JP2017221880A - Photocatalytic coating liquid, photocatalyst structure and manufacturing method therefor - Google Patents

Photocatalytic coating liquid, photocatalyst structure and manufacturing method therefor Download PDF

Info

Publication number
JP2017221880A
JP2017221880A JP2016117598A JP2016117598A JP2017221880A JP 2017221880 A JP2017221880 A JP 2017221880A JP 2016117598 A JP2016117598 A JP 2016117598A JP 2016117598 A JP2016117598 A JP 2016117598A JP 2017221880 A JP2017221880 A JP 2017221880A
Authority
JP
Japan
Prior art keywords
photocatalyst
coating liquid
formula
manufacturing
silane compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016117598A
Other languages
Japanese (ja)
Other versions
JP6653627B2 (en
Inventor
大哉 小林
Hiroya Kobayashi
大哉 小林
勝幸 秋田
Katsuyuki Akita
勝幸 秋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP2016117598A priority Critical patent/JP6653627B2/en
Publication of JP2017221880A publication Critical patent/JP2017221880A/en
Application granted granted Critical
Publication of JP6653627B2 publication Critical patent/JP6653627B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Catalysts (AREA)
  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for easily forming a photocatalyst layer excellent in strength and exhibiting sufficient photocatalyst activity by coating a substrate which is heated in advance without a calcination process especially, and a photocatalyst structure obtained by the method.SOLUTION: There is provided a photocatalyst coating liquid containing a hydrolysis degradation product which is manufactured by acid of a hydrolyzable silane compound represented by the formula (1) (R)Si(OR)(1), where Rrepresents an alkyl group which may have a substituent and has 1 to 4 carbon atoms, Rrepresents an alkyl group having 1 to 4 carbon atoms and n represents an integer of 0 or 1 and has polymerization degree of 8 or less, a photocatalyst material particle and a hydrophilic solvent.SELECTED DRAWING: None

Description

本発明は、光触媒構造体及び該構造体の製造方法に関する。   The present invention relates to a photocatalyst structure and a method for producing the structure.

光触媒は、各種材料の表面に担持させることにより、建築物の外装材や水回り製品において汚れを落ち易くしたり、親水性によってガラス製品等の曇りを防止したりするために利用されている。
セラミックス等の耐熱性材料を基材として、その表面に光触媒層を担持させる場合には、該材料の製造工程に組み入れた形で、500℃前後の高温での焼成によって光触媒を担持させることが多い。しかしそのためには、光触媒層形成のために焼成工程を設ける必要があった。また焼成温度が低く、あるいは焼成時間が短いと、光触媒被膜の強度が劣ることがあった。
特許文献1には、テトラアルコキシシランを加水分解した組成物と光触媒性酸化チタンを混合し、基材に塗布し乾燥又は加熱してなる光触媒体が記載されており、加水分解後にアルカリ処理して縮合度を高めることで光触媒活性が向上することが示されている。
特許文献2には、光触媒性酸化チタン粒子、加水分解性ケイ素化合物の加水分解物及び溶媒を含有する塗膜形成性組成物が記載されている。
特定の光触媒材料に関しては、アルコキシシラン加水分解物を併用するのが好ましいことが示されている。例えば、特許文献3には、シリカで被覆された光触媒性二酸化チタンとテトラアルコキシシランの酸部分加水分解物とを特定比率で含有するコーティング材組成物が有機基材用に適することが記載されている。
特許文献4には、テトラエトキシシラン等のオルガノシロキサンの酸部分加水分解物で重量平均分子量600〜5000のもの、光半導体、及びノニオン系又はアニオン系の界面活性剤を含有する、防汚性エマルジョンコーティング材組成物が記載されている。
特許文献5には、4官能アルコキシシランの部分加水分解縮合物、3官能又は2官能アルコキシシラン、及び光触媒等のフィラーを含有するコーティング材組成物が記載されている。
Photocatalysts are used for facilitating the removal of dirt in exterior materials and water-related products of buildings by supporting them on the surface of various materials, and preventing fogging of glass products and the like due to hydrophilicity.
When a heat-resistant material such as ceramic is used as a base material and a photocatalyst layer is supported on the surface, the photocatalyst is often supported by firing at a high temperature of about 500 ° C. in a form incorporated in the manufacturing process of the material. . However, for that purpose, it was necessary to provide a baking step for forming the photocatalyst layer. Further, when the firing temperature is low or the firing time is short, the strength of the photocatalyst film may be inferior.
Patent Document 1 describes a photocatalyst obtained by mixing a composition obtained by hydrolyzing a tetraalkoxysilane and a photocatalytic titanium oxide, applying the mixture to a substrate, and drying or heating. It has been shown that photocatalytic activity is improved by increasing the degree of condensation.
Patent Document 2 describes a film-forming composition containing photocatalytic titanium oxide particles, a hydrolyzate of a hydrolyzable silicon compound, and a solvent.
It has been shown that it is preferable to use an alkoxysilane hydrolyzate in combination with a specific photocatalytic material. For example, Patent Document 3 describes that a coating material composition containing photocatalytic titanium dioxide coated with silica and an acid partial hydrolyzate of tetraalkoxysilane in a specific ratio is suitable for an organic substrate. Yes.
Patent Document 4 discloses an antifouling emulsion containing an acid partial hydrolyzate of an organosiloxane such as tetraethoxysilane having a weight average molecular weight of 600 to 5000, a photo semiconductor, and a nonionic or anionic surfactant. A coating material composition is described.
Patent Document 5 describes a coating material composition containing a partially hydrolyzed condensate of tetrafunctional alkoxysilane, a trifunctional or bifunctional alkoxysilane, and a filler such as a photocatalyst.

特開平10−176140号公報JP-A-10-176140 特開平08−164334号公報Japanese Patent Laid-Open No. 08-164334 特開2002−121481号公報JP 2002-121481 A 特開平10−316937号公報JP-A-10-316937 特開2001−64585号公報JP 2001-64585 A

本願発明は、特に焼成工程を設けずとも、予め加熱された基材に塗布することにより、強度に優れ、十分な光触媒活性を発揮する光触媒層を容易に形成する方法、及びそれにより得られる光触媒構造体を提供することを目的とする。   The present invention relates to a method for easily forming a photocatalyst layer having excellent strength and exhibiting sufficient photocatalytic activity by coating on a preheated substrate without any firing step, and a photocatalyst obtained thereby An object is to provide a structure.

本発明者らは、テトラアルコキシシランの酸による部分加水分解生成物を含む光触媒塗布液を、製造直後の加熱されている基材上に塗布することにより、上記課題を解決した光触媒担持構造体が得られることを見出し、本発明を完成するに至った。   The present inventors applied a photocatalyst coating solution containing a partial hydrolysis product of an acid of tetraalkoxysilane onto a heated substrate immediately after production, thereby providing a photocatalyst-supporting structure that has solved the above problems. As a result, the present invention was completed.

すなわち、本発明は、以下の態様を有する発明に関する。
(1)式(1)
(RSi(OR4−n (1)
(式中、Rは置換基を有してもよい炭素数1〜4のアルキル基を表し、Rは炭素数1〜4のアルキル基を表し、nは0又は1の整数を表す。)で示される加水分解性シラン化合物の酸による加水分解生成物であって、重合度が8以下である加水分解生成物と、光触媒材料粒子と、親水性溶媒とを含有する、光触媒塗布液。
(2)光触媒塗布液の製造方法であって、
式(1)
(RSi(OR4−n (1)
(式中、Rは置換基を有してもよい炭素数1〜4のアルキル基を表し、Rは炭素数1〜4のアルキル基を表し、nは0又は1の整数を表す。)で示される加水分解性シラン化合物を、加水分解性シラン化合物の加水分解性基と光触媒塗布液中における水の全添加量とのモル比(水/加水分解性基)を0.2〜1.3の範囲にして酸による加水分解又は加水分解縮合する工程、及び
上記工程の後に、該加水分解生成物と光触媒材料粒子とを混合する工程
を含む、光触媒塗布液の製造方法。
(3)前記の酸による加水分解が30℃以下で行われる、(2)に記載の光触媒塗布液の製造方法。
(4)前記式(1)で示される加水分解性シラン化合物の酸による加水分解生成物の重合度が8以下である、(2)又は(3)に記載の光触媒塗布液の製造方法。
(5)前記加水分解性シラン化合物の酸による加水分解物又は加水分解縮合物(その(RSiO(2−n/2)(R及びnは各々前記式(1)と同じものを表す。)換算質量をAとする。)と光触媒材料粒子(その質量をBとする。)との質量比A:Bが、1:5〜10:1である、(2)〜(4)のいずれかに記載の光触媒塗布液の製造方法。
(6)前記式(1)中、nが0である、(2)〜(5)のいずれかに記載の光触媒塗布液の製造方法。
(7)光触媒材料が、結晶性二酸化チタンを含むものである、(2)〜(6)のいずれかに記載の光触媒塗布液の製造方法。
(8)基材上に光触媒層が担持された光触媒構造体の製造方法であって、
予熱された基材の表面に、(1)に記載の光触媒塗布液を塗布し光触媒層を形成する工程を含む、光触媒構造体の製造方法。
(9)基材上に光触媒層が担持された光触媒構造体の製造方法であって、
予熱された基材の表面に、(2)〜(7)のいずれかに記載の方法で製造された光触媒塗布液を塗布し光触媒層を形成する工程を含む、光触媒構造体の製造方法。
(10)前記光触媒層の膜厚が0.1〜5μmである、(8)又は(9)に記載の光触媒構造体の製造方法。
(11)前記基材が、金属、ガラス、セラミックス、石、コンクリート、セメント、又は以上の材料の2種以上からなる複合材料のいずれかである、(10)に記載の光触媒構造体の製造方法。
(12)(8)〜(11)のいずれかに記載の方法で製造される光触媒構造体。
That is, this invention relates to the invention which has the following aspects.
(1) Formula (1)
(R 1 ) n Si (OR 2 ) 4-n (1)
(In the formula, R 1 represents an optionally substituted alkyl group having 1 to 4 carbon atoms, R 2 represents an alkyl group having 1 to 4 carbon atoms, and n represents an integer of 0 or 1. The photocatalyst coating liquid containing the hydrolysis product by the acid of the hydrolyzable silane compound shown by the following formula, the hydrolysis product having a polymerization degree of 8 or less, photocatalyst material particles, and a hydrophilic solvent.
(2) A method for producing a photocatalyst coating liquid,
Formula (1)
(R 1 ) n Si (OR 2 ) 4-n (1)
(In the formula, R 1 represents an optionally substituted alkyl group having 1 to 4 carbon atoms, R 2 represents an alkyl group having 1 to 4 carbon atoms, and n represents an integer of 0 or 1. The molar ratio (water / hydrolyzable group) of the hydrolyzable group of the hydrolyzable silane compound and the total amount of water added in the photocatalyst coating liquid is 0.2 to 1. .3, a method for producing a photocatalyst coating liquid, comprising a step of hydrolyzing or hydrolytic condensation with an acid, and a step of mixing the hydrolysis product and photocatalyst material particles after the step.
(3) The method for producing a photocatalyst coating liquid according to (2), wherein the hydrolysis with the acid is performed at 30 ° C. or lower.
(4) The method for producing a photocatalyst coating liquid according to (2) or (3), wherein the degree of polymerization of the hydrolysis product of the hydrolyzable silane compound represented by the formula (1) is 8 or less.
(5) Hydrolyzate or hydrolysis condensate of the hydrolyzable silane compound with an acid (its (R 1 ) n SiO (2-n / 2) (R 1 and n are the same as those in the formula (1), respectively) The mass ratio A: B of the converted mass to A) and the photocatalyst material particles (its mass is B) is 1: 5 to 10: 1 (2) to (4 ). The method for producing a photocatalyst coating liquid according to any one of
(6) The manufacturing method of the photocatalyst coating liquid in any one of (2)-(5) whose n is 0 in said Formula (1).
(7) The method for producing a photocatalyst coating liquid according to any one of (2) to (6), wherein the photocatalyst material contains crystalline titanium dioxide.
(8) A method for producing a photocatalyst structure in which a photocatalyst layer is supported on a substrate,
The manufacturing method of a photocatalyst structure including the process of apply | coating the photocatalyst coating liquid as described in (1) to the surface of the preheated base material, and forming a photocatalyst layer.
(9) A method for producing a photocatalyst structure in which a photocatalyst layer is supported on a substrate,
The manufacturing method of a photocatalyst structure including the process of apply | coating the photocatalyst coating liquid manufactured by the method in any one of (2)-(7) on the surface of the preheated base material, and forming a photocatalyst layer.
(10) The manufacturing method of the photocatalyst structure as described in (8) or (9) whose film thickness of the said photocatalyst layer is 0.1-5 micrometers.
(11) The method for producing a photocatalytic structure according to (10), wherein the base material is any one of metal, glass, ceramics, stone, concrete, cement, or a composite material composed of two or more of the above materials. .
(12) A photocatalyst structure produced by the method according to any one of (8) to (11).

本発明の光触媒構造体の製造方法を用いると、強度に優れ、しかも十分な光触媒活性を発揮する光触媒構造体が得られる。   When the method for producing a photocatalyst structure of the present invention is used, a photocatalyst structure excellent in strength and exhibiting sufficient photocatalytic activity can be obtained.

本発明の光触媒構造体の製造方法は、予熱された基材の表面に、下述の光触媒塗布液を塗布し光触媒層を形成する工程を含む、方法である。   The manufacturing method of the photocatalyst structure of this invention is a method including the process of apply | coating the following photocatalyst coating liquid to the surface of the preheated base material, and forming a photocatalyst layer.

基材は特に限定されないが、耐熱性である、金属、ガラス、セラミックス、石、コンクリート、セメント、又は以上の材料の2種以上からなる複合材料のいずれかであることが好ましい。特に陶磁器、琺瑯等のセラミックス製品が好ましく、具体的な用途としてはタイル、瓦等が挙げられ、最も好ましくは建築物の外壁材料として使用するタイルが挙げられる。   The substrate is not particularly limited, but is preferably any one of heat-resistant metal, glass, ceramics, stone, concrete, cement, or a composite material composed of two or more of the above materials. In particular, ceramic products such as ceramics and pots are preferable, and specific applications include tiles, tiles, and the like, and most preferable tiles are used as exterior wall materials for buildings.

前記予熱とは、塗布対象である材料を、塗布前に加熱し、塗布時における材料表面の温度を一定温度以上とすることである。塗布時における材料表面の温度は、好ましくは50℃以上、より好ましくは100℃以上であり、この予熱により光触媒塗布液は速やかに乾燥し硬化する。また塗布時における材料表面の温度は、あまりに高温であると、塗布の際に塗膜が過度に不均一となることがあるので、300℃以下であることが好ましい。
特に基材としてセラミックス製品を用いる場合には、該製品の製造工程として高温で焼成する工程があるため、該工程の直後に、本発明の光触媒層形成工程を設けることで、新たな焼成工程を設けずに、光触媒が担持されたセラミックス製品を製造することができる。
The preheating is to heat a material to be applied before application, and to set the temperature of the material surface during application to a certain temperature or higher. The temperature of the material surface at the time of application is preferably 50 ° C. or higher, more preferably 100 ° C. or higher. By this preheating, the photocatalyst coating liquid is quickly dried and cured. Further, when the temperature of the material surface at the time of application is too high, the coating film may become excessively non-uniform at the time of application, so it is preferably 300 ° C. or lower.
In particular, when a ceramic product is used as a base material, there is a step of firing at a high temperature as a production process of the product. Therefore, by providing the photocatalyst layer forming step of the present invention immediately after the step, a new firing step is performed. Without providing, a ceramic product carrying a photocatalyst can be manufactured.

本発明の光触媒構造体の製造方法に用いる光触媒塗布液は、式(1)
(RSi(OR4−n (1)
(式中、Rは置換基を有してもよい炭素数1〜4のアルキル基を表し、Rは炭素数1〜4のアルキル基を表し、nは0又は1を表す。各Rは、互いに同じであっても異なっていてもよい。)で示される加水分解性シラン化合物の1種以上の酸による加水分解物又は加水分解縮合物(以後、合わせて「加水分解生成物」という。)と、光触媒材料粒子と、親水性溶媒とを含有し、前記加水分解生成物の出発物質である加水分解性シラン化合物の加水分解性基と光触媒塗布液中における水の全添加量とのモル比(水/加水分解性基)は0.2〜1.3の範囲であり、加水分解性シラン化合物の酸による加水分解工程の後に、該加水分解生成物と光触媒材料粒子とを混合してなる、光触媒塗布液である。
The photocatalyst coating liquid used in the method for producing a photocatalyst structure of the present invention has the formula (1)
(R 1 ) n Si (OR 2 ) 4-n (1)
(In the formula, R 1 represents an optionally substituted alkyl group having 1 to 4 carbon atoms, R 2 represents an alkyl group having 1 to 4 carbon atoms, and n represents 0 or 1. Each R. 2 may be the same as or different from each other. Hydrolyzate or hydrolysis condensate of one or more acids of the hydrolyzable silane compound represented by the formula (hereinafter referred to as “hydrolysis product”) A hydrolyzable group of the hydrolyzable silane compound, which is a starting material for the hydrolysis product, and the total amount of water added in the photocatalyst coating liquid. The molar ratio (water / hydrolyzable group) is in the range of 0.2 to 1.3, and the hydrolysis product and the photocatalytic material particles are mixed after the hydrolysis step of the hydrolyzable silane compound with an acid. This is a photocatalyst coating solution.

式(1)で表される加水分解性シラン化合物としては、いずれか少なくとも1種が含有されていればよい。また該加水分解性シラン化合物が2種以上である場合、式(1)で表される加水分解性シラン化合物の酸による加水分解生成物は、2種以上の加水分解性シラン化合物を共存させて酸により加水分解又はさらに縮合させた組成物でもよいし、1種または2種以上の加水分解性シラン化合物を酸により加水分解又はさらに縮合させた組成物を、さらに2種以上混合した組成物でもよい。
また、少なくとも前記nが0である化合物、すなわち4官能性シラン化合物が含有されることが好ましい。式(1)で表される加水分解性シラン化合物の合計質量のうち、4官能性シラン化合物の質量比率は、50%以上であることが好ましく、80%以上であることがより好ましく、100%であることがさらに好ましい。
As a hydrolysable silane compound represented by Formula (1), any at least 1 type should just contain. Moreover, when the hydrolyzable silane compound is two or more kinds, the hydrolysis product of the hydrolyzable silane compound represented by the formula (1) by the acid coexists with two or more hydrolyzable silane compounds. A composition hydrolyzed or further condensed with an acid may be used, or a composition obtained by further hydrolyzing or further condensing one or more hydrolyzable silane compounds with an acid, or a composition obtained by further mixing two or more kinds. Good.
Further, it is preferable that at least the compound in which n is 0, that is, a tetrafunctional silane compound is contained. Of the total mass of the hydrolyzable silane compound represented by formula (1), the mass ratio of the tetrafunctional silane compound is preferably 50% or more, more preferably 80% or more, and 100%. More preferably.

式(1)で表される4官能性シランとしては、テトラメトキシシラン、テトラエトキシシラン、テトラ−n−プロポキシシラン、テトライソプロポキシシラン等が挙げられる。   Examples of the tetrafunctional silane represented by the formula (1) include tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, and tetraisopropoxysilane.

式(1)で表される、前記nが1である化合物、すなわち3官能性シラン化合物は、ケイ素原子に直接結合した、置換基を有してもよい炭素数1〜4のアルキル基であるRを有する。これらの置換基としては、クロロ基、フルオロ基、エポキシ基、グリシドキシ基、ビニル基、(メタ)アクリロキシ基、アミノ基、また以上の基を更に置換基として有してもよいC3〜6シクロアルキル基又はフェニル基、等が挙げられる。該3官能性シラン化合物の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、2−クロロエチルトリエトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、アリルトリエトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、4−アミノブチルトリエトキシシラン、3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、ベンジルトリエトキシシラン等が挙げられる。以上の化合物のうち、エポキシ基、ビニル基、アミノ基等の反応性を有する置換基を有するものは、シランカップリング剤として利用することもできる。この場合には、シランカップリング剤と反応して架橋する化合物を併用することにより、塗膜の強度をさらに高められる可能性がある。 The compound represented by formula (1) wherein n is 1, that is, the trifunctional silane compound is an alkyl group having 1 to 4 carbon atoms which may be directly bonded to a silicon atom and may have a substituent. with a R 1. Examples of these substituents include chloro group, fluoro group, epoxy group, glycidoxy group, vinyl group, (meth) acryloxy group, amino group, and C3-6 cycloalkyl which may further have the above group as a substituent. Group or phenyl group. Specific examples of the trifunctional silane compound include methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, 2- Chloroethyltriethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, allyltriethoxysilane, 3 -Methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 4-aminobutyltriethoxysilane, 3-aminopropyltriethoxysilane, 3 Aminopropyltrimethoxysilane, and benzyl triethoxysilane and the like. Among the above compounds, those having a reactive substituent such as an epoxy group, a vinyl group, and an amino group can be used as a silane coupling agent. In this case, there is a possibility that the strength of the coating film can be further increased by using a compound that reacts with the silane coupling agent to crosslink.

式(1)で表される加水分解性シラン化合物は、水が存在すると加水分解し、さらにこの加水分解物が脱水して縮合物に変化する。この加水分解を促進するために、一般に加熱、または酸、アルカリ等の触媒が使用される。前記加水分解および縮合反応には、反応系に存在する水の量や触媒の種類および量が影響する。例えば大過剰の水が存在し反応速度が十分に高い場合には、高分子量の縮合物が生成する。一方、水の量が限定されている場合には、部分加水分解物とそれに由来する低分子量の縮合物が生成する。なお、加水分解性シラン化合物としては、加水分解基としてアルコキシ基の代わりにハロゲノ基を有するものもあるが、このような化合物は反応性が高く、安定な部分加水分解生成物が得られないため、本発明での利用には適さない。   The hydrolyzable silane compound represented by the formula (1) is hydrolyzed when water is present, and this hydrolyzate is dehydrated to be converted into a condensate. In order to accelerate this hydrolysis, a catalyst such as heating or an acid or an alkali is generally used. The hydrolysis and condensation reactions are affected by the amount of water present in the reaction system and the type and amount of catalyst. For example, when a large excess of water is present and the reaction rate is sufficiently high, a high molecular weight condensate is formed. On the other hand, when the amount of water is limited, a partial hydrolyzate and a low molecular weight condensate derived therefrom are produced. Some hydrolyzable silane compounds have a halogeno group instead of an alkoxy group as a hydrolyzable group, but such a compound is highly reactive and a stable partial hydrolysis product cannot be obtained. It is not suitable for use in the present invention.

本発明においては、加水分解生成物の出発物質である加水分解性シラン化合物の加水分解性基と光触媒塗布液中における水の全添加量とのモル比(水/加水分解性基)は0.2〜1.3の範囲に限定され、部分加水分解物とそれに由来する縮合物が生成する。加水分解工程における加水分解性シラン化合物の加水分解性基と水の添加量とのモル比も同じ範囲が好ましい。該加水分解縮合物は低分子量のものであり、重合度が8以下であることが好ましい。特に、加水分解性シラン化合物として4官能性シラン化合物のみを用いる場合には、重量平均分子量(Mw)がゲル浸透クロマトグラフィによるポリスチレン換算で100〜600であることが好ましく、150〜580であることがより好ましい。
また、加水分解縮合物を上記のように低重合度に限定するためには、加水分解工程における加水分解性シラン化合物の濃度を低濃度にすることも有効であり、具体的には、加水分解開始時において、加水分解性シラン化合物の濃度が30質量%以下、より好ましくは20質量%以下、若しくは加水分解性シラン化合物の(RSiO(2−n/2)(R及びnは各々前記式(1)と同じものを表す。)換算濃度が10質量%以下、より好ましくは8質量%以下であることが好ましい。このために、加水分解開始時には加水分解性シラン化合物が以下に詳述する親水性溶媒で上記濃度に希釈されていることが好ましい。
In the present invention, the molar ratio (water / hydrolyzable group) between the hydrolyzable group of the hydrolyzable silane compound, which is the starting material of the hydrolysis product, and the total amount of water added in the photocatalyst coating solution is 0. It is limited to the range of 2 to 1.3, and a partial hydrolyzate and a condensate derived therefrom are produced. The molar ratio between the hydrolyzable group of the hydrolyzable silane compound and the amount of water added in the hydrolysis step is preferably in the same range. The hydrolysis-condensation product has a low molecular weight and preferably has a polymerization degree of 8 or less. In particular, when only a tetrafunctional silane compound is used as the hydrolyzable silane compound, the weight average molecular weight (Mw) is preferably 100 to 600 and 150 to 580 in terms of polystyrene by gel permeation chromatography. More preferred.
In addition, in order to limit the hydrolysis condensate to a low degree of polymerization as described above, it is also effective to reduce the concentration of the hydrolyzable silane compound in the hydrolysis step. At the start, the concentration of the hydrolyzable silane compound is 30% by mass or less, more preferably 20% by mass or less, or the hydrolyzable silane compound (R 1 ) n SiO (2-n / 2) (R 1 and n Each represents the same thing as said Formula (1).) It is preferable that the conversion density | concentration is 10 mass% or less, More preferably, it is 8 mass% or less. For this reason, it is preferable that the hydrolyzable silane compound is diluted to the above concentration with a hydrophilic solvent described in detail below at the start of hydrolysis.

また、加水分解触媒としては酸を用いる。もし加水分解触媒としてアルカリを用いると、加水分解後さらに縮合が進行しやすく、それによって塗布液の粘度が上昇し、あるいはゲル化しやすいため、塗布液は長期の保存に耐えず不安定となり、塗布に際しても扱いが困難で、特にスプレーによる塗布は困難となる。酸を用いることでこれらの問題が回避される。
酸としては、塩酸、硝酸、硫酸等の可溶性無機酸、酢酸等の有機酸、あるいは酸性シリカゾル等が使用可能であるが、塗膜形成後に速やかに揮発し、強度や光触媒活性に影響を与えない点から、塩酸または硝酸が好ましい。
前記加水分解性シラン化合物の加水分解に用いる酸の量が、加水分解性シラン化合物のモル数に対する酸の当量数の比で0.0001〜0.01の範囲であること、又は加水分解工程におけるpHが2〜5であることが好ましい。
加水分解工程では、さらに加熱することで反応を促進することが可能であるが、本発明においては、縮合反応を適度に抑制するために、室温で、若しくは温度が高温になるのを防ぐ(例えば30℃以下に調整する)ために冷却しながら行うことが好ましい。
加水分解工程では、上記条件において、一定時間撹拌を行う。この時間は特に限定されないが、10分以上であることが好ましく、長時間としても格別の効果は得られないので、6時間以下とすることが実用上好ましい。
An acid is used as the hydrolysis catalyst. If alkali is used as the hydrolysis catalyst, condensation tends to proceed further after hydrolysis, which increases the viscosity of the coating solution or gels easily, so that the coating solution will not withstand long-term storage and become unstable. In this case, it is difficult to handle, and particularly, application by spraying becomes difficult. By using an acid, these problems are avoided.
As acids, soluble inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, etc., organic acids such as acetic acid, or acidic silica sols can be used, but they volatilize quickly after the coating is formed and do not affect the strength or photocatalytic activity. From the viewpoint, hydrochloric acid or nitric acid is preferable.
The amount of acid used for hydrolysis of the hydrolyzable silane compound is in the range of 0.0001 to 0.01 in the ratio of the number of equivalents of acid to the number of moles of hydrolyzable silane compound, or in the hydrolysis step It is preferable that pH is 2-5.
In the hydrolysis step, the reaction can be promoted by further heating, but in the present invention, in order to moderately suppress the condensation reaction, it is prevented at room temperature or the temperature from becoming high (for example, (Adjusting to 30 ° C. or lower) is preferably performed while cooling.
In the hydrolysis step, stirring is performed for a certain time under the above conditions. Although this time is not particularly limited, it is preferably 10 minutes or longer, and even if it is a long time, a particular effect cannot be obtained.

本発明の光触媒含有塗布液に用いる光触媒材料微粒子は、光触媒活性を有する金属酸化物等を含む無機材料からなる微粒子である。
光触媒材料の主成分としては、酸化チタン、酸化亜鉛、酸化錫、酸化ジルコニウム、酸化タングステン、酸化クロム、酸化モリブデン、酸化鉄、酸化ニッケル、酸化ルテニウム、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化ロジウム、酸化レニウム等が挙げられる。これらの中でも、酸化チタン、酸化タングステン等、特にアナターゼ型又はルチル型の酸化チタンが好ましい。
The photocatalyst material fine particles used in the photocatalyst-containing coating solution of the present invention are fine particles made of an inorganic material containing a metal oxide having photocatalytic activity.
The main components of the photocatalytic material are titanium oxide, zinc oxide, tin oxide, zirconium oxide, tungsten oxide, chromium oxide, molybdenum oxide, iron oxide, nickel oxide, ruthenium oxide, vanadium oxide, niobium oxide, tantalum oxide, rhodium oxide, Examples include rhenium oxide. Among these, titanium oxide, tungsten oxide and the like, particularly anatase type or rutile type titanium oxide are preferable.

また、これらに、Pt、Rh、Ru、Nb、Cu、Sn、Ni、Fe、Ag等の金属若しくはこれらの酸化物を添加したものも用いることができる。
特に、CuOが担持されたルチル型酸化チタンは、紫外線のみならず可視光にも応答して光触媒機能を発揮することから好ましい。
Moreover, what added metals, such as Pt, Rh, Ru, Nb, Cu, Sn, Ni, Fe, Ag, or these oxides, can also be used for these.
In particular, rutile titanium oxide carrying CuO is preferable because it exhibits a photocatalytic function in response to not only ultraviolet rays but also visible light.

光触媒材料微粒子の平均粒径は、必ずしも限定されないが、光触媒層が過度に不均一とならないよう、200nm以下であることが好ましく、1〜20nmであることがより好ましい。
光触媒材料微粒子の状態は、粉末状態でもよいが、下述の加水分解性シラン化合物の加水分解物との混合を容易にするために、溶媒に分散された懸濁液又はゾルの状態であることが好ましい。
The average particle diameter of the photocatalyst material fine particles is not necessarily limited, but is preferably 200 nm or less, and more preferably 1 to 20 nm so that the photocatalyst layer is not excessively nonuniform.
The fine particles of the photocatalyst material may be in a powder state, but in order to facilitate mixing with the hydrolyzate of the hydrolyzable silane compound described below, it should be in the state of a suspension or sol dispersed in a solvent. Is preferred.

前記加水分解性シラン化合物が完全に加水分解され脱水された場合、その生成物の組成式は(RSiO(2−n/2)(R及びnは各々前記式(1)と同じものを表す。)で表される。前記加水分解性シラン化合物の酸による加水分解生成物の量を(RSiO(2−n/2)換算質量Aにより表し、光触媒材料粒子の質量をBとした場合に、質量比A:Bは、1:5〜10:1であることが好ましい。これよりも光触媒材料粒子が多い場合は塗膜の強度が不足し、少ない場合は光触媒活性が不足する。質量比A:Bは、1:3〜5:1であることがより好ましく、1:2〜2:1であることが特に好ましい。 When the hydrolyzable silane compound is completely hydrolyzed and dehydrated, the composition formula of the product is (R 1 ) n SiO (2-n / 2) (where R 1 and n are the same as those in the formula (1)). It represents the same thing.) The amount of hydrolysis product of the hydrolyzable silane compound by the acid is represented by (R 1 ) n SiO (2-n / 2) converted mass A, and the mass of the photocatalytic material particles is B, and the mass ratio A : B is preferably 1: 5 to 10: 1. When there are more photocatalyst material particles than this, the strength of the coating film is insufficient, and when it is less, the photocatalytic activity is insufficient. The mass ratio A: B is more preferably 1: 3 to 5: 1, and particularly preferably 1: 2 to 2: 1.

本発明の製造方法では、予め前述の加水分解性シラン化合物の加水分解工程を実施し、その後、該加水分解物と光触媒微粒子とを混合することを特徴とする。
この2成分の混合の方法は特に限定されず、一気に混合しても、一方を他方に徐々に添加しながら混合してもよい。ただし、光触媒微粒子が水を含有する懸濁液又はゾルである場合には、光触媒の懸濁液又はゾルに加水分解生成物を徐々に添加する方法をとると、縮合が進みすぎる恐れがあるので好ましくない。従って、加水分解性シラン化合物の加水分解生成物に光触媒微粒子を添加し混合する方法が好ましい。
一方、加水分解性シラン化合物を光触媒微粒子と混合しこの混合物を基材に塗布すると、基材が高温であることから、加水分解性シラン化合物が加水分解・縮合する前に揮発しやすく、本発明の目的には適しない。また加水分解性シラン化合物を光触媒微粒子と混合後に加水分解工程を設けると、光触媒微粒子がシラン化合物の加水分解生成物により被覆されやすく、光触媒活性が低下するおそれがある。
In the production method of the present invention, the hydrolysis step of the hydrolyzable silane compound described above is performed in advance, and then the hydrolyzate and photocatalyst fine particles are mixed.
The method for mixing the two components is not particularly limited, and may be mixed at once or may be mixed while gradually adding one to the other. However, when the photocatalyst fine particles are a suspension or sol containing water, if the method of gradually adding the hydrolysis product to the suspension or sol of the photocatalyst is used, condensation may proceed excessively. It is not preferable. Therefore, a method of adding and mixing the photocatalyst fine particles to the hydrolysis product of the hydrolyzable silane compound is preferable.
On the other hand, when the hydrolyzable silane compound is mixed with the photocatalyst fine particles and this mixture is applied to the base material, the base material is hot, so that the hydrolyzable silane compound is easily volatilized before being hydrolyzed and condensed. It is not suitable for the purpose. If a hydrolysis step is provided after mixing the hydrolyzable silane compound with the photocatalyst fine particles, the photocatalyst fine particles are likely to be covered with the hydrolysis product of the silane compound, and the photocatalytic activity may be reduced.

本発明において光触媒塗布液を塗布する工程は、特に限定されず、ディッピング法、スプレー法、スピンコート法、バーコート法、カーテンコート法、ロールコート法、刷毛塗り法等の公知の方法を用いることができる。このうち、セラミックス製品の製造工程に導入するのに適する点、また基材の温度が急激に低下しないため強度に優れた均一な光触媒層が得られる点から、スプレーコート法が好ましい。
また光触媒層の硬化後の膜厚は、特に限定されないが、優れた光触媒活性及び強度を発揮する点で、通常0.2〜5μmであり、より好ましくは0.5〜3μmである。
In the present invention, the step of applying the photocatalyst coating solution is not particularly limited, and a known method such as a dipping method, a spray method, a spin coating method, a bar coating method, a curtain coating method, a roll coating method, or a brush coating method is used. Can do. Of these, the spray coating method is preferred because it is suitable for introduction into the production process of ceramic products, and a uniform photocatalyst layer having excellent strength can be obtained because the temperature of the base material does not drop rapidly.
Moreover, the film thickness after hardening of a photocatalyst layer is although it does not specifically limit, It is 0.2-5 micrometers normally at the point which exhibits the outstanding photocatalytic activity and intensity | strength, More preferably, it is 0.5-3 micrometers.

本発明においては、予熱されているため、前記塗布工程後の加熱は不要であり、有機物の炭化等による光触媒活性の低下を防止するために該加熱工程を実施しない方が好ましい。ただし、光触媒層の硬化を促進するために必要であれば加熱工程を加えてもよいが、この加熱工程では、温度が600℃以下、加熱時間は5分以下であることが好ましい。   In the present invention, since it is preheated, heating after the coating step is unnecessary, and it is preferable not to carry out the heating step in order to prevent a decrease in photocatalytic activity due to carbonization of organic matter. However, a heating step may be added if necessary to accelerate the curing of the photocatalyst layer. In this heating step, the temperature is preferably 600 ° C. or less and the heating time is preferably 5 minutes or less.

本発明の光触媒塗布液は、親水性溶媒を含有する。該親水性溶媒としては、水への溶解度(20℃)が50g/L以上である有機溶媒が好ましい。また、溶媒としてさらに水を含有してもよい。但し、前記加水分解生成物の出発物質である加水分解性シラン化合物の加水分解性基と、光触媒塗布液中における水の全添加量とのモル比(水/加水分解性基)は0.2〜1.3の範囲である必要がある。
さらに、光触媒塗布液中における液相が均一であり(すなわち、2相に分離せず、エマルジョンでもない)、該液相に光触媒微粒子が懸濁して光触媒塗布液を形成する溶媒が好ましい。このために、疎水性界面活性剤を含有しないことが好ましい。
溶媒としては、水混和性でありかつ易揮発性である有機溶媒がより好ましい。該有機溶媒としては、メタノール、エタノール、n−プロピルアルコール、イソプロピルアルコール等の低級脂肪族アルコール類;アセトン等のケトン類、又はこれらの複数からなる混合物が挙げられる。これらの内、低級脂肪族アルコール類が特に好ましい。
The photocatalyst coating liquid of the present invention contains a hydrophilic solvent. As the hydrophilic solvent, an organic solvent having a solubility in water (20 ° C.) of 50 g / L or more is preferable. Moreover, you may contain water further as a solvent. However, the molar ratio (water / hydrolyzable group) of the hydrolyzable group of the hydrolyzable silane compound which is the starting material of the hydrolysis product to the total amount of water added in the photocatalyst coating liquid is 0.2. It must be in the range of -1.3.
Further, a solvent in which the liquid phase in the photocatalyst coating liquid is uniform (that is, it does not separate into two phases and is not an emulsion) and the photocatalyst fine particles are suspended in the liquid phase to form a photocatalyst coating liquid is preferable. For this reason, it is preferable not to contain a hydrophobic surfactant.
As the solvent, an organic solvent that is miscible with water and easily volatile is more preferable. Examples of the organic solvent include lower aliphatic alcohols such as methanol, ethanol, n-propyl alcohol, and isopropyl alcohol; ketones such as acetone, or a mixture of a plurality of these. Of these, lower aliphatic alcohols are particularly preferred.

本発明の光触媒塗布液は、さらに、金属カップリング剤、界面活性剤等の補助成分を含有してもよい。   The photocatalyst coating liquid of the present invention may further contain auxiliary components such as a metal coupling agent and a surfactant.

金属カップリング剤とは、加水分解性基を有しこれにより架橋反応する金属化合物(但し金属元素としてケイ素を含まない。)である。具体的には、金属元素に配位子が配位してなる金属錯体、金属元素にアルコキシ基が結合してなる金属アルコラートのいずれか(両方に分類される化合物も含む。)が挙げられる。金属カップリング剤の併用により塗膜の強度をさらに高めることができる可能性がある。
具体的には、チタネート系カップリング剤として、テトライソプロピルチタネート、テトラ−n−ブチルチタネート、テトラキス(2−エチルヘキシルオキシ)チタン、チタニウム−i−プロポキシオクチレングリコレート等のチタンアルコキシド;チタンアセチルアセトナート、チタンテトラアセチルアセトナート、ジ−i−プロポキシ・ビス(アセチルアセトナート)チタン、ジ−n−プロポキシ・ビス(アセチルアセトナート)チタン、ジ−n−ブトキシ・ビス(アセチルアセトナート)チタン、ジエトキシ・ビス(アセチルアセトナート)チタン、プロパンジオキシチタンビス(エチルアセトアセテート)等のチタン錯体;
アルミネート系カップリング剤として、アルミニウムイソプロピレート、モノ−sec−ブトキシアルミニウムジイソプロピレート、アルミニウムエチレート等のアルミニウムアルコレート;エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムビスエチルアセトアセテート・モノアセチルアセトナート、アルミニウムトリス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトナート)、ジエトキシモノ(アセチルアセトナート)アルミニウム、ジ−i−プロポキシモノ(アセチルアセトナート)アルミニウム、ジ−n−プロポキシモノ(アセチルアセトナート)アルミニウム、ジ−n−ブトキシモノ(アセチルアセトナート)アルミニウム、エトキシビス(アセチルアセトナート)アルミニウム、i−プロポキシビス(アセチルアセトナート)アルミニウム、n−プロポキシビス(アセチルアセトナート)アルミニウム、n−ブトキシビス(アセチルアセトナート)アルミニウム等のアルミニウム錯体;環状アルミニウムオリゴマー;
ジルコネート系カップリング剤として、ジルコニウムテトラキス(アセチルアセトナート)、ジ−n−ブトキシビス(アセチルアセトナート)ジルコニウム、ジルコニウムテトラキス(エチルアセトアセテート)、ジエトキシビスアセチルアセトナートジルコニウム、ジ−i−プロポキシビス(アセチルアセトナート)ジルコニウム、ジ−n−プロポキシビス(アセチルアセトナート)ジルコニウム、トリ−n−ブトキシモノエチルアセトアセテートジルコニウム、トリ−n−ブトキシモノアセチルアセトナートジルコニウム;
等が挙げられる。
The metal coupling agent is a metal compound having a hydrolyzable group and thereby undergoing a crosslinking reaction (however, silicon is not included as a metal element). Specifically, any of a metal complex in which a ligand is coordinated to a metal element and a metal alcoholate in which an alkoxy group is bonded to the metal element (including compounds classified into both) is included. There is a possibility that the strength of the coating film can be further increased by the combined use of the metal coupling agent.
Specifically, titanium alkoxides such as tetraisopropyl titanate, tetra-n-butyl titanate, tetrakis (2-ethylhexyloxy) titanium, titanium-i-propoxyoctylene glycolate as titanium coupling agents; titanium acetylacetonate , Titanium tetraacetylacetonate, di-i-propoxy bis (acetylacetonato) titanium, di-n-propoxy bis (acetylacetonato) titanium, di-n-butoxy bis (acetylacetonato) titanium, diethoxy・ Titanium complexes such as bis (acetylacetonato) titanium and propanedioxytitanium bis (ethylacetoacetate);
As aluminate coupling agents, aluminum alcoholates such as aluminum isopropylate, mono-sec-butoxyaluminum diisopropylate, aluminum ethylate; ethyl acetoacetate aluminum diisopropylate, aluminum bisethylacetoacetate monoacetylacetonate, Aluminum tris (ethylacetoacetate), aluminum tris (acetylacetonate), diethoxymono (acetylacetonato) aluminum, di-i-propoxymono (acetylacetonato) aluminum, di-n-propoxymono (acetylacetonato) aluminum, Di-n-butoxymono (acetylacetonato) aluminum, ethoxybis (acetylacetonato) aluminum, i- Ropokishibisu (acetylacetonate) aluminum, n- Puropokishibisu (acetylacetonate) aluminum, n- butoxy bis aluminum complexes such as (acetylacetonate) aluminum; cyclic aluminum oligomer;
Zirconate coupling agents include zirconium tetrakis (acetylacetonate), di-n-butoxybis (acetylacetonato) zirconium, zirconium tetrakis (ethylacetoacetate), diethoxybisacetylacetonatozirconium, di-i-propoxybis ( Acetylacetonato) zirconium, di-n-propoxybis (acetylacetonato) zirconium, tri-n-butoxymonoethylacetoacetate zirconium, tri-n-butoxymonoacetylacetonatozirconium;
Etc.

成膜助剤としては、本発明の光触媒塗布液に溶解し、成膜性を向上させるものであれば、特に制限されず、具体的には、一般式:HO−(CHCHO)−R(式中、Rは水素原子または炭素数1〜10の直鎖状もしくは分岐鎖状のアルキル基、mは1〜5の整数を示す)で表される(ポリ)エチレングリコールまたは(ポリ)エチレングリコールモノアルキルエーテル、一般式:RCO−O−(CHCHO)−R(式中、Rは水素原子または炭素数1〜10の直鎖状もしくは分岐鎖状のアルキル基、qは1〜5の整数、Rは炭素数1〜10の直鎖状または分岐鎖状のアルキル基を示す)で表わされる(ポリ)エチレングリコールエステルまたは(ポリ)エチレングリコールエーテルエステル、一般式:HO−(CO)−R(式中、Rは水素原子または炭素数1〜10の直鎖状もしくは分岐鎖状のアルキル基、rは1〜5の整数を示す)で表される(ポリ)プロピレングリコールまたは(ポリ)プロピレングリコールモノアルキルエーテル、一般式:RCO−O−(CO)−R(式中、Rは水素原子または炭素数1〜10の直鎖状もしくは分岐鎖状のアルキル基、sは1〜5の整数、Rは炭素数1〜10の直鎖状または分岐鎖状のアルキル基を示す)で表される(ポリ)プロピレングリコールエステルまたは(ポリ)プロピレングリコールエーテルエステル等を好ましく例示することができる。より具体的には、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブなどのセロソルブ類;ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノイソブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノブチルエーテル、ジプロピレングリコールモノイソブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノイソブチルエーテルなどのエーテル類;エチルセロソルブアセテート、ブチルセロソルブアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノブチルエーテルアセテート、トリプロピレングリコールモノエチルエーテルアセテート、トリプロピレングリコールモノブチルエーテルアセテート、トリプロピレングリコールモノイソブチルエーテルアセテートなどのエーテルエステル類等、プロピレングリコールフェニルエーテル、プロピレングリコールジアセテート、2,2,4−トリメチルペンタンジオール−1,3− モノイソブチレート等を例示することができる。これら成膜助剤は単独でまたは2種以上を混合して用いることができる。成膜助剤の使用量は、光触媒塗布液中、20質量%以下の範囲が好ましい。特に2〜15質量%の範囲がより好ましく、この範囲内であれば光触媒層の透明性を高くできる。 The film-forming auxiliary agent is not particularly limited as long as it dissolves in the photocatalyst coating liquid of the present invention and improves the film-forming property, and specifically, the general formula: HO— (CH 2 CH 2 O) (poly) ethylene glycol represented by m— R 3 (wherein R 3 is a hydrogen atom or a linear or branched alkyl group having 1 to 10 carbon atoms, and m is an integer of 1 to 5). Or (poly) ethylene glycol monoalkyl ether, general formula: R 5 CO—O— (CH 2 CH 2 O) q —R 4 (wherein R 4 is a hydrogen atom or a straight chain having 1 to 10 carbon atoms, or (Poly) ethylene glycol ester or (poly) represented by a branched alkyl group, q is an integer of 1 to 5, and R 5 is a linear or branched alkyl group having 1 to 10 carbon atoms) Ethylene glycol ether ester, general formula HO- (C 3 H 6 O) r -R 6 ( wherein, R 6 is a hydrogen atom or a linear or branched alkyl group having 1 to 10 carbon atoms, r is an integer of 1 to 5) (Poly) propylene glycol or (poly) propylene glycol monoalkyl ether represented by the general formula: R 8 CO—O— (C 3 H 6 O) s —R 7 (wherein R 7 is a hydrogen atom or carbon) A linear or branched alkyl group having 1 to 10 carbon atoms, s is an integer of 1 to 5, and R 8 is a linear or branched alkyl group having 1 to 10 carbon atoms). Preferred examples include (poly) propylene glycol ester or (poly) propylene glycol ether ester. More specifically, cellosolves such as methyl cellosolve, ethyl cellosolve, butyl cellosolve; diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monobutyl ether, propylene glycol monoisobutyl ether, diethylene glycol Propylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monobutyl ether, dipropylene glycol monoisobutyl ether, tripropylene glycol monomethyl ether, tripropylene glycol monoethyl ether, tripropylene glycol monobutyl ether, tripropylene glycol monoi Ethers such as butyl ether; ethyl cellosolve acetate, butyl cellosolve acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, dipropylene glycol monobutyl ether acetate, tripropylene glycol mono Ether esters such as ethyl ether acetate, tripropylene glycol monobutyl ether acetate, tripropylene glycol monoisobutyl ether acetate, propylene glycol phenyl ether, propylene glycol diacetate, 2,2,4-trimethylpentanediol-1,3-monoiso It can be exemplified Chireto like. These film forming aids can be used alone or in admixture of two or more. The amount of the film forming aid used is preferably in the range of 20% by mass or less in the photocatalyst coating solution. In particular, the range of 2 to 15% by mass is more preferable, and the transparency of the photocatalyst layer can be increased within this range.

界面活性剤としては、公知のノニオン系界面活性剤、アニオン系界面活性剤、又はカチオン系界面活性剤が挙げられる。
これらの界面活性剤により、光触媒塗布液の安定性、具体的には光触媒材料粒子の分散性、粘度、レベリング性等を適切に維持することができる。但し、本発明で使用する光触媒塗布液は、液相が均一であるように溶媒を選択することが好ましく、エマルジョンを形成するための界面活性剤(乳化剤)は不要である。
Examples of the surfactant include known nonionic surfactants, anionic surfactants, and cationic surfactants.
By these surfactants, the stability of the photocatalyst coating liquid, specifically, the dispersibility, viscosity, leveling property, etc. of the photocatalyst material particles can be appropriately maintained. However, the photocatalyst coating solution used in the present invention preferably selects a solvent so that the liquid phase is uniform, and does not require a surfactant (emulsifier) for forming an emulsion.

以下、実施例により本発明を具体的に説明する。ただし、本発明はこれらの例により制限されるものではない。   Hereinafter, the present invention will be described specifically by way of examples. However, the present invention is not limited by these examples.

(調製例1)
加水分解性シラン化合物として、テトラエトキシシラン(TEOS)17.36gを室温で撹拌しながら、0.05規定硝酸水溶液6g、さらにエタノール76.64gを添加し、室温で15分撹拌し、酸加水分解生成物を得た。この酸加水分解生成物のSiO換算含有量は、5質量%である。
タイルを150〜200℃に予熱し、この表面に上記TEOS酸加水分解生成物を塗布量20g/mでスプレー塗布した。その結果、外観には問題なく、指で擦っても剥離などの問題はなかった。
またこのTEOS酸加水分解生成物を室温で放置しても、沈殿、固化等の問題はなかった。
(Preparation Example 1)
As a hydrolyzable silane compound, while stirring 17.36 g of tetraethoxysilane (TEOS) at room temperature, 6 g of 0.05 N nitric acid aqueous solution and 76.64 g of ethanol were added, and the mixture was stirred at room temperature for 15 minutes, acid hydrolysis. The product was obtained. The content of this acid hydrolysis product in terms of SiO 2 is 5% by mass.
The tile was preheated to 150 to 200 ° C., and the TEOS acid hydrolysis product was spray coated on the surface at a coating amount of 20 g / m 2 . As a result, there was no problem in appearance, and there was no problem such as peeling even when rubbed with a finger.
Even if this TEOS acid hydrolysis product was allowed to stand at room temperature, there was no problem of precipitation or solidification.

(実施例)
アナターゼ型光触媒性二酸化チタン(IV)(和光純薬工業社製)を、硝酸酸性下にて、粒径が10nm以下になるまでビーズミルによる粉砕を行い、二酸化チタンの30質量%水分散体を得た。
前記のTEOS酸加水分解生成物に、前記光触媒性二酸化チタンの水分散体を加え、室温で5分間撹拌し、光触媒塗布液を得た。
前記のTEOS酸加水分解生成物及びSTS−01の量を表1に示した。
(Example)
Anatase-type photocatalytic titanium dioxide (IV) (manufactured by Wako Pure Chemical Industries, Ltd.) was pulverized with a bead mill under acidity of nitric acid until the particle size became 10 nm or less to obtain a 30 mass% aqueous dispersion of titanium dioxide. It was.
The photocatalytic titanium dioxide aqueous dispersion was added to the TEOS acid hydrolysis product and stirred at room temperature for 5 minutes to obtain a photocatalyst coating solution.
The amounts of the TEOS acid hydrolysis product and STS-01 are shown in Table 1.

Figure 2017221880
Figure 2017221880

タイルを150〜200℃に予熱し、この表面に上記実施例1〜3の各光触媒塗布液を塗布量20g/mでスプレー塗布した。その結果、いずれについても、外観には問題なく、指及び爪で擦っても剥離などの問題はなかった。 The tile was preheated to 150 to 200 ° C., and each photocatalyst coating solution of Examples 1 to 3 was spray coated on the surface at a coating amount of 20 g / m 2 . As a result, in all cases, there was no problem in appearance, and there was no problem such as peeling even when rubbing with fingers and nails.

実施例1〜3を用いて上記方法により得られた光触媒層につき、触媒層表面の水に対する限界接触角、及びメチレンブルー分解活性を測定した。
水に対する限界接触角は、1.0mW/cmでブラックライトを照射し、最も親水化したときの接触角(限界接触角)である。限界接触角の測定方法はJIS R 1703−1(ファインセラミックス−光触媒材料のセルフクリーニング性能評価方法・第1部:水接触角の測定)に準拠した。
メチレンブルー分解活性は、JIS R 1703−2(ファインセラミックス−光触媒材料のセルフクリーニング性能評価方法・第2部:湿式分解性能)に準拠して試験を実施し、分解活性指数(nmol/L/min)を算出した。
結果は表2の通りであり、光触媒により優れた親水性及びセルフクリーニング性を有することが示された。
About the photocatalyst layer obtained by the said method using Examples 1-3, the limit contact angle with respect to the water of a catalyst layer surface and a methylene blue decomposition activity were measured.
The limit contact angle with respect to water is the contact angle (limit contact angle) when the light is irradiated with black light at 1.0 mW / cm 2 to make it most hydrophilic. The measuring method of the limit contact angle was based on JIS R 1703-1 (Fine ceramics-Self-cleaning performance evaluation method of photocatalyst material, Part 1: Measurement of water contact angle).
The methylene blue decomposition activity was tested in accordance with JIS R 1703-2 (Fine ceramics-photocatalytic material self-cleaning performance evaluation method, Part 2: wet decomposition performance), and the decomposition activity index (nmol / L / min) Was calculated.
The results are as shown in Table 2. It was shown that the photocatalyst has excellent hydrophilicity and self-cleaning property.

Figure 2017221880
Figure 2017221880

(比較例1)
調製例1において、0.05規定硝酸水溶液6gに代えて純水6gを使用した以外は同様にして、TEOS水溶液を得た。
このTEOS水溶液を、前記実施例における光触媒塗布液の代わりに用い、同様の方法でタイルに塗布した結果、成膜されなかった。これは塗布した成分が蒸発したためと考えられる。
(Comparative Example 1)
A TEOS aqueous solution was obtained in the same manner as in Preparation Example 1 except that 6 g of pure water was used instead of 6 g of 0.05 N nitric acid aqueous solution.
As a result of using this TEOS aqueous solution instead of the photocatalyst coating solution in the above example and applying it to the tile in the same manner, no film was formed. This is presumably because the applied component was evaporated.

(比較例2)
調製例1において、0.05規定硝酸水溶液6gに代えて純水30gを、エタノール76.64gに代えて52.64gを使用した以外は同様にして、TEOS水溶液を得た。
このTEOS水溶液を、前記実施例における光触媒塗布液の代わりに用い、同様の方法でタイルに塗布した結果、成膜されなかった。これは塗布した成分が蒸発したためと考えられる。
またこのTEOS水溶液を室温で放置したところ、ゲル化した。
(Comparative Example 2)
A TEOS aqueous solution was obtained in the same manner as in Preparation Example 1, except that 30 g of pure water was used instead of 6 g of 0.05 N nitric acid aqueous solution and 52.64 g was used instead of 76.64 g of ethanol.
As a result of using this TEOS aqueous solution instead of the photocatalyst coating solution in the above example and applying it to the tile in the same manner, no film was formed. This is presumably because the applied component was evaporated.
When this TEOS aqueous solution was allowed to stand at room temperature, it gelled.

(比較例3)
調製例1において、0.05規定硝酸水溶液6gに代えて29質量%アンモニア水6gを使用した以外は同様にしてTEOSアルカリ加水分解生成物を得た。
このTEOSアルカリ加水分解生成物を、前記実施例における光触媒塗布液の代わりに用い、同様の方法でタイルに塗布した結果、成膜されなかった。これは塗布した成分が蒸発したためと考えられる。
またこのTEOSアルカリ加水分解生成物を室温で放置したところ、沈殿物及びゲル状物が生成した。
(Comparative Example 3)
A TEOS alkaline hydrolysis product was obtained in the same manner as in Preparation Example 1, except that 6 g of 29% by mass ammonia water was used instead of 6 g of 0.05 N nitric acid aqueous solution.
This TEOS alkaline hydrolysis product was used in place of the photocatalyst coating solution in the above examples and was applied to the tile by the same method. As a result, no film was formed. This is presumably because the applied component was evaporated.
When this TEOS alkaline hydrolysis product was allowed to stand at room temperature, a precipitate and a gel-like product were formed.

Claims (12)

式(1)
(RSi(OR4−n (1)
(式中、Rは置換基を有してもよい炭素数1〜4のアルキル基を表し、Rは炭素数1〜4のアルキル基を表し、nは0又は1の整数を表す。)で示される加水分解性シラン化合物の酸による加水分解生成物であって、重合度が8以下である加水分解生成物と、光触媒材料粒子と、親水性溶媒とを含有する、光触媒塗布液。
Formula (1)
(R 1 ) n Si (OR 2 ) 4-n (1)
(In the formula, R 1 represents an optionally substituted alkyl group having 1 to 4 carbon atoms, R 2 represents an alkyl group having 1 to 4 carbon atoms, and n represents an integer of 0 or 1. The photocatalyst coating liquid containing the hydrolysis product by the acid of the hydrolyzable silane compound shown by the following formula, the hydrolysis product having a polymerization degree of 8 or less, photocatalyst material particles, and a hydrophilic solvent.
光触媒塗布液の製造方法であって、
式(1)
(RSi(OR4−n (1)
(式中、Rは置換基を有してもよい炭素数1〜4のアルキル基を表し、Rは炭素数1〜4のアルキル基を表し、nは0又は1の整数を表す。)で示される加水分解性シラン化合物を、加水分解性シラン化合物の加水分解性基と光触媒塗布液中における水の全添加量とのモル比(水/加水分解性基)を0.2〜1.3の範囲にして酸による加水分解又は加水分解縮合する工程、及び
上記工程の後に、該加水分解生成物と光触媒材料粒子とを混合する工程
を含む、光触媒塗布液の製造方法。
A method for producing a photocatalyst coating liquid,
Formula (1)
(R 1 ) n Si (OR 2 ) 4-n (1)
(In the formula, R 1 represents an optionally substituted alkyl group having 1 to 4 carbon atoms, R 2 represents an alkyl group having 1 to 4 carbon atoms, and n represents an integer of 0 or 1. The molar ratio (water / hydrolyzable group) of the hydrolyzable group of the hydrolyzable silane compound and the total amount of water added in the photocatalyst coating liquid is 0.2 to 1. .3, a method for producing a photocatalyst coating liquid, comprising a step of hydrolyzing or hydrolytic condensation with an acid, and a step of mixing the hydrolysis product and photocatalyst material particles after the step.
前記の酸による加水分解が30℃以下で行われる、請求項2に記載の光触媒塗布液の製造方法。 The method for producing a photocatalyst coating liquid according to claim 2, wherein the hydrolysis with the acid is performed at 30 ° C. or lower. 前記式(1)で示される加水分解性シラン化合物の酸による加水分解生成物の重合度が8以下である、請求項2又は3に記載の光触媒塗布液の製造方法。 The manufacturing method of the photocatalyst coating liquid of Claim 2 or 3 whose polymerization degree of the hydrolysis product by the acid of the hydrolysable silane compound shown by said Formula (1) is 8 or less. 前記加水分解性シラン化合物の酸による加水分解物又は加水分解縮合物(その(RSiO(2−n/2)(R及びnは各々前記式(1)と同じものを表す。)換算質量をAとする。)と光触媒材料粒子(その質量をBとする。)との質量比A:Bが、1:5〜10:1である、請求項2〜4のいずれかに記載の光触媒塗布液の製造方法。 Hydrolyzate or hydrolyzed condensate of the hydrolyzable silane compound (its (R 1 ) n SiO (2-n / 2) (wherein R 1 and n each represent the same formula (1)). The mass ratio A: B of the converted mass to A) and the photocatalyst material particles (its mass is assumed to be B) is 1: 5 to 10: 1. The manufacturing method of the photocatalyst coating liquid of description. 前記式(1)中、nが0である、請求項2〜5のいずれかに記載の光触媒塗布液の製造方法。 The manufacturing method of the photocatalyst coating liquid in any one of Claims 2-5 whose n is 0 in said Formula (1). 光触媒材料が、結晶性二酸化チタンを含むものである、請求項2〜6のいずれかに記載の光触媒塗布液の製造方法。 The manufacturing method of the photocatalyst coating liquid in any one of Claims 2-6 whose photocatalyst material contains crystalline titanium dioxide. 基材上に光触媒層が担持された光触媒構造体の製造方法であって、
予熱された基材の表面に、請求項1に記載の光触媒塗布液を塗布し光触媒層を形成する工程を含む、光触媒構造体の製造方法。
A method for producing a photocatalyst structure in which a photocatalyst layer is supported on a substrate,
The manufacturing method of a photocatalyst structure including the process of apply | coating the photocatalyst coating liquid of Claim 1 to the surface of the preheated base material, and forming a photocatalyst layer.
基材上に光触媒層が担持された光触媒構造体の製造方法であって、
予熱された基材の表面に、請求項2〜7のいずれかに記載の方法で製造された光触媒塗布液を塗布し光触媒層を形成する工程を含む、光触媒構造体の製造方法。
A method for producing a photocatalyst structure in which a photocatalyst layer is supported on a substrate,
The manufacturing method of a photocatalyst structure including the process of apply | coating the photocatalyst coating liquid manufactured by the method in any one of Claims 2-7 on the surface of the preheated base material, and forming a photocatalyst layer.
前記光触媒層の膜厚が0.1〜5μmである、請求項8又は9に記載の光触媒構造体の製造方法。 The manufacturing method of the photocatalyst structure of Claim 8 or 9 whose film thickness of the said photocatalyst layer is 0.1-5 micrometers. 前記基材が、金属、ガラス、セラミックス、石、コンクリート、セメント、又は以上の材料の2種以上からなる複合材料のいずれかである、請求項8〜10のいずれかに記載の光触媒構造体の製造方法。 The photocatalyst structure according to any one of claims 8 to 10, wherein the substrate is any one of metal, glass, ceramics, stone, concrete, cement, or a composite material composed of two or more of the above materials. Production method. 請求項8〜11のいずれかに記載の方法で製造される光触媒構造体。 The photocatalyst structure manufactured by the method in any one of Claims 8-11.
JP2016117598A 2016-06-14 2016-06-14 Photocatalyst coating liquid, photocatalyst structure and method for producing the same Active JP6653627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016117598A JP6653627B2 (en) 2016-06-14 2016-06-14 Photocatalyst coating liquid, photocatalyst structure and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016117598A JP6653627B2 (en) 2016-06-14 2016-06-14 Photocatalyst coating liquid, photocatalyst structure and method for producing the same

Publications (2)

Publication Number Publication Date
JP2017221880A true JP2017221880A (en) 2017-12-21
JP6653627B2 JP6653627B2 (en) 2020-02-26

Family

ID=60686646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016117598A Active JP6653627B2 (en) 2016-06-14 2016-06-14 Photocatalyst coating liquid, photocatalyst structure and method for producing the same

Country Status (1)

Country Link
JP (1) JP6653627B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111171082A (en) * 2018-11-09 2020-05-19 盐城师范学院 Nickel complex with properties of catalyzing photodegradation and adsorbing dye and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319709A (en) * 1998-05-15 1999-11-24 Mitsubishi Materials Corp Formation of photocatalyst film on organic substrate and its use
JP2003093892A (en) * 2001-09-25 2003-04-02 Sumitomo Metal Ind Ltd Metal material for photocatalyst product and method for manufacturing metal material and product
JP2004107381A (en) * 2002-09-13 2004-04-08 Matsushita Electric Works Ltd Coating material composition and coated product thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319709A (en) * 1998-05-15 1999-11-24 Mitsubishi Materials Corp Formation of photocatalyst film on organic substrate and its use
JP2003093892A (en) * 2001-09-25 2003-04-02 Sumitomo Metal Ind Ltd Metal material for photocatalyst product and method for manufacturing metal material and product
JP2004107381A (en) * 2002-09-13 2004-04-08 Matsushita Electric Works Ltd Coating material composition and coated product thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111171082A (en) * 2018-11-09 2020-05-19 盐城师范学院 Nickel complex with properties of catalyzing photodegradation and adsorbing dye and preparation method thereof
CN111171082B (en) * 2018-11-09 2024-05-03 盐城师范学院 Nickel complex with properties of catalyzing photodegradation and adsorbing dye and preparation method thereof

Also Published As

Publication number Publication date
JP6653627B2 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
JP4199490B2 (en) Coating material composition
JP2007277505A (en) Oxide particulate dispersion and manufacturing method thereof
JP2018017888A (en) Glass plate with low-reflection coating, method for producing base material with low-reflection coating, and coating liquid for forming low-reflection coating of base material with low-reflection coating
JP2002128898A (en) Production method for inorganic polymer compound, inorganic polymer compound and inorganic polymer compound film
JP5827107B2 (en) Method for preparing film forming composition and method for producing solar cell module
JPWO2016084331A1 (en) Glass plate with low-reflection coating
JP4648667B2 (en) Aqueous hydrophilic treatment
JP5838643B2 (en) Titanium complex and aqueous coating solution containing the same
JP6653627B2 (en) Photocatalyst coating liquid, photocatalyst structure and method for producing the same
JP2016056469A (en) Manufacturing method of modified substrate and modified substrate
JP3278876B2 (en) Coating solution for metal oxide film formation
JP2004107381A (en) Coating material composition and coated product thereof
JP6152799B2 (en) Coating liquid for forming a metal oxide film for protecting molybdenum-containing metals
JP2002161238A (en) Coating material composition and coated product therewith
JP2007277073A (en) Oxide microparticle dispersion and method for producing the same
JP7463164B2 (en) Coating Fluid
JP6850348B2 (en) Photocatalyst coating liquid, photocatalyst structure and its manufacturing method
JP2006257244A (en) Antifogging antifouling material and its manufacturing method
JP7551319B2 (en) Anti-Fog Agent
JP5998981B2 (en) Method for manufacturing substrate with coating
JP2000302441A (en) Titanium dioxide precursor composition and titanium dioxide
JPWO2018198936A1 (en) Transparent substrate with low reflection film, photoelectric conversion device, coating liquid for forming low reflection film of transparent substrate with low reflection film, and method of manufacturing transparent substrate with low reflection film
JP4811389B2 (en) How to add antifogging properties
JP2018043914A (en) Titanium compound sol solution, and coating film prepared therewith
JP2007063375A (en) Inorganic film-forming coating liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200128

R150 Certificate of patent or registration of utility model

Ref document number: 6653627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250