JP6656706B2 - Physical property value detection system for rheological properties of living soft tissue, physical property value calculation device, and program therefor - Google Patents

Physical property value detection system for rheological properties of living soft tissue, physical property value calculation device, and program therefor Download PDF

Info

Publication number
JP6656706B2
JP6656706B2 JP2015101195A JP2015101195A JP6656706B2 JP 6656706 B2 JP6656706 B2 JP 6656706B2 JP 2015101195 A JP2015101195 A JP 2015101195A JP 2015101195 A JP2015101195 A JP 2015101195A JP 6656706 B2 JP6656706 B2 JP 6656706B2
Authority
JP
Japan
Prior art keywords
physical property
soft tissue
deformation
property value
living soft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015101195A
Other languages
Japanese (ja)
Other versions
JP2016214455A (en
Inventor
正克 藤江
正克 藤江
洋 小林
洋 小林
まり子 築根
まり子 築根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP2015101195A priority Critical patent/JP6656706B2/en
Publication of JP2016214455A publication Critical patent/JP2016214455A/en
Application granted granted Critical
Publication of JP6656706B2 publication Critical patent/JP6656706B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、生体軟組織のレオロジー特性の物性値検出システム、物性値演算装置及びそのプログラムに係り、更に詳しくは、複雑な力学的特性を考慮した生体軟組織の硬さに関する特徴量を求める生体軟組織のレオロジー特性の物性値検出システム、物性値演算装置及びそのプログラムに関する。   The present invention relates to a physical property value detection system of a biological soft tissue rheological property, a physical property value calculation device and a program therefor, and more particularly, to a biological soft tissue characteristic quantity for obtaining a feature quantity relating to the hardness of a biological soft tissue in consideration of a complex mechanical property. The present invention relates to a physical property value detection system for rheological properties, a physical property value calculation device, and a program therefor.

軟組織で構成される生体材料について、硬さ(柔らかさ)に関する情報であるレオロジー特性を把握することは、医療、福祉、食品等の様々な分野で非常に重要となる。ところが、このような生体軟組織は、複雑なレオロジー特性を有することが知られており、ある一定の力で押圧したときの反力の大きさと、そのときの変形量のデータからでは、正確なレオロジー特性を表す物性値を同定することができず、レオロジー特性を正確かつ定量的に表現するのは困難である。すなわち、生体軟組織は、時間の経過に伴って粘弾性が変化する特性があり、一定の力で押圧しても経時的に変形量が変化する。また、生体軟組織は、その押込力や押込量がある大きさを越えると硬さが変化する特性がある。従って、生体軟組織において、例えば、単一の押し込み状態で単一の変形量を計測し、単一のヤング率等を求めただけでは、レオロジー特性を表す物性値として不十分である。   It is very important in various fields such as medical care, welfare, and food to grasp rheological characteristics, which are information on hardness (softness), of a biomaterial composed of soft tissue. However, such living soft tissue is known to have complex rheological properties.According to the magnitude of the reaction force when pressed with a certain force and the amount of deformation at that time, accurate rheological data can be obtained. It is difficult to identify the physical property values representing the properties, and it is difficult to accurately and quantitatively express the rheological properties. That is, the living soft tissue has a characteristic that the viscoelasticity changes with the passage of time, and the amount of deformation changes with time even when pressed with a constant force. Further, the soft tissue has a characteristic that the hardness changes when the pushing force or the pushing amount exceeds a certain size. Therefore, in a living soft tissue, for example, simply measuring a single deformation amount in a single pressed state and obtaining a single Young's modulus or the like is not sufficient as a physical property value representing a rheological characteristic.

このように、従来、生体軟組織のレオロジー特性を的確に表すパラメータ(物性値)が無いことから、医療行為において、生体組織の硬さに基づく患者の病変等の状況に関する診断は、有用な装置が出回っておらず、医師の手で患部を触り、そのときの力の大きさと変形の程度を医師の触覚により確認する触診が最も基本的である。   As described above, conventionally, since there is no parameter (physical property value) that accurately represents the rheological characteristics of living soft tissue, in medical practice, a useful device for diagnosing conditions such as a lesion of a patient based on the hardness of living tissue is a useful device. Palpation, in which the affected part is touched by a doctor's hand without being circulated and the magnitude and degree of deformation at that time are confirmed by the doctor's tactile sense, is the most basic.

ところで、生体組織の硬さを定量的に評価するための装置として、例えば、特許文献1に示されるように、生体組織に接触させて当該生体組織の硬さを表すヤング率を計測する生体硬さ計測装置が知られている。   By the way, as an apparatus for quantitatively evaluating the hardness of a living tissue, for example, as shown in Patent Document 1, a living body tissue that comes into contact with a living tissue and measures the Young's modulus representing the hardness of the living tissue is measured. Measurement devices are known.

特開2009−273777号公報JP 2009-273777 A

しかしながら、前記特許文献1の生体硬さ計測装置にあっては、所定の押込力による変形量を単一に計測し、単一のヤング率を求めるに過ぎず、この計測結果は、前述した通り、生体軟組織の複雑なレオロジー特性を考慮した物性値として不十分である。すなわち、前記生体硬さ計測装置は、経時的に変化する生体軟組織の粘弾性についての指標値を求めるものではなく、また、生体軟組織への押込力を変化させたときの当該生体軟組織の硬さの変化についての指標値を求めるものでもない。従って、例えば、対比する二つの生体軟組織間において、ヤング率が同一であったとしても、良性、悪性等、組織の状態に応じてレオロジー特性が異なる場合もあり、前記生体硬さ計測装置の計測結果のみでは、組織の状態の特定を自動的に行うことは難しい。   However, in the living body hardness measuring device of Patent Document 1, the amount of deformation due to a predetermined pressing force is measured singly, and only a single Young's modulus is obtained. However, the physical property values in consideration of the complex rheological properties of living soft tissues are insufficient. That is, the living body hardness measuring device does not calculate an index value for the viscoelasticity of the living body soft tissue that changes with time, and the hardness of the living body soft tissue when the pushing force on the living body soft tissue is changed. It does not calculate an index value for the change in. Therefore, for example, between the two living soft tissues to be compared, even if the Young's modulus is the same, benign, malignant, etc., the rheological characteristics may be different depending on the state of the tissue, and the measurement of the living body hardness measuring device It is difficult to automatically determine the state of the organization based on the results alone.

本発明は、このような課題を解決するために案出されたものであり、その目的は、生体軟組織に対してレオロジー特性を的確に表す特徴値を求めることができる生体軟組織のレオロジー特性の物性値検出システム、物性値演算装置及びそのプログラムを提供することにある。   The present invention has been devised in order to solve such a problem, and has as its object the physical properties of the rheological properties of a biological soft tissue that can accurately determine a characteristic value for the biological soft tissue. It is an object of the present invention to provide a value detection system, a physical property value calculation device, and a program therefor.

前記目的を達成するため、本発明は、主として、生体軟組織のレオロジー特性を表す物性値を検出するレオロジー特性の物性値検出システムであって、前記生体軟組織を所定の力で押し込み、その際の押込力の大きさと押し込まれた前記生体軟組織の部位の変形量とを測定する押込み測定装置と、当該押込み測定装置での測定結果に基づき演算によって前記物性値を求める物性値演算装置と備え、前記押込み測定装置は、押し込み状態の異なる複数パターンで前記生体軟組織を押し込み可能に設けられ、前記物性値演算装置では、前記各押し込み状態で測定されたそれぞれの前記変形量に基づき、前記物性値を求める、という構成を採っている。   In order to achieve the above object, the present invention is mainly a physical property value detection system of a rheological property for detecting a physical property value representing a rheological property of a living soft tissue, wherein the living soft tissue is pushed in with a predetermined force, An indentation measuring device for measuring the magnitude of the force and the amount of deformation of the portion of the pressed biological soft tissue, and a physical property value calculating device for calculating the physical property value based on a measurement result of the indentation measuring device, The measuring device is provided so as to be able to push the living soft tissue in a plurality of different patterns of the pressed state, and the physical property value calculating device obtains the physical property values based on the respective deformation amounts measured in the pressed states. The configuration is adopted.

本発明によれば、生体軟組織について単一のヤング率を求める従来の硬さ計測手法とは異なり、生体軟組織の複雑なレオロジー特性に対応した従来に無い新たなパラメータによる物性値を求めることができる。この物性値は、単一のヤング率では判別し難い生体軟組織の状態を自動的に特定するための指標値として利用可能となる。   According to the present invention, unlike a conventional hardness measurement method for obtaining a single Young's modulus for a living soft tissue, it is possible to obtain a physical property value by a new parameter that is not conventionally available corresponding to a complex rheological property of a living soft tissue. . This physical property value can be used as an index value for automatically specifying the state of the living soft tissue that is difficult to determine with a single Young's modulus.

本実施形態に係る生体軟組織のレオロジー特性の物性値検出システムの構成図。FIG. 1 is a configuration diagram of a system for detecting physical property values of rheological properties of a living soft tissue according to the present embodiment.

以下、本発明の実施形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本実施形態に係る生体軟組織のレオロジー特性の物性値検出システムの構成図である。この物性値検出システム10は、生体軟組織の硬さの情報であるレオロジー特性を表す物性値(パラメータ)を検出可能になっている。検出された物性値は、例えば、乳がんや肝がん等の触診を自動化する装置(図示省略)や、整体等を行った筋肉部位のほぐれ具合等を自動評価するための装置(図示省略)等におけるデータとして利用可能となる。   FIG. 1 is a configuration diagram of a system for detecting physical property values of rheological properties of a living soft tissue according to the present embodiment. This physical property value detection system 10 can detect physical property values (parameters) representing rheological properties, which are information on the hardness of a living soft tissue. The detected physical property values are, for example, a device (not shown) that automates palpation of breast cancer, liver cancer, and the like, and a device (not shown) that automatically evaluates, for example, the degree of loosening of a muscular part that has undergone manipulative treatment and the like. It can be used as data in.

この物性値検出システム10は、物性値の検出対象となる生体軟組織を所定の力で押し込み、その際の押込力の大きさと押し込まれた前記生体軟組織の部位の変形量とを測定する押込み測定装置12と、押込み測定装置12の測定結果に基づき演算によって物性値を求める物性値演算装置13と、物性値演算装置13で求められた物性値や当該物性値に基づく情報等を提示する情報提示装置14とを備えている。   This physical property value detection system 10 is a push measuring device that pushes a living soft tissue to be detected as a physical property value with a predetermined force, and measures the magnitude of the pushing force at that time and the deformation amount of the pushed-in portion of the living soft tissue. 12, a physical property value calculating device 13 for calculating a physical property value by calculation based on the measurement result of the indentation measuring device 12, and an information presenting device for presenting the physical property value obtained by the physical property calculating device 13, information based on the physical property value, and the like. 14 is provided.

前記押込み測定装置12は、物性値の検出対象となる生体軟組織の部位である検出対象部位Sに接触して押し込まれる圧子16と、検出対象部位Sに圧子16を押し込むための動力となるモータ等で構成されたアクチュエータ17と、アクチュエータ17の駆動を制御する制御手段18と、検出対象部位Sからの反力に基づいて、検出対象部位Sへの圧子16の押込力を一定時間毎に測定する力センサ19と、圧子16による押し込み時における検出対象部位Sの変形量を求める変形量測定手段20とを備えて構成されている。   The indentation measurement device 12 includes an indenter 16 that is pushed into contact with a detection target portion S that is a portion of a biological soft tissue whose physical property value is to be detected, a motor that serves as power for pushing the indenter 16 into the detection target portion S, and the like. The pressing force of the indenter 16 to the detection target portion S is measured at regular intervals based on the reaction force from the detection target portion S based on the actuator 17 composed of The apparatus is provided with a force sensor 19 and a deformation amount measuring means 20 for obtaining the deformation amount of the detection target portion S when pressed by the indenter 16.

前記制御手段18では、押し込み状態の異なる複数パターンで生体軟組織を押し込み可能にアクチュエータ17の駆動制御を行う。すなわち、制御手段18では、圧子16による検出対象部位Sの押込力を一定の大きさで所定時間行う第1のモードと、時間の経過に伴って前記押込力を段階的に増大させ、各押込力において前記第1のモードの動作を行う第2のモードとにより、アクチュエータ17を駆動制御するようになっている。   The control means 18 controls the drive of the actuator 17 so that the living soft tissue can be pushed in a plurality of patterns having different pushing states. That is, the control means 18 performs the first mode in which the pressing force of the indenter 16 on the detection target site S with a constant magnitude for a predetermined period of time, and the pressing force is increased stepwise with the lapse of time. The actuator 17 is driven and controlled by the second mode in which the operation in the first mode is performed by force.

前記変形量測定手段20では、アクチュエータ17の駆動量に基づく圧子16の移動量を検出することにより、圧子16によって押圧された検出対象部位Sの変位量である変形量を求めるようになっている。   The deformation amount measuring means 20 obtains a deformation amount which is a displacement amount of the detection target portion S pressed by the indenter 16 by detecting a movement amount of the indenter 16 based on a driving amount of the actuator 17. .

前記物性値演算装置13は、CPU等の演算処理装置及びメモリやハードディスク等の記憶装置等からなるコンピュータによって構成され、当該コンピュータを以下の各手段として機能させるためのプログラムがインストールされている。   The physical property value calculation device 13 is configured by a computer including a calculation processing device such as a CPU and a storage device such as a memory and a hard disk, and a program for causing the computer to function as each unit described below is installed.

この物性値演算装置13は、押込力を一定にしたときの経時的な検出対象部位Sの変形量の変化から、粘弾性に関する特徴値である粘弾性比率を物性値として求める粘弾性比率算出手段22と、押込力を変化させたときの当該押込力に対する検出対象部位Sの変形量の関係から、生体軟組織の弾性率に関する物性値を求める弾性率算出手段23とを備えている。   The physical property value calculating device 13 calculates a viscoelastic ratio calculation unit that obtains a viscoelastic ratio, which is a characteristic value related to viscoelasticity, as a physical property value from a change in the deformation amount of the detection target portion S over time when the pressing force is fixed. 22 and elastic modulus calculating means 23 for obtaining a physical property value relating to the elastic modulus of the living soft tissue from the relationship between the pushing force and the amount of deformation of the detection target site S with respect to the pushing force.

前記粘弾性比率算出手段22では、前記第1のモードで制御されたアクチュエータ17の駆動により、次のようにして、粘弾性比率rが求められる。すなわち、所定時間(例えば、10数秒間)、アクチュエータ17の駆動により一定の力で圧子16を検出対象部位Sに押し当て、その際の検出対象部位Sの変形量xを一定時間毎に変形量測定手段20から取得し、複数時間で取得した複数の変形量xから、経時的な検出対象部位Sの変形に関する時系列データを構築する。そして、当該時系列データにつき、時間tと変形量xを対数変換した値を直線近似し、その傾きを粘弾性比率rとする。この粘弾性比率rは、生体軟組織の弾性要素と粘性要素の比率を数値化した指標値であり、0から1までの値を採る。ここで、粘弾性比率rが、0の場合に完全弾性体となる一方、1の場合に完全粘性体(流動体)となる。また、前記直線近似の関係において、当該直線近似の切片となる変形量xを変形代表値xcとする。この、変形代表値xcは、後述する弾性率算出手段23での演算処理の際に用いられ、圧子16を検出対象部位Sに押し当ててから1秒後における変形量xに該当する。   In the viscoelastic ratio calculating means 22, the viscoelastic ratio r is obtained as follows by driving the actuator 17 controlled in the first mode. That is, the indenter 16 is pressed against the detection target portion S with a constant force by driving the actuator 17 for a predetermined time (for example, ten and several seconds), and the deformation amount x of the detection target portion S at that time is changed at regular intervals. Based on a plurality of deformation amounts x obtained over a plurality of hours and obtained from the measuring means 20, time-series data on the deformation of the detection target site S over time is constructed. Then, for the time-series data, a value obtained by logarithmically converting the time t and the deformation amount x is linearly approximated, and the slope thereof is set as a viscoelastic ratio r. The viscoelastic ratio r is an index value obtained by quantifying the ratio between the elastic element and the viscous element of the living soft tissue, and takes a value from 0 to 1. Here, when the viscoelasticity ratio r is 0, it becomes a completely elastic body, and when it is 1, it becomes a completely viscous body (fluid). Further, in the relationship of the linear approximation, a deformation amount x which is an intercept of the linear approximation is defined as a deformation representative value xc. This deformation representative value xc is used in the arithmetic processing by the elastic modulus calculating means 23 described later, and corresponds to the deformation amount x one second after the indenter 16 is pressed against the detection target site S.

すなわち、圧子16を検出対象部位Sに押し当ててからの時間t、各時間tにおける変形量x、変形代表値xc、粘弾性比率rとの間には次式(1)の関係が成り立つ。   That is, the following equation (1) holds between the time t after the indenter 16 is pressed against the detection target site S, the deformation amount x, the deformation representative value xc, and the viscoelastic ratio r at each time t.

Figure 0006656706
Figure 0006656706

前記弾性率算出手段23では、前記第2のモードで制御されたアクチュエータ17の駆動により、次のようにして、2種類の弾性率である線形弾性率G及び非線形弾性率Gnが求められる。先ず、アクチュエータ17の駆動により、ある大きさの押込力fcで圧子16を検出対象部位Sに所定時間押し込み、前記粘弾性比率算出手段22での処理と同様に、前記時系列データにつき時間tと変形量xを対数変換した値を直線近似し、変形代表値xcを求める。そして、同様に、検出対象部位Sへの圧子16の押込力fcを増大させながら、複数の各押込力fcそれぞれについて変形代表値xcを取得し、様々な押込力fcにおける変形代表値xcが押込力fcに対応して記録される。本発明者らの研究によれば、変形代表値xcが所定の境界値xn未満となる小さい領域では、変形代表値xcと押込力fcとの関係が線形的になることから、このときの変形代表値xcと押込力fcとの関係を表す直線を導出した上で、当該の傾きが、線形弾性率Gとして決定される。なお、境界値xn未満の変形代表値xcの範囲を線形領域と称する。ここで求めた線形弾性率Gは、押込力fcの増加に基づく生体軟組織のひずみの増加率を表し、当該増加率は、線形領域の特性から、同一の生体軟組織の状態で一定値を採る。   The elastic modulus calculating means 23 obtains two types of elastic moduli, a linear elastic modulus G and a non-linear elastic modulus Gn, by driving the actuator 17 controlled in the second mode as follows. First, by driving the actuator 17, the indenter 16 is pressed into the detection target site S with a certain pressing force fc for a predetermined time, and the time t for the time-series data is reduced in the same manner as in the processing in the viscoelastic ratio calculating means 22. A value obtained by logarithmically converting the deformation amount x is linearly approximated, and a deformation representative value xc is obtained. Similarly, the deformation representative value xc is acquired for each of the plurality of pressing forces fc while increasing the pressing force fc of the indenter 16 to the detection target site S, and the deformation representative value xc at various pressing forces fc is reduced. It is recorded corresponding to the force fc. According to the study of the present inventors, in a small region where the deformation representative value xc is less than the predetermined boundary value xn, the relationship between the deformation representative value xc and the pushing force fc becomes linear, and thus the deformation at this time is reduced. After deriving a straight line representing the relationship between the representative value xc and the pushing force fc, the slope is determined as the linear elastic modulus G. Note that a range of the deformation representative value xc smaller than the boundary value xn is referred to as a linear region. The linear elastic modulus G obtained here represents an increase rate of the strain of the living soft tissue based on the increase of the pushing force fc, and the increase rate takes a constant value in the same living soft tissue state from the characteristic of the linear region.

すなわち、変形代表値xcが境界値xn未満のときには、線形弾性率G、押込力fc、変形代表値xcとの間には次式(2)の関係が成り立つ。   That is, when the deformation representative value xc is less than the boundary value xn, the following equation (2) is established among the linear elastic modulus G, the pushing force fc, and the deformation representative value xc.

Figure 0006656706
Figure 0006656706

更に、変形代表値xcが境界値xnを越えたときには、次のように非線形弾性率Gnが求められる。すなわち、本発明者らの研究によれば、変形代表値xcが前記境界値xnよりも大きい領域では、変形代表値xcと押込力fcとの関係が指数関数的に増加することから、当該指数関数を導出して対数変換することで、変形代表値xcと押込力fcとの間の関係が直線関係になり、当該直線の傾きが非線形弾性率Gnとして決定される。なお、境界値xnを越える変形代表値xcの範囲を非線形領域と称する。ここで求めた非線形弾性率Gnは、非線形領域における、押込力fcの増加に基づく生体軟組織のひずみの増加率の変化率を表す。   Further, when the deformation representative value xc exceeds the boundary value xn, the nonlinear elastic modulus Gn is obtained as follows. That is, according to the study of the present inventors, in a region where the deformation representative value xc is larger than the boundary value xn, the relationship between the deformation representative value xc and the pushing force fc increases exponentially. By deriving the function and performing logarithmic transformation, the relationship between the deformation representative value xc and the pushing force fc becomes a linear relationship, and the slope of the straight line is determined as the nonlinear elastic modulus Gn. Note that a range of the deformation representative value xc exceeding the boundary value xn is referred to as a non-linear area. The nonlinear elastic modulus Gn obtained here represents the rate of change of the rate of increase in the strain of the living soft tissue based on the increase in the pushing force fc in the nonlinear region.

すなわち、変形代表値xcが境界値xnを越える場合には、後述する調整定数をβとし、非線形弾性率Gn、押込力fc、変形代表値xcとの間には次式(3)の関係が成り立ち、次式(3)を対数変換すると次式(4)が得られる。   That is, when the deformation representative value xc exceeds the boundary value xn, an adjustment constant described later is set to β, and the relationship of the following equation (3) is established among the nonlinear elastic modulus Gn, the pushing force fc, and the deformation representative value xc. When the following equation (3) is logarithmically transformed, the following equation (4) is obtained.

Figure 0006656706
Figure 0006656706

ここで、コンピュータシミュレーション等において、線形領域と非線形領域で求めた関数の接続性が必要になるため、線形弾性率G及び非線形弾性率Gnが変形代表値xcの境界値xnで一致するように、次のようにして、接続性を担保した線形弾性率G及び非線形弾性率Gnの調整処理が行われる。   Here, in a computer simulation or the like, since the connectivity of the functions obtained in the linear region and the nonlinear region is required, the linear elastic modulus G and the nonlinear elastic modulus Gn are matched with the boundary value xn of the deformation representative value xc. The adjustment process of the linear elastic modulus G and the non-linear elastic modulus Gn that secures connectivity is performed as follows.

すなわち、上式(2)及び上式(3)は、変形代表値xcが境界値xnのときに接するという条件から、xc=xnのときに、上式(2)及び上式(3)による値がそれぞれ一致し、且つ、上式(2)及び上式(3)を変形代表値xcでそれぞれ微分した関数による値とがそれぞれ一致する必要がある。この条件から以下の式(5)及び式(6)が導き出される。   That is, the above equations (2) and (3) are obtained from the above equations (2) and (3) when xc = xn, based on the condition that the deformation representative value xc is in contact with the boundary value xn. The values must match, and the values obtained by differentiating the above equations (2) and (3) with the modified representative value xc must match. The following equations (5) and (6) are derived from this condition.

Figure 0006656706
Figure 0006656706

式(5)及び式(6)から、以下の式(7)が得られ、当該式(7)と上式(5)とから、線形弾性率Gnを消去して以下の式(8)が得られる。   The following equation (7) is obtained from the equations (5) and (6). From the equation (7) and the above equation (5), the linear elastic modulus Gn is eliminated and the following equation (8) is obtained. can get.

Figure 0006656706
Figure 0006656706

このように、線形弾性率G、非線形弾性率Gn、境界値xn及び定数βの各パラメータは、上式(7)及び(8)の関係を満たす必要がある。実際に取得したデータが、境界値xnにおいて、前記条件を満たすようになっていれば、これら4つのパラメータを求めることができる。但し、測定ノイズ等により、これらの関係式から外れる場合も存在するため、これら関係を満たすように調整する必要がある。   As described above, the parameters of the linear elastic modulus G, the nonlinear elastic modulus Gn, the boundary value xn, and the constant β need to satisfy the relationships of the above equations (7) and (8). If the actually acquired data satisfies the above condition at the boundary value xn, these four parameters can be obtained. However, there may be cases where the above relational expressions are deviated due to measurement noise or the like, so it is necessary to make adjustments to satisfy these relations.

よりロバスト性の高い同定方法として、上式(7)及び(8)を元の式の拘束条件として設定し、パラメータ同定を行う。具体的には、上式(2)について拡張カルマンフィルタを用い、線形弾性率G、非線形弾性率Gnを求める際に、以下の式(9)及び式(10)の連立非線形方程式の2つのパラメータを推定することで、各パラメータの拘束条件を成立したまま、線形弾性率G、非線形弾性率Gnの値が決定可能となる。そして、線形弾性率G、非線形弾性率Gnが決まった後、上式(7)及び(8)の関係を利用して、境界値xn及び定数βが求められる。   As a more robust identification method, the above equations (7) and (8) are set as constraint conditions of the original equation, and parameter identification is performed. Specifically, when the linear elastic modulus G and the nonlinear elastic modulus Gn are obtained by using the extended Kalman filter for the above equation (2), two parameters of the simultaneous nonlinear equations of the following equations (9) and (10) are used. By estimating, the values of the linear elastic modulus G and the nonlinear elastic modulus Gn can be determined while the constraint condition of each parameter is satisfied. After the linear elastic modulus G and the non-linear elastic modulus Gn are determined, the boundary value xn and the constant β are obtained by using the relations of the above equations (7) and (8).

Figure 0006656706
Figure 0006656706

前記情報提示装置14では、例えば、物性値演算装置13で求めた粘弾性比率r、線形弾性率G、非線形弾性率Gnをそのまま数値として、或いは、グラフ等の図表化した画像として、図示しないモニタを通じて使用者に直接提示する構成を挙げることができる。   In the information presentation device 14, for example, a viscoelasticity ratio r, a linear elasticity modulus G, and a non-linear elasticity modulus Gn obtained by the physical property value computing device 13 are directly represented as numerical values, or as a graphical image such as a graph, a monitor (not shown). Through the direct presentation to the user.

なお、当該情報提示装置14としては、特に限定されるものではなく、当該情報を画像で表示可能な各種の表示装置、前記情報を音声や刺激等で提示可能なスピーカーや刺激提示装置等、種々の装置を採用することができる。   The information presenting device 14 is not particularly limited, and may be various display devices such as various display devices capable of displaying the information in an image, speakers or stimulus presenting devices capable of presenting the information by voice, stimulation, or the like. Can be employed.

以上のように求めた粘弾性比率r、線形弾性率G、非線形弾性率Gnは、がんの診断や整体評価等の対象となる生体軟組織のレオロジー特性を表すデータとして活用することができ、得られた当該データにより、予めデータベースとして記憶された生体軟組織の状態毎の同種の各物性値と対比することで、対象となる生体組織の状態の推定に寄与できる。   The viscoelastic ratio r, linear elastic modulus G, and nonlinear elastic modulus Gn obtained as described above can be used as data representing the rheological properties of living soft tissue to be subjected to cancer diagnosis, manipulative evaluation, and the like. The data thus obtained can contribute to the estimation of the state of the target living tissue by comparing the same kind of physical property value for each state of the living soft tissue stored in advance as a database.

なお、前記押込み測定装置12としては、前述の構造に限定されるものではなく、前述と同様の作用を奏する限りにおいて、種々の構造のセンサや計測機器の代替適用、若しくは併用が可能である。   Note that the indentation measuring device 12 is not limited to the above-described structure, and various applications of sensors and measuring instruments can be used as an alternative or combined, as long as the same operation as described above is achieved.

その他、本発明における装置各部の構成は図示構成例に限定されるものではなく、実質的に同様の作用を奏する限りにおいて、種々の変更が可能である。   In addition, the configuration of each unit of the apparatus according to the present invention is not limited to the illustrated configuration example, and various changes can be made as long as substantially the same operation is achieved.

10 物性値検出システム
12 押込み測定装置
13 物性値演算装置
22 粘弾性比率算出手段
23 弾性率算出手段
REFERENCE SIGNS LIST 10 physical property value detection system 12 indentation measuring device 13 physical property value calculating device 22 viscoelastic ratio calculating means 23 elastic modulus calculating means

Claims (5)

生体軟組織のレオロジー特性を表す物性値を検出するレオロジー特性の物性値検出システムであって、
前記生体軟組織を所定の力で押し込み、その際の押込力の大きさと押し込まれた前記生体軟組織の部位の変形量とを測定する押込み測定装置と、
当該押込み測定装置での測定結果に基づき演算によって前記物性値を求める物性値演算装置と、
備え、
前記押込み測定装置は、押し込み状態の異なる複数パターンで前記生体軟組織を押し込み可能に設けられ、
前記物性値演算装置は、前記押込力の大きさを段階的に増大させ、各大きさで前記押込力を一定にしたときの経時的な前記変形量の変化から、前記生体軟組織の弾性要素と粘性要素の比率である粘弾性比率を前記物性値として求める粘弾性比率算出手段を備え、
前記粘弾性比率算出手段は、複数時刻で取得された複数の前記変形量から構築された時系列データであって、経時的な検出対象部位の変形に関する時系列データにつき、時間及び前記変形量を対数変換した値を直線近似し、その傾きを粘弾性比率として算出する、
生体軟組織のレオロジー特性の物性値検出システム。
A physical property value detection system of a rheological property for detecting a physical property value representing a rheological property of a living soft tissue,
Pushing the living soft tissue with a predetermined force, an indentation measuring device that measures the magnitude of the pushing force at that time and the amount of deformation of the pushed-in portion of the living soft tissue,
A physical property value calculation device that calculates the physical property value by calculation based on the measurement result in the indentation measurement device,
Prepared,
The indentation measurement device is provided so as to be able to push the living soft tissue in a plurality of different patterns of the pushed state,
The physical property value computing device increases the magnitude of the pushing force in a stepwise manner, and from the change in the amount of deformation with time when the pushing force is kept constant at each magnitude, the elastic element of the living body soft tissue and e Bei viscoelastic ratio calculating means for calculating the viscoelasticity ratio is the ratio of the viscous element as the physical property value,
The viscoelastic ratio calculation means is time-series data constructed from a plurality of deformation amounts acquired at a plurality of times, and calculates time and the deformation amount for time-series data relating to deformation of a detection target portion over time. Approximating the logarithmically converted value by a straight line, and calculating the slope as a viscoelastic ratio,
Physical property detection system for rheological properties of living soft tissues.
前記物性値演算装置は、前記押込力を変化させたときの当該各押込力に対する前記変形量の関係から、前記生体軟組織の弾性率に関する前記物性値を求める弾性率算出手段を備える、
請求項1に記載の生体軟組織のレオロジー特性の物性値検出システム。
The physical property value calculating device includes an elastic modulus calculating unit that obtains the physical property value related to the elastic modulus of the living soft tissue from a relationship of the deformation amount with respect to each of the pressing forces when the pressing force is changed,
The system for detecting physical property values of rheological properties of living soft tissue according to claim 1.
前記弾性率算出手段は、押し込み開始から一定時間経過後における前記変形量に対応する変形代表値が所定の境界値未満のときに一定となる線形弾性率と、前記変形代表値が前記境界値を越えるときに一定の割合で変化する非線形弾性率とを求める、
請求項2に記載の生体軟組織のレオロジー特性の物性値検出システム。
The elastic modulus calculation means, a linear elastic modulus that becomes constant when the deformation representative value corresponding to the deformation amount after a predetermined time has elapsed from the start of pressing is less than a predetermined boundary value, and the deformation representative value is the boundary value. Find the nonlinear elastic modulus that changes at a fixed rate when exceeding
The system for detecting physical property values of rheological properties of living soft tissue according to claim 2.
生体軟組織を所定の力で押し込んだ際の押込力の大きさと、押し込まれた前記生体軟組織の部位の変形量の変化に基づいて、当該生体軟組織のレオロジー特性を表す物性値を演算によって求める物性値演算装置であって、
前記押込力の大きさを段階的に増大させ、各大きさで前記押込力を一定にしたときの経時的な前記変形量の変化から、前記生体軟組織の弾性要素と粘性要素の比率である粘弾性比率を前記物性値として求める粘弾性比率算出手段と、
前記押込力を変化させたときの当該各押込力に対する前記変形量の関係から、前記生体軟組織の弾性率に関する前記物性値を求める弾性率算出手段と、
を備え、
前記粘弾性比率算出手段は、複数時刻で取得された複数の前記変形量から構築された時系列データであって、経時的な検出対象部位の変形に関する時系列データにつき、時間及び前記変形量を対数変換した値を直線近似し、その傾きを粘弾性比率として算出する、
生体軟組織のレオロジー特性の物性値演算装置。
Based on the magnitude of the pushing force when the living soft tissue is pushed in with a predetermined force, and the change in the amount of deformation of the pushed-in portion of the living soft tissue, a physical property value which is obtained by calculating a physical property value representing the rheological property of the living soft tissue. An arithmetic unit,
The magnitude of the pushing force is increased stepwise, and from the change in the amount of deformation with time when the pushing force is kept constant at each magnitude , the viscosity, which is the ratio of the elastic element to the viscous element of the living soft tissue, is obtained. Viscoelastic ratio calculating means for determining the elastic ratio as the physical property value,
From the relationship of the amount of deformation to the respective pushing force when the pushing force is changed, an elasticity calculating means for calculating the physical property value related to the elasticity of the living soft tissue,
Bei to give a,
The viscoelastic ratio calculation means is time-series data constructed from a plurality of deformation amounts acquired at a plurality of times, and calculates time and the deformation amount for time-series data relating to deformation of a detection target portion over time. Approximating the logarithmically converted value with a straight line, and calculating the slope as a viscoelastic ratio
Physical property calculation device for rheological properties of living soft tissue.
生体軟組織を所定の力で押し込んだ際の押込力の大きさと、押し込まれた前記生体軟組織の部位の変形量の変化に基づいて、当該生体軟組織のレオロジー特性を表す物性値を演算によって求める物性値演算装置を構成するコンピュータを機能させるためのプログラムであって、
前記押込力の大きさを段階的に増大させ、各大きさで前記押込力を一定にしたときの経時的な前記変形量の変化から、前記生体軟組織の弾性要素と粘性要素の比率である粘弾性比率を前記物性値として求める粘弾性比率算出手段であって、複数時刻で取得された複数の前記変形量から構築された時系列データであって、経時的な検出対象部位の変形に関する時系列データにつき、時間及び前記変形量を対数変換した値を直線近似し、その傾きを粘弾性比率として算出する粘弾性比率算出手段と、前記押込力を変化させたときの当該各押込力に対する前記変形量の関係から、前記生体軟組織の弾性率に関する前記物性値を求める弾性率算出手段として、
前記コンピュータを機能させるための物性値演算装置のプログラム。
Based on the magnitude of the pushing force when the living soft tissue is pushed in with a predetermined force and the change in the amount of deformation of the pushed-in portion of the living soft tissue, the physical property value obtained by calculating the physical property value representing the rheological property of the living soft tissue is calculated. A program for causing a computer configuring the arithmetic device to function,
The magnitude of the pushing force is increased in a stepwise manner, and the change in the amount of deformation with time when the pushing force is kept constant at each magnitude indicates that the ratio of the elastic element to the viscous element of the living soft tissue is A viscoelasticity ratio calculating means for obtaining an elasticity ratio as the physical property value , which is time-series data constructed from a plurality of the deformation amounts obtained at a plurality of times, and is a time-series data regarding the deformation of the detection target portion over time. A viscoelastic ratio calculating means for linearly approximating a value obtained by logarithmically converting the time and the deformation amount with respect to the data, and calculating a slope thereof as a viscoelastic ratio, and the deformation for each pressing force when the pressing force is changed. From the relationship between the quantities, as elastic modulus calculating means for obtaining the physical property value regarding the elastic modulus of the living soft tissue,
A program of a physical property calculation device for causing the computer to function.
JP2015101195A 2015-05-18 2015-05-18 Physical property value detection system for rheological properties of living soft tissue, physical property value calculation device, and program therefor Active JP6656706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015101195A JP6656706B2 (en) 2015-05-18 2015-05-18 Physical property value detection system for rheological properties of living soft tissue, physical property value calculation device, and program therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015101195A JP6656706B2 (en) 2015-05-18 2015-05-18 Physical property value detection system for rheological properties of living soft tissue, physical property value calculation device, and program therefor

Publications (2)

Publication Number Publication Date
JP2016214455A JP2016214455A (en) 2016-12-22
JP6656706B2 true JP6656706B2 (en) 2020-03-04

Family

ID=57579764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015101195A Active JP6656706B2 (en) 2015-05-18 2015-05-18 Physical property value detection system for rheological properties of living soft tissue, physical property value calculation device, and program therefor

Country Status (1)

Country Link
JP (1) JP6656706B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6806393B2 (en) * 2017-10-30 2021-01-06 国立大学法人大阪大学 Measuring device, measuring method, and measuring program

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4189840B2 (en) * 2003-10-20 2008-12-03 独立行政法人産業技術総合研究所 Apparatus and program for estimating viscoelasticity of soft tissue using ultrasound
JP4465535B2 (en) * 2004-06-09 2010-05-19 株式会社日立メディコ Elastic image display method and ultrasonic diagnostic apparatus
US7556605B2 (en) * 2006-10-11 2009-07-07 Access Business Group International Llc Methods for determining elastic and viscoelastic properties of skin
JP2009240374A (en) * 2008-03-28 2009-10-22 Osaka Univ Dermal characteristic measuring device and dermal characteristic measuring program
JP2009273777A (en) * 2008-05-16 2009-11-26 Akita Prefectural Univ Instrument for measuring hardness of living body
US20120271555A1 (en) * 2009-07-27 2012-10-25 Ilya Levental Device for measuring tissue stiffness
JP5930611B2 (en) * 2011-05-26 2016-06-08 キヤノン株式会社 Subject information acquisition device
US10184865B2 (en) * 2013-10-22 2019-01-22 National University Corporation Tokyo Un Viscosity coefficient calculation device, indentation test device, tensile testing device, viscosity coefficient calculation method and program

Also Published As

Publication number Publication date
JP2016214455A (en) 2016-12-22

Similar Documents

Publication Publication Date Title
US10463276B2 (en) Nonlinear system identification techniques and devices for discovering dynamic and static tissue properties
Gokhale et al. Solution of the nonlinear elasticity imaging inverse problem: the compressible case
Han et al. A novel ultrasound indentation system for measuring biomechanical properties of in vivo soft tissue
Kauer et al. Inverse finite element characterization of soft tissues
US20170332911A1 (en) Apparatus and method for surface and subsurface tactile sensation imaging
Müller et al. A novel ultra-light suction device for mechanical characterization of skin
US10184865B2 (en) Viscosity coefficient calculation device, indentation test device, tensile testing device, viscosity coefficient calculation method and program
US20120116219A1 (en) System and method of ultrasound image processing
Mojra et al. A novel haptic robotic viscogram for characterizing the viscoelastic behaviour of breast tissue in clinical examinations
Liu et al. Inverse finite-element modeling for tissue parameter identification using a rolling indentation probe
Madani et al. Quantitative diagnosis of breast tumors by characterization of viscoelastic behavior of healthy breast tissue
Mojra et al. A novel robotic tactile mass detector with application in clinical breast examination
Kim et al. Vision-based fluid-type tactile sensor for measurements on biological tissues
Lee et al. The tactile sensation imaging system for embedded lesion characterization
JP6656706B2 (en) Physical property value detection system for rheological properties of living soft tissue, physical property value calculation device, and program therefor
Dosaev et al. Application of video-assisted tactile sensor and finite element simulation for estimating Young’s modulus of porcine liver
JP7001246B2 (en) Indentation test device and method to calculate Young's modulus of sample
WO2018164181A1 (en) Tissue elasticity measurement device and measurement method
Scanlan et al. Development of a novel actuator for the dynamic palpation of soft tissue for use in the assessment of prostate tissue quality
WO2022197918A1 (en) Non-contact ultrasound viscoelastic spectroscopy
Hsu et al. Digitizing abdominal palpation with a pressure measurement and positioning device
Wang et al. An operator-independent artificial finger can differentiate anterior vaginal wall indentation parameters between control and prolapse patients
JP6675569B2 (en) Tissue fat detection system, tissue fat measurement device, and program
Njeh et al. Instrument evaluation
Samuelson Inference based on diagnostic measures from studies of new imaging devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180514

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200129

R150 Certificate of patent or registration of utility model

Ref document number: 6656706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250