JP2017221543A - Intra-tissue fat detection system, intra-tissue fat measuring device, and program - Google Patents

Intra-tissue fat detection system, intra-tissue fat measuring device, and program Download PDF

Info

Publication number
JP2017221543A
JP2017221543A JP2016120395A JP2016120395A JP2017221543A JP 2017221543 A JP2017221543 A JP 2017221543A JP 2016120395 A JP2016120395 A JP 2016120395A JP 2016120395 A JP2016120395 A JP 2016120395A JP 2017221543 A JP2017221543 A JP 2017221543A
Authority
JP
Japan
Prior art keywords
tissue
fat
amount
deformation
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016120395A
Other languages
Japanese (ja)
Other versions
JP6675569B2 (en
Inventor
洋 小林
Hiroshi Kobayashi
洋 小林
まり子 築根
Mariko Tsukune
まり子 築根
尚美 岡村
Naomi Okamura
尚美 岡村
正克 藤江
Masakatsu Fujie
正克 藤江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Original Assignee
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University filed Critical Waseda University
Priority to JP2016120395A priority Critical patent/JP6675569B2/en
Publication of JP2017221543A publication Critical patent/JP2017221543A/en
Application granted granted Critical
Publication of JP6675569B2 publication Critical patent/JP6675569B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an intra-tissue fat detection system that can quantitatively grasp intra-tissue fat in a compact device structure.SOLUTION: An intra-tissue fat detection system 10 of the present invention includes: a pressing deformation measuring device 12 for pressing a living body soft tissue with a fat component mixed therein by a predetermined force, and measuring the magnitude of the pressing force at that time and a deformation amount of the region of the pressed living body soft tissue; and an intra-tissue fat measuring device 13 for finding an intra-tissue body fat amount corresponding to the quantity of the fat component, based on measurement results at the pressing deformation measuring device 12. The pressing deformation measuring device 12 includes pressing means 16 for pressing the living body soft tissue in multiple frequency patterns so that the pressing force may periodically be changed with time sinusoidally, and data acquisition means 17 for acquiring time series data of the deformation amount appearing as a sine-wave every frequency pattern in response to the pressing force. In the intra-tissue fat measuring device 13, the intra-tissue body fat amount is found based on the frequency responses by the time series data of the deformation amounts for respective frequency patterns.SELECTED DRAWING: Figure 1

Description

本発明は、組織内脂肪検出システム、組織内脂肪測定装置、及びプログラムに係り、更に詳しくは、繊維組織に内在する脂肪組織の空間的な構造配置を推察するために有用となる組織内脂肪検出システム、組織内脂肪測定装置、及びプログラムに関する。   The present invention relates to a tissue fat detection system, a tissue fat measurement device, and a program. More specifically, the present invention relates to tissue fat detection useful for inferring a spatial structure arrangement of fat tissue inherent in a fiber tissue. The present invention relates to a system, a tissue fat measurement device, and a program.

軟組織で構成される生体材料について、硬さ(柔らかさ)に関する情報であるレオロジー特性を把握することは、医療、福祉、食品等の様々な分野で非常に重要となる。ところが、このような生体軟組織は、複雑なレオロジー特性を有することが知られており、ある一定の力で押圧したときの反力の大きさと、そのときの変形量のデータのみでは、正確なレオロジー特性を表す物性値を同定することができず、レオロジー特性を正確かつ定量的に表現するのは困難である。すなわち、生体軟組織は、時間の経過に伴って粘弾性が変化する特性があり、一定の力で押圧しても経時的に変形量が変化する。また、生体軟組織は、その押込力や押込量がある大きさを越えると硬さが変化する特性がある。従って、生体軟組織において、例えば、単一の押し込み状態で単一の変形量を計測し、単一のヤング率等を求めただけでは、レオロジー特性を表す物性値として不十分である。   It is very important in various fields such as medical care, welfare, food, etc., to grasp rheological properties, which are information on hardness (softness), for biomaterials composed of soft tissues. However, such living soft tissues are known to have complex rheological properties, and accurate rheology can be obtained only by the data of the magnitude of the reaction force when pressed with a certain force and the amount of deformation at that time. It is difficult to accurately and quantitatively express rheological properties because physical property values representing the properties cannot be identified. That is, the soft biological tissue has a characteristic that the viscoelasticity changes with the passage of time, and the amount of deformation changes with time even when pressed with a constant force. In addition, the soft biological tissue has a characteristic that the hardness changes when the pushing force or the pushing amount exceeds a certain size. Therefore, in a living soft tissue, for example, simply measuring a single deformation amount in a single indented state and obtaining a single Young's modulus or the like is not sufficient as a physical property value representing rheological characteristics.

ところで、近時、健康管理やスポーツ科学における1つの指標として、繊維組織と脂肪組織が混在する非均質組織である筋肉内に存在する筋肉内脂肪の空間的な構造が注目されつつあり、当該筋肉内脂肪を定量的に把握可能な手法や装置に対するニーズがある。   By the way, recently, as an index in health management and sports science, the spatial structure of intramuscular fat existing in muscle, which is a heterogeneous tissue in which fiber tissue and adipose tissue are mixed, is attracting attention. There is a need for methods and devices that can quantitatively understand internal fat.

特許文献1には、X線CT装置で得られた筋肉組織の断層画像に基づいて、筋肉内脂肪量の指標となる値を求めるX線CTシステムが開示されている。   Patent Document 1 discloses an X-ray CT system that obtains a value serving as an index of intramuscular fat based on a tomographic image of muscle tissue obtained by an X-ray CT apparatus.

特開2004−81394号公報JP 2004-81394 A

前記特許文献1のX線CTシステムにあっては、X線CT装置を用いることから、装置の大型化を招来するばかりか、筋肉に内在する微視的な脂肪片までも断層画像に出現させるためには、高い分解能が必要となり、被検者に高線量のX線を照射しなければならないという問題がある。   In the X-ray CT system disclosed in Patent Document 1, since the X-ray CT apparatus is used, not only the apparatus is enlarged, but also microscopic fat fragments existing in the muscles appear in the tomographic image. Therefore, there is a problem that high resolution is required, and the subject must be irradiated with a high dose of X-rays.

そこで、本発明者らは、鋭意、実験研究を行った結果、以下の事象を見出した。すなわち、繊維組織に脂肪組織が混在する筋肉組織等の非均質組織において、非均質組織を押圧する押圧力を正弦波状に周期的に経時変化させたときに、ある押圧力や周波数の所定範囲では、当該非均質組織の変形状態が押圧力とほぼ同一の周波数で、正弦波状に周期的に経時変化する。また、前記押圧力を前述のように所定範囲で経時変化させたときには、非均質組織の変形状態が前記押圧力に対して時間遅れを生じ、この時間遅れは、非均質組織内の脂肪成分の量が同一であれば、周波数を変えても同一になるとともに、当該脂肪成分の量に応じて規則的に変化する。   Accordingly, as a result of earnestly conducting experimental research, the present inventors have found the following events. That is, in a non-homogeneous tissue such as a muscular tissue in which adipose tissue is mixed in a fibrous tissue, when the pressing force for pressing the non-homogeneous tissue is periodically changed over time in a sine wave shape, a certain pressing force and frequency are within a predetermined range. The deformed state of the non-homogeneous tissue periodically changes with time in a sinusoidal shape at substantially the same frequency as the pressing force. Further, when the pressing force is changed over time within a predetermined range as described above, the deformation state of the non-homogeneous tissue causes a time delay with respect to the pressing force, and this time delay is caused by the fat component in the non-homogeneous tissue. If the amount is the same, it will be the same even if the frequency is changed, and will change regularly according to the amount of the fat component.

本発明は、このような発明者らの知見に基づいて案出されたものであり、その目的は、X線CT装置等の画像診断装置での筋肉組織等の断層画像の取得を不要にし、コンパクトな装置構成で組織内脂肪を定量的に把握することができる組織内脂肪検出システム、組織内脂肪測定装置、及びプログラムを提供することにある。   The present invention has been devised on the basis of such inventors' knowledge, and its purpose is to make it unnecessary to acquire a tomographic image of muscle tissue or the like in an image diagnostic apparatus such as an X-ray CT apparatus, An object of the present invention is to provide a tissue fat detection system, a tissue fat measurement device, and a program capable of quantitatively grasping tissue fat with a compact device configuration.

本発明は、主として、脂肪成分が混在する生体軟組織を所定の力で押し込み、その際の押込力の大きさと押し込まれた前記生体軟組織の部位の変形量とを測定する押圧変形測定装置と、当該押圧変形測定装置での測定結果に基づき、前記脂肪成分の量に対応する組織内脂肪量を求める組織内脂肪測定装置と備え、前記押圧変形測定装置は、前記押込力が正弦波状に周期的に経時変化するように、前記生体軟組織を複数の周波数パターンで押し込む押込手段と、前記押込力に対応して正弦波として表れる前記変形量の時系列データを前記周波数パターン毎に取得するデータ取得手段とを備え、前記組織内脂肪測定装置では、前記周波数パターン毎の前記変形量の時系列データによる周波数応答に基づいて、前記組織内脂肪量を求める、という構成を採っている。   The present invention mainly presses a living soft tissue mixed with fat components with a predetermined force, and measures the magnitude of the pressing force at that time and the amount of deformation of the pushed soft tissue portion, And a tissue fat measurement device that obtains the amount of fat in the tissue corresponding to the amount of the fat component based on the measurement result of the pressure deformation measurement device. A pushing means for pushing the living soft tissue in a plurality of frequency patterns so as to change with time; and a data obtaining means for obtaining, for each frequency pattern, time series data of the deformation amount expressed as a sine wave corresponding to the pushing force. And the tissue fat measurement device obtains the tissue fat mass based on a frequency response based on time-series data of the deformation amount for each frequency pattern. It has taken.

本発明によれば、繊維組織と脂肪組織が混在する非均質組織において、周期的に経時変化する押圧力を対象の生体軟組織に付加し、そのときの生体軟組織の経時的な変形量を測定することで、生体軟組織に含まれる脂肪の量に応じて定まる特徴量(物性値)を検出することができ、当該特徴量により、非均質組織に存在する脂肪の空間的な構造の定量的な把握が可能になる。   According to the present invention, in a heterogeneous tissue in which fibrous tissue and adipose tissue are mixed, a pressing force that periodically changes with time is applied to the target soft tissue, and the amount of deformation of the soft tissue over time is measured. Therefore, it is possible to detect the characteristic amount (physical property value) determined according to the amount of fat contained in the living soft tissue, and quantitatively grasp the spatial structure of fat existing in the non-homogeneous tissue based on the characteristic amount. Is possible.

本実施形態に係る組織内脂肪検出システムの概略構成図。The schematic block diagram of the tissue fat detection system which concerns on this embodiment. ゲイン及び位相の時間遅れにおける周波数応答の一例を表すグラフ。The graph showing an example of the frequency response in the time delay of a gain and a phase.

以下、本発明の実施形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1には、本実施形態に係る組織内脂肪検出システムの概略構成図が示されている。この組織内脂肪検出システム10では、繊維組織と脂肪組織が存在する非均質な生体軟組織の脂肪成分の量に対応する組織内脂肪量を検出可能となっている。本実施形態では、当該組織内脂肪量として、筋肉内部に混在する脂肪の量に対応する物性値である筋肉内脂肪量を検出することとして、以下に説明する。ここで、検出された筋肉内脂肪量は、筋肉と脂肪の空間的な構造を表すパラメータとして、例えば、筋肉内部の脂肪成分の空間的な構造の把握による健康管理やスポーツ科学によるアスリートの能力評価用のデータや、食肉の赤身に微視的に含まれる脂肪分の量に基づく食肉の旨みに関する評価用のデータを求める際に利用可能となる。   FIG. 1 shows a schematic configuration diagram of the tissue fat detection system according to the present embodiment. In the tissue fat detection system 10, it is possible to detect the amount of fat in the tissue corresponding to the amount of fat components of the non-homogeneous living soft tissue in which the fiber tissue and the fat tissue exist. In the present embodiment, the following description will be given on the assumption that the intramuscular fat amount, which is a physical property value corresponding to the amount of fat mixed in the muscle, is detected as the tissue fat amount. Here, the detected intramuscular fat mass is used as a parameter representing the spatial structure of muscle and fat, for example, health management by grasping the spatial structure of fat components inside the muscle and athlete ability evaluation by sports science. It can be used to obtain data for evaluation and evaluation data regarding the taste of meat based on the amount of fat microscopically contained in the lean meat.

この組織内脂肪検出システム10は、筋肉内脂肪量の検出対象となる筋肉部位を含む生体軟組織の検出対象部位Sを所定の力で押し込み、その際の押込力の大きさと押し込まれた検出対象部位Sの変形量とを測定する押圧変形測定装置12と、押圧変形測定装置12の測定結果に基づき、筋肉内脂肪量を求める組織内脂肪測定装置13と、組織内脂肪測定装置13で求められた筋肉内脂肪量や当該筋肉内脂肪量に基づく情報等を提示する情報提示装置14とを備えている。   This tissue fat detection system 10 pushes in the detection target part S of the living soft tissue including the muscle part which is the detection target of the amount of intramuscular fat with a predetermined force, the magnitude of the pressing force at that time, and the detection target part pressed in. It was calculated | required in the tissue fat measuring device 13 which calculates | requires the amount of intramuscular fat based on the measurement result of the pressure deformation measuring device 12 which measures the deformation amount of S, the pressure deformation measuring device 12, and the tissue fat measuring device 13. And an information presentation device 14 for presenting information based on the amount of intramuscular fat and the amount of intramuscular fat.

前記押圧変形測定装置12は、検出対象部位Sを所定の力で押し込み可能に設けられた押込手段16と、検出対象部位Sへの押込力の時系列データとともに、検出対象部位Sの変形量の時系列データを取得するデータ取得手段17とを備えている。   The pressing deformation measuring device 12 includes the pressing means 16 provided so as to be able to push the detection target part S with a predetermined force, and time series data of the pressing force to the detection target part S, and the deformation amount of the detection target part S. Data acquisition means 17 for acquiring time series data is provided.

前記押込手段16は、検出対象部位Sに接触した状態で押し込まれる圧子19と、検出対象部位Sに対して圧子19を離間接近させるための動力となるモータ等で構成されたアクチュエータ20と、アクチュエータ20の駆動を制御する駆動制御部21と、検出対象部位Sからの反力の検出に基づいて、圧子16による検出対象部位Sへの押込力を一定時間毎に測定する力センサ22とにより構成されている。   The pushing means 16 includes an indenter 19 that is pushed in contact with the detection target portion S, an actuator 20 that includes a motor that serves as power for moving the indenter 19 away from the detection target portion S, and an actuator. And a force control unit 22 that measures the pushing force of the indenter 16 on the detection target part S at regular intervals based on detection of the reaction force from the detection target part S. Has been.

前記駆動制御部21では、圧子19の動作による検出対象部位Sへの押込力が予め設定された振幅と周波数で周期的に経時変化するように、力センサ22の測定結果をフィードバックしながらアクチュエータ20の駆動が制御される。具体的に、駆動制御部21では、時間に対する押込力の関係が、予めユーザにより設定された振幅及び周波数を有する正弦波状で周期的に変化するように、アクチュエータ20の駆動が制御される。前記筋肉内脂肪量を求める以降の処理では、少なくとも2パターンとなる複数の周波数パターンで圧子19を動作させ、当該周波数パターン毎にデータ取得手段17で取得された検出対象部位Sの変形量の時系列データが用いられる。   The drive control unit 21 feeds back the measurement result of the force sensor 22 so that the pushing force to the detection target site S due to the operation of the indenter 19 periodically changes with a preset amplitude and frequency. Is controlled. Specifically, the drive control unit 21 controls the drive of the actuator 20 so that the relationship of the pressing force with respect to time periodically changes in a sine wave shape having an amplitude and a frequency set in advance by the user. In the subsequent processing for determining the amount of intramuscular fat, the indenter 19 is operated with a plurality of frequency patterns that are at least two patterns, and the amount of deformation of the detection target portion S acquired by the data acquisition unit 17 for each frequency pattern. Series data is used.

前記データ取得手段17では、検出対象部位Sへの押込力の時系列データとともに、圧子19の移動量に対応するアクチュエータ20の駆動量を図示省略したセンサを用いて所定時間毎に検出することにより、圧子19によって押圧された検出対象部位Sの変形量(変位量)が所定時間毎に求められ、当該変形量の時系列データが得られる。すなわち、ここでは、前記押込力の時系列データとして、時間tと押込力fの関係式である入力正弦波(f=fsin(ωt))が特定されるとともに、前記変形量の時系列データとして、時間tと変形量xの関係式である出力正弦波(x=xsin(ωt+φ))が求められる。これら各式において、ωは、周波数であり、fは、押込力の振幅であり、xは、変形量の振幅であり、φは、入力正弦波に対する出力正弦波の位相の時間遅れを表す。なお、本発明者らの実験研究によれば、押込力の振幅fと変形量の振幅xが小さい所定領域内では、上記各式で表されるように、押込力を正弦波状に経時変化させたときに、変形量も、同一の周波数ωの正弦波状で経時変化する性質を見出しており、本発明では、この性質を利用できる前記所定領域内でのデータを用いて、後述するように、筋肉内脂肪量を求めるようになっている。従って、このような性質の出力正弦波が得られるように予め振幅f及び周波数ωが調整された上で、検出対象部位Sに押圧力が付加される。 The data acquisition means 17 detects the driving amount of the actuator 20 corresponding to the movement amount of the indenter 19 together with time series data of the pushing force to the detection target site S using a sensor (not shown) at predetermined time intervals. The deformation amount (displacement amount) of the detection target portion S pressed by the indenter 19 is obtained every predetermined time, and time series data of the deformation amount is obtained. That is, here, as the time series data of the pushing force, an input sine wave (f = f 0 sin (ωt)) that is a relational expression between the time t and the pushing force f is specified and the time series of the deformation amount is specified. As data, an output sine wave (x = x 0 sin (ωt + φ)), which is a relational expression between time t and deformation amount x, is obtained. In each of these equations, ω is the frequency, f 0 is the amplitude of the pushing force, x 0 is the amplitude of the deformation amount, and φ is the time delay of the phase of the output sine wave with respect to the input sine wave. Represent. According to the experimental study by the present inventors, in a predetermined region where the amplitude f 0 of the indentation force and the amplitude x 0 of the deformation amount are small, the indentation force is expressed as a sine wave as time passes. When it is changed, the amount of deformation is also found to be a sine wave having the same frequency ω and changes with time. In the present invention, the data in the predetermined area where this property can be used will be described later. In addition, the amount of intramuscular fat is calculated. Accordingly, the pressure f is applied to the detection target portion S after the amplitude f 0 and the frequency ω are adjusted in advance so that an output sine wave having such properties can be obtained.

前記組織内脂肪測定装置13は、CPU等の演算処理装置及びメモリやハードディスク等の記憶装置等からなるコンピュータによって構成され、当該コンピュータを以下の各手段として機能させるためのプログラムがインストールされている。   The tissue fat measurement device 13 is configured by a computer including an arithmetic processing device such as a CPU and a storage device such as a memory and a hard disk, and a program for causing the computer to function as the following units is installed.

この組織内脂肪測定装置13は、押込力の振幅fに対する変形量の振幅xの割合を表すゲインAを求めるゲイン算出手段24と、ゲインAと周波数ωの関係式を求める周波数応答導出手段25と、周波数応答導出手段25で求めた関係式に基づいて、筋肉内脂肪量を求める組織内脂肪算出手段26とを備えている。 The tissue fat measuring apparatus 13 includes a gain calculating unit 24 for determining a gain A that represents the percentage of the amplitude x 0 of the amount of deformation of the push force for the amplitude f 0, a frequency response deriving means for obtaining a relational expression of gain A and the frequency ω 25 and tissue fat calculation means 26 for obtaining the amount of intramuscular fat based on the relational expression obtained by the frequency response deriving means 25.

前記ゲイン算出手段24では、複数の周波数パターンで圧子19を動作させたときに、それぞれの周波数バターンについて、そのときの出力正弦波での変形量の振幅xを、そのときの入力正弦波での押込力の振幅fで除算することで、周波数ω毎にゲインA(A=x/f)がそれぞれ求められる。 In the gain calculation unit 24, when operating the indenter 19 at a plurality of frequency patterns for each frequency Bataan, the amplitude x 0 of the amount of deformation of the output sine wave of that time, the input sine wave at that time The gain A (A = x 0 / f 0 ) is obtained for each frequency ω by dividing by the amplitude f 0 of the pushing force.

前記周波数応答導出手段25では、次のようにして、ゲインAと周波数ωの関係式が求められる。すなわち、本発明者らの研究結果によれば、押込力の振幅fと変形量の振幅xが小さい前述の所定領域内では、周波数ωとゲインAの関係を両対数グラフ化したときに、図2中下側の線分のように、ほぼ線形の関係が成り立つことから、各周波数ωとそのときのゲインAとから、次の式(1)が導き出される。

Figure 2017221543
上式(1)において、rは、周波数ωの変化に対するゲインAの変化割合である傾きを表し、この傾きは、本発明者らの研究結果によれば、生体軟組織の弾性要素と粘性要素の比率を数値化した指標値である粘弾性比率rに対応し、0から1までの値を採る。ここで、粘弾性比率rが、0の場合に完全弾性体となる一方、1の場合に完全粘性体(流動体)となる。なお、式(1)の切片を表すGは、本発明者らの研究結果によれば、生体軟組織の硬さに対応する指標値となる。 In the frequency response deriving unit 25, a relational expression between the gain A and the frequency ω is obtained as follows. That is, according to the research results of the present inventors, when the relationship between the frequency ω and the gain A is made into a log-log graph within the predetermined region where the amplitude f 0 of the pushing force and the amplitude x 0 of the deformation amount are small. Since a substantially linear relationship is established as in the lower line segment in FIG. 2, the following expression (1) is derived from each frequency ω and the gain A at that time.
Figure 2017221543
In the above equation (1), r represents a gradient that is a change ratio of the gain A with respect to a change in the frequency ω. According to the research result of the present inventors, the gradient of the elastic element and the viscous element of the living soft tissue. Corresponding to the viscoelasticity ratio r which is an index value obtained by quantifying the ratio, values from 0 to 1 are taken. Here, when the viscoelasticity ratio r is 0, it becomes a complete elastic body, while when it is 1, it becomes a complete viscous body (fluid). Note that G representing the intercept of the formula (1) is an index value corresponding to the hardness of the living soft tissue according to the research results of the present inventors.

前記組織内脂肪算出手段26では、上式(1)で特定された粘弾性比率rと、前述した位相の時間遅れφとから、本発明者らの研究により導出された次式(2)に基づいて、筋肉内脂肪量Rが求められる。

Figure 2017221543
なお、本発明者らの研究結果によれば、繊維組織に脂肪組織が混在する非均質組織を対象とした場合、前述した通り、変位量に係る出力正弦波は、押込力に係る入力正弦波に対して、周波数が同一となり、脂肪組織の状態(量)に対応して位相のみがずれる結果になり、しかも、図2中上側の線分のように、周波数ωを変化させても、位相の時間遅れφがほぼ一定となることが分かっているため、周波数ωに依らない上式(2)により、筋肉内脂肪量Rを求めることが可能となる。なお、上式(2)によれば、脂肪組織が無い単一材料の繊維組織(肝臓等)の場合は、筋肉内脂肪量Rがゼロであり、粘弾性比率rのみによって位相の時間遅れφが決まることになる。換言すれば、筋肉内脂肪量Rの変化によって、位相の時間遅れφが変化することになる。 In the tissue fat calculating means 26, the following equation (2) derived from the study of the present inventors is obtained from the viscoelasticity ratio r specified by the above equation (1) and the phase time delay φ described above. Based on this, the intramuscular fat mass R is determined.
Figure 2017221543
In addition, according to the research results of the present inventors, when targeting a heterogeneous tissue in which a fatty tissue is mixed in a fiber tissue, as described above, the output sine wave related to the displacement amount is the input sine wave related to the pushing force. On the other hand, the frequency becomes the same, and only the phase shifts in accordance with the state (amount) of the adipose tissue, and even if the frequency ω is changed as shown in the upper line segment in FIG. Therefore, the intramuscular fat amount R can be obtained by the above equation (2) that does not depend on the frequency ω. According to the above equation (2), in the case of a single material fiber tissue (liver or the like) having no fat tissue, the intramuscular fat amount R is zero, and the phase time delay φ only by the viscoelastic ratio r Will be decided. In other words, the phase time delay φ changes with changes in the intramuscular fat mass R.

前記情報提示装置14では、例えば、組織内脂肪測定装置13で求めた粘弾性比率r、組織の硬さを表す指標値G、筋肉内脂肪量Rをそのまま数値として、或いは、グラフ等の図表化した画像として、図示しないモニタを通じてユーザに直接提示する構成を挙げることができる。   In the information presentation device 14, for example, the viscoelasticity ratio r obtained by the tissue fat measurement device 13, the index value G indicating the hardness of the tissue, and the intramuscular fat mass R are used as they are as numerical values, or are graphed. A configuration in which the image is directly presented to the user through a monitor (not shown) can be given.

なお、当該情報提示装置14としては、特に限定されるものではなく、当該情報を画像で表示可能な各種の表示装置、前記情報を音声や刺激等で提示可能なスピーカーや刺激提示装置等、種々の装置を採用することができる。   The information presentation device 14 is not particularly limited, and may be various display devices that can display the information as an image, speakers or stimulus presentation devices that can present the information by voice or stimulation, and the like. Can be adopted.

次に、前記組織内脂肪検出システム10において、筋肉内脂肪量Rを求める操作手順及び処理手順を説明する。   Next, an operation procedure and a processing procedure for obtaining the intramuscular fat amount R in the tissue fat detection system 10 will be described.

先ず、筋肉内脂肪量Rを測定したい検出対象部位Sに圧子19を少し押し込んだ状態でセットし、ユーザが指定したある周波数や最大押込力(振幅f)により、当該初期セット位置に対して周期的に外力を加えたり緩めたりする。つまり、押込力の経時変化の状態が、初期セット位置に対し、検出対象部位Sを押込む方向と離れる方向に周期的に正弦波状に変化するように圧子19が動作する。そして、データ取得手段17では、圧子19によって押圧された検出対象部位Sの変形量が所定時間毎に測定され、変形量の時系列データが取得される。このとき、当該変形量の時系列データが、押込力とほぼ同一の周波数の正弦波状となっている場合には、以降の処理が継続して行われ、そうでない場合は、押込力に関する他の周波数と振幅をユーザが再度設定し、検出対象部位Sの変形量が正弦波状となる時系列データが得られるまで行う。このように正弦波状の変形量の時系列データが得られる状態で、押込力の周波数を変化させ、各周波数それぞれについて、変形量の時系列データが取得される。 First, the indenter 19 is set in a state where the indenter 19 is slightly pushed into the detection target site S where the intramuscular fat mass R is to be measured, and the initial set position is set according to a certain frequency or maximum pushing force (amplitude f 0 ) designated by the user. Apply external force or loosen periodically. In other words, the indenter 19 operates so that the state of change of the pushing force with time changes periodically in a sine wave shape in a direction away from the direction in which the detection target portion S is pushed with respect to the initial set position. Then, the data acquisition means 17 measures the deformation amount of the detection target portion S pressed by the indenter 19 every predetermined time, and acquires time-series data of the deformation amount. At this time, if the time-series data of the deformation amount is a sine wave having the same frequency as the indentation force, the subsequent processing is continued, and if not, the other process related to the indentation force is performed. This is performed until the user sets the frequency and the amplitude again and obtains time-series data in which the deformation amount of the detection target portion S is sinusoidal. In such a state where time series data of sinusoidal deformation amount is obtained, the frequency of the pushing force is changed, and the time series data of the deformation amount is acquired for each frequency.

次に、前述したように、ゲイン算出手段24において、複数回行った周波数パターン毎に、それぞれ得られた変形量の時系列データからゲインAが周波数毎に求められた後、周波数応答導出手段25において、ゲインAと周波数ωの関係式が求められ、粘弾性比率rが特定される。最後に、組織内脂肪算出手段26において、粘弾性比率rと、押込力の時系列データである入力正弦波に対する変形量の時系列データである出力正弦波の位相の時間遅れφとから、筋肉内脂肪量Rが求められる。   Next, as described above, after the gain calculation unit 24 obtains the gain A for each frequency from the time series data of the deformation amount obtained for each frequency pattern performed a plurality of times, the frequency response deriving unit 25 , The relational expression between the gain A and the frequency ω is obtained, and the viscoelastic ratio r is specified. Finally, in the tissue fat calculation means 26, the muscle is calculated from the viscoelastic ratio r and the time delay φ of the phase of the output sine wave that is the time series data of the deformation amount with respect to the input sine wave that is the time series data of the indentation force. The amount of internal fat R is determined.

以上のように求めた筋肉内脂肪量Rは、繊維組織と脂肪組織が存在する非均質な生体軟組織において、脂肪組織が繊維組織に入り込んでいる量を表し、脂肪量の空間的な構造を定量的に表すパラメータとして活用できる。   The intramuscular fat amount R obtained as described above represents the amount of fat tissue entering the fiber tissue in the non-homogeneous living soft tissue where the fiber tissue and the fat tissue exist, and quantifies the spatial structure of the fat amount. It can be used as a parameter to express automatically.

なお、前記押圧変形測定装置12としては、前述の構造に限定されるものではなく、前述と同様の作用を奏する限りにおいて、種々の構造のセンサや計測機器の代替適用、若しくは併用が可能である。   The pressure deformation measuring device 12 is not limited to the above-described structure, and can be applied to or used in combination with sensors and measuring instruments having various structures as long as the same action as described above is achieved. .

その他、本発明における装置各部の構成は図示構成例に限定されるものではなく、実質的に同様の作用を奏する限りにおいて、種々の変更が可能である。   In addition, the configuration of each part of the apparatus in the present invention is not limited to the illustrated configuration example, and various modifications are possible as long as substantially the same operation is achieved.

10 組織内脂肪検出システム
12 押圧変形測定装置
13 組織内脂肪測定装置
16 押込手段
17 データ取得手段
24 ゲイン算出手段
25 周波数応答導出手段
26 組織内脂肪算出手段
DESCRIPTION OF SYMBOLS 10 Tissue fat detection system 12 Press deformation measuring device 13 Tissue fat measuring device 16 Pushing means 17 Data acquisition means 24 Gain calculating means 25 Frequency response deriving means 26 Tissue fat calculating means

Claims (5)

脂肪成分が混在する生体軟組織を所定の力で押し込み、その際の押込力の大きさと押し込まれた前記生体軟組織の部位の変形量とを測定する押圧変形測定装置と、当該押圧変形測定装置での測定結果に基づき、前記脂肪成分の量に対応する組織内脂肪量を求める組織内脂肪測定装置と備え、
前記押圧変形測定装置は、前記押込力が正弦波状に周期的に経時変化するように、前記生体軟組織を複数の周波数パターンで押し込む押込手段と、前記押込力に対応して正弦波として表れる前記変形量の時系列データを前記周波数パターン毎に取得するデータ取得手段とを備え、
前記組織内脂肪測定装置では、前記周波数パターン毎の前記変形量の時系列データによる周波数応答に基づいて、前記組織内脂肪量を求めることを特徴とする組織内脂肪検出システム。
A pressing deformation measuring device for pressing a living soft tissue mixed with a fat component with a predetermined force, and measuring the amount of pressing force at that time and the amount of deformation of the pressed soft living tissue; and the pressing deformation measuring device. With a tissue fat measurement device that calculates the amount of fat in the tissue corresponding to the amount of the fat component based on the measurement result,
The pressing deformation measuring device includes a pressing unit that presses the living soft tissue in a plurality of frequency patterns so that the pressing force periodically changes in a sine wave shape, and the deformation that appears as a sine wave corresponding to the pressing force. Data acquisition means for acquiring time-series data of an amount for each frequency pattern,
In the tissue fat measurement device, the tissue fat amount is obtained based on a frequency response based on time-series data of the deformation amount for each frequency pattern.
前記組織内脂肪測定装置は、前記押込力の振幅に対する前記変形量の振幅の割合を表すゲインを求めるゲイン算出手段と、相互に同一となる前記押込力と前記変形量の周波数に対する前記ゲインの関係式を求める周波数応答導出手段と、当該周波数応答導出手段で求めた関係式に基づき、前記組織内脂肪量を求める組織内脂肪算出手段とを備えたことを特徴とする請求項1記載の組織内脂肪検出システム。   The tissue fat measurement device includes a gain calculation unit that obtains a gain that represents a ratio of an amplitude of the deformation amount to an amplitude of the indentation force, and the relationship between the indentation force and the gain with respect to the frequency of the deformation amount that are mutually the same. The tissue response according to claim 1, further comprising: frequency response deriving means for obtaining an expression; and tissue fat calculating means for obtaining the tissue fat mass based on a relational expression obtained by the frequency response deriving means. Fat detection system. 前記周波数応答導出手段では、前記関係式から、前記周波数の変化に対する前記ゲインの変化割合を表す粘弾性比率が特定され、
前記組織内脂肪算出手段では、前記粘弾性比率と、前記押込力に対する変形量の位相の時間遅れとにより、予め記憶された数式により前記組織内脂肪量が求められることを特徴とする請求項2記載の組織内脂肪検出システム。
In the frequency response deriving means, a viscoelastic ratio representing a change ratio of the gain with respect to a change in the frequency is specified from the relational expression,
3. The intra-tissue fat calculating means obtains the intra-tissue fat amount from a mathematical formula stored in advance based on the viscoelastic ratio and a time delay of the phase of the deformation amount with respect to the indentation force. The tissue fat detection system as described.
複数の周波数パターン毎に正弦波状に周期的に経時変化する押込力で、脂肪成分が混在する生体軟組織を押し込んだときに、前記各周波数パターンで得られる正弦波状の前記生体軟組織の変形量の時系列データに基づき、前記脂肪成分の量に対応する組織内脂肪量を求める組織内脂肪測定装置において、
前記押込力の振幅に対する前記変形量の振幅の割合を表すゲインを求めるゲイン算出手段と、相互に同一となる前記押込力と前記変形量の周波数に対する前記ゲインの関係式を求める周波数応答導出手段と、当該周波数応答導出手段で求めた関係式に基づき、前記組織内脂肪量を求める組織内脂肪算出手段とを備えたことを特徴とする組織内脂肪測定装置。
When the living soft tissue mixed with a fat component is pushed in with a pushing force that periodically changes with time in a sinusoidal manner for each of a plurality of frequency patterns, the amount of deformation of the living soft tissue in the sinusoidal shape obtained with each frequency pattern In the tissue fat measurement device for obtaining the amount of fat in the tissue corresponding to the amount of the fat component based on the series data,
Gain calculating means for obtaining a gain representing a ratio of the amplitude of the deformation amount to the amplitude of the pushing force; and a frequency response deriving means for obtaining a relational expression of the gain with respect to the frequency of the pushing force and the deformation amount which are mutually the same. A tissue fat measurement device comprising: tissue fat calculation means for obtaining the tissue fat mass based on the relational expression obtained by the frequency response deriving means.
複数の周波数パターン毎に正弦波状に周期的に経時変化する押込力で、脂肪成分が混在する生体軟組織を押し込んだときに、前記各周波数パターンで得られる正弦波状の前記生体軟組織の変形量の時系列データに基づき、前記脂肪成分の量に対応する組織肉内脂肪量を求める組織内脂肪測定装置を機能させるコンピュータのプログラムにおいて、
前記押込力の振幅に対する前記変形量の振幅の割合を表すゲインを求めるゲイン算出手段と、相互に同一となる前記押込力と前記変形量の周波数に対する前記ゲインの関係式を求める周波数応答導出手段と、当該周波数応答導出手段で求めた関係式に基づき、前記組織内脂肪量を求める組織内脂肪算出手段として、前記コンピュータを機能させることを特徴とする組織内脂肪測定装置のプログラム。
When the living soft tissue mixed with a fat component is pushed in with a pushing force that periodically changes with time in a sinusoidal manner for each of a plurality of frequency patterns, the amount of deformation of the living soft tissue in the sinusoidal shape obtained with each frequency pattern Based on the series data, in a computer program for causing the tissue fat measuring device to calculate the amount of fat in the tissue corresponding to the amount of the fat component,
Gain calculating means for obtaining a gain representing a ratio of the amplitude of the deformation amount to the amplitude of the pushing force; and a frequency response deriving means for obtaining a relational expression of the gain with respect to the frequency of the pushing force and the deformation amount which are mutually the same. A program for a tissue fat measurement device, which causes the computer to function as tissue fat calculation means for obtaining the tissue fat mass based on the relational expression obtained by the frequency response deriving means.
JP2016120395A 2016-06-17 2016-06-17 Tissue fat detection system, tissue fat measurement device, and program Active JP6675569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016120395A JP6675569B2 (en) 2016-06-17 2016-06-17 Tissue fat detection system, tissue fat measurement device, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016120395A JP6675569B2 (en) 2016-06-17 2016-06-17 Tissue fat detection system, tissue fat measurement device, and program

Publications (2)

Publication Number Publication Date
JP2017221543A true JP2017221543A (en) 2017-12-21
JP6675569B2 JP6675569B2 (en) 2020-04-01

Family

ID=60687277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016120395A Active JP6675569B2 (en) 2016-06-17 2016-06-17 Tissue fat detection system, tissue fat measurement device, and program

Country Status (1)

Country Link
JP (1) JP6675569B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024606A (en) * 2005-07-13 2007-02-01 Shiseido Co Ltd Measuring method and instrument for viscoelastic characteristics
JP2007159798A (en) * 2005-12-14 2007-06-28 Hiroshima Univ Method and apparatus for measuring skin age
CN201150536Y (en) * 2007-10-12 2008-11-19 上海力申科学仪器有限公司 Human fat measuring device for presenting the upper and lower limit value of standard body weight range
JP2009240374A (en) * 2008-03-28 2009-10-22 Osaka Univ Dermal characteristic measuring device and dermal characteristic measuring program
JP2010104525A (en) * 2008-10-29 2010-05-13 Panasonic Electric Works Co Ltd Muscle hardness meter
US20140276232A1 (en) * 2013-03-15 2014-09-18 Gregory L. Ruff Skin tensiometer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024606A (en) * 2005-07-13 2007-02-01 Shiseido Co Ltd Measuring method and instrument for viscoelastic characteristics
JP2007159798A (en) * 2005-12-14 2007-06-28 Hiroshima Univ Method and apparatus for measuring skin age
CN201150536Y (en) * 2007-10-12 2008-11-19 上海力申科学仪器有限公司 Human fat measuring device for presenting the upper and lower limit value of standard body weight range
JP2009240374A (en) * 2008-03-28 2009-10-22 Osaka Univ Dermal characteristic measuring device and dermal characteristic measuring program
JP2010104525A (en) * 2008-10-29 2010-05-13 Panasonic Electric Works Co Ltd Muscle hardness meter
US20140276232A1 (en) * 2013-03-15 2014-09-18 Gregory L. Ruff Skin tensiometer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吉川純生: "皮膚の力学的挙動と計測法", 計測と制御, vol. 第14巻、第3号, JPN7020000246, 1975, JP, pages 8 - 16, ISSN: 0004203007 *

Also Published As

Publication number Publication date
JP6675569B2 (en) 2020-04-01

Similar Documents

Publication Publication Date Title
Martin et al. Gauging force by tapping tendons
Brandenburg et al. Ultrasound elastography: the new frontier in direct measurement of muscle stiffness
Zhai et al. An integrated indenter-ARFI imaging system for tissue stiffness quantification
Zhang et al. A tactile sensor for measuring hardness of soft tissue with applications to minimally invasive surgery
US20180000348A1 (en) Method and apparatus for medical diagnosis based on the tissue stiffness
JP6361001B1 (en) Ultrasound image construction method, ultrasound image construction device, ultrasound image construction program, skin evaluation method for cosmetic purposes
Lu et al. A hand-held indentation system for the assessment of mechanical properties of soft tissues in vivo
Oflaz et al. A new medical device to measure a stiffness of soft materials
Mojra et al. A novel robotic tactile mass detector with application in clinical breast examination
Reigstad et al. The PRWHE form in Norwegian–assessment of hand and wrist afflictions
Evans et al. Controlled manual loading of body tissues: towards the next generation of pressure algometer
Zhang et al. A multi-purpose tactile sensor inspired by human finger for texture and tissue stiffness detection
Grinspan et al. Surface wave elastography is a reliable method to correlate muscle elasticity, torque, and electromyography activity level
Coutts et al. Multi‐directional in vivo tensile skin stiffness measurement for the design of a reproducible tensile strain elastography protocol
Brown et al. Breast durometer (mammometer): a novel device for measuring soft-tissue firmness and its application in cosmetic breast surgery
JP6675569B2 (en) Tissue fat detection system, tissue fat measurement device, and program
Dosaev et al. Application of video-assisted tactile sensor and finite element simulation for estimating Young’s modulus of porcine liver
Dargahi et al. Sensitivity analysis of a novel tactile probe for measurement of tissue softness with applications in biomedical robotics
Hernandez-Ossa et al. Haptic feedback for remote clinical palpation examination
JP6656706B2 (en) Physical property value detection system for rheological properties of living soft tissue, physical property value calculation device, and program therefor
US20220183617A1 (en) Method and device for measuring or determining at least one biomechanical parameter of soft biological tissues
Zabihollahy et al. Continuous monitoring of mechanical properties of plantar soft tissue for diabetic patients using wearable ultrasonic and force sensors
Sadeghi et al. Change in shear modulus of healthy lower leg muscles after treadmill running: Toward a noninvasive diagnosis of chronic exertional compartment syndrome
Annaswamy et al. Measurement of plantarflexor spasticity in traumatic brain injury: Correlational study of resistance torque compared with the modified Ashworth scale
Kopecká et al. Objective Methods of Muscle Tone Diagnosis and Their Application—A Critical Review

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180830

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200218

R150 Certificate of patent or registration of utility model

Ref document number: 6675569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250