JP2009275185A - Styrenic resin composition for plate-like extruded foam, and method for producing it - Google Patents

Styrenic resin composition for plate-like extruded foam, and method for producing it Download PDF

Info

Publication number
JP2009275185A
JP2009275185A JP2008130053A JP2008130053A JP2009275185A JP 2009275185 A JP2009275185 A JP 2009275185A JP 2008130053 A JP2008130053 A JP 2008130053A JP 2008130053 A JP2008130053 A JP 2008130053A JP 2009275185 A JP2009275185 A JP 2009275185A
Authority
JP
Japan
Prior art keywords
molecular weight
resin composition
plate
average molecular
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008130053A
Other languages
Japanese (ja)
Other versions
JP5160957B2 (en
Inventor
Kohei Nishino
広平 西野
Kazuhiro Yoshioka
和広 好岡
Michihide Ozawa
道秀 小沢
Yasuo Yamaguchi
泰生 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Styrene Co Ltd
Original Assignee
Toyo Styrene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Styrene Co Ltd filed Critical Toyo Styrene Co Ltd
Priority to JP2008130053A priority Critical patent/JP5160957B2/en
Publication of JP2009275185A publication Critical patent/JP2009275185A/en
Application granted granted Critical
Publication of JP5160957B2 publication Critical patent/JP5160957B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a styrenic resin composition suitable for production of plate-like extruded foam enabling extrusion at such low temperature that a flame retardant may not be decomposed during a production of plate-like extruded foam especially using a hydrocarbon- or an inorganic-based foaming agent such as carbon dioxide and water, having good foamability, excellent in mechanical strength and flame retaradance; and a method for producing it. <P>SOLUTION: Using a styrenic resin composition having a particular range of fluidity (melt mass flow rate) and a melt-tension value, as well as a particular range of weight-average molecular weight (Mw), molecular weight distribution (Mw/Mn, Mz/Mw) enables production of plate-like foam excellent in flame retardance and mechanical strength. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、板状押出発泡体用スチレン系樹脂組成物及びその製造方法に関するもので、難燃剤が分解しないような低温度で押出することが可能で、かつ、発泡性が良好で、機械的強度、難燃性に優れた板状押出発泡体を得ることができる。   The present invention relates to a styrene-based resin composition for a plate-like extruded foam and a method for producing the same, and can be extruded at a low temperature so as not to decompose a flame retardant, and has good foamability and mechanical properties. A plate-like extruded foam having excellent strength and flame retardancy can be obtained.

スチレン系樹脂組成物からなる板状押出発泡体は、優れた断熱性及び機械的強度を有することから、一般建築物等の床材や壁材、天井材、畳の心材など様々な分野で使用されている。   Plate-like extruded foam made of styrene resin composition has excellent heat insulation and mechanical strength, so it can be used in various fields such as flooring for general buildings, wall materials, ceiling materials, and tatami core materials. Has been.

スチレン系樹脂組成物の押出発泡体の製造方法としては、従来より様々な方法が用いられているが、一般にはスチレン系樹脂組成物を押出機で加熱溶融混練した後、発泡剤を添加し、冷却させ、これを低圧雰囲気下に押出発泡させて製造する方法が採用されている。また発泡剤としては、フロン系発泡剤が用いられてきたが(特許文献1)、近年の環境問題から炭化水素系発泡剤や二酸化炭素、水に代表される無機系発泡剤を使用する割合が増えており、それらの発泡剤に適したスチレン系樹脂組成物が求められている。
特開平10−182870号公報
As a method for producing an extruded foam of a styrenic resin composition, various methods have been conventionally used. Generally, after a styrene resin composition is heated and melt-kneaded with an extruder, a foaming agent is added, A method of manufacturing by cooling and extrusion foaming in a low-pressure atmosphere is adopted. Moreover, although a fluorocarbon foaming agent has been used as the foaming agent (Patent Document 1), the ratio of using an inorganic foaming agent typified by a hydrocarbon foaming agent, carbon dioxide, and water is increasing due to recent environmental problems. The number of styrenic resin compositions suitable for these foaming agents is increasing.
Japanese Patent Laid-Open No. 10-182870

炭化水素系発泡剤としては、主に炭素数が3〜5である飽和炭化水素が使用されるが、フロン系発泡剤に比べると、分散性が悪いため、押出発泡時に発泡剤が分散不良となることがある。また、炭化水素系発泡剤は可燃性のため、難燃性が悪化し、難燃剤の添加量を増やす必要がある。また、押出発泡時の安全性の問題から、発泡剤の使用量は少なめになってきているが、発泡剤の量が減ると押出機内の樹脂粘度が上昇し、その結果樹脂温度が上昇する。樹脂温度が上昇すると、難燃剤の分解が発生し、それによりスチレン系樹脂の劣化が起こるといった問題がある。難燃剤の分解を抑制するため、低温度で押出できるようなスチレン系樹脂組成物が要求されているが、同時に発泡性や発泡体の機械的強度は維持する必要がある。   As the hydrocarbon-based foaming agent, saturated hydrocarbons having 3 to 5 carbon atoms are mainly used. However, since the dispersibility is poor compared to the fluorocarbon-based foaming agent, the foaming agent is poorly dispersed during extrusion foaming. May be. Further, since the hydrocarbon-based foaming agent is flammable, the flame retardancy is deteriorated, and it is necessary to increase the amount of the flame retardant added. In addition, the amount of foaming agent used has been reduced due to safety problems during extrusion foaming. However, when the amount of foaming agent decreases, the resin viscosity in the extruder increases, and as a result, the resin temperature increases. When the resin temperature rises, there is a problem that the flame retardant is decomposed, thereby causing deterioration of the styrene resin. In order to suppress decomposition of the flame retardant, a styrenic resin composition that can be extruded at a low temperature is required, but at the same time, foamability and mechanical strength of the foam must be maintained.

二酸化炭素や水に代表される無機系発泡剤を主成分として使用することも検討されているが、これらの発泡剤は、炭化水素系発泡剤よりも更にスチレン系樹脂への分散性が悪い。そのため、分散性が良好で、無機系発泡剤の溶解量が増えるよう低温度で押出でき、かつ発泡性や機械的強度が維持できるようなスチレン系樹脂組成物が要求されている。   The use of an inorganic foaming agent typified by carbon dioxide or water as a main component has also been studied, but these foaming agents have a lower dispersibility in styrene resins than hydrocarbon foaming agents. Therefore, there is a demand for a styrenic resin composition that has good dispersibility, can be extruded at a low temperature so as to increase the amount of dissolved inorganic foaming agent, and can maintain foamability and mechanical strength.

本発明は、炭化水素系発泡剤や二酸化炭素、水に代表される無機系発泡剤を使用した板状押出発泡体の製造において、難燃剤が分解しないような低温度で押出することを可能とし、かつ、発泡性が良好で、機械的強度、難燃性に優れた板状押出発泡体を製造することに適したスチレン系樹脂組成物及びその製造方法を提供することを目的としている。   The present invention makes it possible to extrude at a low temperature so that the flame retardant does not decompose in the production of a plate-like extruded foam using an inorganic foaming agent typified by a hydrocarbon foaming agent, carbon dioxide and water. It is another object of the present invention to provide a styrene resin composition suitable for producing a plate-like extruded foam having good foamability and excellent mechanical strength and flame retardancy, and a method for producing the same.

1.200℃、49N荷重の条件にて測定したメルトマスフローレイト(MFR)が10〜30g/10分で、200℃で測定した溶融張力値が5〜15gfで、メタノール可溶分が0.2〜1.5質量%で、重量平均分子量(Mw)が15万〜25万で、重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が3.5〜8.0、Z平均分子量(Mz)と重量平均分子量(Mw)の比(Mz/Mw)が2.2〜3.6であることを特徴とする板状押出発泡体用スチレン系樹脂組成物。
2.スチレン系樹脂組成物中の残存スチレンモノマー及び重合溶媒の総量が250μg/g以下であることを特徴とする1項に記載の板状押出発泡体用スチレン系樹脂組成物。
3.50N荷重にて測定したビカット軟化温度が99〜104℃であることを特徴とする1〜2項のいずれか1項に記載の板状押出発泡体用スチレン系樹脂組成物。
4.重合溶媒としてエチルベンゼンを5〜20質量%使用し、スチレンモノマーの連続ラジカル重合を行うに当たり、ポリマー濃度が25〜45質量%に達するまでは1〜2基からなる完全混合槽型反応器を直列に接続した工程にて110〜130℃の温度で生成するポリマーの重量平均分子量(Mw)が35万〜50万となるよう重合を行い、次いでポリマー濃度が65〜90%に達するまでは150℃〜210℃の温度でZ平均分子量(Mz)と重量平均分子量(Mw)の比(Mz/Mw)が2.2〜3.6となるよう重合を行うことを特徴とする1〜3項のいずれか1項に記載の板状押出発泡体用スチレン系樹脂組成物の製造方法。
5.連続ラジカル重合で得られたスチレン系樹脂と未反応スチレンモノマー及び重合溶媒を除去する脱揮工程において、加熱器付きの真空脱揮槽を直列に2段接続したものを用い、1段目の真空脱揮槽での樹脂温度は200〜240℃に調整し出口の未反応スチレンモノマーと重合溶媒の合計量が0.2質量%以下となるよう真空度を6.0kPa以下に調整し、1段目の真空脱揮槽を出たポリマー溶液に対して0.2〜2.0質量%の水を添加し、動的又は静的混合機にて水を分散し、真空度を0.5〜3.0kPaの範囲に調整した2段目の真空脱揮槽に導入し脱揮処理することを特徴とする1〜4項のいずれか1項に記載の板状押出発泡体用スチレン系樹脂組成物の製造方法。
6.1〜3項のいずれか1項に記載のスチレン系樹脂組成物を発泡押出し、密度が10〜50kg/mであることを特徴とする板状押出発泡体の製造方法。
7.6項に記載の製造方法によって得られる板状押出発泡体。
1. Melt mass flow rate (MFR) measured at 200 ° C. and 49 N load is 10-30 g / 10 min, melt tension value measured at 200 ° C. is 5-15 gf, and methanol soluble content is 0.2. The weight average molecular weight (Mw) is 150,000 to 250,000, and the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) (Mw / Mn) is 3.5 to 8.0. A styrene resin composition for a plate-like extruded foam, wherein the ratio (Mz / Mw) of the Z average molecular weight (Mz) and the weight average molecular weight (Mw) is 2.2 to 3.6.
2. 2. The styrene resin composition for a plate-like extruded foam according to 1, wherein the total amount of residual styrene monomer and polymerization solvent in the styrene resin composition is 250 μg / g or less.
3. The styrenic resin composition for a plate-like extruded foam according to any one of items 1 to 2, wherein a Vicat softening temperature measured at a load of 50 N is 99 to 104 ° C.
4). When 5-20% by mass of ethylbenzene is used as a polymerization solvent and a continuous radical polymerization of styrene monomer is carried out, a complete mixing tank reactor consisting of 1 to 2 units is connected in series until the polymer concentration reaches 25-45% by mass. Polymerization is carried out so that the weight average molecular weight (Mw) of the polymer produced at a temperature of 110 to 130 ° C. in the connected process is 350,000 to 500,000, and then 150 ° C. to until the polymer concentration reaches 65 to 90%. Any one of items 1 to 3, wherein the polymerization is performed at a temperature of 210 ° C. such that the ratio (Mz / Mw) of the Z average molecular weight (Mz) to the weight average molecular weight (Mw) is 2.2 to 3.6. The manufacturing method of the styrene-type resin composition for plate-shaped extrusion foam of Claim 1.
5. In the devolatilization step to remove the styrenic resin, unreacted styrene monomer and polymerization solvent obtained by continuous radical polymerization, a vacuum devolatilization tank with a heater connected in two stages in series is used as the first stage vacuum The resin temperature in the devolatilization tank is adjusted to 200 to 240 ° C., and the degree of vacuum is adjusted to 6.0 kPa or less so that the total amount of unreacted styrene monomer and polymerization solvent at the outlet is 0.2% by mass or less. 0.2 to 2.0 mass% of water is added to the polymer solution exiting the vacuum devolatilization tank of the eye, and water is dispersed in a dynamic or static mixer, and the degree of vacuum is 0.5 to The styrene-based resin composition for plate-like extruded foam according to any one of 1 to 4, which is introduced into a second-stage vacuum devolatilization tank adjusted to a range of 3.0 kPa and devolatilized. Manufacturing method.
6. A method for producing a plate-like extruded foam, wherein the styrenic resin composition according to any one of items 1 to 3 is foam-extruded and the density is 10 to 50 kg / m 3 .
A plate-like extruded foam obtained by the production method according to 7.6.

本発明のスチレン系樹脂組成物を用いることで、難燃剤が分解しないような低温度での押出が可能となり、機械的強度と難燃性に優れた板状押出発泡体を製造することが可能となり、押出発泡性にも優れる。   By using the styrene-based resin composition of the present invention, extrusion at a low temperature is possible so that the flame retardant does not decompose, and it is possible to produce a plate-like extruded foam excellent in mechanical strength and flame retardancy. Thus, the extrusion foamability is also excellent.

本発明が対象とするスチレン系樹脂組成物の200℃、49N荷重の条件にて測定したメルトマスフローレイト(MFR)は、10〜30g/10分であり、好ましくは12〜20g/10分である。30g/10分を超えると樹脂粘度が下がりすぎてしまい、発泡性が悪化し、押出が困難となる。逆に、10g/10分未満となるとスチレン系樹脂組成物の樹脂粘度が上がりすぎ、低温度での押出が困難となり、樹脂温度の上昇により難燃剤が分解してしまう。仮に、押出機のシリンダー温度を下げたとしても、剪断発熱により樹脂温度が上昇してしまう。スチレン系樹脂組成物の200℃、49N荷重の条件によるメルトマスフローレイトは、JIS K−7210に基づき測定した。スチレン系樹脂組成物のメルトマスフローレイトは溶融時の流動性を表すパラメータであるが、分子量や分子量分布の制御によって調整することができる。また、重合過程や脱揮工程で副生成するスチレンオリゴマー(スチレンダイマー、スチレントリマー)やホワイトオイル等の各種添加剤成分、残存スチレンモノマー及び重合溶媒等の低分子量成分は、可塑剤的な効果があることから、メルトマスフローレイトを高める影響がある。   The melt mass flow rate (MFR) measured under the conditions of 200 ° C. and 49 N load of the styrenic resin composition targeted by the present invention is 10 to 30 g / 10 minutes, preferably 12 to 20 g / 10 minutes. . If it exceeds 30 g / 10 minutes, the resin viscosity will be too low, the foamability will deteriorate, and extrusion will be difficult. On the other hand, if it is less than 10 g / 10 minutes, the resin viscosity of the styrene-based resin composition is excessively increased, making it difficult to extrude at a low temperature, and the flame retardant decomposes due to an increase in the resin temperature. Even if the cylinder temperature of the extruder is lowered, the resin temperature rises due to shearing heat generation. The melt mass flow rate under the conditions of 200 ° C. and 49 N load of the styrene resin composition was measured based on JIS K-7210. The melt mass flow rate of the styrene-based resin composition is a parameter indicating the fluidity at the time of melting, but can be adjusted by controlling the molecular weight and the molecular weight distribution. In addition, various additive components such as styrene oligomers (styrene dimer, styrene trimer) and white oil that are by-produced in the polymerization process and devolatilization process, and low molecular weight components such as residual styrene monomer and polymerization solvent have a plasticizer effect. Because of this, there is an effect of increasing the melt mass flow rate.

本発明が対象とするスチレン系樹脂組成物の200℃で測定した溶融張力値は5〜15gfである。溶融張力値が5gf未満であると、板状押出発泡体を製造する際の発泡性が悪化し、連続気泡が増えるなどの悪影響がある。また、板状押出発泡体の圧縮強度が低下する。また、メルトマスフローレイト(MFR)が、10〜30g/10分の範囲で、15gfを超える溶融張力とするのは困難で、分子量分布が広がりすぎてしまい、低分子量成分の影響で強度や耐熱性といった物性が低下する。溶融張力値は、東洋精機製「キャピログラフ1B型」を使用し、バレル温度200℃、バレル径9.55mm、キャピラリー長さ:L=10mm、キャピラリー径:D=1mm(L/D=10)、バレル内の押出し速度10mm/分にて樹脂を押出し、荷重測定部をダイから60cm下方にセットし、キャピラリーより流出してきたストランド状の樹脂を巻き取り器にセットし、巻き取り線速度を4m/分から200m/分まで、1分間に20m/分の割合で巻き取り線速度を上昇していき、ストランドが破断するまでの荷重を測定する。巻き取り線速度を上げていくと荷重は上昇し、一定の変動幅に安定するが、荷重に変動幅があるため、荷重が安定してから破断するまでの範囲を平均化し、溶融張力値とした。また、ストランドが破断したときの巻き取り線速度を糸切れ速度(m/分)とした。溶融張力値は、スチレン系樹脂組成物の溶融時の弾性的な性質を表すパラメータでであるが、分子量や分子量分布の制御によって調整することができ、分子量を高くするほど溶融張力値を高めることができる。しかしながら、単に分子量を上げるだけでは同時にメルトマスフローレイトが下がりすぎてしまい、板状押出発泡体の生産性が低下してしまう。メルトマスフローレイトを維持したまま溶融張力値を高めるには分子量分布を広くする方法があり、具体的には、重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が3.5〜8.0、Z平均分子量(Mz)と重量平均分子量(Mw)の比(Mz/Mw)が2.2〜3.6の範囲とすることで本発明のメルトマスフローレイトと溶融張力値のバランスを達成することが可能となる。また、重合過程や脱揮工程で副生成するスチレンオリゴマー(スチレンダイマー、スチレントリマー)やホワイトオイル等の各種添加剤成分、残存スチレンモノマー及び重合溶媒等の低分子量成分は、可塑剤的な効果があることから、溶融張力値を下げる効果がある。   The melt tension value measured at 200 ° C. of the styrene resin composition targeted by the present invention is 5 to 15 gf. When the melt tension value is less than 5 gf, the foaming properties at the time of producing the plate-like extruded foam deteriorate, and there are adverse effects such as an increase in open cells. Moreover, the compressive strength of the plate-like extruded foam decreases. In addition, melt mass flow rate (MFR) in the range of 10 to 30 g / 10 min is difficult to achieve a melt tension exceeding 15 gf, the molecular weight distribution is too wide, and the strength and heat resistance are affected by the low molecular weight components. Such physical properties are reduced. The melt tension value is “Capillograph 1B type” manufactured by Toyo Seiki, barrel temperature 200 ° C., barrel diameter 9.55 mm, capillary length: L = 10 mm, capillary diameter: D = 1 mm (L / D = 10), The resin is extruded at an extrusion speed of 10 mm / min in the barrel, the load measuring part is set 60 cm below the die, the strand-shaped resin flowing out from the capillary is set in the winder, and the winding line speed is 4 m / min. From the minute to 200 m / min, the winding linear velocity is increased at a rate of 20 m / min per minute, and the load until the strand breaks is measured. As the winding line speed is increased, the load increases and stabilizes to a certain fluctuation range, but since the load has a fluctuation range, the range from when the load stabilizes until it breaks is averaged, and the melt tension value did. The winding line speed when the strand broke was defined as the thread break speed (m / min). The melt tension value is a parameter that represents the elastic properties of the styrene resin composition at the time of melting, but it can be adjusted by controlling the molecular weight and molecular weight distribution, and the higher the molecular weight, the higher the melt tension value. Can do. However, simply increasing the molecular weight will cause the melt mass flow rate to decrease at the same time, reducing the productivity of the plate-like extruded foam. To increase the melt tension value while maintaining the melt mass flow rate, there is a method of widening the molecular weight distribution. Specifically, the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is 3 The melt mass flow rate and the melt tension of the present invention are such that the ratio (Mz / Mw) of Z-average molecular weight (Mz) to weight-average molecular weight (Mw) is in the range of 2.2 to 3.6. It is possible to achieve a balance of values. In addition, various additive components such as styrene oligomers (styrene dimer, styrene trimer) and white oil that are by-produced in the polymerization process and devolatilization process, and low molecular weight components such as residual styrene monomer and polymerization solvent have a plasticizer effect. Therefore, there is an effect of lowering the melt tension value.

本発明が対象とするスチレン系樹脂組成物のメタノール可溶分は、0.2〜1.5質量%であり、好ましくは0.2〜1.3質量%である。メタノール可溶分が1.5質量%を超えると耐熱性が低下する。また、ラジカル重合で、0.2質量%未満とすることは困難で生産性が著しく低下する。なお、メタノール可溶分とは樹脂組成物中のメタノールに可溶な成分を指し、例えばスチレン系樹脂の重合過程や脱揮工程で副生成するスチレンオリゴマー(スチレンダイマー、スチレントリマー)の他にホワイトオイル、シリコーンオイル等の各種添加剤や残存スチレンモノマー及び重合溶媒等の低分子量成分が含まれる。メタノール可溶分は、重合過程で副生成するスチレンオリゴマー(スチレンダイマー、スチレントリマー)の発生量を極力抑え、ホワイトオイル等の各種添加剤の使用を控え、残存スチレンモノマー及び重合溶媒の量を抑えることにより、低減することができる。
なお、メタノール可溶分は樹脂組成物1gを精秤(質量P)し、メチルエチルケトンを40mL加えて溶解し、メタノール400mLを急激に加えて、メタノール不溶分(樹脂成分)を析出、沈殿させる。約10分間静置した後、ガラスフィルターで徐々にろ過してメタノール不溶分を分離し、120℃の真空乾燥機にて2時間減圧下で乾燥した後、デシケータないで約25分間放冷し、乾燥したメタノール不溶分の質量Nを測定することで、次式によって求めた。
メタノール可溶分(質量%)=(P−N)/P×100
The methanol soluble part of the styrene resin composition targeted by the present invention is 0.2 to 1.5% by mass, preferably 0.2 to 1.3% by mass. When the methanol-soluble content exceeds 1.5% by mass, the heat resistance decreases. Moreover, it is difficult to make it less than 0.2 mass% by radical polymerization, and productivity falls remarkably. The methanol-soluble component means a component soluble in methanol in the resin composition. For example, in addition to styrene oligomer (styrene dimer, styrene trimer) by-produced in the polymerization process or devolatilization process of styrene resin, Various additives such as oil and silicone oil, and low molecular weight components such as residual styrene monomer and polymerization solvent are included. Methanol-soluble matter suppresses the amount of styrene oligomer (styrene dimer, styrene trimer) generated as a by-product in the polymerization process as much as possible, refrains from using various additives such as white oil, and reduces the amount of residual styrene monomer and polymerization solvent This can be reduced.
The methanol-soluble component is precisely weighed (mass P) of 1 g of the resin composition, 40 mL of methyl ethyl ketone is added and dissolved, and 400 mL of methanol is rapidly added to precipitate and precipitate the methanol-insoluble component (resin component). After leaving still for about 10 minutes, it is gradually filtered through a glass filter to separate methanol-insoluble matter, dried in a vacuum dryer at 120 ° C. under reduced pressure for 2 hours, and then allowed to cool for about 25 minutes without a desiccator. By measuring the mass N of the dried methanol-insoluble matter, it was determined by the following formula.
Methanol-soluble content (mass%) = (P−N) / P × 100

本発明が対象とするスチレン系樹脂組成物の重量平均分子量(Mw)は、15万〜25万であり、好ましくは20万〜24万である。また、重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)は3.5〜8.0、好ましくは4.0〜6.0である。また、Z平均分子量(Mz)と重量平均分子量(Mw)の比(Mz/Mw)は2.2〜3.6で、好ましくは2.3〜2.9である。重量平均分子量(Mw)及びMw/Mn、Mz/Mwが上記範囲外であると、本発明のメルトマスフローレイトと溶融張力値のバランスを達成することができない。
本発明における重量平均分子量(Mw)及びZ平均分子量(Mz)、数平均分子量(Mn)は、ゲルパーミエイションクロマトグラフィー(GPC)を用いて、次の条件で測定した。
GPC機種:昭和電工株式会社製Shodex GPC−101
カラム:ポリマーラボラトリーズ社製 PLgel 10μm MIXED−B
移動相:テトラヒドロフラン
試料濃度:0.2質量%
温度:オーブン40℃、注入口35℃、検出器35℃
検出器:示差屈折計
本発明の分子量は、単分散ポリスチレンの溶出曲線より各溶出時間における分子量を算出し、ポリスチレン換算の分子量として算出したものである。
The weight average molecular weight (Mw) of the styrene resin composition targeted by the present invention is 150,000 to 250,000, preferably 200,000 to 240,000. Moreover, the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) is 3.5 to 8.0, preferably 4.0 to 6.0. The ratio (Mz / Mw) of the Z average molecular weight (Mz) to the weight average molecular weight (Mw) is 2.2 to 3.6, preferably 2.3 to 2.9. When the weight average molecular weight (Mw), Mw / Mn, and Mz / Mw are out of the above ranges, the balance between the melt mass flow rate of the present invention and the melt tension value cannot be achieved.
The weight average molecular weight (Mw), Z average molecular weight (Mz), and number average molecular weight (Mn) in the present invention were measured under the following conditions using gel permeation chromatography (GPC).
GPC model: Shodex GPC-101 manufactured by Showa Denko KK
Column: Polymer Laboratories PLgel 10 μm MIXED-B
Mobile phase: Tetrahydrofuran Sample concentration: 0.2% by mass
Temperature: 40 ° C oven, 35 ° C inlet, 35 ° C detector
Detector: Differential refractometer The molecular weight of the present invention is calculated as the molecular weight in terms of polystyrene by calculating the molecular weight at each elution time from the elution curve of monodisperse polystyrene.

本発明が対象とするスチレン系樹脂組成物の分子量は、スチレンをラジカル重合する際の反応温度、滞留時間、重合開始剤の種類及び添加量、重合時に使用する溶媒の種類及び量等によって制御することができる。分子量については、低温度で重合を行うなど、重合速度を抑えることで高分子量化することができるが、それだけでは効率が悪く、重合開始剤として、多官能の有機過酸化物を使用することが好ましく、2,2−ビス(4,4−t−ブチルパーオキシシクロヘキシル)プロパン(四官能)、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン(二官能)が好適に使用することができる。また、逆に高温度で重合を行うなど重合速度を高めることで低分子量化することができるが、重合速度をより高めるために単官能の有機過酸化物を使用してもよい。また、連鎖移動剤を添加することにより低分子量化することもできる。重合方法については商業的に連続重合であることが好ましく、スチレンモノマーの濃度が高い重合前半は、分子量を高めるという点で完全混合槽型の反応器を使用したほうが有利である。分子量分布を表す、Mw/Mn及びMz/Mwの制御については、重合前半部分で高分子量成分を生成し、重合後半部分で低分子量成分を生成することによって分子量分布を広めることができる。   The molecular weight of the styrene resin composition targeted by the present invention is controlled by the reaction temperature, residence time, type and amount of polymerization initiator used in radical polymerization of styrene, type and amount of solvent used during polymerization, and the like. be able to. The molecular weight can be increased by suppressing the polymerization rate, such as by performing polymerization at a low temperature, but it is not efficient by itself, and a polyfunctional organic peroxide can be used as a polymerization initiator. Preferably, 2,2-bis (4,4-t-butylperoxycyclohexyl) propane (tetrafunctional) and 1,1-bis (t-butylperoxy) cyclohexane (bifunctional) can be suitably used. . On the other hand, the molecular weight can be lowered by increasing the polymerization rate such as by performing polymerization at a high temperature, but a monofunctional organic peroxide may be used in order to further increase the polymerization rate. Further, the molecular weight can be lowered by adding a chain transfer agent. The polymerization method is preferably a commercially continuous polymerization, and in the first half of the polymerization where the concentration of styrene monomer is high, it is more advantageous to use a complete mixing tank type reactor in terms of increasing the molecular weight. Regarding the control of Mw / Mn and Mz / Mw representing the molecular weight distribution, the molecular weight distribution can be broadened by generating a high molecular weight component in the first half of the polymerization and generating a low molecular weight component in the second half of the polymerization.

本発明のスチレン系樹脂組成物の製造方法については、スチレンモノマーの連続ラジカル重合であることが好ましく、重合溶媒としてエチルベンゼンを5〜20質量%使用することが好ましい。また、エチルベンゼンの代わりにトルエンを使用してもよい。ポリマー濃度が25〜45質量%に達するまでは1〜2基からなる完全混合槽型反応器を直列に接続した工程にて110〜130℃の温度で、生成するポリマーの重量平均分子量(Mw)が35〜50万となるよう重合を行うことが好ましい。次に、ポリマー濃度が65〜90%に達するまでは150℃〜210℃の温度でZ平均分子量(Mz)と重量平均分子量(Mw)の比(Mz/Mw)が2.2〜3.6となるよう重合を行うことが好ましい。この際、反応器の型式について特に制限はないが、プラグフロー型反応器または完全混合槽型反応器とプラグフロー型反応器の組み合わせなどを使用することができる。また、プラグフロー型反応器の場合、流れ方向に温度勾配がつくので、反応器の中間部分以降で150℃〜210℃となるよう制御すればよく、入口付近は150℃未満でもかまわない。   About the manufacturing method of the styrene resin composition of this invention, it is preferable that it is continuous radical polymerization of a styrene monomer, and it is preferable to use 5-20 mass% of ethylbenzene as a polymerization solvent. Further, toluene may be used in place of ethylbenzene. Until the polymer concentration reaches 25 to 45% by mass, the weight average molecular weight (Mw) of the polymer produced at a temperature of 110 to 130 ° C. in a process in which 1 or 2 complete mixing tank reactors are connected in series. It is preferable to carry out the polymerization so that becomes 35 to 500,000. Next, the ratio (Mz / Mw) of the Z average molecular weight (Mz) to the weight average molecular weight (Mw) is 2.2 to 3.6 at a temperature of 150 to 210 ° C. until the polymer concentration reaches 65 to 90%. Polymerization is preferably performed so that At this time, the type of the reactor is not particularly limited, but a plug flow reactor or a combination of a complete mixing tank reactor and a plug flow reactor can be used. In the case of a plug flow reactor, since a temperature gradient is formed in the flow direction, the temperature may be controlled to be 150 ° C. to 210 ° C. after the middle portion of the reactor, and the vicinity of the inlet may be less than 150 ° C.

本発明のスチレン系樹脂組成物の残存スチレンモノマー及び重合溶媒の総量は、250μg/g以下であることが好ましく、更に好ましくは150μg/g以下である。スチレン系樹脂組成物中の残存スチレンモノマー及び重合溶媒の総量が多いと、得られる板状押出発泡体に臭気等の問題が生じる場合があり、極力低減することが好ましい。
本発明における残存スチレンモノマー及び重合溶媒の量は、樹脂組成物500mgを、内部標準物質としてシクロペンタノールを含むDMF10mlに溶解し、ガスクロマトグラフィーを用いて以下の条件で測定した。
ガスクロマトグラフ:HP−5890(ヒューレットパッカード社製)
カラム:HP−WAX、0.25mm×30m、膜厚0.5μm
インジェクション温度:220℃
カラム温度:60℃〜150℃、10℃/min
ディテクター温度:220℃
スプリット比:30/1
残存スチレンモノマー及び重合溶媒は、脱揮工程の構成及び脱揮工程の運転条件により、低減することができる。
The total amount of residual styrene monomer and polymerization solvent in the styrene-based resin composition of the present invention is preferably 250 μg / g or less, more preferably 150 μg / g or less. When the total amount of residual styrene monomer and polymerization solvent in the styrene-based resin composition is large, problems such as odor may occur in the obtained plate-like extruded foam, and it is preferable to reduce as much as possible.
The amount of the residual styrene monomer and the polymerization solvent in the present invention was measured under the following conditions using gas chromatography by dissolving 500 mg of the resin composition in 10 ml of DMF containing cyclopentanol as an internal standard substance.
Gas chromatograph: HP-5890 (manufactured by Hewlett-Packard Company)
Column: HP-WAX, 0.25 mm × 30 m, film thickness 0.5 μm
Injection temperature: 220 ° C
Column temperature: 60 ° C to 150 ° C, 10 ° C / min
Detector temperature: 220 ° C
Split ratio: 30/1
The residual styrene monomer and the polymerization solvent can be reduced by the configuration of the devolatilization step and the operating conditions of the devolatilization step.

連続ラジカル重合でスチレン系樹脂の製造を行った場合、得られたスチレン系樹脂と未反応スチレンモノマー及び重合溶媒を除去する脱揮工程が必要であるが、加熱器付きの真空脱揮槽を直列に2段接続したものを用いることが好ましい。また、1段目の真空脱揮槽での樹脂温度は200〜240℃に調整し出口の未反応スチレンモノマーと重合溶媒の合計量が0.2質量%以下となるよう真空度を6.0kPa以下に調整し、1段目の真空脱揮槽を出たポリマー溶液に対して0.2〜2.0質量%の水を添加し、動的又は静的混合機にて水を分散し、真空度0.5〜3.0kPaの範囲に調整した2段目の真空脱揮槽に導入し、脱揮処理することが好ましい。なお、1段目の真空脱揮槽出口で添加する水は2段目の真空脱揮槽に入ったところでガス化するが、この際、発泡により脱揮界面が増え、脱揮効率が上がると考えられる。1段目の真空脱揮槽出口の未反応スチレンモノマーと重合溶媒の合計量(A)と1段目出口で添加する水の濃度(B)について、BとAの比、B/Aは1〜30であることが好ましく、4〜20であることがより好ましい。   When a styrene resin is produced by continuous radical polymerization, a devolatilization step is required to remove the obtained styrene resin, unreacted styrene monomer and polymerization solvent, but a vacuum devolatilization tank with a heater is connected in series. It is preferable to use one connected in two stages. The resin temperature in the first stage vacuum devolatilization tank is adjusted to 200 to 240 ° C., and the degree of vacuum is 6.0 kPa so that the total amount of unreacted styrene monomer and polymerization solvent at the outlet is 0.2 mass% or less. Adjust to the following, 0.2 to 2.0 mass% of water is added to the polymer solution exiting the first-stage vacuum devolatilization tank, and the water is dispersed in a dynamic or static mixer, It is preferable to introduce into a second-stage vacuum devolatilization tank adjusted to a vacuum degree of 0.5 to 3.0 kPa and perform devolatilization. The water added at the outlet of the first-stage vacuum devolatilization tank is gasified when it enters the second-stage vacuum devolatilization tank. At this time, if the devolatilization interface increases due to foaming, the devolatilization efficiency increases. Conceivable. Regarding the total amount (A) of unreacted styrene monomer and polymerization solvent at the first stage vacuum devolatilization tank outlet and the concentration of water added at the first stage outlet (B), the ratio of B to A, B / A is 1 It is preferable that it is -30, and it is more preferable that it is 4-20.

脱揮工程を経た溶融樹脂は、ギヤーポンプ等で造流工程へ移送される。造粒工程では、多孔ダイよりストランド状に溶融樹脂を押出し、コールドカット方式や空中ホットカット方式、水中ホットカット方式にてペレット形状に加工される。   The molten resin that has undergone the devolatilization process is transferred to the flow forming process by a gear pump or the like. In the granulation step, the molten resin is extruded in a strand form from a porous die and processed into a pellet shape by a cold cut method, an air hot cut method, or an underwater hot cut method.

本発明の重合方法では、2,2−ビス(4,4−ジ−t−ブチルパーオキシシクロヘキシル)プロパン、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン以外に、必要に応じて重合開始剤、連鎖移動剤を使用することができる。重合開始剤として、有機化酸化物、例えば過酸化ベンゾイル、t−ブチルパーオキシベンゾネート、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、t−ブチルパーオキシイソプロピルカーボネート、ジクミルパーオキサイド、t−ブチルクミルパーオキサイド、t−ブチルパーオキシアセテート、t−ブチルパーオキシ−2−エチルヘキサノエート、ポリエーテルテトラキス(t−ブチルパーオキシカーボネート)、エチル−3,3−ジ(t−ブチルパーオキシ)ブチレート、t−ブチルパーオキシイソブチレート等が挙げられる。連鎖移動剤としては、例えば、脂肪族メルカプタン、芳香族メルカプタン、ペンタフェニルエタン、α−メチルスチレンダイマー及びテルピノーレン等を使用できるが、臭気等を考慮すると、α−メチルスチレンダイマーが好ましい。   In the polymerization method of the present invention, in addition to 2,2-bis (4,4-di-t-butylperoxycyclohexyl) propane and 1,1-bis (t-butylperoxy) cyclohexane, polymerization is started as necessary. Agents and chain transfer agents can be used. As polymerization initiators, organic oxides such as benzoyl peroxide, t-butylperoxybenzoate, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, t-butylperoxy Isopropyl carbonate, dicumyl peroxide, t-butyl cumyl peroxide, t-butyl peroxyacetate, t-butyl peroxy-2-ethylhexanoate, polyether tetrakis (t-butyl peroxycarbonate), ethyl-3 , 3-di (t-butylperoxy) butyrate, t-butylperoxyisobutyrate and the like. As the chain transfer agent, for example, aliphatic mercaptan, aromatic mercaptan, pentaphenylethane, α-methylstyrene dimer, terpinolene and the like can be used, and α-methylstyrene dimer is preferable in consideration of odor and the like.

本発明が対象とするスチレン系樹脂組成物には、必要に応じて、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム等の金属石鹸類、ステアリン酸、エチレンビスステアリルアミド等を内部潤滑剤或いは外部潤滑剤として使用してもよい。また、ホワイトオイル等の可塑剤成分を添加することもできるが、耐熱性が低下する。また、押出機内での熱劣化抑制のため、酸化防止剤を添加することもできる。   In the styrenic resin composition targeted by the present invention, a metal soap such as zinc stearate, calcium stearate, magnesium stearate, stearic acid, ethylene bisstearyl amide or the like is used as an internal lubricant or external lubrication as necessary. It may be used as an agent. Moreover, although plasticizer components, such as white oil, can also be added, heat resistance falls. In addition, an antioxidant may be added to suppress thermal deterioration in the extruder.

本発明のスチレン系樹脂組成物の50N荷重にて測定したビカット軟化温度は99〜104℃であることが好ましく、更に好ましくは100〜104℃である。ビカット軟化温度が99℃未満であると、耐熱性が不足し、高温環境下では変形する恐れがある。また、ラジカル重合のポリスチレンでは104℃が構造的に限界である。ビカット軟化温度については、JIS K−7206により、昇温速度50℃/hr、試験荷重50Nで求めた。   The Vicat softening temperature of the styrenic resin composition of the present invention measured at 50 N load is preferably 99 to 104 ° C, more preferably 100 to 104 ° C. If the Vicat softening temperature is less than 99 ° C., the heat resistance is insufficient and there is a risk of deformation in a high temperature environment. In addition, 104 ° C. is a structural limit in radical polymerization polystyrene. The Vicat softening temperature was determined according to JIS K-7206 at a heating rate of 50 ° C / hr and a test load of 50N.

本発明のスチレン系樹脂組成物は、特に押出成形にて板状押出発泡体を製造することに適している。板状押出発泡体は、スチレン系樹脂組成物を加熱溶融した後、発泡剤を注入して混錬した後、発泡最適温度に調整して低圧雰囲気下(通常大気圧)に押出発泡させることにより製造することができる。発泡剤を注入する際の圧力は特に制限するものではなく、押出機などの内圧より高い圧力でガス化しなければよい。また、本発明が対象とする板状押出発泡体は、建築用断熱材や保冷庫用または保冷車用断熱材としての断熱性、曲げ強度及び圧縮強度の観点から、密度は10〜50kg/mの範囲であり、厚みは10〜150mmであることが好ましい。 The styrenic resin composition of the present invention is particularly suitable for producing a plate-like extruded foam by extrusion molding. The plate-like extruded foam is obtained by heating and melting a styrene resin composition, injecting a foaming agent, kneading, and adjusting the foaming optimum temperature to extrusion foaming in a low-pressure atmosphere (usually atmospheric pressure). Can be manufactured. The pressure at the time of injecting the blowing agent is not particularly limited, and the gas may be not gasified at a pressure higher than the internal pressure of an extruder or the like. In addition, the plate-like extruded foam targeted by the present invention has a density of 10 to 50 kg / m from the viewpoint of heat insulation, bending strength and compressive strength as a heat insulating material for buildings, a cold storage or a cold insulation vehicle. 3 and the thickness is preferably 10 to 150 mm.

また、板状押出発泡体を製造する際には、難燃剤を使用することができ、発泡核剤としてシリカ、タルクや炭酸カルシウム等の無機充填剤を必要に応じて用いることができる。発泡体の密度、発泡倍率や平均気泡径は発泡剤量や発泡核剤量を調整することで変化させることができる。さらに、本発明の効果を阻害しない範囲で、酸化防止剤、可塑剤、滑剤、染顔料、帯電防止剤などを添加することもできる。発泡剤としては公知のもの、例えば、プロパン、ブタン、ペンタン、ヘキサン等の低級炭化水素、ジメチルエーテル、ジエチルエーテルなどのエーテル類、ジメチルケトン、メチルエチルケトンなどのケトン類、メタノール、エタノール、プロピルアルコールなどのアルコール類、トリクロロモノフルオルメタンや塩化メチル等のハロゲン化炭化水素、炭酸ガス、水等の無機ガスなど任意の発泡剤を単独または混合して用いることができるが、低級炭化水素を主成分とすることが好ましい。難燃剤としては公知のものが使用でき、ヘキサブロモシクロドデカン、ジブロモネオペンチルグリコール、デカブロモジフェニルオキサイド、テトラブロモビスフェノールA、テトラブロモフタル酸ジオール、テトラブロモフェノール、ポリペンタブロモベンジルアクリレート等の臭素系難燃剤、リン酸グアニール尿素、ポリフォスファゼン、リン酸アンモニウム、ポリリン酸アンモニウム、赤リン等のリン系難燃剤が挙げられる。   Moreover, when manufacturing a plate-like extrusion foam, a flame retardant can be used and inorganic fillers, such as a silica, a talc, and a calcium carbonate, can be used as a foaming nucleating agent as needed. The density, expansion ratio, and average cell diameter of the foam can be changed by adjusting the amount of the foaming agent and the amount of the foam nucleating agent. Furthermore, an antioxidant, a plasticizer, a lubricant, a dye / pigment, an antistatic agent, and the like can be added as long as the effects of the present invention are not impaired. Known blowing agents such as lower hydrocarbons such as propane, butane, pentane and hexane, ethers such as dimethyl ether and diethyl ether, ketones such as dimethyl ketone and methyl ethyl ketone, alcohols such as methanol, ethanol and propyl alcohol Arbitrary foaming agents such as halogenated hydrocarbons such as trichloromonofluoromethane and methyl chloride, inorganic gases such as carbon dioxide and water can be used alone or in combination, but the main component is lower hydrocarbons It is preferable. Known flame retardants can be used, such as hexabromocyclododecane, dibromoneopentyl glycol, decabromodiphenyl oxide, tetrabromobisphenol A, tetrabromophthalic acid diol, tetrabromophenol, polypentabromobenzyl acrylate, etc. Examples of the flame retardant include phosphoric flame retardants such as phosphoric acid guanene urea, polyphosphazene, ammonium phosphate, ammonium polyphosphate, and red phosphorus.

本発明のスチレン系樹脂組成物は、低温度での押出が可能となり、得られる板状押出発泡体の難燃性に優れ、機械的強度も優れるため、特に押出成形による板状押出発泡体の製造に好適である。   The styrenic resin composition of the present invention can be extruded at a low temperature, and is excellent in flame retardancy and mechanical strength of the obtained plate-like extruded foam. Suitable for manufacturing.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited to these Examples.

(スチレン系樹脂組成物PS−1〜PS−9の製造方法)
完全混合型撹拌槽である第1反応器と第2反応器及び静的混合器付プラグフロー型反応器である第3反応器を直列に接続して重合工程を構成した。各反応器の容量は、第1反応器を39リットル、第2反応器を39リットル、第3反応器を16リットルとした。表1に記載の原料組成にて、原料溶液を作成し、第1反応器に原料溶液を表1に記載の流量にて連続的に供給した。重合開始剤は、第1反応器又は第3反応器の入口で表1に記載の添加濃度(原料スチレンに対する質量基準の濃度)となるように原料溶液に添加混合した。表1に記載の重合開始剤及び連鎖移動剤はそれぞれ次の通りである。また、ホワイトオイルはエクソンモービル社勢クリストールN352を使用した。
重合開始剤−1 :1,1−ビス(t−ブチルパーオキシ)シクロヘキサン(日本油脂株式会社製パーヘキサCを使用した。)
重合開始剤−2 :2,2−ビス(4,4−t−ブチルパーオキシシクロヘキシル)プロパン(日本油脂株式会社製パーテトラAを使用した。)
重合開始剤−3 :t−ブチルクミルパーオキサイド(日本油脂株式会社製パーブチルCを使用した。)
連鎖移動剤−1 :α−メチルスチレンダイマー(日本油脂株式会社製ノフマーMSDを使用した。)
重合開始剤−1、2及び連鎖移動剤−1は第1反応器の入口で、重合開始剤−3は第3反応器の入口で添加した。
なお、第3反応器では、流れの方向に沿って温度勾配をつけ、中間部分、出口部分で表1の温度となるよう調整した。
続いて、第3反応器より連続的に取り出した重合体を含む溶液を直列に2段より構成される予熱器付き真空脱揮槽に導入し、表1に記載の樹脂温度となるよう予熱器の温度を調整し、表1に記載の圧力に調整することで、未反応スチレン及びエチルベンゼンを分離した後、多孔ダイよりストランド状に押し出しして、コールドカット方式にて、ストランドを冷却および切断しペレット化した。なお、PS−1〜5は実施例で使用し、PS−6〜9は比較例で使用した。
(Method for producing styrene resin compositions PS-1 to PS-9)
The polymerization reactor was configured by connecting in series a first reactor that was a complete mixing tank, a second reactor, and a third reactor that was a plug flow reactor with a static mixer. The capacity of each reactor was 39 liters for the first reactor, 39 liters for the second reactor, and 16 liters for the third reactor. A raw material solution was prepared with the raw material composition described in Table 1, and the raw material solution was continuously supplied to the first reactor at a flow rate described in Table 1. The polymerization initiator was added and mixed with the raw material solution at the inlet of the first reactor or the third reactor so as to have the addition concentration shown in Table 1 (concentration based on mass relative to the raw styrene). The polymerization initiator and chain transfer agent described in Table 1 are as follows. As the white oil, ExxonMobil Cristol N352 was used.
Polymerization initiator-1: 1,1-bis (t-butylperoxy) cyclohexane (Perhexa C manufactured by NOF Corporation was used.)
Polymerization initiator-2: 2,2-bis (4,4-t-butylperoxycyclohexyl) propane (Pertetra A manufactured by NOF Corporation was used.)
Polymerization initiator-3: t-butyl cumyl peroxide (Perbutyl C manufactured by NOF Corporation was used.)
Chain transfer agent-1: α-methylstyrene dimer (Nofmer MSD manufactured by NOF Corporation) was used.
Polymerization initiators-1 and 2 and chain transfer agent-1 were added at the inlet of the first reactor, and polymerization initiator-3 was added at the inlet of the third reactor.
In the third reactor, a temperature gradient was provided along the flow direction, and the temperature in Table 1 was adjusted at the intermediate part and the outlet part.
Subsequently, the solution containing the polymer continuously taken out from the third reactor was introduced into a vacuum devolatilization tank with a preheater constituted by two stages in series, and the preheater was adjusted to the resin temperature shown in Table 1. By adjusting the temperature and adjusting to the pressure shown in Table 1, unreacted styrene and ethylbenzene are separated and then extruded into a strand form from a perforated die, and the strand is cooled and cut by a cold cut method. Pelletized. PS-1 to 5 were used in the examples, and PS-6 to 9 were used in the comparative examples.

Figure 2009275185
Figure 2009275185

得られたスチレン系樹脂組成物の特性を表2に示す。また、実施例における測定方法を以下に示す。   Table 2 shows the characteristics of the obtained styrene-based resin composition. Moreover, the measuring method in an Example is shown below.

発泡体密度(kg/m)は、発泡体の重量(kg)と発泡体の体積(m)より算出した(発泡体密度=発泡体重量/発泡体体積)。 The foam density (kg / m 3 ) was calculated from the weight (kg) of the foam and the volume (m 3 ) of the foam (foam density = foam weight / foam volume).

発泡体の気泡径は、板状押出発泡体の断面を顕微鏡により観察し、気泡径の測定を行った。また、同時に次の基準に従い発泡性の判定を行った。
○:気泡のサイズが均一で独立している。
△:気泡のサイズがやや不均一で、一部連続した気泡が存在する。
×:気泡のサイズが不均一で、一部連続した気泡がやや多く存在する。
The cell diameter of the foam was measured by observing the cross section of the plate-like extruded foam with a microscope. At the same time, foamability was determined according to the following criteria.
○: The bubble size is uniform and independent.
(Triangle | delta): The bubble size is somewhat non-uniform | heterogenous and a part continuous bubble exists.
X: The bubble size is non-uniform, and some continuous bubbles are present.

発泡体の難燃性は、製造後2週間経過した発泡体より、厚さ10mm、長さ200mm、幅25mmの試験片を5個作成し、それぞれJIS A 9511に準じた方法で判定した。
◎:5本とも3秒以内に炎が消える。
○:5本のうち1本乃至2本が3秒以内に炎が消えないが、残りは全て3秒以内に消える。
△:5本のうち3本乃至4本が3秒以内に炎が消えないが、残りは全て3秒以内に消える。
×:5本とも3秒以内に炎が消えない。
The flame retardancy of the foam was determined by a method in accordance with JIS A 9511, in which five test pieces having a thickness of 10 mm, a length of 200 mm, and a width of 25 mm were prepared from the foam that had passed 2 weeks after production.
A: All five flames disappear within 3 seconds.
○: 1 to 2 out of 5 flames do not disappear within 3 seconds, but the rest disappear within 3 seconds.
Δ: 3 to 4 out of 5 flames do not disappear within 3 seconds, but all the others disappear within 3 seconds.
X: The flame does not disappear within 3 seconds for all five.

発泡体の圧縮強度は、製造後2週間経過した発泡体より、JIS K 7220に準じた方法で測定した。   The compressive strength of the foam was measured by a method according to JIS K 7220 from the foam after 2 weeks of production.

(実施例1〜5、比較例1〜4)
表2に記載されたスチレン系樹脂組成物100質量部に対して、ヘキサブロモシクロヘキサンを2.5質量部、気泡調整剤としてタルクを0.5質量部添加した後ブレンドし、得られた混合物を40mm径の単軸押出機(シリンダー温度200℃)に供給し、溶融混合した後、発泡剤としてブタンガス5質量部を圧入した。その後、65mm径の単軸押出機(シリンダー温度120℃)に移送し、押出機の先端に厚さ2mm、幅方向40mmの長方形断面のスリットを有するダイより押出して、厚さ約40mmの板状の発泡体を製造した。それぞれの組成物について、表2の発泡体密度及び気泡径となるよう、発泡剤量や気泡調整剤の量を調整した。得られた発泡体の発泡性、圧縮強度及び押出機出口の樹脂温度を表2に示す。
(Examples 1-5, Comparative Examples 1-4)
To 100 parts by mass of the styrenic resin composition described in Table 2, 2.5 parts by mass of hexabromocyclohexane and 0.5 parts by mass of talc as a foam regulator were added and blended. After feeding to a 40 mm diameter single screw extruder (cylinder temperature 200 ° C.) and melt mixing, 5 parts by mass of butane gas was injected as a blowing agent. Thereafter, it is transferred to a 65 mm diameter single-screw extruder (cylinder temperature 120 ° C.), extruded from a die having a rectangular cross section with a thickness of 2 mm and a width direction of 40 mm at the tip of the extruder, and a plate shape having a thickness of about 40 mm. A foam was produced. About each composition, the quantity of the foaming agent and the quantity of the bubble regulator were adjusted so that it might become the foam density of Table 2, and a bubble diameter. Table 2 shows the foamability, compressive strength, and resin temperature at the exit of the extruder.

Figure 2009275185
Figure 2009275185

実施例のスチレン系樹脂組成物を用いることで、低温度押出が可能となり、難燃性及び圧縮強度に優れた板状押出発泡体を得ることができる。また、押出時の発泡性にも優れることから、安定した板状押出発泡体の製造が可能となる。   By using the styrenic resin composition of the example, low-temperature extrusion becomes possible, and a plate-like extruded foam excellent in flame retardancy and compressive strength can be obtained. Moreover, since it is excellent also in the foamability at the time of extrusion, the manufacture of the stable plate-like extrusion foam becomes possible.

本発明のスチレン系樹脂組成物を用いることで、低温度での押出が可能となり、難燃性及び圧縮強度に優れた板状押出発泡体を得ることでき、発泡性にも優れることから、板状押出発泡体の用途に適している。また、本発明のスチレン系樹脂組成物の製造方法により、低コストで板状押出発泡体用途に適したスチレン系樹脂組成物を製造することが可能となる。   By using the styrenic resin composition of the present invention, extrusion at a low temperature is possible, a plate-like extruded foam excellent in flame retardancy and compressive strength can be obtained, and the foamability is also excellent. Suitable for use in extruded extruded foam. In addition, the method for producing a styrene resin composition of the present invention makes it possible to produce a styrene resin composition suitable for plate-like extruded foam applications at low cost.

実施例で用いたスチレン系樹脂組成物PS−1及びPS−3、比較例で用いたスチレン系樹脂組成物PS−6及びPS−8のゲルパーミエーションクロマトグラフィー(GPC)測定によって得られた分子量分布を比較する図である。Molecular weights obtained by gel permeation chromatography (GPC) measurement of the styrene resin compositions PS-1 and PS-3 used in the examples and the styrene resin compositions PS-6 and PS-8 used in the comparative examples. It is a figure which compares distribution.

重合工程の1構成例を説明する図である。It is a figure explaining one structural example of a superposition | polymerization process.

重合工程の1構成例を説明する図である。It is a figure explaining one structural example of a superposition | polymerization process.

重合工程の1構成例を説明する図である。It is a figure explaining one structural example of a superposition | polymerization process.

脱揮工程の1構成例を説明する図である。It is a figure explaining 1 structural example of a devolatilization process.

Claims (7)

200℃、49N荷重の条件にて測定したメルトマスフローレイト(MFR)が10〜30g/10分で、200℃で測定した溶融張力値が5〜15gfで、メタノール可溶分が0.2〜1.5質量%で、重量平均分子量(Mw)が15万〜25万で、重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が3.5〜8.0、Z平均分子量(Mz)と重量平均分子量(Mw)の比(Mz/Mw)が2.2〜3.6であることを特徴とする板状押出発泡体用スチレン系樹脂組成物。   The melt mass flow rate (MFR) measured under the conditions of 200 ° C. and 49 N load is 10 to 30 g / 10 minutes, the melt tension value measured at 200 ° C. is 5 to 15 gf, and the methanol soluble content is 0.2 to 1. 0.5 mass%, the weight average molecular weight (Mw) is 150,000 to 250,000, the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) (Mw / Mn) is 3.5 to 8.0, Z A ratio of average molecular weight (Mz) to weight average molecular weight (Mw) (Mz / Mw) is 2.2 to 3.6. スチレン系樹脂組成物中の残存スチレンモノマー及び重合溶媒の総量が250μg/g以下であることを特徴とする請求項1に記載の板状押出発泡体用スチレン系樹脂組成物。   The total amount of residual styrene monomer and polymerization solvent in the styrene-based resin composition is 250 µg / g or less, and the styrene-based resin composition for plate-like extruded foam according to claim 1. 50N荷重にて測定したビカット軟化温度が99〜104℃であることを特徴とする請求項1〜2のいずれか1項に記載の板状押出発泡体用スチレン系樹脂組成物。   The Vicat softening temperature measured at a load of 50 N is 99 to 104 ° C, The styrenic resin composition for plate-like extruded foam according to any one of claims 1-2. 重合溶媒としてエチルベンゼンを5〜20質量%使用し、スチレンモノマーの連続ラジカル重合を行うに当たり、ポリマー濃度が25〜45質量%に達するまでは1〜2基からなる完全混合槽型反応器を直列に接続した工程にて110〜130℃の温度で生成するポリマーの重量平均分子量(Mw)が35万〜50万となるよう重合を行い、次いでポリマー濃度が65〜90%に達するまでは150℃〜210℃の温度でZ平均分子量(Mz)と重量平均分子量(Mw)の比(Mz/Mw)が2.2〜3.6となるよう重合を行うことを特徴とする請求項1〜3のいずれか1項に記載の板状押出発泡体用スチレン系樹脂組成物の製造方法。   When 5-20% by mass of ethylbenzene is used as a polymerization solvent and a continuous radical polymerization of styrene monomer is carried out, a complete mixing tank reactor consisting of 1 to 2 units is connected in series until the polymer concentration reaches 25-45% by mass. Polymerization is carried out so that the weight average molecular weight (Mw) of the polymer produced at a temperature of 110 to 130 ° C. in the connected process is 350,000 to 500,000, and then 150 ° C. to until the polymer concentration reaches 65 to 90%. The polymerization is carried out at a temperature of 210 ° C. so that the ratio (Mz / Mw) of the Z average molecular weight (Mz) to the weight average molecular weight (Mw) is 2.2 to 3.6. The manufacturing method of the styrene-type resin composition for plate-shaped extrusion foams of any one. 連続ラジカル重合で得られたスチレン系樹脂と未反応スチレンモノマー及び重合溶媒を除去する脱揮工程において、加熱器付きの真空脱揮槽を直列に2段接続したものを用い、1段目の真空脱揮槽での樹脂温度は200〜240℃に調整し出口の未反応スチレンモノマーと重合溶媒の合計量が0.2質量%以下となるよう真空度を6.0kPa以下に調整し、1段目の真空脱揮槽を出たポリマー溶液に対して0.2〜2.0質量%の水を添加し、動的又は静的混合機にて水を分散し、真空度を0.5〜3.0kPaの範囲に調整した2段目の真空脱揮槽に導入し脱揮処理することを特徴とする請求項1〜4のいずれか1項に記載の板状押出発泡体用スチレン系樹脂組成物の製造方法。   In the devolatilization step to remove the styrenic resin, unreacted styrene monomer and polymerization solvent obtained by continuous radical polymerization, a vacuum devolatilization tank with a heater connected in two stages in series is used as the first stage vacuum The resin temperature in the devolatilization tank is adjusted to 200 to 240 ° C., and the degree of vacuum is adjusted to 6.0 kPa or less so that the total amount of unreacted styrene monomer and polymerization solvent at the outlet is 0.2% by mass or less. 0.2 to 2.0 mass% of water is added to the polymer solution exiting the vacuum devolatilization tank of the eye, and the water is dispersed in a dynamic or static mixer, and the degree of vacuum is 0.5 to It introduce | transduces into the 2nd step | paragraph vacuum devolatilization tank adjusted to the range of 3.0 kPa, and devolatilizes, The styrene resin for plate-like extrusion foam of any one of Claims 1-4 characterized by the above-mentioned. A method for producing the composition. 請求項1〜3のいずれか1項に記載のスチレン系樹脂組成物を発泡押出し、密度が10〜50kg/mであることを特徴とする板状押出発泡体の製造方法。 A method for producing a plate-like extruded foam, wherein the styrenic resin composition according to any one of claims 1 to 3 is foam-extruded and has a density of 10 to 50 kg / m 3 . 請求項6に記載の製造方法によって得られる板状押出発泡体。   A plate-like extruded foam obtained by the production method according to claim 6.
JP2008130053A 2008-05-16 2008-05-16 Styrenic resin composition for plate-like extruded foam and method for producing the same Active JP5160957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008130053A JP5160957B2 (en) 2008-05-16 2008-05-16 Styrenic resin composition for plate-like extruded foam and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008130053A JP5160957B2 (en) 2008-05-16 2008-05-16 Styrenic resin composition for plate-like extruded foam and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009275185A true JP2009275185A (en) 2009-11-26
JP5160957B2 JP5160957B2 (en) 2013-03-13

Family

ID=41440898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008130053A Active JP5160957B2 (en) 2008-05-16 2008-05-16 Styrenic resin composition for plate-like extruded foam and method for producing the same

Country Status (1)

Country Link
JP (1) JP5160957B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236959A (en) * 2011-05-13 2012-12-06 Jsp Corp Method for producing extrusion-foamed board of polystyrenic resin
RU2605093C2 (en) * 2011-12-20 2016-12-20 ТРИНСЕО ЮРОП ГмбХ Method of producing polystyrene, having high melt flow index
JP2017222770A (en) * 2016-06-14 2017-12-21 東洋スチレン株式会社 Styrenic resin
JP2018165299A (en) * 2017-03-28 2018-10-25 Psジャパン株式会社 Styrene resin composition for tabular extrusion expanded material and tabular extrusion expanded material
JP2019210439A (en) * 2018-06-08 2019-12-12 東洋スチレン株式会社 Styrenic resin composition for extrusion foaming, foam sheet, container, and tabular foam
CN116753750A (en) * 2023-08-21 2023-09-15 南京华兴压力容器制造有限公司 Devolatilization preheating device and preheating method suitable for high-viscosity polymer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07166013A (en) * 1993-02-18 1995-06-27 Sumitomo Chem Co Ltd Polystyrene resin composition, production of polystyrene copolymer and injection-molded product
JPH07258444A (en) * 1994-03-18 1995-10-09 Sumitomo Chem Co Ltd Foam comprising polystyrenic resin composition
JPH1149822A (en) * 1997-08-01 1999-02-23 Denki Kagaku Kogyo Kk Styrene-based resin and its foam
JPH11246624A (en) * 1998-11-13 1999-09-14 Denki Kagaku Kogyo Kk Polystyrene-based resin and its foam
JP2005239951A (en) * 2004-02-27 2005-09-08 Toyo Styrene Co Ltd Method for producing aromatic vinyl compound-based polymer
JP2005281475A (en) * 2004-03-30 2005-10-13 Toyo Styrene Co Ltd Styrene polymer and its production method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07166013A (en) * 1993-02-18 1995-06-27 Sumitomo Chem Co Ltd Polystyrene resin composition, production of polystyrene copolymer and injection-molded product
JPH07258444A (en) * 1994-03-18 1995-10-09 Sumitomo Chem Co Ltd Foam comprising polystyrenic resin composition
JPH1149822A (en) * 1997-08-01 1999-02-23 Denki Kagaku Kogyo Kk Styrene-based resin and its foam
JPH11246624A (en) * 1998-11-13 1999-09-14 Denki Kagaku Kogyo Kk Polystyrene-based resin and its foam
JP2005239951A (en) * 2004-02-27 2005-09-08 Toyo Styrene Co Ltd Method for producing aromatic vinyl compound-based polymer
JP2005281475A (en) * 2004-03-30 2005-10-13 Toyo Styrene Co Ltd Styrene polymer and its production method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236959A (en) * 2011-05-13 2012-12-06 Jsp Corp Method for producing extrusion-foamed board of polystyrenic resin
RU2605093C2 (en) * 2011-12-20 2016-12-20 ТРИНСЕО ЮРОП ГмбХ Method of producing polystyrene, having high melt flow index
JP2017222770A (en) * 2016-06-14 2017-12-21 東洋スチレン株式会社 Styrenic resin
JP2018165299A (en) * 2017-03-28 2018-10-25 Psジャパン株式会社 Styrene resin composition for tabular extrusion expanded material and tabular extrusion expanded material
JP2019210439A (en) * 2018-06-08 2019-12-12 東洋スチレン株式会社 Styrenic resin composition for extrusion foaming, foam sheet, container, and tabular foam
JP7084213B2 (en) 2018-06-08 2022-06-14 東洋スチレン株式会社 Styrene-based resin composition for extrusion foam, foam sheet, container, and plate-like foam
CN116753750A (en) * 2023-08-21 2023-09-15 南京华兴压力容器制造有限公司 Devolatilization preheating device and preheating method suitable for high-viscosity polymer
CN116753750B (en) * 2023-08-21 2023-11-03 南京华兴压力容器制造有限公司 Devolatilization preheating device and preheating method suitable for high-viscosity polymer

Also Published As

Publication number Publication date
JP5160957B2 (en) 2013-03-13

Similar Documents

Publication Publication Date Title
JP5160957B2 (en) Styrenic resin composition for plate-like extruded foam and method for producing the same
KR101357378B1 (en) Flame-retardant expandable styrene resin composition
JP5255726B2 (en) Styrenic resin foam molding
EP2960272B1 (en) Styrenic resin extruded foam and method for recycling same
JP5565240B2 (en) Composite resin foamed particles and method for producing the same, and method for producing foamable composite resin particles
JP2011225641A (en) Extruded foam of polystyrenic resin and method for producing the same
JP5248041B2 (en) Thermoplastic resin foam
JP5234724B2 (en) Styrene resin composition and method for producing foamed sheet
JP5042654B2 (en) Thermoplastic resin foam
CN111032755A (en) Flame-retardant expandable styrene resin composition
JP2014077078A (en) Composite resin expanded particle
JP4570504B2 (en) Method for producing extruded polystyrene resin foam
JP5813909B2 (en) Method for producing styrene resin composition for plate-like extruded foam and method for producing plate-like extruded foam
JP6099495B2 (en) Flame retardant melt kneaded material and method for producing polystyrene resin extruded foam using the same
JP5042653B2 (en) Thermoplastic resin foam
JP5943730B2 (en) Method for producing extruded polystyrene resin foam
JP2015013938A (en) Flame retardant melted mixture and production method of polystyrene resin foam using the same
JP2009029873A (en) Styrenic resin composition and method for producing foamed sheet
JP5405888B2 (en) Flame retardant foamed styrene resin composition
JP2015013939A (en) Production method of polystyrene resin foam
KR102119032B1 (en) Expandable resin composition, foam using the same and method of the foam
JP6697862B2 (en) Method for producing expandable styrenic resin particles having flame retardancy
WO2023171330A1 (en) Bead foam body and foam particles, and manufacturing methods therfor
JP7479175B2 (en) Method for producing extruded styrene resin foam
JP6588245B2 (en) Method for producing polystyrene resin foam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121213

R150 Certificate of patent or registration of utility model

Ref document number: 5160957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250