JP5542561B2 - Flocculant addition management method - Google Patents

Flocculant addition management method Download PDF

Info

Publication number
JP5542561B2
JP5542561B2 JP2010164160A JP2010164160A JP5542561B2 JP 5542561 B2 JP5542561 B2 JP 5542561B2 JP 2010164160 A JP2010164160 A JP 2010164160A JP 2010164160 A JP2010164160 A JP 2010164160A JP 5542561 B2 JP5542561 B2 JP 5542561B2
Authority
JP
Japan
Prior art keywords
flocculant
turbidity
water
region
turbid water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010164160A
Other languages
Japanese (ja)
Other versions
JP2012024673A (en
Inventor
正夫 黒岩
修二 宮岡
光輝 炭田
誠 小林
聡 三村
英雄 浦矢
昭夫 浦矢
則行 菅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2010164160A priority Critical patent/JP5542561B2/en
Publication of JP2012024673A publication Critical patent/JP2012024673A/en
Application granted granted Critical
Publication of JP5542561B2 publication Critical patent/JP5542561B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Description

本発明は、凝集剤添加管理方法に関するものであり、具体的には、濁度に応じて低コストで無駄なく凝集剤を作用させることが可能な技術に関する。   The present invention relates to a flocculant addition management method, and specifically relates to a technique that allows a flocculant to act at low cost and without waste according to turbidity.

例えば岩盤掘削や各種土工、浚渫工などを伴う工事現場では、泥土等と付近の水流や雨水が混じり合うなどして濁水を成すことがある。こうした濁水は、そのまま河川等に放流することができないため、沈砂施設でその濁度を適宜低減させる必要がある。濁度を低減させる技術として各種の凝集剤を添加するものがある。   For example, in a construction site involving rock excavation, various earthworks, and dredging, muddy soil may be mixed with nearby water currents and rainwater to form muddy water. Since such muddy water cannot be discharged as it is into a river or the like, it is necessary to appropriately reduce the turbidity in a sand settling facility. There is a technique of adding various flocculants as a technique for reducing turbidity.

こうした技術としては例えば、原水を取り入れるとともに凝集剤を添加して攪拌する攪拌槽と、該攪拌槽に凝集剤を添加する凝集剤供給機と、少なくとも一つの沈殿槽とからなる処理装置において、前記凝集剤供給機には、原水の濁度を測定する測定器による測定値と処理水の濁度を測定する測定器による測定値とに基づいて凝集剤の添加量を調整することができる供給量調整機能を備えていることを特徴とする汚濁水の処理装置(特許文献1参照)などが提案されている。   As such a technique, for example, in a processing apparatus comprising an agitation tank that takes in raw water and adds a flocculant and stirs, a flocculant feeder that adds a flocculant to the agitation tank, and at least one precipitation tank, For the flocculant feeder, the amount of flocculant added can be adjusted based on the measured value by the measuring device that measures the turbidity of raw water and the measured value by the measuring device that measures the turbidity of treated water A polluted water treatment apparatus (see Patent Document 1) characterized by having an adjustment function has been proposed.

特開2005−34821号公報JP 2005-34821 A

従来技術のように、原水と処理水の両方の濁度に関して測定を行い、例えば処理水の濁度測定値を凝集剤添加量の決定プロセスにフィードバックさせるとすれば、少なくとも2箇所分の濁度測定機器の導入が必要となってコストが嵩む点や、2つの測定値(原水および処理水)に基づきながらフィードバック制御を行う必要があって凝集剤添加量の制御が複雑化しやすい点など、課題が残されている。また、工事対象の地山や地盤などは、場所によってその岩盤や土砂等の性状が異なることが多く、その場合、工事進行に応じて発生濁水の性状も変化していくことになる。こうした濁水の変化が、従来技術で対応できる通常の濁度範囲に収まっていればよいが、濁度が急激に増大し通常の高濁度の想定範囲を越えてしまった場合、従来技術では対応できなくなる懸念もある。一方、こうした事態に対応しようと、凝集剤の添加量を必要量より常に多めに維持するとすれば、凝集剤の無駄や処理水の白濁等が生じてしまうという不都合もあった。   As in the prior art, if the turbidity of both raw water and treated water is measured, for example, if the measured turbidity value of the treated water is fed back to the determination process of the flocculant addition amount, the turbidity of at least two locations Issues such as increased cost due to the introduction of measuring equipment, and the need to perform feedback control based on two measured values (raw water and treated water), making it difficult to control the amount of flocculant added Is left. In addition, the nature of rocks and earth and sand, etc., vary depending on the location, and the nature of the generated muddy water changes as the construction progresses. These changes in turbid water need only be within the normal turbidity range that can be handled by the conventional technology, but if the turbidity suddenly increases and exceeds the normal high turbidity range, the conventional technology can handle it. There is also concern that it will not be possible. On the other hand, in order to cope with such a situation, if the amount of the flocculant added is always kept larger than the required amount, there is an inconvenience that the flocculant is wasted and the turbidity of the treated water is generated.

そこで本発明は、濁度に応じて低コストで無駄なく凝集剤を作用させることが可能な技術の提供を目的とする。   Then, this invention aims at provision of the technique which can make a flocculant act without waste according to turbidity at low cost.

上記課題を解決する本発明の凝集剤添加管理方法は、工事対象箇所に関する地質図に基づいて、前記工事対象箇所における異なる地質性状の各領域について土砂のサンプルの採取を行って、前記各領域について、前記サンプルから互いに濁度が異なる濁水を複数作成する工程と、
前記各領域に関して作成した異なる濁度の各濁水に関して、所定基準まで濁度を低下させる凝集剤の添加量を測定し、濁度と凝集剤の必要量との相関式を前記各領域について推定し、凝集剤の添加機構の制御を行う制御装置に対して、前記各領域について推定した相関式を設定する工程と、
前記各領域のうち現工事対象箇所が含まれる該当領域についての前記相関式を前記制御装置に設定し、当該制御装置により、前記現工事対象箇所における処理対象となる濁水の濁度を濁度計より取得し、当該濁度を前記該当領域に関する相関式に当てはめて凝集剤の必要量を決定し、当該決定した必要量の凝集剤が濁水に添加されるよう前記添加機構の制御を行う工程と、
を含むことを特徴とする。
The flocculant addition management method of the present invention that solves the above problems is based on a geological map related to a construction target location, and collects soil samples for each region of different geological properties in the construction target location, , Creating a plurality of turbid water having different turbidity from each other,
For each turbid water with different turbidity created for each region, measure the amount of flocculant added to reduce the turbidity to a predetermined standard, and estimate the correlation between the turbidity and the necessary amount of flocculant for each region. A step of setting a correlation equation estimated for each region with respect to a control device that controls the addition mechanism of the flocculant;
Set the said correlation equation for the corresponding region including the current work target portion of the respective areas to the control unit, by the control device, the turbidity of the turbid water to be the processing target that put the current work target portion Obtain from a turbidimeter, apply the turbidity to the correlation equation for the relevant region, determine the required amount of flocculant, and control the addition mechanism so that the required amount of flocculant is added to the turbid water. A process of performing;
It is characterized by including.

このような技術によれば、工事対象箇所に関して、濁度と凝集剤の必要量との相関式を事前に推定しておき、この相関式に基づいて、原水濁度にマッチした凝集剤添加量の制御を行うことが出来る。前記相関式を推定するため、十分広い範囲の濁度(例えば、0<濁度≦16000ppm)について濁水の作成を行い、こうした濁水に関して必要な凝集剤の添加量を測定することとなるから、推定した相関式としても広範な濁度について必要な添加量を特定できるものとなる。   According to such a technique, a correlation equation between the turbidity and the necessary amount of the flocculant is estimated in advance for the construction target location, and the flocculant addition amount matching the raw water turbidity based on this correlation equation Can be controlled. In order to estimate the correlation equation, turbid water is prepared for a sufficiently wide range of turbidity (for example, 0 <turbidity ≦ 16000 ppm), and the amount of flocculant required for such turbid water is measured. As a correlation formula, a necessary addition amount for a wide range of turbidity can be specified.

また、濁度測定機器は原水に関する測定を行う分について導入すればよく、また、原水に関する濁度の測定値に基づいて凝集剤添加量の制御を行うことになるため、装置構成も複雑化せずコスト面でも従来より低廉となりやすい。また、濁度の急増等が生じる場合であっても、予め広い濁度範囲に配慮してある前記相関式によって必要な凝集剤添加量を大きな過不足無く決定して適切に対応することができる。つまり、過剰な凝集剤添加による無駄の発生や、処理水の白濁現象等が生じる懸念も少ないと言える。従って本発明によれば、濁度に応じて低コストで無駄なく凝集剤を作用させることが可能となる。   In addition, a turbidity measuring device may be introduced for the measurement of raw water, and the amount of flocculant added is controlled based on the measured turbidity of raw water, which complicates the equipment configuration. In terms of cost, it tends to be cheaper than before. Further, even when turbidity suddenly increases, the necessary coagulant addition amount can be determined without a large excess or deficiency by the above-mentioned correlation formula taking into consideration a wide turbidity range, and can be appropriately handled. . That is, it can be said that there is little concern that waste due to the addition of an excessive flocculant, a white turbidity of treated water, and the like will occur. Therefore, according to the present invention, the flocculant can be allowed to act at low cost and without waste according to the turbidity.

更に、工事対象の地山や地盤などが場所によってその性状を大きく異ならせ、濁度の急な増大や減少等が生じる場合であっても、予め領域毎に推定してある前記相関式によって必要な凝集剤添加量を大きな過不足無く決定して適切に対応することができる。つまり、地質性状等が場所により異なる場合であったとしても、過剰な凝集剤添加による無駄の発生や、処理水の白濁現象等が生じる懸念も少ないと言える。 Furthermore, even if the nature of the ground and ground to be constructed vary greatly depending on the location and a sudden increase or decrease in turbidity occurs, it is necessary to use the correlation equation estimated in advance for each region. Therefore, it is possible to appropriately determine the amount of flocculant to be added without undue deficiency. That is, even if the geological properties and the like differ depending on the location, it can be said that there is little concern that waste due to excessive addition of the flocculant, the clouding phenomenon of the treated water, and the like will occur.

また、前記凝集剤添加管理方法において、工事対象箇所における土砂のサンプルを採取し、当該サンプルを前記地質図に照合して、前記各領域のうち現工事対象箇所が含まれる該当領域について特定する工程と、
前記特定した該当領域についての前記相関式を前記制御装置に設定し、当該制御装置により、前記現工事対象箇所における処理対象となる濁水の濁度を濁度計より取得し、当該濁度を前記該当領域に関する相関式に当てはめて凝集剤の必要量を決定し、当該決定した必要量の凝集剤が濁水に添加されるよう前記添加機構の制御を行う工程と、
を含むとしてもよい。
Further, in the flocculant addition management method, a step of collecting a sample of earth and sand at a construction target location, comparing the sample with the geological map, and identifying a corresponding region including the current construction target location among the respective regions When,
Setting the correlation equation for said identified corresponding area to the control unit, by the control device, the turbidity of the turbid water to be the processing target that put the current work target portion obtained from the turbidity meter, the turbidity Determining the required amount of flocculant by applying a degree to the correlation equation for the corresponding region, and controlling the addition mechanism so that the determined required amount of flocculant is added to the turbid water;
May be included.

このような技術によれば、実際に工事対象となる箇所について、その地質性状に応じて地山等における該当領域を特定し、その領域に関する前記相関式を用いて凝集剤の必要量を決定し制御を行うことができる。つまり、現状の地質性状に応じた凝集剤添加管理を行うことができ、凝集剤を過不足無く濁水に添加することにつながる。   According to such a technique, for a place to be actually constructed, a corresponding area in a natural ground or the like is specified according to the geological property, and the necessary amount of the flocculant is determined using the correlation equation regarding the area. Control can be performed. That is, the flocculant addition management according to the current geological properties can be performed, and the flocculant is added to the turbid water without excess or deficiency.

なお、前記凝集剤の例としては、例えばアルミニウム系凝集剤と高分子系凝集剤があげられる。そのうち、アルミニウム系凝集剤は、硫酸バンドやPAC(ポリ塩化アルミニウム)等の、溶解性が高く即効性があると言われる凝集剤であり、濁水に過剰溶解すると、pH低下や水酸化アルミニウムによる白濁が発生し、かえって濁度の上昇を招く恐れもあった。また、アルミニウム系凝集剤の過不足が生じると、高分子系凝集剤によるフロックの生成にも悪影響が生じ、全体として凝集剤添加による濁度低下の効率は良くないものとなる。しかし上述のように、本発明によれば濁度に応じて適切な量の凝集剤が添加されることになるから、上述の問題点は解消され、優れた凝集効果が確実に発揮され、凝集速度も向上するという効果も奏することになる。   Examples of the flocculant include aluminum flocculants and polymer flocculants. Among them, the aluminum-based flocculant is a flocculant which is said to have high solubility and immediate effect, such as sulfuric acid band and PAC (polyaluminum chloride). When excessively dissolved in turbid water, the pH decreases or white turbidity due to aluminum hydroxide. May occur, which may increase the turbidity. In addition, when the excess or deficiency of the aluminum-based flocculant occurs, the generation of flocs by the polymer-based flocculant also has an adverse effect, and the overall efficiency of turbidity reduction due to the addition of the flocculant becomes poor. However, as described above, according to the present invention, an appropriate amount of the flocculant is added according to the turbidity. The effect of improving the speed is also achieved.

本発明によれば、濁度に応じて低コストで無駄なく凝集剤を作用させることが可能になる。   According to the present invention, the flocculant can be allowed to act at low cost and without waste according to turbidity.

本実施形態における凝集剤添加管理方法の適用例を示す図である。It is a figure which shows the example of application of the flocculant addition management method in this embodiment. 本実施形態における凝集剤添加管理方法の処理手順例を示すフロー図である。It is a flowchart which shows the process sequence example of the coagulant | flocculant addition management method in this embodiment. 本実施形態における掘削サイクル例を示す図である。It is a figure which shows the example of an excavation cycle in this embodiment. 本実施形態における懸濁物質濃度と濁度の関係例を示す図である。It is a figure which shows the example of a relationship between the suspended matter density | concentration and turbidity in this embodiment. 本実施形態における凝集剤の必要添加量の例を示す図である。It is a figure which shows the example of the required addition amount of the flocculant in this embodiment. 本実施形態における処理結果例を示す図である。It is a figure which shows the example of a process result in this embodiment.

−−−適用例−−−
以下に本発明の実施形態について図面を用いて詳細に説明する。図1は、本実施形態における凝集剤添加管理方法の適用例を示す図である。図に示す例では、工事等で発生した原水1を沈砂槽2に一旦導いた後、その上澄み水たる濁水3を搬送ライン4経由でシックナー5に導入する構成としている。前記沈砂槽2は数秒で沈降するような比較的粒径の大きな粒子を沈下させる役割を担う。この沈砂槽2の槽内上部には適宜な圧送ポンプ6が設置されており、沈砂槽2での上澄み水すなわち濁水3がこの圧送ポンプ6を経由して搬送ライン4に流入する。流入する濁水3に含まれる粒子は、その沈下に凝集剤の添加が必要になる、いわゆる浮遊懸濁物が主となる。浮遊懸濁物は、電荷を帯びて静電気的な反発力が互いに働いており、時間が経過しても自ら沈降しない上、粒径が非常に小さいため通常の物理的処理では除去が困難である。そこで、電荷を中和する働きを示す凝集剤を濁水中に添加すれば、浮遊懸濁物は静電気的な反発力を失って互いに凝集するようになる。
--- Application example ---
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a diagram illustrating an application example of the flocculant addition management method in the present embodiment. In the example shown in the figure, the raw water 1 generated in the construction or the like is once guided to the sand settling tank 2 and then the turbid water 3 as the supernatant water is introduced into the thickener 5 via the transfer line 4. The sand settling tank 2 plays a role of sinking particles having a relatively large particle size that settles in a few seconds. A suitable pressure pump 6 is installed in the upper part of the sand settling tank 2, and supernatant water, that is, muddy water 3 in the sand settling tank 2 flows into the transport line 4 via the pressure feed pump 6. The particles contained in the inflowing turbid water 3 are mainly so-called suspended suspensions that require the addition of a flocculant to settle. Suspended suspensions are charged and have electrostatic repulsive forces acting on each other. They do not settle themselves over time, and their particle size is so small that they are difficult to remove by ordinary physical treatment. . Therefore, if a flocculant that functions to neutralize the charge is added to the turbid water, the suspended suspensions lose their electrostatic repulsive force and aggregate with each other.

従って搬送ライン4において、濁水3の濁度に応じた量の適切な凝集剤添加が行われると、シックナー5に流れ込む濁水3は適宜なフロックを形成して濁度が低減されたものとなりやすい。そこで搬送ライン4には、ライン反応器7を介して凝集剤添加ポンプ8が接続されている。この凝集剤添加ポンプ8は、凝集剤タンク9より凝集剤10を吸引し、流量調整弁11を介して適宜な分量の凝集剤をライン反応器7に供給する。ライン反応器7は、沈砂槽2から送られてきた濁水3の流れと凝集剤添加ポンプ8からの凝集剤10の流れとを交叉させて互いに混合させる装置である。   Accordingly, when an appropriate amount of flocculant is added in the conveying line 4 in accordance with the turbidity of the turbid water 3, the turbid water 3 flowing into the thickener 5 is likely to form an appropriate floc to reduce the turbidity. Therefore, a flocculant addition pump 8 is connected to the transport line 4 via a line reactor 7. The flocculant addition pump 8 sucks the flocculant 10 from the flocculant tank 9 and supplies an appropriate amount of flocculant to the line reactor 7 via the flow rate adjustment valve 11. The line reactor 7 is a device that crosses the flow of the muddy water 3 sent from the sand settling tank 2 and the flow of the flocculant 10 from the flocculant addition pump 8 and mixes them together.

なお、流量調整弁11には、弁の開閉機構を制御する制御装置たるコンピュータ20が接続されている。このコンピュータ20は、例えば沈砂槽2に設置された濁度計25(例:計測可能濁度域:10〜19990mg/Lのもの)から送られる信号(濁度を示すデータ)を所定のインターフェイスを介して取得し、その信号が示す濁度の値の大小に応じて必要となる凝集剤の必要量を演算し、この必要量(流量)に対応した開度とする指令を前記弁の開閉機構に通知する。コンピュータ20は、前記必要量の演算に際し、予め記憶手段に保持している相関式に前記濁度の値を代入することになる。前記相関式とは、処理対象となる濁水3の濁度と、所定基準までその濁度を低下させる凝集剤10の添加量との関係を示す式である。この相関式の推定手順については後述する。なお、相関式は、工事対象箇所に関する地質図に基づいて、異なる地質性状の各領域について作成されたものであれば、より好適である。   The flow rate adjusting valve 11 is connected to a computer 20 as a control device for controlling the valve opening / closing mechanism. For example, the computer 20 sends a signal (data indicating turbidity) sent from a turbidimeter 25 (for example, measurable turbidity range: 10 to 19990 mg / L) installed in the sand settling tank 2 to a predetermined interface. The valve opening / closing mechanism calculates a required amount of the flocculant required according to the magnitude of the turbidity value indicated by the signal and sets the opening corresponding to the required amount (flow rate). Notify The computer 20 substitutes the value of the turbidity into the correlation equation previously stored in the storage means when calculating the necessary amount. The correlation equation is an equation showing the relationship between the turbidity of the turbid water 3 to be treated and the amount of the flocculant 10 that lowers the turbidity to a predetermined standard. The correlation equation estimation procedure will be described later. The correlation equation is more suitable if it is created for each region having different geological properties based on the geological map relating to the construction target location.

また、本実施形態での凝集剤10としては、例えば、PAC(ポリ塩化アルミニウム)と、高分子系凝集剤とをあげている。PACにより、濁水3が含む浮遊懸濁物の電荷を中和して、互いに凝集するよう図った上で、凝集が進んだ浮遊懸濁物に対して高分子系凝集剤を作用さてフロックを形成し、濁度低減を図るのである。こうした凝集剤10の採用例はあくまで一例であり、濁水の性状や求められる凝集効果等に応じて、採用する凝集剤は様々である(勿論、1種類の凝集剤のみ使用する場合もある)。また、濁水3のpH調整のため、例えば炭酸ガスを搬送ライン4に供給する構成としてもよい。図1に示す例では、濁水3のpHが高い場合に備えて、炭酸ガスの供給機構12およびpH測定装置13を配置している。よって、供給機構12は、pH測定装置13から濁水3のpH測定値を取得し、このpH測定値が所定基準以上である場合に、所定量の炭酸ガスを搬送ライン4に供給することとなる。   Moreover, as the flocculant 10 in this embodiment, PAC (polyaluminum chloride) and a polymeric flocculant are mentioned, for example. PAC neutralizes the charge of suspended suspension contained in turbid water 3 and aggregates each other, and then forms a flock by acting a polymer flocculant on the suspended suspension where aggregation has progressed. Therefore, the turbidity can be reduced. The application example of the flocculant 10 is merely an example, and the flocculant to be employed varies depending on the properties of the turbid water and the required flocculant effect (of course, only one kind of flocculant may be used). Further, for adjusting the pH of the muddy water 3, for example, carbon dioxide may be supplied to the transport line 4. In the example shown in FIG. 1, a carbon dioxide supply mechanism 12 and a pH measurement device 13 are arranged in preparation for the case where the pH of the muddy water 3 is high. Therefore, the supply mechanism 12 acquires the pH measurement value of the muddy water 3 from the pH measurement device 13, and supplies a predetermined amount of carbon dioxide gas to the transport line 4 when the pH measurement value is equal to or greater than a predetermined reference. .

また、シックナー5は、フィルタープレス等の脱水手段を備えており、濁水3に含まれるフロックをフィルタープレスの濾布等で濾しとってケーキを生成し、これを外部に排出することとなる。またシックナー5で濁水3から分離された水分は、処理水槽40に送られ、所定の管理基準(水質汚濁防止法、各自治体の条例等)を満たす水質とされた上で河川等に放流される。   Further, the thickener 5 includes a dehydrating means such as a filter press, and the floc contained in the muddy water 3 is filtered with a filter cloth of the filter press to generate a cake, which is discharged to the outside. In addition, the water separated from the muddy water 3 by the thickener 5 is sent to the treated water tank 40 where it is discharged into rivers etc. after the water quality meets the predetermined management standards (water pollution prevention law, local government regulations, etc.). .

−−−凝集剤添加管理の手順−−−
続いて、凝集剤添加管理の手順例について説明する。図2は本実施形態における凝集剤添加管理方法の処理手順例を示すフロー図であり、図3は本実施形態における掘削サイクル例を示す図である。ここでは濁水発生現場の一例として、山岳トンネルの掘削現場をあげる。図3に示すように、山岳トンネルの掘削サイクルは、掘削機等による切羽の掘削、坑外へのズリ出し、切羽など壁面へのコンクリート一次吹付作業、鋼製支保工の建て込み作業、コンクリート二次吹付作業、ロックボルト打設作業、を繰り返すものとなる。また、コンクリート二次吹付作業の後、坑外においてはバッチャープラント及びトラックミキサー車の洗浄作業がなされる。このうち特に、掘削、ズリ出し作業時に生じる泥水、ロックボルト打設作業に伴う削孔水、コンクリート吹付作業後や機械整備時に生じる各種機器の洗浄水、バッチャープラント及びトラックミキサー車の洗浄水などは、濁水3の原水となりやすい。また当然ながら、上記サイクルのうち作業毎に異なる濃度の濁水が生じる。
--- Procedure control procedure ---
Then, the example of a procedure of flocculant addition management is demonstrated. FIG. 2 is a flowchart illustrating an example of a processing procedure of the flocculant addition management method in the present embodiment, and FIG. 3 is a diagram illustrating an example of an excavation cycle in the present embodiment. Here, a mountain tunnel excavation site is taken as an example of muddy water generation site. As shown in FIG. 3, the excavation cycle of a mountain tunnel consists of excavation of a face using an excavator or the like, slippage to the outside of the mine, primary spraying of concrete onto the wall such as the face, installation of a steel support, The next spraying operation and the rock bolt driving operation are repeated. In addition, after the concrete secondary spraying work, the batcher plant and the truck mixer truck are cleaned outside the mine. Among these, in particular, muddy water generated during excavation and slipping work, drilling water accompanying rock bolting work, cleaning water for various equipment generated after concrete spraying work and machine maintenance, cleaning water for batcher plants and truck mixer trucks, etc. Tends to be raw water of muddy water 3. Naturally, turbid water having a different concentration is generated for each operation in the above cycle.

そこで例えば、工事対象箇所であるトンネル地山において、上記サイクル中の所定作業時に取り扱われる岩石や土砂等のサンプルを採取し、このサンプルから互いに濁度が異なる濁水を複数作成する(s100)。濁水作成に際しては、例えば、地山から採取した岩石塊を破砕装置に投入して所定径まで粒径サイズを低減して粉体を生成し、ある量の粉体に所定量の水分を加えることで所定濁度の濁水となす。勿論こうした濁水生成の手法は一例であるから、現場状況や用意できる装置等に応じて適宜なものを採用すればよい。なお、前記サンプルの採取は、工事対象箇所の地山に関する地質図に基づいて、異なる地質性状の各領域について実行するとすればより好適である。この場合、前記各領域について、前記サンプルから互いに濁度が異なる濁水を複数作成することとなる。   Therefore, for example, in a tunnel ground that is a construction target location, samples such as rocks and earth and sand to be handled at the time of the predetermined work in the cycle are collected, and a plurality of muddy waters having different turbidity are created from the samples (s100). When creating muddy water, for example, a rock mass collected from a natural ground is put into a crushing device to reduce the particle size to a predetermined diameter to produce a powder, and a predetermined amount of water is added to a certain amount of powder. To turbid water with the specified turbidity. Of course, such a muddy water generation method is merely an example, and an appropriate method may be employed depending on the situation in the field and the equipment that can be prepared. In addition, it is more suitable if the collection of the said sample is performed about each area | region of a different geological property based on the geological map regarding the natural ground of the construction object location. In this case, a plurality of muddy waters having different turbidity from each other are created for each region.

上記ステップs100で生成した異なる濁度の濁水については、所定基準(例:2ppm)まで濁度を低下させるべく凝集剤の添加を行って、その必要量を測定し(s101)、濁度と凝集剤の必要量との相関式を前記各領域について推定する(s102)。この場合、例えば、ある濁度の濁水に対し、凝集剤10を一定量ずつ添加していき、その際の濁度変化を測定、観察する。そして、所定基準の濁度となった時点での凝集剤10の添加量合計を、「必要量」と特定する。   For turbid water of different turbidity generated in the above step s100, a flocculant is added to reduce the turbidity to a predetermined standard (example: 2 ppm), and the required amount is measured (s101). A correlation equation with the necessary amount of the agent is estimated for each region (s102). In this case, for example, a certain amount of the flocculant 10 is added to turbid water having a certain turbidity, and the turbidity change at that time is measured and observed. Then, the total amount of the flocculant 10 added when the predetermined standard turbidity is reached is specified as “necessary amount”.

なお、濁度計25で得られる測定値すなわち濁度は、懸濁物質濃度(いわゆるSS濃度)と相関関係を有しているものとして、一例としてその相関式を図4中に示すように求めた。図の例では、相関式としては、懸濁物質濃度=0.7005×濁度+46.634、となっている。従って、濁度計25の測定値たる濁度の値をこの式に代入することで懸濁物質濃度が算定できる。予め、濁度計25の演算装置や演算プログラム等に上記相関式を設定すれば、濁度計25として出力する測定値が懸濁物質濃度の値となる。   Note that the measured value obtained by the turbidimeter 25, that is, turbidity has a correlation with the suspended substance concentration (so-called SS concentration), and the correlation equation is obtained as shown in FIG. 4 as an example. It was. In the example of the figure, the correlation formula is suspended substance concentration = 0.705 × turbidity + 46.634. Therefore, the suspended substance concentration can be calculated by substituting the turbidity value, which is the measurement value of the turbidimeter 25, into this equation. If the correlation equation is set in advance in the arithmetic device, arithmetic program, etc. of the turbidimeter 25, the measured value output as the turbidimeter 25 becomes the suspended substance concentration value.

図5は本実施形態における凝集剤の必要添加量の例を示す図である。上述のような凝集剤10に関する必要量の特定作業を行った結果、図5に示すグラフの如く、PACおよび高分子系凝集剤の凝集剤毎に、懸濁物質濃度(0〜25000)と凝集剤10の必要量(ml/min)の関係が得られた。これらのグラフが示すように、PACおよび高分子系凝集剤のいずれに関しても、原水の懸濁物質濃度の上昇に応じて必要量が上昇することがわかる。当該グラフのデータから濁度すなわち懸濁物質濃度と必要量との相関式を推定すればよい。相関式の推定に当たっては、例えばグラフデータを数式化する既存のプログラム等を利用すればよい。   FIG. 5 is a diagram showing an example of the required addition amount of the flocculant in the present embodiment. As a result of performing the necessary amount of specific work related to the flocculant 10 as described above, as shown in the graph of FIG. 5, the suspended substance concentration (0 to 25000) and the flocculence are obtained for each flocculant of PAC and polymer flocculant. The relationship of the required amount (ml / min) of the agent 10 was obtained. As can be seen from these graphs, the necessary amount of PAC and polymer flocculant increases as the concentration of suspended solids increases. A correlation equation between the turbidity, that is, the suspended solid concentration and the necessary amount may be estimated from the data of the graph. In estimating the correlation formula, for example, an existing program for formulating graph data may be used.

続いて、上記ステップs102で推定された前記相関式を、凝集剤10の添加機構(すなわち凝集剤添加ポンプ8)の制御を行う制御装置(すなわち流量調整弁11の開閉機構を制御する自動制御装置たるコンピュータ20)に対し設定する(s103)。この相関式の設定は、コンピュータ20のメモリ等の記憶手段に相関式のデータを格納する処理となる。   Subsequently, the control unit that controls the addition mechanism of the flocculant 10 (that is, the flocculant addition pump 8) is used as the correlation equation estimated in step s102 (that is, the automatic control device that controls the opening and closing mechanism of the flow rate adjusting valve 11). (S103). The setting of the correlation formula is a process of storing the data of the correlation formula in a storage unit such as a memory of the computer 20.

以上の工程が実行されたならば、凝集剤添加管理のための事前準備が完了したことになる。そこで、実際に上述の掘削サイクルを回してトンネル掘削作業等を行うとする。こうした作業を行うことで生じた原水1は、所定の配管等を通過して沈砂槽2に導入され、その上澄み水たる濁水3が搬送ライン4に流入する。一方、沈砂槽2には上述の如く濁度計25が設置されており、この濁度計25が沈砂槽2の上澄み水すなわち濁水3の濁度について測定を行っている。   If the above steps are executed, the preliminary preparation for the flocculant addition management is completed. Therefore, it is assumed that tunnel excavation work or the like is performed by actually rotating the excavation cycle described above. The raw water 1 generated by performing such work passes through a predetermined pipe and the like and is introduced into the sand settling tank 2, and the turbid water 3 as the supernatant water flows into the transport line 4. On the other hand, the turbidimeter 25 is installed in the sand settling tank 2 as described above, and the turbidimeter 25 measures the turbidity of the supernatant water of the settling tank 2, that is, the turbid water 3.

また、コンピュータ20は、ネットワークを介して結ばれている工事管理事務所等の端末から、現在工事がなされている箇所がどの領域(の地質性状)に該当しているか通知を受ける(s104)。この領域に関する通知に際しては、工事担当者などが、工事対象箇所における土砂等のサンプルを採取し、当該サンプルを地質図に照合して、この地質図が示す各領域のうち現工事対象箇所が含まれる該当領域について特定し、この情報を端末から入力しているものとする。つまりこうした入力動作で、地盤等を構成する各領域のうち現工事対象箇所が含まれる該当領域についてコンピュータ20への設定がなされる。   In addition, the computer 20 receives a notification from a terminal such as a construction management office connected via the network to which region (geological property) the currently constructed site corresponds (s104). When notifying about this area, the person in charge of construction collects samples such as earth and sand at the construction site, collates the sample with the geological map, and includes the current construction site in each area indicated by this geological map. It is assumed that the corresponding area is specified and this information is input from the terminal. That is, with such an input operation, the computer 20 is set for a corresponding area including the current construction target portion among the areas constituting the ground or the like.

一方、コンピュータ20は、処理対象となる濁水3の濁度を濁度計25より取得する(s105)、またコンピュータ20は、前記ステップs104で通知を受けた該当領域に関する相関式を記憶手段より読み出し、前記ステップs105で得た濁度の値を、該当領域に関する相関式に当てはめて凝集剤の必要量を決定する(s106)。   On the other hand, the computer 20 acquires the turbidity of the turbid water 3 to be treated from the turbidimeter 25 (s105), and the computer 20 reads out the correlation formula regarding the corresponding region notified in the step s104 from the storage means. The required amount of flocculant is determined by applying the turbidity value obtained in step s105 to the correlation equation for the corresponding region (s106).

コンピュータ20は、ここで決定した凝集剤の必要量すなわち流量に対応した開度とする指令を、流量調整弁11の開閉機構に通知し、凝集剤10が必要量だけ濁水3に添加されるよう制御を行う(s107)。   The computer 20 notifies the opening / closing mechanism of the flow rate adjusting valve 11 of a command to set the required amount of the flocculant, that is, the flow rate determined here, so that the required amount of flocculant 10 is added to the muddy water 3. Control is performed (s107).

こうして、濁水3の濁度に応じた必要量だけの凝集剤10が、凝集剤添加ポンプ8から流量調整弁11を介してライン反応器7に供給される。濁水3に含まれる浮遊懸濁物は、その電荷をPACにより中和され、互いに凝集するようになる。また、搬送ライン4において、PACのライン反応器7より後段には高分子系凝集剤のライン反応器7が設置されており、PAC同様、濁水3の濁度に応じた必要量だけの凝集剤10が、凝集剤添加ポンプ8から流量調整弁11を介してライン反応器7に供給されることで、互いに凝集した浮遊懸濁物をさらに合体させ適宜なフロックを形成する。   In this way, only a necessary amount of the flocculant 10 corresponding to the turbidity of the turbid water 3 is supplied from the flocculant addition pump 8 to the line reactor 7 via the flow rate adjustment valve 11. The suspended suspension contained in the turbid water 3 is neutralized by PAC and aggregates with each other. Further, in the transport line 4, a polymer type flocculant line reactor 7 is installed downstream of the PAC line reactor 7, and as in the case of the PAC, only the necessary amount of flocculant according to the turbidity of the turbid water 3 is provided. 10 is supplied from the flocculant addition pump 8 to the line reactor 7 via the flow rate adjusting valve 11, so that the suspended suspensions that are aggregated with each other are further combined to form an appropriate floc.

搬送ライン4において適宜なフロックを形成し濁度が低減された濁水3は、シックナー5に流入する。この濁水3に含まれるフロックはフィルタープレスの濾布等で濾しとられてケーキとなり、外部に排出される。またシックナー5で濁水3から分離された水分は、処理水槽40に送られ、所定の管理基準(水質汚濁防止法、各自治体の条例等)を満たす水質とされた上で河川等に放流されることになる。   The muddy water 3 in which an appropriate floc is formed in the transport line 4 and the turbidity is reduced flows into the thickener 5. The floc contained in the muddy water 3 is filtered by a filter cloth of a filter press to form a cake and is discharged to the outside. In addition, the water separated from the muddy water 3 by the thickener 5 is sent to the treated water tank 40 where it is discharged into rivers etc. after the water quality meets the predetermined management standards (water pollution prevention law, local government regulations, etc.). It will be.

本願発明者らは、本実施形態の凝集剤添加管理方法を実際のトンネル掘削現場に適用した結果、濁水3の懸濁物質濃度、凝集剤10の添加量、および処理水槽40での処理水の濁度、のそれぞれの時間的変化を、図6に示す各グラフ600〜620として得た。図6の各グラフが示すとおり、濁水3の濁度変化(グラフ600)に対して、コンピュータ20からの凝集剤添加ポンプ8への指示すなわち凝集剤の添加量(グラフ610)は、かなり忠実な相関関係をもって追随しており、その結果、処理水の濁度(グラフ620)も約2ppm前後とほぼ一定の低水準に維持されているのが分かる。つまり濁水3に対して、その濁度に応じた過不足無い凝集剤10の添加が実行され、処理水の濁度も低水準に一定化されたと言える。   As a result of applying the flocculant addition management method of the present embodiment to an actual tunnel excavation site, the inventors of the present application have found that the suspended solid concentration of the turbid water 3, the amount of flocculant 10 added, and the treated water in the treated water tank 40 Each time change of turbidity was obtained as each graph 600-620 shown in FIG. As shown in each graph of FIG. 6, the instruction from the computer 20 to the flocculant addition pump 8, that is, the addition amount of the flocculant (graph 610) is fairly faithful to the turbidity change of the turbid water 3 (graph 600). As a result, it can be seen that the turbidity of the treated water (graph 620) is maintained at a substantially constant low level of about 2 ppm. That is, it can be said that the flocculant 10 is added to the turbid water 3 without excess or deficiency according to the turbidity, and the turbidity of the treated water is also fixed to a low level.

なお、参考のため、本実施形態の凝集剤添加管理方法と従来方式(濁度によらず一定量の凝集剤添加)との比較試験を行った。その結果、従来方式での濁水処理に比べ、凝集剤使用量を効果的に低減できることが判明した。ゆえに本実施形態の凝集剤添加管理方法の有効性は明らかである。   For reference, a comparison test between the flocculant addition management method of the present embodiment and the conventional method (addition of a certain amount of flocculant regardless of turbidity) was performed. As a result, it was found that the amount of the flocculant used can be effectively reduced as compared with the conventional muddy water treatment. Therefore, the effectiveness of the flocculant addition management method of this embodiment is clear.

以上、本実施形態によれば、濁度に応じて低コストで無駄なく凝集剤を作用させることが可能となる。   As mentioned above, according to this embodiment, it becomes possible to make a flocculant act according to turbidity at low cost without waste.

以上、本発明の実施の形態について、その実施の形態に基づき具体的に説明したが、これに限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。   As mentioned above, although embodiment of this invention was described concretely based on the embodiment, it is not limited to this and can be variously changed in the range which does not deviate from the summary.

1 原水
2 沈砂槽
3 上澄み水(シックナーに流入する濁水)
4 搬送ライン
5 シックナー
6 圧送ポンプ
7 ライン反応器
8 凝集剤添加ポンプ
9 凝集剤タンク
10 凝集剤
11 流量調整弁
12 炭酸ガスの供給機構
13 pH測定装置
20 コンピュータ
25 濁度計
40 処理水槽
1 Raw water 2 Settling tank 3 Supernatant water (turbid water flowing into thickener)
4 Conveying Line 5 Thickener 6 Pressure Pump 7 Line Reactor 8 Coagulant Addition Pump 9 Coagulant Tank 10 Coagulant 11 Flow Control Valve 12 Carbon dioxide Supply Mechanism 13 pH Measuring Device 20 Computer 25 Turbidimeter 40 Treatment Water Tank

Claims (2)

工事対象箇所に関する地質図に基づいて、前記工事対象箇所における異なる地質性状の各領域について土砂のサンプルの採取を行って、前記各領域について、前記サンプルから互いに濁度が異なる濁水を複数作成する工程と、
前記各領域に関して作成した異なる濁度の各濁水に関して、所定基準まで濁度を低下させる凝集剤の添加量を測定し、濁度と凝集剤の必要量との相関式を前記各領域について推定し、凝集剤の添加機構の制御を行う制御装置に対して、前記各領域について推定した相関式を設定する工程と、
前記各領域のうち現工事対象箇所が含まれる該当領域についての前記相関式を前記制御装置に設定し、当該制御装置により、前記現工事対象箇所における処理対象となる濁水の濁度を濁度計より取得し、当該濁度を前記該当領域に関する相関式に当てはめて凝集剤の必要量を決定し、当該決定した必要量の凝集剤が濁水に添加されるよう前記添加機構の制御を行う工程と、
を含むことを特徴とする凝集剤添加管理方法。
A step of collecting a plurality of muddy waters having different turbidity from each sample from each sample by collecting soil samples for each region having different geological properties in the construction target location based on a geological map relating to the construction target location. When,
For each turbid water with different turbidity created for each region, measure the amount of flocculant added to reduce the turbidity to a predetermined standard, and estimate the correlation between the turbidity and the necessary amount of flocculant for each region. A step of setting a correlation equation estimated for each region with respect to a control device that controls the addition mechanism of the flocculant;
Set the said correlation equation for the corresponding region including the current work target portion of the respective areas to the control unit, by the control device, the turbidity of the turbid water to be the processing target that put the current work target portion Obtain from a turbidimeter, apply the turbidity to the correlation equation for the relevant region, determine the required amount of flocculant, and control the addition mechanism so that the required amount of flocculant is added to the turbid water. A process of performing;
The flocculant addition management method characterized by including this.
請求項1において、
工事対象箇所における土砂のサンプルを採取し、当該サンプルを前記地質図に照合して、前記各領域のうち現工事対象箇所が含まれる該当領域について特定する工程と、
前記特定した該当領域についての前記相関式を前記制御装置に設定し、当該制御装置により、前記現工事対象箇所における処理対象となる濁水の濁度を濁度計より取得し、当該濁度を前記該当領域に関する相関式に当てはめて凝集剤の必要量を決定し、当該決定した必要量の凝集剤が濁水に添加されるよう前記添加機構の制御を行う工程と、
を含むことを特徴とする凝集剤添加管理方法。
In claim 1,
Collecting a sample of earth and sand at a construction target location, comparing the sample with the geological map, and identifying a corresponding region including a current construction target location among the regions;
Setting the correlation equation for said identified corresponding area to the control unit, by the control device, the turbidity of the turbid water to be the processing target that put the current work target portion obtained from the turbidity meter, the turbidity Determining the required amount of flocculant by applying a degree to the correlation equation for the corresponding region, and controlling the addition mechanism so that the determined required amount of flocculant is added to the turbid water;
The flocculant addition management method characterized by including this.
JP2010164160A 2010-07-21 2010-07-21 Flocculant addition management method Expired - Fee Related JP5542561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010164160A JP5542561B2 (en) 2010-07-21 2010-07-21 Flocculant addition management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010164160A JP5542561B2 (en) 2010-07-21 2010-07-21 Flocculant addition management method

Publications (2)

Publication Number Publication Date
JP2012024673A JP2012024673A (en) 2012-02-09
JP5542561B2 true JP5542561B2 (en) 2014-07-09

Family

ID=45778287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010164160A Expired - Fee Related JP5542561B2 (en) 2010-07-21 2010-07-21 Flocculant addition management method

Country Status (1)

Country Link
JP (1) JP5542561B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5644490B2 (en) * 2010-12-28 2014-12-24 Jfeスチール株式会社 Water treatment method for steel rolling wastewater
JP5644491B2 (en) * 2010-12-28 2014-12-24 Jfeスチール株式会社 Water treatment system for steel rolling wastewater
SG11201805603SA (en) * 2015-12-28 2018-07-30 Oji Holdings Corp Water treatment system, water treatment method, and water production method
JP2021037449A (en) * 2019-09-02 2021-03-11 栗田工業株式会社 Method for treating fluorine-containing waste water

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174205U (en) * 1982-05-19 1983-11-21 株式会社日立製作所 Water treatment plant flocculant injection control device
JPH08299706A (en) * 1995-05-09 1996-11-19 Fujita Corp Turbid water treatment system
JP3840607B2 (en) * 2001-08-07 2006-11-01 栗田工業株式会社 Treatment method of hydrous mud

Also Published As

Publication number Publication date
JP2012024673A (en) 2012-02-09

Similar Documents

Publication Publication Date Title
CN101516464B (en) Method of treating water by ballasted flocculation/settling, which includes a continuous measurement of the ballast, and corresponding installation
JP5542561B2 (en) Flocculant addition management method
US11634345B2 (en) Waste water treatment method and waste water treatment apparatus
US20190330938A1 (en) Systems and methods for dosing earthen slurries with an additive to modify a fluid property of the slurry
WO2008090194A1 (en) Chemical composition and process for treating geotechnical slurries
Wang et al. Reconstructed rheometer for direct monitoring of dewatering performance and torque in tailings thickening process
JP5636263B2 (en) Flocculant injection control system
JP6139314B2 (en) Aggregation control apparatus and aggregation control method
JP5249828B2 (en) Concentrated mud, method for producing concentrated mud and method for producing fluidized soil
CN104370432B (en) A kind of sewage treatment process for reducing flocculant usage
JP6599704B2 (en) Flocculant injection rate determination method and flocculant injection rate determination device
JP2008155188A (en) Mud and muddy water treatment method
JP6318872B2 (en) Muddy water treatment method
CN106430349A (en) Chemical adding optimization method during wastewater treatment by wet desulphurization and triple-tank method
JP2020179350A (en) Mine waste water treatment system
US20140014588A1 (en) Method for dewatering sludge
JP3933991B2 (en) Coagulation separation device
JPS58219988A (en) Treatment of dirty water
JP7277405B2 (en) Neutral solidification material and soil treatment method
CN105986772A (en) Drilling mud collection treatment system
JP2005034712A (en) Method and apparatus for treating rainwater-mixed water
JP4837282B2 (en) Method and system for dewatering sediment from dam lake
JP6775136B2 (en) Muddy water treatment method and muddy water treatment equipment in the muddy water shield method
JPH0780452A (en) Muddy water treatment method and control thereof
CN104768881B (en) For passing through the membrane fouling method that then side handles mineral sludge on the ground

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140507

R150 Certificate of patent or registration of utility model

Ref document number: 5542561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees