JP2017222924A - Steel for shaft bearing excellent in machinability - Google Patents

Steel for shaft bearing excellent in machinability Download PDF

Info

Publication number
JP2017222924A
JP2017222924A JP2016121261A JP2016121261A JP2017222924A JP 2017222924 A JP2017222924 A JP 2017222924A JP 2016121261 A JP2016121261 A JP 2016121261A JP 2016121261 A JP2016121261 A JP 2016121261A JP 2017222924 A JP2017222924 A JP 2017222924A
Authority
JP
Japan
Prior art keywords
steel
spheroidized
machinability
less
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016121261A
Other languages
Japanese (ja)
Inventor
悠輔 平塚
Yusuke Hiratsuka
悠輔 平塚
常陰 典正
Norimasa Tokokage
典正 常陰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2016121261A priority Critical patent/JP2017222924A/en
Publication of JP2017222924A publication Critical patent/JP2017222924A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a steel for shaft bearing excellent in machinability in a structure at an annealing state or a spheroidizing annealing state by optimizing components such as C or Cr.SOLUTION: There is provided a steel containing, by mass%, C:0.60 to 0.90%, Si:0.10 to 0.35%, Mn:0.80 to 2.00%, P:0.030% or less, S:0.030% or less, Cr:0.70 to 1.20% and the balance Fe with inevitable impurities, having a structure after annealing, which is a spheroidized structure where a spheroidized carbide is dispersed in a perlite structure or a ferrite structure, or the perlite structure and a spheroidized structure, area percentage of carbide in the steel of 30% or less, lamellar spacing of perlite of 0.40 μm or more in the case of the perlite structure, carbide spacing of 0.30 μm or more in the case of the spheroidized structure and satisfying both in the case of a mixed phase thereof and excellent in machinability after annealing.SELECTED DRAWING: None

Description

この発明は、焼なまし状態での被削性に優れる軸受用鋼に関するものである。   The present invention relates to a bearing steel having excellent machinability in an annealed state.

自動車などの多くの産業機械の機械部品は、製造効率の点から切削工程により製造されて要求精度が満たされている。特に、軸受部品の加工においては、軸受用鋼の代表的なものとして、JIS G 4805のSUJ2が挙げられる。SUJ2を軸受部品、例えば軸受軌道輪に加工する場合、素材の鋼材を熱間鍛造または温間鍛造から製造を始める工程と、直接切削から始める工程とが一般的である。   Machine parts of many industrial machines such as automobiles are manufactured by a cutting process from the viewpoint of manufacturing efficiency, and the required accuracy is satisfied. In particular, in the processing of bearing parts, JIS G 4805 SUJ2 can be cited as a representative bearing steel. When processing SUJ2 into a bearing component, for example, a bearing race, a process of starting production of a raw steel material from hot forging or warm forging and a process of starting from direct cutting are common.

ところで、この直接切削から始める工程では、製鋼メーカーから加工メーカーに納入した素材のミクロ組織や硬さが被削性に大きな影響を与える。例えば、SUJ2は過共析鋼であるため、熱間圧延後の組織はセメンタイト+ラメラーパーライト組織となって硬さが非常に硬く、旋盤での切削やドリル加工を行う場合は切削工具の寿命が短く、量産での製造性に問題がある。   By the way, in the process starting from this direct cutting, the microstructure and hardness of the material delivered from the steelmaker to the machining maker have a great influence on the machinability. For example, since SUJ2 is a hypereutectoid steel, the structure after hot rolling becomes cementite + lamellar pearlite structure, and the hardness is very hard. When cutting or drilling with a lathe, the tool life is shortened. It is short and has a problem in manufacturability in mass production.

そこで、鋼材の被削性を向上させる方法としては、Pb、S等の快削元素の添加が挙げられる。Pbは低融点の金属介在物として存在し、溶融金属脆化作用により切屑を分断し易くし、さらに、切屑と工具表面との界面で潤滑作用を示すため、切削抵抗を低減して工具寿命を延長させる(例えば、特許文献1参照)。さらに、MnSは応力集中源となって切り欠き効果を示し、やはり切屑処理性や工具寿命を向上させる(例えば、特許文献2参照)。しかしながら、特許文献1の方法や特許文献2の方法では、軸受用鋼のように高強度域で使用され、転動疲労寿命が要求される部品中に、これらの快削性物質のPbやS等が存在すると、その部分が欠陥として作用し、部品としての寿命が低下するという問題がある。   Therefore, as a method for improving the machinability of the steel material, addition of free-cutting elements such as Pb and S can be mentioned. Pb exists as a low-melting-point metal inclusion, makes it easy to break up the chips due to the molten metal embrittlement action, and further shows a lubricating action at the interface between the chips and the tool surface, reducing cutting resistance and extending tool life. Extend (see, for example, Patent Document 1). Furthermore, MnS becomes a stress concentration source and exhibits a notch effect, which also improves chip disposal and tool life (see, for example, Patent Document 2). However, in the methods of Patent Document 1 and Patent Document 2, these free-cutting materials such as Pb and S are used in parts that are used in a high strength region such as bearing steel and require a rolling fatigue life. And the like exist, the part acts as a defect, and there is a problem that the life of the part is reduced.

特開平05−255810号公報JP 05-255810 A 特開2009−120955号公報JP 2009-120955 A

一般的に軸受用鋼は機械構造用鋼と比較して、高炭素であるため、焼なまし後でも硬く、被削性が問題となることが多い。そこで、本発明が解決しようとする課題は、CやCr等成分の最適化により、焼なまし状態もしくは球状化焼なまし状態での組織において、被削性に優れる軸受鋼を提供することである。   In general, bearing steel is higher in carbon than machine structural steel, so it is hard even after annealing, and machinability often becomes a problem. Therefore, the problem to be solved by the present invention is to provide a bearing steel that is excellent in machinability in a structure in an annealed state or a spheroidized annealed state by optimizing components such as C and Cr. is there.

そこで、本発明が解決しようとする課題は、Pb、S等の快削元素を添加せず、鋼材の化学成分の適正化と炭化物の分散状態を制御することにより被削性に優れた軸受鋼を提供することである。   Therefore, the problem to be solved by the present invention is a bearing steel excellent in machinability by adding a free cutting element such as Pb, S, etc., and optimizing the chemical composition of the steel material and controlling the dispersion state of carbides. Is to provide.

上記の課題を解決するための第1の手段は、質量%で、C:0.60〜0.90%、Si:0.10〜0.35%、Mn:0.80〜2.00%、P:0.030%以下、S:0.030%以下、Cr:0.70〜1.20%を含有し、残部がFeおよび不可避不純物からなる鋼で、焼なまし後の組織がパーライト組織またはフェライト組織に球状化炭化物が分散する球状化組織、あるいはそのパーライト組織と球状化組織であり、パーライト組織の場合はパーライトのラメラ間隔が0.40μm以上、球状化組織の場合は炭化物間隔が0.30μm以上、これらの混相の場合は両方を満たし、焼なまし後において被削性に優れた鋼である。   The first means for solving the above problems is mass%, C: 0.60 to 0.90%, Si: 0.10 to 0.35%, Mn: 0.80 to 2.00%. , P: 0.030% or less, S: 0.030% or less, Cr: 0.70 to 1.20%, with the balance being Fe and inevitable impurities, the structure after annealing is pearlite A spheroidized structure in which spheroidized carbides are dispersed in a structure or a ferrite structure, or a pearlite structure and a spheroidized structure thereof. In the case of 0.30 μm or more and these mixed phases, both are satisfied, and the steel is excellent in machinability after annealing.

第2の手段は、第1の手段に加え、質量%で、Ni:0.10〜2.00%、Mo:0.05〜0.50%のうち1種又は2種以上を含有し、残部がFeおよび不可避不純物からなる鋼で、焼なまし後の組織がパーライト組織またはフェライト組織に球状化炭化物が分散する球状化組織、あるいはそのパーライト組織と球状化組織であり、パーライト組織の場合はパーライトのラメラ間隔が0.40μm以上、球状化組織の場合は炭化物間隔が0.30μm以上、これらの混相の場合は両方を満たし、焼なまし後において被削性に優れた鋼である。   In addition to the first means, the second means includes one or more of Ni: 0.10 to 2.00% and Mo: 0.05 to 0.50% in mass%, The remainder is steel composed of Fe and inevitable impurities, and the annealed structure is a spheroidized structure in which spheroidized carbides are dispersed in a pearlite structure or a ferrite structure, or its pearlite structure and spheroidized structure. In the case of a pearlite lamellar spacing of 0.40 μm or more, in the case of a spheroidized structure, the carbide spacing is 0.30 μm or more, and in the case of these mixed phases, both are satisfied, and the steel is excellent in machinability after annealing.

焼なまし状態での被削性に優れる軸受用鋼であり、パーライト組織の場合はパーライトのラメラ間隔Drが0.40μm以上、球状化組織の場合は炭化物の平均粒子間距離Dθが0.30μm以上、これらの混相の場合は両方を満たしており、焼なまし後において被削性に優れている軸受用鋼である。 A bearing steel having excellent machinability in annealed state, if the pearlite structure lamellar spacing D r of pearlite than 0.40 .mu.m in the case of spheroidized structure is the average distance between particles D theta carbide 0 In the case of these mixed phases of 30 μm or more, both are satisfied, and the steel for bearings is excellent in machinability after annealing.

本願の発明を実施するための形態の記載に先立って、先ず、本願発明の化学成分、組織などの構成要素について説明する。なお、化学成分における%は質量%である。   Prior to the description of the mode for carrying out the invention of the present application, first, components such as chemical components and tissues of the present invention will be described. In addition,% in a chemical component is the mass%.

C:0.60〜0.90%
Cは、焼入れ・焼戻し後における、硬度、耐摩耗性および疲労寿命を向上させる元素である。しかし、Cが0.55%以下では十分な硬度が得られず、Cは0.60%以上が必要である。ところでCが多くなると、素材硬さが増加し、また、組織中の炭化物量が必要以上に増え、炭化物の面積率が増加するため、被削性および鍛造性などの加工性を阻害する。そこで、Cは0.90%以下にする必要がある。以上から、Cは0.60〜0.90%とし、望ましくはCは0.60〜0.80%とする。
C: 0.60-0.90%
C is an element that improves hardness, wear resistance and fatigue life after quenching and tempering. However, if C is 0.55% or less, sufficient hardness cannot be obtained, and C needs to be 0.60% or more. By the way, when C increases, the hardness of the material increases, the amount of carbide in the structure increases more than necessary, and the area ratio of carbide increases, so that workability such as machinability and forgeability is hindered. Therefore, C needs to be 0.90% or less. From the above, C is 0.60 to 0.90%, preferably C is 0.60 to 0.80%.

Si:0.10〜0.35%
Siは、鋼の脱酸に有効な元素であり、鋼に必要な焼入性を付与し、強度を高める元素である。これらの効果を得るには、Siは0.10%以上が必要である。望ましくは、Siは0.20%以上が好ましい。一方、Siが増加すると、素材硬さが増加し、被削性および鍛造性などの加工性を阻害する。そのため、Siは0.35%以下とする必要がある。望ましくは、Siは0.30%以下が良い。そこで、Siは0.10〜0.35%、望ましくはSiは0.20〜0.30%とする。
Si: 0.10 to 0.35%
Si is an element effective for deoxidation of steel, and is an element that imparts the hardenability necessary for steel and increases strength. In order to obtain these effects, Si needs to be 0.10% or more. Desirably, Si is preferably 0.20% or more. On the other hand, when Si increases, the hardness of the material increases and the workability such as machinability and forgeability is hindered. Therefore, Si needs to be 0.35% or less. Desirably, Si is 0.30% or less. Therefore, Si is 0.10 to 0.35%, preferably Si is 0.20 to 0.30%.

Mn:0.80〜2.00%
Mnは、鋼の脱酸に有効な元素である。さらに、鋼に必要な焼入れ性を付与し、強度を高めるために添加する。このために、Mnは0.80%以上必要であり、望ましくは0.90%以上必要である。一方、Mnが増加すると、素材硬さが増加し、被削性および鍛造性などの加工性を阻害する。そこで、Mnは2.00%以下にする必要があり、望ましくは1.60%以下がよい。そこで、Mnは0.80〜2.00%、望ましくは、0.90〜1.60%とする。
Mn: 0.80 to 2.00%
Mn is an element effective for deoxidation of steel. Further, it is added to impart necessary hardenability to the steel and increase strength. For this reason, Mn is required to be 0.80% or more, desirably 0.90% or more. On the other hand, when Mn increases, the material hardness increases and the workability such as machinability and forgeability is hindered. Therefore, Mn needs to be 2.00% or less, preferably 1.60% or less. Therefore, Mn is 0.80 to 2.00%, preferably 0.90 to 1.60%.

P:0.030%以下
Pは、鋼中に不可避に含有される不純物元素で、粒界に偏析して靱性を劣化させる、そこでPは0.030%以下とし、望ましくは、0.015%以下とするのが良い。
P: 0.030% or less P is an impurity element inevitably contained in the steel, and segregates at the grain boundaries to deteriorate toughness. Therefore, P is set to 0.030% or less, preferably 0.015%. The following is good.

S:0.030%以下
Sは、Mnと結びついてMnSを形成し、被削性を向上させる元素である。ただし、Sの過剰添加は粗大はMnSを形成し、転動疲労寿命を低下させる。そこでSは0.030%以下とし、望ましくは、0.010%以下とする。
S: 0.030% or less S is an element that combines with Mn to form MnS and improves machinability. However, excessive addition of S coarsely forms MnS and lowers the rolling fatigue life. Therefore, S is set to 0.030% or less, preferably 0.010% or less.

Cr:0.70〜1.20%
Crは、焼入性を向上させる元素である。また、球状化焼なましによる炭化物の球状化を容易にする元素である。上記の効果を得るためには、Crは0.70%以上が必要であり、望ましくは0.80%以上が必要である。しかし、Crは過剰に添加すると、炭化物量が増え、被削性を低下させる。そのため、Crは1.20%以下にする必要があり、望ましくは、1.10%以下が良い。そこで、Crは0.70〜1.20%とし、望ましくは0.80〜1.10%とする。
Cr: 0.70 to 1.20%
Cr is an element that improves hardenability. Further, it is an element that facilitates spheroidization of carbides by spheroidizing annealing. In order to obtain the above effects, Cr needs to be 0.70% or more, preferably 0.80% or more. However, when Cr is added excessively, the amount of carbide increases and machinability is lowered. Therefore, Cr needs to be 1.20% or less, preferably 1.10% or less. Therefore, Cr is made 0.70 to 1.20%, preferably 0.80 to 1.10%.

Ni:0.10〜2.00%
Niは、焼入性および靱性の向上に有効な元素である。上記の効果を得るには、Niは0.10%以上は必要である。しかし、Niが多くなると、素材硬さが増加し、被削性および鍛造性などの加工性を阻害する。さらに、Niはコストを上昇させる元素である。そこで、Niは2.00%以下とする。そこで、Niは0.10〜2.00%とする。
Ni: 0.10 to 2.00%
Ni is an element effective for improving hardenability and toughness. In order to obtain the above effects, Ni needs to be 0.10% or more. However, when Ni is increased, the material hardness increases, and the workability such as machinability and forgeability is hindered. Furthermore, Ni is an element that increases the cost. Therefore, Ni is made 2.00% or less. Therefore, Ni is set to 0.10 to 2.00%.

Mo:0.05〜0.50%
Moは、焼入性および靱性の向上に有効な元素である。上記の効果を得るには、Moは0.05%以上は必要である。しかし、Moが多くなると、素材硬さが増加し、被削性および鍛造性などの加工性を阻害する。さらに、Moはコストを上昇させる元素である。そこで、Moは0.50%以下とする。そこで、Moは0.05〜0.50%とする。
Mo: 0.05 to 0.50%
Mo is an element effective for improving hardenability and toughness. To obtain the above effect, Mo needs to be 0.05% or more. However, when Mo is increased, the material hardness increases, and workability such as machinability and forgeability is hindered. Furthermore, Mo is an element that increases costs. Therefore, Mo is 0.50% or less. Therefore, Mo is set to 0.05 to 0.50%.

鋼中の炭化物の面積率Sθ:30%以下
鋼中の炭化物量が増加するに伴い、素材硬さは上がり、被削性を減少させる。そのため、鋼中の炭化物の面積率Sθは30%以下とした。
Area ratio S θ of carbide in steel: 30% or less As the amount of carbide in steel increases, material hardness increases and machinability decreases. Therefore, the area ratio S theta carbides in the steel was 30% or less.

ラメラ間隔Dr(パーライト組織の場合):0.40μm以上
パーライトのラメラ間隔は圧援護の冷却速度、もしくは焼ならしの冷却速度と相関関係があり、冷却速度が遅いほどパーライトのラメラ間隔が大きくなる傾向にある。また、ラメラ間隔が大きいほど被削性は向上する。そのため、ラメラ間隔は十分な被削性が得られる0.40μmとした。
Lamella spacing D r (in the case of pearlite structure): 0.40 μm or more The lamellar spacing of pearlite has a correlation with the cooling rate of pressure support or the cooling rate of normalization. The slower the cooling rate, the larger the pearlite lamella spacing. Tend to be. Moreover, machinability improves as the lamella spacing increases. For this reason, the lamella spacing is set to 0.40 μm so that sufficient machinability can be obtained.

鋼中の炭化物の平均粒子間距離Dθ(球状化組織の場合):0.30μm以上
球状化焼なまし処理を行ない、セメンタイトを球状化させて、組織をフェライト+球状化セメンタイトとし、硬さを下げることにより被削性を向上させることができる。ただし、球状化炭化物を微細にすることで分散させ過ぎてしまい、球状化炭化物の平均粒子間隔が小さくなると、かえって被削性は悪下してしまう。そのため、炭化物の平均粒子間距離Dθは、十分な被削性の得られる0.40μm以上とした。
Average interparticle distance D θ of carbides in steel (in the case of spheroidized structure): 0.30 μm or more Spheroidizing annealing is performed to cementite spheroidize, and the structure becomes ferrite + spheroidized cementite. The machinability can be improved by lowering. However, if the spheroidized carbide is too finely dispersed and the average particle spacing of the spheroidized carbide is reduced, the machinability is deteriorated. Therefore, the average distance between particles D theta carbide, was more than 0.40μm obtained sufficient machinability.

パーライト組織と球状化組織の混相の場合:ラメラ間隔Dr0.40μm以上と炭化物の平均粒子間距離Dθ0.30μm以上
直上の二つの組織の理由と同様であり、ラメラ間隔Drは、十分な被削性の得られる、0.40μm以上とし、炭化物の平均粒子間距離Dθは十分な被削性の得られる0.30μm以上とした。
In the case of a mixed phase of a pearlite structure and a spheroidized structure: a lamellar spacing D r of 0.40 μm or more and an average interparticle distance D θ of carbide of 0.30 μm or more are the same as the reasons for the two structures immediately above, and the lamellar spacing D r is A sufficient machinability of 0.40 μm or more was obtained, and the average interparticle distance D θ of the carbide was 0.30 μm or more of sufficient machinability.

Figure 2017222924
表1に示す実施例鋼1〜10と比較例鋼11〜18の化学組成の鋼を電気炉にて溶製し、連続鋳造後、分解圧延、続いて熱間圧延を行い、圧延材からドリル穿孔試験用の試験片を採取した。その後、焼ならしもしくは球状化焼ならしを行った後、硬さ試験、光学顕微鏡観察、ならびにドリル穿孔試験を行った。なお、焼ならしは、加熱保持温度を800〜860℃とし、かつ600℃までの徐冷速度を37℃/Hrで冷却とした。球状化焼きなましは、加熱保持温度を720〜780℃とし、かつ600℃までの徐冷速度を23℃/Hr以下で冷却とした。焼なまし後は、全鋼種において全面パーライト組織になっていることを確認した。また、球状化焼なまし後は、全鋼種において球状化炭化物がフェライト中に分散する球状化組織であることを確認した。ドリル穿孔試験の条件は以下の表2に示す。
Figure 2017222924
Example steels 1 to 10 and comparative steels 11 to 18 shown in Table 1 having chemical compositions are melted in an electric furnace, continuously cast, then subjected to decomposition rolling, followed by hot rolling, and drilled from the rolled material. Test specimens for the drilling test were collected. Then, after normalizing or spheroidizing normalizing, a hardness test, an optical microscope observation, and a drill drilling test were performed. In normalization, the heating and holding temperature was 800 to 860 ° C., and the slow cooling rate to 600 ° C. was cooled at 37 ° C./Hr. In the spheroidizing annealing, the heating and holding temperature was 720 to 780 ° C., and the slow cooling rate to 600 ° C. was 23 ° C./Hr or less. After annealing, it was confirmed that all steel types had a full pearlite structure. In addition, after spheroidizing annealing, it was confirmed that the spheroidized carbide was dispersed in ferrite in all steel types. The conditions of the drilling test are shown in Table 2 below.

Figure 2017222924
焼なましを行ったものを焼なまし材、球状化焼なましを行ったものを球状化焼なまし材と定義して、以上の硬さ試験、光学顕微鏡観察、ドリル穿孔試験の結果として、硬さ、炭化物の面積率Sθ、パーライトのラメラ間隔Dr、炭化物の平均粒子間距離Dθ、異常音発生までの穴数について、以下の表3の焼なまし材および表4の球状化焼なまし材に記載する。
Figure 2017222924
As a result of the above hardness test, optical microscope observation, drill drilling test, the annealed material is defined as the annealed material and the spheroidized material is defined as the spheroidized annealed material. , Hardness, carbide area ratio S θ , pearlite lamellar spacing D r , carbide average interparticle distance D θ , and number of holes until abnormal noise occurs, annealing material in Table 3 below and spherical shape in Table 4 Described in chemical annealing material.

Figure 2017222924
表3の焼なまし材において、比較例鋼のNo.11〜18の網掛けをしている部分は、本願の請求項から外れているものである。本願の請求項を満たす実施例鋼では、いずれもドリル穿孔試験における工具寿命を示す穴数は焼なまし材では25個以上であり、比較例鋼に対して良好な被削性を示した。
Figure 2017222924
In the annealed material of Table 3, the comparative steel No. The shaded portions 11 to 18 are not included in the claims of the present application. In each of the example steels satisfying the claims of the present application, the number of holes indicating the tool life in the drill drilling test was 25 or more in the annealed material, and good machinability was exhibited with respect to the comparative example steel.

Figure 2017222924
表4の球状化焼なまし材いて、比較例鋼のNo.11〜18の網掛けをしている部分は、本願の請求項から外れているものである。本願の請求項を満たす実施例鋼では、いずれもドリル穿孔試験における工具寿命を示す穴数は球状化焼なまし材では30個以上であり、比較例鋼に対して良好な被削性を示した。
Figure 2017222924
The spheroidizing annealing materials shown in Table 4 show the No. of the comparative steel. The shaded portions 11 to 18 are not included in the claims of the present application. In all of the example steels satisfying the claims of the present application, the number of holes indicating the tool life in the drill drilling test is 30 or more in the spheroidizing annealed material, and shows good machinability compared to the comparative example steel. It was.

Claims (2)

質量%で、C:0.60〜0.90%、Si:0.10〜0.35%、Mn:0.80〜2.00%、P:0.030%以下、S:0.030%以下、Cr:0.70〜1.20%を含有し、残部がFeおよび不可避不純物からなる鋼で、ミクロ組織がパーライト組織、フェライト組織に球状化炭化物が分散する球状化組織のいずれか1の組織または2の組織の混相から成り、鋼中の炭化物の面積率が30%以下、パーライト組織におけるパーライトのラメラ間隔が0.40μm以上、球状化組織における炭化物間隔が0.30μm以上であること特徴とする被削性に優れる軸受用鋼。   In mass%, C: 0.60 to 0.90%, Si: 0.10 to 0.35%, Mn: 0.80 to 2.00%, P: 0.030% or less, S: 0.030 % Or less, Cr: 0.70 to 1.20%, with the balance being Fe and inevitable impurities, the microstructure is either a pearlite structure, or a spheroidized structure in which spheroidized carbides are dispersed in a ferrite structure The area ratio of carbides in steel is 30% or less, the pearlite lamella spacing in the pearlite structure is 0.40 μm or more, and the carbide spacing in the spheroidized structure is 0.30 μm or more. Steel for bearings with excellent machinability. 請求項1の化学成分に加えて、質量%で、Ni:0.10〜2.00%、Mo:0.05〜0.50%のうち1種又は2種以上を含有し、残部がFeおよび不可避不純物からなる鋼で、ミクロ組織がパーライト組織、フェライト組織に球状化炭化物が分散する球状化組織のいずれか1の組織、または2の組織の混相から成り、鋼中の炭化物の面積率が30%以下、パーライト組織におけるパーライトのラメラ間隔が0.40μm以上、球状化組織における炭化物間隔が0.30μm以上であること特徴とする被削性に優れる軸受用鋼。   In addition to the chemical component of claim 1, in mass%, Ni: 0.10 to 2.00%, Mo: 0.05 to 0.50%, or one or more of them are contained, and the balance is Fe And a steel composed of unavoidable impurities, the microstructure is pearlite structure, the spheroidized structure in which the spheroidized carbide is dispersed in the ferrite structure, or the mixed phase of two structures, and the area ratio of carbides in the steel is A bearing steel with excellent machinability, characterized by 30% or less, a pearlite lamella spacing in a pearlite structure of 0.40 μm or more, and a carbide spacing in a spheroidized structure of 0.30 μm or more.
JP2016121261A 2016-06-17 2016-06-17 Steel for shaft bearing excellent in machinability Pending JP2017222924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016121261A JP2017222924A (en) 2016-06-17 2016-06-17 Steel for shaft bearing excellent in machinability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016121261A JP2017222924A (en) 2016-06-17 2016-06-17 Steel for shaft bearing excellent in machinability

Publications (1)

Publication Number Publication Date
JP2017222924A true JP2017222924A (en) 2017-12-21

Family

ID=60687852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016121261A Pending JP2017222924A (en) 2016-06-17 2016-06-17 Steel for shaft bearing excellent in machinability

Country Status (1)

Country Link
JP (1) JP2017222924A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088639A (en) * 2021-03-30 2021-07-09 江西红睿马钢管股份有限公司 Bearing steel pipe inspection quality control method for cold rolling bearing
CN114134403A (en) * 2021-05-19 2022-03-04 江阴兴澄特种钢铁有限公司 Steel for large-specification wind power bearing rolling body and production method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088639A (en) * 2021-03-30 2021-07-09 江西红睿马钢管股份有限公司 Bearing steel pipe inspection quality control method for cold rolling bearing
CN114134403A (en) * 2021-05-19 2022-03-04 江阴兴澄特种钢铁有限公司 Steel for large-specification wind power bearing rolling body and production method thereof

Similar Documents

Publication Publication Date Title
JP5862802B2 (en) Carburizing steel
WO2006008960A1 (en) Component for machine structure, method for producing same, and material for high-frequency hardening
JP5385656B2 (en) Case-hardened steel with excellent maximum grain reduction characteristics
JP5655366B2 (en) Bainite steel
JP6366326B2 (en) High toughness hot work tool steel and manufacturing method thereof
JP6631640B2 (en) Case hardened steel, carburized parts and method of manufacturing case hardened steel
JP5495648B2 (en) Machine structural steel with excellent grain coarsening resistance and method for producing the same
JP2013234354A (en) Hot-rolled steel bar or wire rod for cold forging
CN108350538B (en) Steel having high hardness and excellent toughness
JP6794012B2 (en) Mechanical structural steel with excellent grain coarsening resistance, bending fatigue resistance, and impact resistance
JP5503170B2 (en) Case-hardened steel with excellent maximum grain reduction characteristics
JP6693206B2 (en) Crankshaft, manufacturing method thereof, and crankshaft steel
JP6620490B2 (en) Age-hardening steel
JP2017222924A (en) Steel for shaft bearing excellent in machinability
JP2007063627A (en) Steel component for bearing having excellent fatigue property, and method for producing the same
JP4631617B2 (en) Manufacturing method of steel parts for bearings with excellent fatigue characteristics
JP2015140449A (en) Case hardening steel excellent in crystal grain size property at high temperature
JP7223997B2 (en) Steel with high hardness and excellent toughness
JP5976581B2 (en) Steel material for bearings and bearing parts with excellent rolling fatigue characteristics
JP2007107046A (en) Steel material to be induction-hardened
JP2013072105A (en) Method for manufacturing steel having excellent toughness and wear resistance
JP2012201984A (en) Steel for induction hardening excellent in cold forgeability and torsional strength, and method of manufacturing the same
JP2005023360A (en) Case hardening steel excellent in treatability of chip
JP2021028414A (en) Steel for carburized gear, carburized gear, and manufacturing method of carburized gear
JP2005068518A (en) Hot-forged non-heat treated steel for induction hardening