加量が過剰の場合、再利用泥水の性状悪化や薬剤費アップを招き、PAC添加量が過少の場合、凝集不良を招くという問題点があった。 In the conventional muddy water treatment method, the necessary transfer flow rate q of PAC is fixed at 0.059 m 3 / min (60 L / min) obtained as described above, so the muddy water properties are constant and the specific gravity of muddy water is 1 If the change is about 35, the PAC addition amount is appropriate, but if the specific gravity of the muddy water changes greatly as the properties of the muddy water changes over time, the PAC addition amount becomes excessive or conversely too low. When the PAC addition amount is excessive, the properties of the reused mud are deteriorated and the chemical cost is increased. When the PAC addition amount is too small, there is a problem that the aggregation failure is caused.

本発明は、前述のような問題点に鑑みてなされたもので、泥水の性状に時間的な変動が生じても、その変動に対応して適量の凝集剤を添加することができる泥水式シールド工法における泥水処理方法および泥水処理設備を提供することを目的とするものである。   The present invention has been made in view of the above-described problems, and even if a temporal variation occurs in the properties of the muddy water, an appropriate amount of a flocculant can be added corresponding to the variation. An object of the present invention is to provide a muddy water treatment method and a muddy water treatment facility in the construction method.

前記目的を達成するために、第1発明による泥水式シールド工法における泥水処理方法は、
泥水式シールド工法で用いられる泥水に対しその泥水が流れる泥水流路の途中で凝集剤を添加して凝集処理を行うようにした泥水式シールド工法における泥水処理方法であって、
前記凝集剤が添加される前の泥水の比重を計測するとともに、前記凝集剤が添加される前の泥水の流量を計測し、計測した泥水の比重と流量とに基づいて前記泥水流路に対する前記凝集剤の必要移送流量を演算し、算出された必要移送流量となるように前記泥水流路に対する前記凝集剤の移送流量を制御することを特徴とするものである。
In order to achieve the above object, the muddy water treatment method in the muddy water type shield method according to the first invention is:
A muddy water treatment method in a muddy water type shield method, in which a flocculant is added in the middle of the muddy water flow path through which the muddy water flows in the muddy water type shield method,
While measuring the specific gravity of the mud before the flocculant is added, measure the flow rate of the mud before the flocculant is added, and based on the measured specific gravity and flow rate of the mud water, The required transfer flow rate of the flocculant is calculated, and the transfer flow rate of the flocculant with respect to the muddy water channel is controlled so as to be the calculated required transfer flow rate.

第1発明において、前記凝集剤に対しその凝集剤が流れる凝集剤流路の途中で希釈水を添加して前記凝集剤を希釈するようにし、前記凝集剤流路に対する前記希釈水の移送流量を制御することにより、前記凝集剤の濃度を制御するのが好ましい(第2発明)。   In the first invention, diluting water is added to the flocculant in the middle of the flocculant flow path through which the flocculant flows to dilute the flocculant, and the transfer flow rate of the diluting water to the flocculant flow path is set. It is preferable to control the concentration of the flocculant by controlling (second invention).

次に、第3発明による泥水式シールド工法における泥水処理設備は、
泥水式シールド工法で用いられる泥水に対しその泥水が流れる泥水流路の途中で凝集剤を添加して凝集処理を行うようにした泥水式シールド工法における泥水処理設備であって、
前記凝集剤が添加される前の泥水の比重を計測する比重計と、前記凝集剤が添加される前の泥水の流量を計測する流量計と、前記凝集剤を前記泥水流路へと移送する凝集剤移送手段と、前記凝集剤移送手段による前記凝集剤の前記泥水流路への移送流量を制御する凝集剤移送流量制御手段とを備え、
前記凝集剤移送流量制御手段は、前記比重計からの計測信号と前記流量計からの計測信号とに基づいて前記泥水流路に対する前記凝集剤の必要移送流量を演算し、算出された必要移送流量となるように前記泥水流路に対する前記凝集剤の移送流量を制御することを特徴とするものである。
Next, the muddy water treatment facility in the muddy water type shield construction method according to the third invention is:
It is a muddy water treatment facility in a muddy water type shield method in which a flocculant is added to the muddy water flow path through which the muddy water flows in the muddy water type shield method,
A specific gravity meter that measures the specific gravity of the mud before the flocculant is added, a flow meter that measures the flow rate of the mud before the flocculant is added, and the flocculant is transferred to the mud flow path. A flocculant transfer means; and a flocculant transfer flow rate control means for controlling the flow rate of the flocculant transferred to the mud flow path by the flocculant transfer means,
The flocculant transfer flow rate control means calculates the required transfer flow rate of the flocculant for the muddy water flow path based on the measurement signal from the hydrometer and the measurement signal from the flow meter, and calculates the required transfer flow rate The flow rate of the flocculant to the mud flow path is controlled so that

第3発明において、前記凝集剤に対しその凝集剤が流れる凝集剤流路の途中で希釈水を添加して前記凝集剤を希釈するようにし、前記希釈水を前記凝集剤流路へと移送する希釈水移送手段を設けるとともに、前記希釈水移送手段による前記希釈水の前記凝集剤流路への移送流量を制御する希釈水移送流量制御手段を設け、前記希釈水移送流量制御手段は、前記凝集剤流路に対する前記希釈水の移送流量を制御することにより、前記凝集剤の濃度を制御するのが好ましい(第4発明)。   In the third invention, diluting water is added to the flocculant in the middle of the flocculant channel through which the flocculant flows to dilute the flocculant, and the diluted water is transferred to the flocculant channel. A dilution water transfer means is provided, and a dilution water transfer flow control means for controlling a transfer flow rate of the dilution water to the flocculant channel by the dilution water transfer means is provided, and the dilution water transfer flow control means It is preferable to control the concentration of the flocculant by controlling the flow rate of the dilution water to the agent flow path (fourth invention).

第1発明および第3発明によれば、凝集剤が添加される前の泥水の比重を計測するとともに、凝集剤が添加される前の泥水の流量を計測し、計測した泥水の比重と流量とに基づいて泥水流路に対する凝集剤の必要移送流量を演算し、算出された必要移送流量となるように泥水流路に対する凝集剤の移送流量を制御するようにされているので、泥水の性状に時間的な変動が生じても、その変動に対応して適量の凝集剤を添加することができる。これにより、凝集剤の過剰添加を抑えることができるので、薬剤費を低減することができる。また、脱水時に発生する濾水中に含まれる薬剤混入を極力抑えることができるので、良質な泥水を作製することができる。また、凝集剤添加量の適正化により、脱水ケーキの含水率を低減することができるとともに、プレスサイクルタイムを短くすることが定量的に可能となる。   According to 1st invention and 3rd invention, while measuring the specific gravity of the muddy water before a flocculant is added, the flow rate of the muddy water before a flocculant is added is measured, Based on the above, the required transfer flow rate of the flocculant to the mud flow channel is calculated, and the transfer flow rate of the flocculant to the mud flow channel is controlled to be the calculated required transfer flow rate. Even if a temporal variation occurs, an appropriate amount of the flocculant can be added in accordance with the variation. Thereby, since excessive addition of a flocculant can be suppressed, chemical | medical agent cost can be reduced. Moreover, since chemical | medical agent mixing contained in the filtrate generated at the time of spin-drying | dehydration can be suppressed as much as possible, a high quality mud water can be produced. In addition, the moisture content of the dehydrated cake can be reduced and the press cycle time can be shortened quantitatively by optimizing the addition amount of the flocculant.

ところで、凝集剤の添加量が同じであっても、凝集剤の濃度が異なれば凝集効果が異なる。そこで、第2発明または第4発明の構成を採用することにより、すなわち、凝集剤に対しその凝集剤が流れる凝集剤流路の途中で希釈水を添加して凝集剤を希釈するようにし、凝集剤流路に対する希釈水の移送流量を制御することで、凝集剤の濃度を制御することにより、泥水の性状に応じて高濃度の凝集剤あるいは低濃度の凝集剤を添加することができるので、より高い凝集効果を得ることができる。   By the way, even if the addition amount of the flocculant is the same, the flocculant effect is different if the concentration of the flocculant is different. Therefore, by adopting the configuration of the second invention or the fourth invention, that is, the flocculant is diluted by adding dilution water in the middle of the flocculant flow path through which the flocculant flows. By controlling the flow rate of diluting water with respect to the agent flow path, by controlling the concentration of the flocculant, it is possible to add a high concentration flocculant or a low concentration flocculant depending on the properties of the mud, A higher aggregation effect can be obtained.

本発明の一実施形態に係る泥水式シールド工法における泥水処理設備の概略システム構成図である。1 is a schematic system configuration diagram of a muddy water treatment facility in a muddy water type shield construction method according to an embodiment of the present invention. 凝集剤ポンプ制御部の処理内容を示すフローチャートである。It is a flowchart which shows the processing content of the coagulant | flocculant pump control part. 希釈水ポンプ制御部の処理内容を示すフローチャートである。It is a flowchart which shows the processing content of a dilution water pump control part.

次に、本発明による泥水式シールド工法における泥水処理方法および泥水処理設備の具体的な実施の形態について、図面を参照しつつ説明する。   Next, specific embodiments of the muddy water treatment method and muddy water treatment facility in the muddy water type shield method according to the present invention will be described with reference to the drawings.

<泥水式シールド工法の説明>
泥水式シールド工法は、泥水式のシールド掘進機1によりシールドドンネルを形成して行く工法で、シールド掘進機1のカッタ面板2の直後に隔壁3により区画形成した圧力室4に、加圧した泥水を、排泥管5および送泥管6を介して循環充填し、切羽を安定させながら機械掘りするものである。この泥水式シールド工法おいて、発生した掘削土砂は、泥水とともに流体輸送し、泥水処理施設10で掘削土砂を分離し、掘削土砂を分離した泥水を再び循環再利用しつつ掘り進むとともに、シールド掘進機1の後方において図示されないセグメント組立装置により順次セグメントを組み立ててシールドトンネルを構築する。
<Description of the muddy water type shield construction method>
The muddy water type shield method is a method in which a shield tunnel is formed by the muddy water type shield machine 1, and the pressure chamber 4 formed by the partition wall 3 immediately after the cutter face plate 2 of the shield machine 1 is pressurized. The muddy water is circulated and filled through the mud pipe 5 and the mud pipe 6, and the machine is dug while the face is stabilized. In this muddy water type shield construction method, the generated excavated earth and sand is fluidly transported together with the muddy water, the excavated earth and sand is separated at the muddy water treatment facility 10, and the muddy water from which the excavated earth and sand is separated is re-circulated and reused. The segments are sequentially assembled by a segment assembling apparatus (not shown) behind 1 to construct a shield tunnel.

<泥水処理設備の概略説明>
この泥水式シールド工法における泥水処理設備10は、主に、一次処理プラント11、二次処理プラント12および三次処理プラント13を備えている。
一次処理プラント11は、圧力室4から排泥管5を介して排出される、掘削土砂を随伴する排泥水から砂質分を分離処理する。二次処理プラント12は、循環再利用される泥水を除いた一次処理後の余剰泥水から粘土質分やシルト質分を分離除去する。三次処理プラント13は、二次処理により分離された余剰水を調整処理する。以下に、各処理プラント11,12,13についてより具体的に説明する。
<Outline explanation of muddy water treatment equipment>
The muddy water treatment facility 10 in this muddy water type shield construction method mainly includes a primary treatment plant 11, a secondary treatment plant 12, and a tertiary treatment plant 13.
The primary treatment plant 11 separates and removes sand from the mud water accompanying the excavated earth and sand discharged from the pressure chamber 4 through the mud pipe 5. The secondary treatment plant 12 separates and removes the clay and silt from the surplus muddy water after the primary treatment excluding the muddy water that is recycled and reused. The tertiary treatment plant 13 adjusts surplus water separated by the secondary treatment. Below, each processing plant 11,12,13 is demonstrated more concretely.

<一次処理プラントの説明>
一次処理プラント11は、切羽から送られてきた排泥水に含まれる掘削土砂を最初に処理する設備である。この一次処理プラント11は、例えば振動脱水篩方式のサンドコレクター21を備え、サンドコレクター21は、排泥水から砂質分、すなわち礫、砂、粘土およびシルト塊を分離処理する。砂質分が分離除去された排泥水は、サンドコレクター21の泥水受槽22に一旦貯留され、サンドコレクター21に付設されたサイクロン23および配管24を介して二次処理プラントに圧送される。
なお、サンドコレクター21によって分離された砂質分は、一次処理土として、図示されない搬送装置等により、1次土砂ピット25へと送られる。
<Description of primary processing plant>
The primary treatment plant 11 is a facility that first treats excavated earth and sand contained in the wastewater sent from the face. The primary treatment plant 11 includes a sand collector 21 of, for example, a vibration dewatering sieve system, and the sand collector 21 separates sandy components, that is, gravel, sand, clay, and silt lump from wastewater. The waste mud water from which the sand is separated and removed is temporarily stored in the muddy water receiving tank 22 of the sand collector 21 and is pumped to the secondary treatment plant via the cyclone 23 and the pipe 24 attached to the sand collector 21.
In addition, the sandy part isolate | separated by the sand collector 21 is sent to the primary earth-and-sand pit 25 by the conveying apparatus etc. which are not shown in figure as primary processing soil.

<二次処理プラントの説明>
二次処理プラント12は、主として、調整槽31と、余剰泥水槽32と、フロック生成のためのスラリー槽33と、PACのような無機系の凝集剤を貯留するPAC槽34もしくはDMDACのような有機系の凝集剤を貯留するDMDAC槽35と、脱水装置36とによって構成されている。
<Description of secondary treatment plant>
The secondary treatment plant 12 is mainly composed of a conditioning tank 31, an excess mud water tank 32, a slurry tank 33 for generating flocs, a PAC tank 34 for storing an inorganic flocculant such as PAC, or a DMDAC. A DMDAC tank 35 that stores an organic flocculant and a dehydrator 36 are used.

調整槽31においては、一次処理プラント11から送られる排泥水や、貯泥槽37からの泥水の良液、CMC槽38からのCMC剤(増粘剤)、清水槽39からの清水、後述する三次処理プラント13(濾水槽51)からの濾水などが混合され、シールド工事用の泥水として循環再利用が可能な品質となるように調整される。調整後の泥水は、送泥管6を介してシールド掘進機1の圧力室4に返送される。一方、掘削土が溶け込んだ余剰の泥水は、泥水流通管40を介して余剰泥水槽32に送られる。余剰泥水槽32には、ポンプ41の作動によって槽内から導出された泥水を槽内に還流する泥水循環管42が付設されている。この泥水循環管42には比重計43が配設され、余剰泥水槽32内に貯留されている泥水の比重が比重計43によって計測されるようになっている。   In the adjustment tank 31, waste mud sent from the primary treatment plant 11, a good liquid of mud from the mud tank 37, a CMC agent (thickener) from the CMC tank 38, and fresh water from the fresh water tank 39, which will be described later. The filtrate from the tertiary treatment plant 13 (drainage tank 51) is mixed and adjusted so as to have a quality that can be recycled and reused as muddy water for shield construction. The adjusted muddy water is returned to the pressure chamber 4 of the shield machine 1 through the mud pipe 6. On the other hand, surplus muddy water in which excavated soil has melted is sent to a surplus muddy water tank 32 through a muddy water distribution pipe 40. The surplus muddy water tank 32 is provided with a muddy water circulation pipe 42 for returning muddy water led out of the tank by the operation of the pump 41 into the tank. The mud circulation pipe 42 is provided with a hydrometer 43 so that the specific gravity of the mud stored in the surplus mud tank 32 is measured by the hydrometer 43.

余剰泥水槽32の下流側には、スラリー槽33が配設されている。余剰泥水槽32とスラリー槽33とを接続する泥水流通管45には、泥水ポンプ46、流量計47およびラインミキサー48が、余剰泥水槽32からスラリー槽33に向かって順に配設されている。泥水流通管45における流量計47とラインミキサー48との間には、当該泥水流通管45内を流れる泥水に対し、後述する凝集剤移送手段55により凝集剤を添加するための凝集剤添加部45aが設けられている。そして、泥水ポンプ46の作動により、余剰泥水槽32に貯留されている泥水が泥水流通管45を介してスラリー槽33へと圧送され、凝集剤添加部45aで凝集剤が添加される前の泥水の流量が流量計47によって計測され、泥水流通管45内を流れる泥水と凝集剤添加部45aで添加された凝集剤とがラインミキサー48によって混合され、この混合液がスラリー槽33内に導入される。   A slurry tank 33 is disposed on the downstream side of the excess muddy water tank 32. A muddy water circulation pipe 45 connecting the surplus muddy water tank 32 and the slurry tank 33 is provided with a muddy water pump 46, a flow meter 47 and a line mixer 48 in order from the surplus muddy water tank 32 toward the slurry tank 33. Between the flow meter 47 and the line mixer 48 in the muddy water distribution pipe 45, a coagulant addition unit 45a for adding a coagulant to the muddy water flowing in the muddy water distribution pipe 45 by the coagulant transfer means 55 described later. Is provided. Then, the muddy water stored in the surplus muddy water tank 32 is pumped to the slurry tank 33 through the muddy water circulation pipe 45 by the operation of the muddy water pump 46, and the muddy water before the flocculant is added in the coagulant adding part 45a. The flow rate is measured by the flow meter 47, and the muddy water flowing in the muddy water circulation pipe 45 and the flocculant added by the flocculant addition unit 45 a are mixed by the line mixer 48, and this mixed liquid is introduced into the slurry tank 33. The

スラリー槽33内においては、泥水と凝集剤とが攪拌されることにより、フロック化が促進されて、シルト質分や粘土質分が沈殿濃縮される。沈殿濃縮されたシルト質分や粘土質分は脱水処理に供されるべく脱水装置36へと送られる   In the slurry tank 33, the mud and the flocculant are agitated to promote flocking, and the silty and clay components are precipitated and concentrated. Precipitated and concentrated silt and clay components are sent to a dehydrator 36 for dehydration.

脱水装置36としては、例えばフィルタープレスが用いられ、当該脱水装置36による脱水処理によって生じた脱水ケーキは、二次処理土として、ベルトコンベヤ等の搬送装置49により、2次土砂ピット50へと送られる。一方、脱水装置36での脱水処理時に生じた分離水は、三次処理プラント13(濾水槽51)へと送られる。   As the dewatering device 36, for example, a filter press is used, and the dewatered cake generated by the dewatering process by the dewatering device 36 is sent to the secondary sediment pit 50 as a secondary treated soil by a transport device 49 such as a belt conveyor. It is done. On the other hand, the separated water generated during the dehydration process in the dehydrator 36 is sent to the tertiary treatment plant 13 (the filtrate tank 51).

<三次処理プラントの説明>
三次処理プラント13は、脱水装置36からの分離水が導入される濾水槽51を備えている。この濾水槽51において、pH調整等によりその品質をシールド工事の工事用水として使用可能な品質に調整し、かかる調整後の濾水は、配管52を介して調整槽31に送られて、循環泥水の品質を調整するための混合水として使用されるとともに、後述する凝集剤供給管56に送られて、凝集剤を希釈する希釈水として使用される。
<Description of tertiary treatment plant>
The tertiary treatment plant 13 includes a filtrate tank 51 into which the separated water from the dehydrator 36 is introduced. In this drainage tank 51, the quality is adjusted to a quality that can be used as construction water for shield construction by adjusting the pH, etc., and the adjusted filtrate is sent to the adjustment tank 31 via the pipe 52 to circulate mud. Is used as a mixed water for adjusting the quality of the water, and is sent to a coagulant supply pipe 56 described later to be used as a diluting water for diluting the coagulant.

次に、泥水流通管45内を流れる泥水に対し凝集剤を添加するに際して、PAC槽34もしくはDMDAC槽35に貯留されている凝集剤を泥水流通管45へと移送する凝集剤移送手段55について説明する。   Next, the flocculant transfer means 55 for transferring the flocculant stored in the PAC tank 34 or the DMDAC tank 35 to the mud flow pipe 45 when adding the flocculant to the mud flowing in the mud flow pipe 45 will be described. To do.

<凝集剤移送手段の説明>
凝集剤移送手段55は、凝集剤供給管56を備え、この凝集剤供給管56の途中に凝集剤ポンプ57を配設して構成されている。ここで、凝集剤供給管56は、PAC槽34もしくはDMDAC槽35と、泥水流通管45における凝集剤添加部45aとを接続するための配管である。また、凝集剤ポンプ57は、その吸込側をPAC槽34もしくはDMDAC槽35に向ける一方で、その吐出側を泥水流通管45に向けた状態で設けられ、凝集剤ポンプ制御信号を受けてその動作が制御されるようになっている。また、凝集剤供給管56における凝集剤ポンプ57の吐出側には、流量計58が配設されている。
<Description of flocculant transfer means>
The flocculant transfer means 55 includes a flocculant supply pipe 56, and a flocculant pump 57 is disposed in the middle of the flocculant supply pipe 56. Here, the flocculant supply pipe 56 is a pipe for connecting the PAC tank 34 or the DMDAC tank 35 and the flocculant addition part 45 a in the mud circulation pipe 45. The flocculant pump 57 is provided with the suction side directed to the PAC tank 34 or the DMDAC tank 35, and the discharge side directed to the muddy water circulation pipe 45, and operates in response to the flocculant pump control signal. Is to be controlled. A flow meter 58 is disposed on the discharge side of the flocculant pump 57 in the flocculant supply pipe 56.

凝集剤移送手段55においては、凝集剤ポンプ57の作動により、PAC槽34もしくはDMDAC槽35に貯留されている凝集剤(PAC,DMDAC)が、凝集剤供給管56を介して泥水流通管45へと圧送され、圧送される凝集剤の移送流量が流量計58によって計測される。   In the flocculant transfer means 55, the flocculant (PAC, DMDAC) stored in the PAC tank 34 or DMDAC tank 35 is transferred to the muddy water distribution pipe 45 through the flocculant supply pipe 56 by the operation of the flocculant pump 57. The flow rate of the flocculant to be pumped is measured by the flow meter 58.

なお、凝集剤供給管56における凝集剤ポンプ57と流量計58と間には、当該凝集剤供給管56内を流れる凝集剤に対し、後述する希釈水移送手段60により希釈水を添加するための希釈水添加部56aが設けられている。   In addition, between the flocculant pump 57 and the flowmeter 58 in the flocculant supply pipe 56, for adding dilution water to the flocculant flowing in the flocculant supply pipe 56 by the diluting water transfer means 60 described later. A dilution water addition unit 56a is provided.

次に、凝集剤供給管56内を流れる凝集剤に対し希釈水を添加するに際して、濾水槽51に貯留されている濾水を希釈水として凝集剤供給管56へと移送する希釈水移送手段60について説明する。   Next, when adding dilution water to the flocculant flowing in the flocculant supply pipe 56, dilution water transfer means 60 for transferring the filtrate stored in the filtrate tank 51 to the flocculant supply pipe 56 as dilution water. Will be described.

<希釈水移送手段の説明>
希釈水移送手段60は、希釈水供給管61を備え、この希釈水供給管61の途中に希釈水ポンプ62を配設して構成されている。ここで、希釈水供給管61は、凝集剤供給管56における希釈水添加部56aと、濾水槽51とを接続するための配管である。また、希釈水ポンプ62は、その吸込側を濾水槽51に向ける一方で、その吐出側を凝集剤供給管56に向けた状態で設けられている。また、希釈水供給管61における希釈水ポンプ62の吐出側には、流量計63が配設されている。
<Description of dilution water transfer means>
The diluting water transfer means 60 includes a diluting water supply pipe 61, and a diluting water pump 62 is disposed in the middle of the diluting water supply pipe 61. Here, the dilution water supply pipe 61 is a pipe for connecting the dilution water addition part 56 a in the flocculant supply pipe 56 and the filtrate tank 51. The dilution water pump 62 is provided with the suction side directed toward the drainage tank 51 and the discharge side directed toward the flocculant supply pipe 56. A flow meter 63 is disposed on the discharge side of the dilution water pump 62 in the dilution water supply pipe 61.

希釈水移送手段60においては、希釈水ポンプ62の作動により、濾水槽51に貯留されている濾水が希釈水として、希釈水供給管61を介して凝集剤供給管56へと圧送され、圧送される希釈水の移送流量が流量計63によって計測される。   In the dilution water transfer means 60, the filtrate stored in the filtrate tank 51 is pumped as dilution water to the coagulant supply pipe 56 via the dilution water supply pipe 61 by the operation of the dilution water pump 62, and pumped. The flow rate of the diluted water to be measured is measured by the flow meter 63.

<自動制御装置の説明>
泥水処理設備10は、設備を構成する各種機器を自動制御する自動制御装置65を備えている。この自動制御装置65は、主として、CPU(中央演算処理装置)、種々のデータや所定プログラム等を記憶するメモリ、およびその他の電気回路等のハードウェア(いずれも図示省略)により構成されている。この自動制御装置65には、比重計43、凝集剤ポンプ57、希釈水ポンプ62および流量計47,58,63がそれぞれ所定信号を伝達可能に接続されている。
<Description of automatic control device>
The muddy water treatment facility 10 includes an automatic control device 65 that automatically controls various devices constituting the facility. The automatic control device 65 is mainly configured by a CPU (Central Processing Unit), a memory for storing various data, a predetermined program, and the like, and other hardware such as an electric circuit (all not shown). A specific gravity meter 43, a flocculant pump 57, a dilution water pump 62, and flow meters 47, 58, and 63 are connected to the automatic control device 65 so that predetermined signals can be transmitted.

<CPUの機能モジュールの説明>
自動制御装置65における図示されないCPUにおいては、図示されないメモリから所定プログラムを適宜に読み込んで実行することにより、凝集剤ポンプ制御部65a(本発明の「凝集剤移送流量制御手段」に相当する。)や、希釈水ポンプ制御部65b(本発明の「希釈水移送流量制御手段」に相当する。)などの種々の機能モジュールを仮想的に構築し、構築された各機能モジュールによって、凝集剤ポンプ57や希釈水ポンプ62の動作制御を行っている。
<Description of CPU functional module>
In a CPU (not shown) in the automatic control device 65, a predetermined program is appropriately read from a memory (not shown) and executed, thereby executing a flocculant pump controller 65a (corresponding to the “flocculant transfer flow rate control means” of the present invention). In addition, various functional modules such as the dilution water pump control unit 65b (corresponding to the “dilution water transfer flow rate control means” of the present invention) are virtually constructed, and the coagulant pump 57 is constructed by each constructed functional module. The operation control of the dilution water pump 62 is performed.

次に、凝集剤ポンプ制御部65aによる凝集剤ポンプ57の動作制御や、希釈水ポンプ制御部65bによる希釈水ポンプ62の動作制御を行うにあたって必要となるPAC必要移送流量、DMDAC必要移送流量および希釈水必要移送流量のそれぞれの計算方法について以下に説明する。   Next, the PAC required transfer flow rate, the DMDAC required transfer flow rate, and the dilution required for performing the operation control of the coagulant pump 57 by the coagulant pump control unit 65a and the operation control of the dilution water pump 62 by the dilution water pump control unit 65b. Each calculation method of the required water transfer flow rate will be described below.

まず、以下の計算で用いる主な記号について以下のように定義する。
Q:泥水流量〔m/min〕
γt:泥水比重
Gs:土粒子真比重(本例では2.65)
Xp:PAC必要添加量(本例では25kg/sst)
Xd:DMDAC必要添加量(本例では2.1kg/sst)
Gp:PAC比重(本例では1.20)
Gd:DMDAC比重(本例では1.10)
:PAC必要移送流量〔m/min〕
:DMDAC必要移送流量〔m/min〕
:希釈水必要移送流量〔m/min〕
N:希釈倍率
First, the main symbols used in the following calculations are defined as follows.
Q: Mud flow rate [m 3 / min]
γt: Mud specific gravity Gs: Soil particle true specific gravity (2.65 in this example)
Xp: PAC required addition amount (25 kg / sst in this example)
Xd: DMDAC required addition amount (2.1 kg / sst in this example)
Gp: PAC specific gravity (1.20 in this example)
Gd: DMDAC specific gravity (1.10 in this example)
q P : PAC required transfer flow rate [m 3 / min]
q D : DMDAC required transfer flow rate [m 3 / min]
q W : Necessary transfer flow rate of dilution water [m 3 / min]
N: dilution factor

<PAC必要移送流量の計算>
まず、泥水1m中の土粒子重量Ws〔t/m〕を下記の式を用いて求める。
Ws=Gs・〔(γt−1)/(Gs−1)〕・V
ここで、Gsは固定値で本例では2.65であり、Vは1であるので、Wsは以下のようにして求められる。
Ws=2.65×〔(γt−1)/(2.65−1)〕×1
=1.61×(γt−1)
次に、泥水移送重量Wo〔t/min〕を下記の式を用いて求める。
Wo=Q・Ws
=1.61×(γt−1)・Q
PAC移送重量をWp〔kg/min〕とすると下記の2つの式が成り立つ。
Wp=q・Gp
Xp=Wp/Wo
ここで、Gpは1200であり、Xpは固定値で本例では25kg/sstであるので、これら2つの式から下記の式が成り立つ。
25=1200・q/〔1.61×(γt−1)・Q〕
上記の式からPAC必要移送流量q〔m/min〕は下記の式(1)で表される。
=25×〔1.61×(γt−1)・Q〕/1200 ・・・(1)
こうして、比重計43からの信号に基づく泥水比重γtと、流量計47からの信号に基づく泥水流量Qと、上記式(1)とによってPAC必要移送流量qを求めることができる。
<Calculation of PAC required transfer flow rate>
First, the soil particle weight Ws [t / m 3 ] in 1 m 3 of muddy water is obtained using the following formula.
Ws = Gs · [(γt−1) / (Gs−1)] · V
Here, since Gs is a fixed value, which is 2.65 in this example, and V is 1, Ws is obtained as follows.
Ws = 2.65 × [(γt−1) / (2.65-1)] × 1
= 1.61 × (γt−1)
Next, the muddy water transfer weight Wo [t / min] is obtained using the following equation.
Wo = Q · Ws
= 1.61 × (γt−1) · Q
When the PAC transfer weight is Wp [kg / min], the following two equations are established.
Wp = q P · Gp
Xp = Wp / Wo
Here, Gp is 1200, and Xp is a fixed value, which is 25 kg / sst in this example. Therefore, the following equation is established from these two equations.
25 = 1200 · q P /[1.61×(γt−1)·Q]
From the above formula, the PAC required transfer flow rate q P [m 3 / min] is represented by the following formula (1).
q P = 25 × [1.61 × (γt−1) · Q] / 1200 (1)
Thus, it is possible to determine the mud density γt based on the signal from the specific gravity meter 43, a mud flow rate Q based on the signal from the flow meter 47, the PAC must transfer flow rate q P by the above formula (1).

<DMDACの必要移送流量の計算>
XpをXd、GpをGdに置き換え、上記PAC必要移送流量qの計算と同様にして、下記式(2)によりDMDAC必要移送流量q〔m/min〕を求めることができる。
=2.1×〔1.61×(γt−1)・Q〕/1100 ・・・(2)
<Calculation of required flow rate for DMDAC>
The xp Xd, the Gp replaced by Gd, in the same manner as the calculation of the PAC must transfer flow rates q P, it is possible to obtain the DMDAC required transfer rate q D [m 3 / min] by the following equation (2).
q D = 2.1 × [1.61 × (γt−1) · Q] / 1100 (2)

<希釈水必要移送流量の計算>
希釈水必要移送流量q〔m/min〕は、泥水の性状等に応じて適宜に設定される希釈倍率Nを用いて下記の式で求められる。
=q・(N―1)
この式と上記式(2)とにより、希釈水必要移送流量qは下記(3)で表される。
={2.1×〔1.61×(γt−1)・Q〕/1100}・(N−1)
・・・(3)
<Calculation of diluting water required transfer flow rate>
The dilution water required transfer flow rate q W [m 3 / min] is obtained by the following formula using a dilution ratio N appropriately set according to the properties of the muddy water.
q W = q D · (N−1)
By this equation and the equation (2), dilution water must transfer flow rates q W is expressed by the following (3).
q W = {2.1 × [1.61 × (γt−1) · Q] / 1100} · (N−1)
... (3)

次に、凝集剤ポンプ制御部65aの処理内容について図2のフローチャートを用いて説明する。なお、図2中記号「S」はステップを示し、ステップS1〜ステップS4の処理は所定サイクルタイム毎に繰り返し実行される。   Next, processing contents of the flocculant pump control unit 65a will be described with reference to the flowchart of FIG. Note that the symbol “S” in FIG. 2 indicates a step, and the processes in steps S1 to S4 are repeatedly executed at predetermined cycle times.

<凝集剤必要移送流量制御の説明>
まず、凝集剤ポンプ制御部65aは、比重計43の計測信号を読み込むとともに、流量計47の計測信号を読み込む(S1)。次いで、読み込んだ計測信号に基づいて上記式(1)および式(2)により、PAC必要移送流量qとDMDAC必要移送流量qを演算する(S2)。次いで、凝集剤ポンプ57に対し所定の凝集剤ポンプ制御信号を出力して、流量計58の計測信号(フィードバック信号)に基づく凝集剤ポンプ57の実際の移送流量が必要移送流量(q+q)となるように凝集剤ポンプ57の吐出動作を制御する(S3〜S4)。
<Explanation of flocculant required transfer flow control>
First, the flocculant pump control unit 65a reads the measurement signal of the hydrometer 43 and also reads the measurement signal of the flow meter 47 (S1). Then, the above equation based on the read measurement signal (1) and (2), calculates the PAC must transfer flow rate q P and DMDAC must transfer flow rate q D (S2). Next, a predetermined flocculant pump control signal is output to the flocculant pump 57, and the actual transfer flow rate of the flocculant pump 57 based on the measurement signal (feedback signal) of the flow meter 58 is the required transfer flow rate (q P + q D ) To control the discharge operation of the flocculant pump 57 (S3 to S4).

こうして、PACおよびDMDACが添加される前の泥水の比重を比重計43により計測するとともに、PACおよびDMDACが添加される前の泥水の流量を流量計47により計測し、計測した泥水の比重と流量とに基づいて泥水流通管45に対するPAC必要移送流量qおよびDMDAC必要移送流量qを演算し、算出された必要移送流量q,qとなるように泥水流通管45に対する凝集剤ポンプ57のPACおよびDMDACの移送流量を制御するようにされているので、泥水の性状に時間的な変動が生じても、その変動に対応して適量の凝集剤を添加することができる。これにより、凝集剤の過剰添加を抑えることができるので、薬剤費を低減することができる。また、脱水時に発生する濾水中に含まれる薬剤混入を極力抑えることができるので、良質な泥水を作製することができる。また、凝集剤添加量の適正化により、脱水ケーキの含水率を低減することができるとともに、プレスサイクルタイムを短くすることが定量的に可能となる。 In this way, the specific gravity of the mud before the addition of PAC and DMDAC is measured by the hydrometer 43, and the flow rate of the mud before the addition of PAC and DMDAC is measured by the flow meter 47. preparative PAC must transfer flow rate q P and DMDAC must transfer flow rates q D for mud flow pipe 45 is calculated based on, the calculated required transport rate q P, coagulant pump 57 for mud flow pipe 45 such that q D Since the flow rate of the PAC and DMDAC is controlled, a suitable amount of flocculant can be added in response to the fluctuation even if the mud water changes with time. Thereby, since excessive addition of a flocculant can be suppressed, chemical | medical agent cost can be reduced. Moreover, since chemical | medical agent mixing contained in the filtrate generated at the time of spin-drying | dehydration can be suppressed as much as possible, a high quality mud water can be produced. In addition, the moisture content of the dehydrated cake can be reduced and the press cycle time can be shortened quantitatively by optimizing the addition amount of the flocculant.

次に、希釈水ポンプ制御部65bの処理内容について図3のフローチャートを用いて説明する。なお、図3中記号「T」はステップを示し、ステップT1〜ステップT5の処理は所定サイクルタイム毎に繰り返し実行される。   Next, the processing content of the dilution water pump control part 65b is demonstrated using the flowchart of FIG. Note that the symbol “T” in FIG. 3 indicates a step, and the processing from step T1 to step T5 is repeatedly executed every predetermined cycle time.

<希釈水必要移送流量制御の説明>
まず、希釈水ポンプ制御部65bは、比重計43の計測信号を読み込むとともに、流量計47の計測信号を読み込む(T1)。次いで、読み込んだ比重計43の計測信号と流量計47の計測信号に基づいて自動設定される希釈倍率Nを読み込む(T2)。次いで、読み込んだ計測信号および希釈倍率Nに基づいて上記式(3)により、希釈水必要移送流量qを演算する(T3)。次いで、希釈水ポンプ62に対し所定の希釈水ポンプ制御信号を出力して、流量計63の計測信号(フィードバック信号)に基づく希釈水ポンプ62の実際の移送流量が必要移送流量qとなるように希釈水ポンプ62の吐出動作を制御する(T4〜T5)。
<Explanation of required flow control for dilution water>
First, the dilution water pump control unit 65b reads the measurement signal of the hydrometer 43 and also reads the measurement signal of the flow meter 47 (T1). Next, the dilution factor N that is automatically set based on the read measurement signal of the hydrometer 43 and the measurement signal of the flow meter 47 is read (T2). Then, the above equation (3) based on the read measurement signal and dilution N, calculates the dilution water necessary transfer rate q W (T3). Then, by outputting a predetermined dilution water pump control signal to the dilution water pump 62, so that the actual transfer flow rates of the dilution water pump 62 based on the flow meter 63 of the measuring signal (feedback signal) is required transfer rate q W The discharge operation of the dilution water pump 62 is controlled (T4 to T5).

こうして、凝集剤(PACもしくはDMDAC)に対しその凝集剤が流れる凝集剤供給管56の途中で希釈水を添加して凝集剤を希釈するようにし、凝集剤供給管56に対する希釈水の移送流量を制御することで、凝集剤の濃度を制御することにより、泥水の性状に応じて高濃度の凝集剤あるいは低濃度の凝集剤を添加することができるので、より高い凝集効果を得ることができる。   Thus, diluting water is added to the flocculant (PAC or DMDAC) in the middle of the flocculant supply pipe 56 through which the flocculant flows to dilute the flocculant. By controlling the concentration of the flocculant, it is possible to add a high concentration flocculant or a low concentration flocculant according to the properties of the muddy water, so that a higher aggregation effect can be obtained.

以上、本発明の泥水式シールド工法における泥水処理方法および泥水処理設備について、一実施形態に基づいて説明したが、本発明は上記実施形態に記載した構成に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。   As described above, the muddy water treatment method and the muddy water treatment facility in the muddy water type shield construction method of the present invention have been described based on one embodiment, but the present invention is not limited to the configuration described in the above embodiment, and the gist thereof is as follows. The configuration can be changed as appropriate without departing from the scope.

本発明の泥水式シールド工法における泥水処理方法および泥水処理設備は、泥水の性状に時間的な変動が生じても、その変動に対応して適量の凝集剤を添加することができるという特性を有していることから、土質の性状が変化する地盤で泥水式シールド工法を行う際の泥水処理の用途に好適に用いることができ、産業上の利用可能性が大である。   The muddy water treatment method and the muddy water treatment facility in the muddy water type shield method of the present invention have a characteristic that even if a change in time of the muddy water occurs, an appropriate amount of a flocculant can be added corresponding to the change. Therefore, it can be suitably used for muddy water treatment when performing a muddy water type shield construction method on the ground where the properties of soil changes, and industrial applicability is great.

1 シールド掘進機
10 泥水処理設備
32 余剰泥水槽
33 スラリー槽
34 PAC槽
35 DMDAC槽
43 比重計
45 泥水流通管(泥水流路)
47 流量計
55 凝集剤移送手段
56 凝集剤供給管(凝集剤流路)
57 凝集剤ポンプ
60 希釈水移送手段
61 希釈水供給管
62 希釈水ポンプ
65 自動制御装置
65a 凝集剤ポンプ制御部(凝集剤移送流量制御手段)
65b 希釈水ポンプ制御部(希釈水移送流量制御手段)
DESCRIPTION OF SYMBOLS 1 Shield machine 10 Muddy water treatment equipment 32 Surplus muddy water tank 33 Slurry tank 34 PAC tank 35 DMDAC tank 43 Hydrometer 45 Muddy water distribution pipe (muddy water flow path)
47 Flow meter 55 Coagulant transfer means 56 Coagulant supply pipe (coagulant flow path)
57 flocculant pump 60 diluting water transfer means 61 diluting water supply pipe 62 diluting water pump 65 automatic controller 65a flocculant pump control unit (flocculating agent transfer flow rate control means)
65b Dilution water pump controller (dilution water transfer flow rate control means)

Claims (4)

泥水式シールド工法で用いられる泥水に対しその泥水が流れる泥水流路の途中で凝集剤を添加して凝集処理を行うようにした泥水式シールド工法における泥水処理方法であって、
前記凝集剤が添加される前の泥水の比重を計測するとともに、前記凝集剤が添加される前の泥水の流量を計測し、計測した泥水の比重と流量とに基づいて前記泥水流路に対する前記凝集剤の必要移送流量を演算し、算出された必要移送流量となるように前記泥水流路に対する前記凝集剤の移送流量を制御することを特徴とする泥水式シールド工法における泥水処理方法。
A muddy water treatment method in a muddy water type shield method, in which a flocculant is added in the middle of the muddy water flow path through which the muddy water flows in the muddy water type shield method,
While measuring the specific gravity of the mud before the flocculant is added, measure the flow rate of the mud before the flocculant is added, and based on the measured specific gravity and flow rate of the mud water, A muddy water treatment method in a muddy water type shield method, wherein a necessary transfer flow rate of the flocculant is calculated, and the transfer flow rate of the flocculant to the muddy water flow path is controlled to be the calculated required transfer flow rate.
前記凝集剤に対しその凝集剤が流れる凝集剤流路の途中で希釈水を添加して前記凝集剤を希釈するようにし、前記凝集剤流路に対する前記希釈水の移送流量を制御することにより、前記凝集剤の濃度を制御することを特徴とする請求項1に記載の泥水式シールド工法における泥水処理方法。   By adding dilution water in the middle of the flocculant flow path through which the flocculant flows with respect to the flocculant, the flocculant is diluted, and by controlling the flow rate of the dilution water to the flocculant flow path, 2. The muddy water treatment method according to claim 1, wherein the concentration of the flocculant is controlled. 泥水式シールド工法で用いられる泥水に対しその泥水が流れる泥水流路の途中で凝集剤を添加して凝集処理を行うようにした泥水式シールド工法における泥水処理設備であって、
前記凝集剤が添加される前の泥水の比重を計測する比重計と、前記凝集剤が添加される前の泥水の流量を計測する流量計と、前記凝集剤を前記泥水流路へと移送する凝集剤移送手段と、前記凝集剤移送手段による前記凝集剤の前記泥水流路への移送流量を制御する凝集剤移送流量制御手段とを備え、
前記凝集剤移送流量制御手段は、前記比重計からの計測信号と前記流量計からの計測信号とに基づいて前記泥水流路に対する前記凝集剤の必要移送流量を演算し、算出された必要移送流量となるように前記泥水流路に対する前記凝集剤の移送流量を制御することを特徴とする泥水式シールド工法における泥水処理設備。
It is a muddy water treatment facility in a muddy water type shield method in which a flocculant is added to the muddy water flow path through which the muddy water flows in the muddy water type shield method,
A specific gravity meter that measures the specific gravity of the mud before the flocculant is added, a flow meter that measures the flow rate of the mud before the flocculant is added, and the flocculant is transferred to the mud flow path. A flocculant transfer means; and a flocculant transfer flow rate control means for controlling the flow rate of the flocculant transferred to the mud flow path by the flocculant transfer means,
The flocculant transfer flow rate control means calculates the required transfer flow rate of the flocculant for the muddy water flow path based on the measurement signal from the hydrometer and the measurement signal from the flow meter, and calculates the required transfer flow rate The muddy water treatment facility in the muddy water type shield construction method is characterized in that the transfer flow rate of the flocculant to the muddy water flow path is controlled.
前記凝集剤に対しその凝集剤が流れる凝集剤流路の途中で希釈水を添加して前記凝集剤を希釈するようにし、前記希釈水を前記凝集剤流路へと移送する希釈水移送手段を設けるとともに、前記希釈水移送手段による前記希釈水の前記凝集剤流路への移送流量を制御する希釈水移送流量制御手段を設け、前記希釈水移送流量制御手段は、前記凝集剤流路に対する前記希釈水の移送流量を制御することにより、前記凝集剤の濃度を制御することを特徴とする請求項3に記載の泥水式シールド工法における泥水処理設備。

Dilution water transfer means for adding dilution water in the middle of the flocculant flow path through which the flocculant flows with respect to the flocculant so as to dilute the flocculant and transferring the dilution water to the flocculant flow path. And providing a dilution water transfer flow rate control means for controlling the transfer flow rate of the dilution water to the flocculant flow path by the dilution water transfer means, the dilution water transfer flow rate control means for the flocculant flow path with respect to the flocculant flow path The muddy water treatment facility according to claim 3, wherein the concentration of the flocculant is controlled by controlling the flow rate of dilution water.

JP2016117775A 2016-06-14 2016-06-14 Muddy water treatment method and muddy water treatment equipment in the muddy water shield method Active JP6775136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016117775A JP6775136B2 (en) 2016-06-14 2016-06-14 Muddy water treatment method and muddy water treatment equipment in the muddy water shield method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016117775A JP6775136B2 (en) 2016-06-14 2016-06-14 Muddy water treatment method and muddy water treatment equipment in the muddy water shield method

Publications (2)

Publication Number Publication Date
JP2017223005A true JP2017223005A (en) 2017-12-21
JP6775136B2 JP6775136B2 (en) 2020-10-28

Family

ID=60687765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016117775A Active JP6775136B2 (en) 2016-06-14 2016-06-14 Muddy water treatment method and muddy water treatment equipment in the muddy water shield method

Country Status (1)

Country Link
JP (1) JP6775136B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59493A (en) * 1982-06-22 1984-01-05 石川島播磨重工業株式会社 Muddy water shield drilling apparatus
US5203614A (en) * 1991-06-17 1993-04-20 The Robbins Company Tunneling machine having liquid balance low flow slurry system
JPH07163998A (en) * 1993-12-14 1995-06-27 Sato Kogyo Co Ltd Treatment of muddy water and device therefor
JP2001107676A (en) * 1999-10-07 2001-04-17 Toda Constr Co Ltd Slurry treating system and slurry treating method
JP2009066471A (en) * 2007-09-10 2009-04-02 Kajima Corp Construction sludge-treated soil preparation system and method
JP2010264417A (en) * 2009-05-18 2010-11-25 Nishihara Environment Technology Inc Centrifugal separation apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59493A (en) * 1982-06-22 1984-01-05 石川島播磨重工業株式会社 Muddy water shield drilling apparatus
US5203614A (en) * 1991-06-17 1993-04-20 The Robbins Company Tunneling machine having liquid balance low flow slurry system
JPH07163998A (en) * 1993-12-14 1995-06-27 Sato Kogyo Co Ltd Treatment of muddy water and device therefor
JP2001107676A (en) * 1999-10-07 2001-04-17 Toda Constr Co Ltd Slurry treating system and slurry treating method
JP2009066471A (en) * 2007-09-10 2009-04-02 Kajima Corp Construction sludge-treated soil preparation system and method
JP2010264417A (en) * 2009-05-18 2010-11-25 Nishihara Environment Technology Inc Centrifugal separation apparatus

Also Published As

Publication number Publication date
JP6775136B2 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
JP7076356B2 (en) Wastewater treatment method
CN112138858B (en) Muck resource utilization system
CN111050933B (en) Method for desalting chlorine-containing powder and apparatus for desalting chlorine-containing powder
US20190330938A1 (en) Systems and methods for dosing earthen slurries with an additive to modify a fluid property of the slurry
JP5627082B2 (en) Fluid transport method of excavated soil using foam suppressor in bubble shield method
JP2017205713A (en) Coagulation-settlement device
JP2017223005A (en) Muddy water processing method and muddy water processing facility of muddy water type shield driving
JP5542561B2 (en) Flocculant addition management method
CN206538327U (en) A kind of drilling mud processing unit
JP6813277B2 (en) Sludge dewatering equipment
JP2006313104A (en) Viscosity control device and method thereof
JP2007029922A (en) Method and apparatus for adjusting supply amount of sludge in sludge dehydrator
JP6425900B2 (en) Sludge dewatering system and dewatering method of sludge
JP7082344B2 (en) Muddy water treatment equipment and muddy water treatment method
JP4588442B2 (en) Mud dehydration method and system
JP2008155188A (en) Mud and muddy water treatment method
Horenstein et al. Successful dewatering experience at hyperion wastewater treatment plant
JP6318872B2 (en) Muddy water treatment method
JP2016047506A (en) Mobile muddy water treatment equipment
JP3124505B2 (en) Mud treatment system and mud treatment system for mud method
JP4837281B2 (en) Mud dehydration method and system
JP2007117955A (en) Method of treating high water content soil to recycle
JPH10231685A (en) Slurry excavation system and mud-water treatment
CN102398977B (en) Yellow mud activating and adding apparatus for water purification and clarification tank
JP2023115925A (en) Dehydration treatment system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160622

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200916

R150 Certificate of patent or registration of utility model

Ref document number: 6775136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250