JP2017222770A - Styrenic resin - Google Patents

Styrenic resin Download PDF

Info

Publication number
JP2017222770A
JP2017222770A JP2016118403A JP2016118403A JP2017222770A JP 2017222770 A JP2017222770 A JP 2017222770A JP 2016118403 A JP2016118403 A JP 2016118403A JP 2016118403 A JP2016118403 A JP 2016118403A JP 2017222770 A JP2017222770 A JP 2017222770A
Authority
JP
Japan
Prior art keywords
molecular weight
styrene
resin
average molecular
styrenic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016118403A
Other languages
Japanese (ja)
Other versions
JP6804222B2 (en
Inventor
秀隆 藤松
Hidetaka Fujimatsu
秀隆 藤松
高橋 哲也
Tetsuya Takahashi
哲也 高橋
雅史 塚田
Masashi Tsukada
雅史 塚田
悠平 宮島
Yuhei Miyajima
悠平 宮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Styrene Co Ltd
Original Assignee
Toyo Styrene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Styrene Co Ltd filed Critical Toyo Styrene Co Ltd
Priority to JP2016118403A priority Critical patent/JP6804222B2/en
Publication of JP2017222770A publication Critical patent/JP2017222770A/en
Application granted granted Critical
Publication of JP6804222B2 publication Critical patent/JP6804222B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a styrenic resin that has flowability, heat resistance, and mechanical strength in a balanced manner and also is less prone to adhere to a die, in the field of injection molding.SOLUTION: A styrenic resin is characterized in that: a melt mass flow rate (MFR) measured under the conditions of 200°C and 49 N load is 15-40 g/10 min, a methanol soluble content is 0.5-1.8 mass%, and the ratio between a weight average molecular weight (Mw) and a number average molecular weight (Mn) (Mw/Mn) is 1.8-2.6.SELECTED DRAWING: None

Description

本発明は、流動性、耐熱性、機械的強度のバランスに優れ、かつ金型付着の少ないスチレン系樹脂に関わる。   The present invention relates to a styrenic resin that has an excellent balance of fluidity, heat resistance, and mechanical strength, and has little mold adhesion.

スチレン系樹脂はその優れた成形性と実用強度から、一般雑貨、弱電部品等に広範に使用されている。しかしながら近年、射出成形用途分野においては、樹脂組成物の可塑化、射出、保圧及び冷却の、いわゆる成形サイクルに要する時間を短縮化し、成形効率を上昇させることが要求されている。成形サイクルを短縮するためには、射出時に高い流動性を有し、かつ冷却時に高温で固化すること、いいかえれば高温時に軟化し難いこと、つまり耐熱性に優れる必要がある。また、射出成形品においては、成形時に形成される残留歪みが問題となる。すなわち残留歪みが大きい場合、成形品の衝撃強度が著しく低下することが知られており、したがって残留歪みを出来るだけ低い水準に維持する必要がある。ここで、残留歪みは射出成形時の樹脂の流動せん断によって形成されると考えられており、残留歪みを低減させるという観点からも、射出成形時に高い流動性を有することが必要である。   Styrenic resins are widely used for general goods, light electrical components, etc. due to their excellent moldability and practical strength. However, in recent years, in the field of injection molding applications, it has been required to shorten the time required for the so-called molding cycle of plasticization, injection, holding pressure and cooling of the resin composition and to increase the molding efficiency. In order to shorten the molding cycle, it is necessary to have high fluidity at the time of injection and to solidify at a high temperature at the time of cooling, in other words, to be difficult to soften at a high temperature, that is, to have excellent heat resistance. In addition, in an injection molded product, residual distortion formed during molding becomes a problem. That is, it is known that when the residual strain is large, the impact strength of the molded product is remarkably lowered. Therefore, it is necessary to maintain the residual strain as low as possible. Here, the residual strain is considered to be formed by flow shearing of the resin at the time of injection molding, and from the viewpoint of reducing the residual strain, it is necessary to have high fluidity at the time of injection molding.

かかる要求に応える試みとして、樹脂の分子量を低くし、樹脂組成物の流動性を高める方法が提案されている。しかしながら、この方法には、樹脂の強度が低下し、成形品の突出工程時や成形品の使用時に割れが生じるといった問題があった。また樹脂の分子量を低下させずに流動性を高める方法として、樹脂に流動パラフィンなどの可塑剤を添加して用いる方法がある。しかしながら、この方法には、可塑剤により樹脂の耐熱性が低下するという問題があった。また射出成形した際に金型や成形品に低分子物質が付着する問題があった。さらに、特許文献1には流動性と耐熱性に優れたスチレン系樹脂の記載がなされているが、分子量分布が広く、低分子量成分を多く含むため、十分な水準の機械的強度を実現し難い問題がある。
特開2009−275185
As an attempt to meet this requirement, a method has been proposed in which the molecular weight of the resin is lowered and the fluidity of the resin composition is increased. However, this method has a problem in that the strength of the resin is reduced, and cracking occurs during the protruding step of the molded product or when the molded product is used. Further, as a method for improving fluidity without lowering the molecular weight of the resin, there is a method in which a plasticizer such as liquid paraffin is added to the resin. However, this method has a problem that the heat resistance of the resin is lowered by the plasticizer. In addition, there has been a problem that a low molecular weight substance adheres to a mold or a molded product during injection molding. Furthermore, Patent Document 1 describes a styrenic resin excellent in fluidity and heat resistance. However, since the molecular weight distribution is wide and many low molecular weight components are contained, it is difficult to achieve a sufficient level of mechanical strength. There's a problem.
JP2009-275185A

本発明は、流動性、耐熱性、機械的強度のバランスに優れ、かつ金型付着の少ない成形品を得ることができるスチレン系樹脂を提供するものである。   The present invention provides a styrenic resin that is excellent in the balance of fluidity, heat resistance, and mechanical strength and that can provide a molded product with little adhesion to a mold.

本発明者等は、上記目的を達成するため、鋭意研究を進めたところ、上記スチレン系樹脂中におけるメルトマスフローレイト(MFR)、メタノール可溶分、重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)を特定の範囲とすることによって上記課題が達成できることを見出した。本発明はかかる知見に基づくものであり、下記の要旨を有する。
(1)200℃、49N荷重の条件にて測定したメルトマスフローレイト(MFR)が15〜40g/10分、メタノール可溶分が0.5〜1.8質量%、かつ重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が1.8〜2.6であることを特徴とするスチレン系樹脂。
(2)重量平均分子量(Mw)が10万〜17万であることを特徴とする(1)に記載のスチレン系樹脂。
(3)50N荷重にて測定したビカット軟化温度が99〜104℃であることを特徴とする(1)又は(2)に記載のスチレン系樹脂。
In order to achieve the above-mentioned object, the present inventors have conducted extensive research. As a result, the melt mass flow rate (MFR), methanol-soluble matter, weight average molecular weight (Mw) and number average molecular weight (Mn) in the styrenic resin are described. It was found that the above-mentioned problem can be achieved by setting the ratio (Mw / Mn) in a specific range. The present invention is based on this finding and has the following gist.
(1) Melt mass flow rate (MFR) measured under the conditions of 200 ° C. and 49 N load is 15 to 40 g / 10 min, methanol soluble content is 0.5 to 1.8 mass%, and weight average molecular weight (Mw) And a number average molecular weight (Mn) ratio (Mw / Mn) of 1.8 to 2.6.
(2) The styrene resin according to (1), wherein the weight average molecular weight (Mw) is 100,000 to 170,000.
(3) The styrenic resin according to (1) or (2), wherein the Vicat softening temperature measured at a load of 50 N is 99 to 104 ° C.

本発明のスチレン系樹脂は流動性、耐熱性に優れるため、成形サイクルの短縮化が可能であり、また得られる成形品は残留歪みが小さく機械的強度が優れ、しかも金型付着も少ないため、外観も優れる。   Since the styrenic resin of the present invention is excellent in fluidity and heat resistance, the molding cycle can be shortened, and the obtained molded product has low residual strain and excellent mechanical strength, and also has little mold adhesion, Appearance is also excellent.

以下本発明を詳細に説明する。   The present invention will be described in detail below.

本発明のスチレン系樹脂は、スチレン系単量体をラジカル重合して得られるものであり、重合方法としては公知の方法、例えば、塊状重合法、塊状・懸濁二段重合法、溶液重合法等により製造することができる。   The styrenic resin of the present invention is obtained by radical polymerization of a styrenic monomer, and the polymerization method is a known method such as bulk polymerization method, bulk / suspension two-stage polymerization method, solution polymerization method. Etc. can be manufactured.

スチレン系単量体としては、スチレン、α−メチルスチレン、o−メチルスチレン、p−メチルスチレン等の単独または混合物をいい、特に好ましくはスチレンである。また、これらのスチレン系単量体に共重合可能な単量体、例えばアクリロニトリル、メタクリル酸エステル、アクリル酸エステル等の単量体も本発明の効果を損なわない程度であれば共重合することができる。   As a styrene-type monomer, styrene, (alpha) -methylstyrene, o-methylstyrene, p-methylstyrene etc. are individual or a mixture, Especially preferably, it is styrene. In addition, monomers that can be copolymerized with these styrenic monomers, for example, monomers such as acrylonitrile, methacrylic acid esters, and acrylic acid esters, can be copolymerized as long as the effects of the present invention are not impaired. it can.

本発明のスチレン系樹脂の200℃、49N荷重の条件にて測定したメルトマスフローレイト(MFR)は、15〜40g/10分であり、好ましくは15〜34g/10分、更に好ましくは15〜27g/10分である。15g/10分未満では流動性が不足し、成形サイクルの短縮化が期待できず、40g/10分を超えると機械的強度が低下する。200℃、49N荷重の条件によるメルトマスフローレイトは、JIS K−7210に基づき測定した。スチレン系樹脂のメルトマスフローレイトは溶融時の流動性を表すパラメータであるが、分子量や分子量分布の制御によって調整することができる。また、重合過程や脱揮工程で副生成するスチレンオリゴマー(スチレンダイマー、スチレントリマー)やホワイトオイル等の各種添加剤成分、残存スチレンモノマー及び重合溶媒等の低分子量成分は、可塑剤的な効果があることから、メルトマスフローレイトを高める影響がある。   The melt mass flow rate (MFR) measured under the conditions of 200 ° C. and 49 N load of the styrene resin of the present invention is 15 to 40 g / 10 minutes, preferably 15 to 34 g / 10 minutes, and more preferably 15 to 27 g. / 10 minutes. If it is less than 15 g / 10 minutes, the fluidity is insufficient, and shortening of the molding cycle cannot be expected, and if it exceeds 40 g / 10 minutes, the mechanical strength decreases. The melt mass flow rate under the conditions of 200 ° C. and 49 N load was measured based on JIS K-7210. The melt mass flow rate of the styrene-based resin is a parameter representing the fluidity at the time of melting, but can be adjusted by controlling the molecular weight and molecular weight distribution. In addition, various additive components such as styrene oligomer (styrene dimer, styrene trimer) and white oil that are by-produced in the polymerization process and devolatilization process, low molecular weight components such as residual styrene monomer and polymerization solvent are effective as plasticizers. Because of this, there is an effect of increasing the melt mass flow rate.

本発明のスチレン系樹脂のメタノール可溶分は0.5〜1.8質量%であり、好ましくは0.5〜1.6質量%である。メタノール可溶分が1.8質量%を超えると耐熱性が低下し、成形サイクルの短縮化が期待できない。また、0.5質量%未満とすることは困難で生産性が著しく低下する。なおメタノール可溶分とは、樹脂組成物中のメタノールに可溶な成分を指し、例えばスチレン系樹脂の重合工程や脱揮工程で副生成するスチレンオリゴマー(スチレンダイマー、スチレントリマー)の他にホワイトオイル等の各種添加剤成分、残存スチレンモノマー及び重合溶媒等の低分子量成分等が含まれる。メタノール可溶分は、重合工程で副生成するスチレンオリゴマー(スチレンダイマー、スチレントリマー)の発生量を極力抑え、ホワイトオイル等の各種添加剤の使用を控え、残存スチレンモノマー及び重合溶媒の量を抑えることにより低減することができる。
なお、メタノール可溶分はスチレン系樹脂1gを精秤(質量P)し、メチルエチルケトンを加えて溶解し、メタノール400mLを急激に加えて、メタノール不溶分(樹脂成分)を析出、沈殿させる。約10分間静置した後、ガラスフィルターで徐々にろ過してメタノール不溶分を分離し、125℃の真空乾燥機にて2時間減圧下で乾燥した後、デシケータ内で約30分間放冷し、乾燥したメタノール不溶分の質量Nを測定することで、次式によって求めた。
メタノール可溶分(質量%)=(P−N)/P×100
The methanol-soluble component of the styrene resin of the present invention is 0.5 to 1.8% by mass, preferably 0.5 to 1.6% by mass. If the methanol-soluble content exceeds 1.8% by mass, the heat resistance is lowered and the molding cycle cannot be shortened. Moreover, it is difficult to make it less than 0.5 mass%, and productivity falls remarkably. The methanol-soluble component refers to a component that is soluble in methanol in the resin composition. For example, in addition to styrene oligomers (styrene dimer, styrene trimer) that are by-produced in the polymerization process or devolatilization process of styrene resin, Various additive components such as oil, low molecular weight components such as residual styrene monomer and polymerization solvent are included. Methanol-soluble matter suppresses the amount of styrene oligomer (styrene dimer, styrene trimer) generated as a by-product in the polymerization process as much as possible, refrains from using various additives such as white oil, and suppresses the amount of residual styrene monomer and polymerization solvent Can be reduced.
The methanol-soluble component is precisely weighed (mass P) of 1 g of styrene-based resin, dissolved by adding methyl ethyl ketone, and 400 mL of methanol is rapidly added to precipitate and precipitate the methanol-insoluble component (resin component). After leaving still for about 10 minutes, it was gradually filtered through a glass filter to separate methanol-insoluble matter, dried in a vacuum dryer at 125 ° C. under reduced pressure for 2 hours, and then allowed to cool in a desiccator for about 30 minutes. By measuring the mass N of the dried methanol-insoluble matter, it was determined by the following formula.
Methanol-soluble content (mass%) = (P−N) / P × 100

本発明のスチレン系樹脂の重量平均分子量(Mw)は、10万〜17万であり、好ましくは12万〜16万である。Mwが10万未満では機械的強度が低下し、17万を超えると流動性が不足する。また、重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)は1.8〜2.6であり、好ましくは2.0〜2.4である。Mw/Mnが2.6を超えると低分子量成分を多く含む為、機械的強度が低下し、1.8未満とすることは困難で生産性が著しく低下する。
本発明における重量平均分子量(Mw)及び、数平均分子量(Mn)は、ゲルパーミエイションクロマトグラフィー(GPC)を用いて、次の条件で測定した。
GPC機種:昭和電工株式会社製Shodex GPC−101
カラム:ポリマーラボラトリーズ社製 PLgel 10μm MIXED−B
移動相:テトラヒドロフラン
試料濃度:0.2質量%
温度:オーブン40℃、注入口35℃、検出器35℃
検出器:示差屈折計
本発明の分子量は、単分散ポリスチレンの溶出曲線より各溶出時間における分子量を算出し、ポリスチレン換算の分子量として算出したものである。
The weight average molecular weight (Mw) of the styrene resin of the present invention is 100,000 to 170,000, preferably 120,000 to 160,000. If the Mw is less than 100,000, the mechanical strength is lowered, and if it exceeds 170,000, the fluidity is insufficient. Moreover, the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) is 1.8 to 2.6, preferably 2.0 to 2.4. When Mw / Mn exceeds 2.6, since many low molecular weight components are contained, the mechanical strength is lowered, and it is difficult to make it less than 1.8, and the productivity is significantly lowered.
The weight average molecular weight (Mw) and the number average molecular weight (Mn) in the present invention were measured under the following conditions using gel permeation chromatography (GPC).
GPC model: Shodex GPC-101 manufactured by Showa Denko KK
Column: Polymer Laboratories PLgel 10 μm MIXED-B
Mobile phase: Tetrahydrofuran Sample concentration: 0.2% by mass
Temperature: 40 ° C oven, 35 ° C inlet, 35 ° C detector
Detector: Differential refractometer The molecular weight of the present invention is calculated as the molecular weight in terms of polystyrene by calculating the molecular weight at each elution time from the elution curve of monodisperse polystyrene.

本発明のスチレン系樹脂の分子量は、スチレン系単量体をラジカル重合する際に溶媒や連鎖移動剤を使用することで調整することができる。溶媒としては、トルエン、エチルベンゼン、キシレン等が使用できる。溶媒の使用量は特に限定されるものではないが、重合原料溶液100重量%に対して0質量%〜50質量%の範囲の使用が好ましい。連鎖移動剤としてはn−ドデシルメルカプタン、t−ドデシルメルカプタン、α−メチルスチレンダイマー等が用いられ、α−メチルスチレンダイマーが好ましい。連鎖移動剤の使用量は、スチレン系単量体に対して好ましくは0.01質量%〜0.5質量%、より好ましくは0.03〜0.3質量%である。反応温度は、好ましくは80〜200℃、より好ましくは90〜180℃の範囲である。反応温度が80℃より低いと生産性が低下するため、工業的に不適当であり、一方、200℃を超えると低分子量成分が多量に生成するため好ましくない。目標分子量が重合温度のみで調整できない場合は、開始剤量、溶媒量、連鎖移動剤量等で制御すればよい。反応時間は一般に0.5〜20時間、好ましくは2〜10時間である。反応時間が0.5時間より短いと反応が充分に進行せず、一方、20時間より長いと生産性が低く、工業的に不適当である。   The molecular weight of the styrene resin of the present invention can be adjusted by using a solvent or a chain transfer agent when radically polymerizing the styrene monomer. As the solvent, toluene, ethylbenzene, xylene and the like can be used. Although the usage-amount of a solvent is not specifically limited, Use of the range of 0 mass%-50 mass% with respect to 100 weight% of polymerization raw material solutions is preferable. As the chain transfer agent, n-dodecyl mercaptan, t-dodecyl mercaptan, α-methylstyrene dimer or the like is used, and α-methylstyrene dimer is preferable. The amount of the chain transfer agent used is preferably 0.01% by mass to 0.5% by mass and more preferably 0.03 to 0.3% by mass with respect to the styrenic monomer. The reaction temperature is preferably in the range of 80 to 200 ° C, more preferably 90 to 180 ° C. If the reaction temperature is lower than 80 ° C., the productivity is lowered, which is industrially unsuitable. On the other hand, if it exceeds 200 ° C., a large amount of low molecular weight components are generated, which is not preferable. When the target molecular weight cannot be adjusted only by the polymerization temperature, it may be controlled by the initiator amount, the solvent amount, the chain transfer agent amount, or the like. The reaction time is generally 0.5 to 20 hours, preferably 2 to 10 hours. When the reaction time is shorter than 0.5 hours, the reaction does not proceed sufficiently. On the other hand, when the reaction time is longer than 20 hours, the productivity is low and industrially unsuitable.

本発明のスチレン系樹脂の50N荷重にて測定したビカット軟化温度は99〜104℃であり、100〜104℃であることが好ましい。ビカット軟化温度が99℃未満であると耐熱性が不足し、冷却時に高温で固化させることが困難となり、成形サイクルの短縮化が期待できない。また、ラジカル重合のポリスチレンでは104℃が構造的に限界である。ビカット軟化温度は、JIS K−7206により、昇温速度50℃/hr、試験荷重50Nで求めた。   The Vicat softening temperature of the styrene resin of the present invention measured at 50 N load is 99 to 104 ° C, preferably 100 to 104 ° C. When the Vicat softening temperature is less than 99 ° C., the heat resistance is insufficient, and it is difficult to solidify at a high temperature during cooling, and a shortening of the molding cycle cannot be expected. In addition, 104 ° C. is a structural limit in radical polymerization polystyrene. The Vicat softening temperature was determined according to JIS K-7206 at a heating rate of 50 ° C / hr and a test load of 50N.

本発明のスチレン系樹脂は、必要に応じて、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム等の金属石鹸類、ステアリン酸、エチレンビスステアリルアミド等を内部潤滑剤或いは外部潤滑剤として使用することができる。また、ホワイトオイル等の可塑剤成分を添加することもできるが、耐熱性が低下する。また、成形加工時の熱劣化抑制のため、酸化防止剤を添加することもできる。   If necessary, the styrenic resin of the present invention may use metal soaps such as zinc stearate, calcium stearate, magnesium stearate, stearic acid, ethylene bisstearyl amide, etc. as an internal lubricant or an external lubricant. it can. Moreover, although plasticizer components, such as white oil, can also be added, heat resistance falls. In addition, an antioxidant may be added to suppress thermal deterioration during the molding process.

本発明のスチレン系樹脂の成形方法は、特に限定されないが、押出成形、射出成形、射出中空成形、発泡成形等の公知の成形法が適用でき、各種成形技術と組み合わせた成形法でも良い。更にTダイシート押出機、二軸延伸加工装置、インフレーション加工装置を用いて、シートやフィルムに成形する方法も適用できるが、成形品を得る方法として、射出成形が好適であり、こうして得られた成形品は食品容器(カップ)、CDケース、雑貨等に使用することができる。   The molding method of the styrenic resin of the present invention is not particularly limited, but known molding methods such as extrusion molding, injection molding, injection hollow molding, and foam molding can be applied, and molding methods combined with various molding techniques may be used. Furthermore, although a method of forming into a sheet or film using a T-die sheet extruder, a biaxial stretching apparatus, or an inflation processing apparatus can be applied, injection molding is suitable as a method for obtaining a molded product, and the molding thus obtained The product can be used for food containers (cups), CD cases, miscellaneous goods and the like.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited to these Examples.

(スチレン系樹脂PS−1〜PS−9の製造方法)
完全混合型撹拌槽である第1反応器と第2反応器及び静的混合器付プラグフロー型反応器である第3反応器を直列に接続して重合工程を構成した。各反応器の容量は、第1反応器を39リットル、第2反応器を39リットル、第3反応器を16リットルとした。表1に記載の原料組成にて、原料溶液を作成し、第1反応器に原料溶液を表1に記載の流量にて連続的に供給した。重合開始剤、連鎖移動剤は、第1反応器の入口で表1に記載の添加濃度(原料スチレンに対する質量基準の濃度)となるように原料溶液に添加混合した。表1に記載の連鎖移動剤はそれぞれ次の通りである。
重合開始剤 :t−ブチルクミルパーオキサイド(日油株式会社製パーブチルC)
連鎖移動剤−1 :α−メチルスチレンダイマー(日油株式会社製ノフマーMSD)
連鎖移動剤−2 :t−ドデシルメルカプタン
なお、第3反応器では、流れの方向に沿って温度勾配をつけ、中間部分、出口部分で表1の温度となるよう調整した。
続いて、第3反応器より連続的に取り出した重合体を含む溶液を直列に2段より構成される予熱器付き真空脱揮槽に導入し、表1に記載の樹脂温度となるよう予熱器の温度を調整し、表1に記載の圧力に調整することで、未反応スチレン及びエチルベンゼンを分離した後、多孔ダイよりストランド状に押し出しして、コールドカット方式にて、ストランドを冷却および切断しペレット化した。なお、PS−1〜6は実施例に使用し、PS−7〜9は比較例に使用し、下記条件にて物性測定を行った。その結果を表2に示す。
(Method for producing styrene resins PS-1 to PS-9)
The polymerization reactor was configured by connecting in series a first reactor that was a complete mixing tank, a second reactor, and a third reactor that was a plug flow reactor with a static mixer. The capacity of each reactor was 39 liters for the first reactor, 39 liters for the second reactor, and 16 liters for the third reactor. A raw material solution was prepared with the raw material composition described in Table 1, and the raw material solution was continuously supplied to the first reactor at a flow rate described in Table 1. The polymerization initiator and the chain transfer agent were added to and mixed with the raw material solution so that the addition concentration (concentration based on mass relative to the raw material styrene) shown in Table 1 was reached at the inlet of the first reactor. The chain transfer agents listed in Table 1 are as follows.
Polymerization initiator: t-butyl cumyl peroxide (Perbutyl C manufactured by NOF Corporation)
Chain transfer agent-1: α-methylstyrene dimer (NOFMER MSD manufactured by NOF Corporation)
Chain transfer agent-2: t-dodecyl mercaptan In addition, in the 3rd reactor, the temperature gradient was made along the direction of flow, and it adjusted so that it might become the temperature of Table 1 in an intermediate part and an exit part.
Subsequently, the solution containing the polymer continuously taken out from the third reactor was introduced into a vacuum devolatilization tank with a preheater constituted by two stages in series, and the preheater was adjusted to the resin temperature shown in Table 1. By adjusting the temperature and adjusting to the pressure shown in Table 1, unreacted styrene and ethylbenzene are separated and then extruded into a strand form from a perforated die, and the strand is cooled and cut by a cold cut method. Pelletized. In addition, PS-1-6 was used for the Example, PS-7-9 was used for the comparative example, and the physical-property measurement was performed on the following conditions. The results are shown in Table 2.

(1)落球衝撃強度(機械的強度)
射出成形機を用いて160×160×3mm厚の試験片を作成し、球の重量を16.6gとしたこと以外はJIS K−7211に準じて実施し、50%破壊高さの値を測定した。
(2)成形性
射出成形機を用いて210℃で厚さ1mmの箱型容器を成形した際、以下の評価基準に従って評価した。
○:問題なく成形できる。
ショート:ショートショットとなる。
バリ:バリが発生する。
(3)金型付着
射出成形機を用いて210℃で試験片を作成した際、以下の評価基準に従って評価した。
○:100ショット連続成形後に金型に付着が無い。
×:100ショット連続成形後に金型に付着が有る。
(1) Falling ball impact strength (mechanical strength)
A test piece of 160 × 160 × 3 mm thickness was prepared using an injection molding machine, and the test was carried out according to JIS K-7221 except that the weight of the sphere was 16.6 g, and the value of 50% fracture height was measured. did.
(2) Formability When a box-shaped container having a thickness of 1 mm was formed at 210 ° C. using an injection molding machine, evaluation was performed according to the following evaluation criteria.
○: Can be molded without problems.
Short: Short shot.
Burr: Burr occurs.
(3) Mold adhesion When a test piece was prepared at 210 ° C. using an injection molding machine, it was evaluated according to the following evaluation criteria.
○: There is no adhesion to the mold after 100 shots of continuous molding.
X: There is adhesion to the mold after 100 shots of continuous molding.

Figure 2017222770
Figure 2017222770

Figure 2017222770
Figure 2017222770

実施例のスチレン系樹脂を用いることで、流動性、耐熱性、機械的強度のバランスに優れ、かつ金型付着の少ない成形品を得ることができる。   By using the styrenic resin of the example, it is possible to obtain a molded product having an excellent balance of fluidity, heat resistance, and mechanical strength and having little adhesion to the mold.

比較例1では、MFRが低すぎた為、成形性が悪化した。   In Comparative Example 1, the moldability deteriorated because the MFR was too low.

比較例2では、重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が大きすぎた為に、機械的強度が低下した。   In Comparative Example 2, since the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) was too large, the mechanical strength was lowered.

比較例3では、メタノール可溶分が多すぎた為、成形性及び金型付着が悪化した。   In Comparative Example 3, since there was too much methanol-soluble matter, moldability and mold adhesion deteriorated.

以上の結果から、スチレン系樹脂のメルトマスフローレイト(MFR)、メタノール可溶分、重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)を特定の範囲としたときにおいてのみ、流動性、耐熱性、機械的強が優れ、しかも金型付着が少なく外観も優れることが分かった。   From the above results, only when the melt mass flow rate (MFR), methanol-soluble content of the styrene resin, the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) (Mw / Mn) is in a specific range. It was found that the fluidity, heat resistance and mechanical strength were excellent, and the appearance was excellent with little adhesion to the mold.

本発明のスチレン系樹脂は流動性、耐熱性のバランスに優れ、成形サイクルの短縮化が可能であり、残留歪みが小さく機械的強度が優れ、しかも金型付着が少なく外観も優れる為、射出成形用途分野に好適に利用可能である。   The styrenic resin of the present invention has an excellent balance between fluidity and heat resistance, can shorten the molding cycle, has low residual strain, has excellent mechanical strength, and has excellent appearance with little mold adhesion. It can be suitably used for application fields.

Claims (3)

200℃、49N荷重の条件にて測定したメルトマスフローレイト(MFR)が15〜40g/10分、メタノール可溶分が0.5〜1.8質量%、かつ重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が1.8〜2.6であることを特徴とするスチレン系樹脂。   Melt mass flow rate (MFR) measured under the conditions of 200 ° C. and 49 N load is 15 to 40 g / 10 min, methanol soluble content is 0.5 to 1.8 mass%, and weight average molecular weight (Mw) and number average Styrenic resin characterized by having a molecular weight (Mn) ratio (Mw / Mn) of 1.8 to 2.6. 重量平均分子量(Mw)が10万〜17万であることを特徴とする請求項1に記載のスチレン系樹脂。   The styrene resin according to claim 1, wherein the weight average molecular weight (Mw) is 100,000 to 170,000. 50N荷重にて測定したビカット軟化温度が99〜104℃であることを特徴とする請求項1又は2に記載のスチレン系樹脂。   The styrenic resin according to claim 1 or 2, wherein the Vicat softening temperature measured at a load of 50 N is 99 to 104 ° C.
JP2016118403A 2016-06-14 2016-06-14 Styrene resin Active JP6804222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016118403A JP6804222B2 (en) 2016-06-14 2016-06-14 Styrene resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016118403A JP6804222B2 (en) 2016-06-14 2016-06-14 Styrene resin

Publications (2)

Publication Number Publication Date
JP2017222770A true JP2017222770A (en) 2017-12-21
JP6804222B2 JP6804222B2 (en) 2020-12-23

Family

ID=60687840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016118403A Active JP6804222B2 (en) 2016-06-14 2016-06-14 Styrene resin

Country Status (1)

Country Link
JP (1) JP6804222B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09255703A (en) * 1996-03-27 1997-09-30 Sumitomo Chem Co Ltd Production of styrene polymer
JP2006312686A (en) * 2005-05-09 2006-11-16 Asahi Kasei Chemicals Corp Heat-resistant resin composition
JP2009275185A (en) * 2008-05-16 2009-11-26 Toyo Styrene Co Ltd Styrenic resin composition for plate-like extruded foam, and method for producing it
WO2010098900A1 (en) * 2009-02-27 2010-09-02 Fina Technology, Inc. Polystyrene having high melt flow and high vicat
WO2011162306A1 (en) * 2010-06-24 2011-12-29 東洋スチレン株式会社 Light-guiding plate made of styrenic resin
JP2013507477A (en) * 2009-10-07 2013-03-04 ベルサリス、ソシエタ、ペル、アチオニ Expandable thermoplastic nanocomposite polymer composition with improved thermal insulation performance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09255703A (en) * 1996-03-27 1997-09-30 Sumitomo Chem Co Ltd Production of styrene polymer
JP2006312686A (en) * 2005-05-09 2006-11-16 Asahi Kasei Chemicals Corp Heat-resistant resin composition
JP2009275185A (en) * 2008-05-16 2009-11-26 Toyo Styrene Co Ltd Styrenic resin composition for plate-like extruded foam, and method for producing it
WO2010098900A1 (en) * 2009-02-27 2010-09-02 Fina Technology, Inc. Polystyrene having high melt flow and high vicat
JP2013507477A (en) * 2009-10-07 2013-03-04 ベルサリス、ソシエタ、ペル、アチオニ Expandable thermoplastic nanocomposite polymer composition with improved thermal insulation performance
WO2011162306A1 (en) * 2010-06-24 2011-12-29 東洋スチレン株式会社 Light-guiding plate made of styrenic resin

Also Published As

Publication number Publication date
JP6804222B2 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
KR101143055B1 (en) Thermoplastic moulding materials having improved mechanical and optical properties
TW201038592A (en) Polystyrene having high melt flow and high Vicat
CN107849189B (en) Copolymer, method for producing copolymer, resin composition, molded article, and vehicle
JP6211706B2 (en) Heat resistant SAN resin, method for producing the same, and heat resistant SAN resin composition containing the same
KR101322102B1 (en) Thermoplastic resin composition applicable to two cavities blow molding
KR100311756B1 (en) Styrene-resin compositions and injection- and extrusion-molded articles
KR101553886B1 (en) - thermoplastic molding compound with processing-independent viscosity
KR20180102540A (en) Biaxially oriented sheet and its molded product
JP2005281475A (en) Styrene polymer and its production method
JP6804222B2 (en) Styrene resin
JP6481426B2 (en) Highly transparent and heat resistant resin composition and film
JPWO2017094748A1 (en) Transparent high heat resistant styrenic copolymer
JP6071716B2 (en) Styrene copolymer resin composition, extruded foam sheet and container
JP2016011357A (en) Manufacturing method of heat-resistant styrenic resin, heat-resistant styrenic resin composition, extrusion sheet, and molded article
JP2005225960A (en) Rubber-modified styrenic resin composition and molded article obtained by using the same
JP7417717B2 (en) Thermoplastic resin composition, method for producing the same, and molded articles produced therefrom
KR20190055147A (en) POLYMER COMPOSITION, PROCESS FOR PRODUCING THE SAME, USE THEREOF AND OBJECT CONTAINING THE SAME
KR102331304B1 (en) Copolymer, method for preparing the same and thermoplastic resin composition comprising the same
JP3929229B2 (en) Heat-resistant poly (meth) acryl styrene resin composition, sheet and packaging container
JP2019001095A (en) Stretched sheet and molded article thereof
JP4458931B2 (en) Transparent rubber-modified copolymer resin composition, molded product obtained therefrom, and method for producing the composition
CN107614622A (en) Transparent resin composition and its manufacture method
JP2023115374A (en) Styrene-based resin composition and molded article
EP1123347A1 (en) Monovinylidene aromatic resins
JP3947419B2 (en) Aromatic vinyl compound resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201026

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201026

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201102

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201202

R150 Certificate of patent or registration of utility model

Ref document number: 6804222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250