JP2007159798A - Method and apparatus for measuring skin age - Google Patents

Method and apparatus for measuring skin age Download PDF

Info

Publication number
JP2007159798A
JP2007159798A JP2005359724A JP2005359724A JP2007159798A JP 2007159798 A JP2007159798 A JP 2007159798A JP 2005359724 A JP2005359724 A JP 2005359724A JP 2005359724 A JP2005359724 A JP 2005359724A JP 2007159798 A JP2007159798 A JP 2007159798A
Authority
JP
Japan
Prior art keywords
skin
age
measured
parameter
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005359724A
Other languages
Japanese (ja)
Other versions
JP4583296B2 (en
Inventor
Makoto Kaneko
真 金子
Tomohiro Kawahara
知洋 川原
Nobuyuki Tanaka
信行 田中
Yukio Hosaka
幸男 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Engineering Co Ltd
Satake Corp
Hiroshima University NUC
Original Assignee
Satake Engineering Co Ltd
Satake Corp
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Engineering Co Ltd, Satake Corp, Hiroshima University NUC filed Critical Satake Engineering Co Ltd
Priority to JP2005359724A priority Critical patent/JP4583296B2/en
Publication of JP2007159798A publication Critical patent/JP2007159798A/en
Application granted granted Critical
Publication of JP4583296B2 publication Critical patent/JP4583296B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring method for precisely estimating a skin age becoming the index of aging of the skin on the basis of mechanical impedance property, and an apparatus for measuring the skin age. <P>SOLUTION: Compressed air is jetted from a nozzle 7 toward a skin surface (p), deformation of the skin surface in that case is detected by a displacement sensor 8, and a detected value is data-processed by a PC to calculate the mechanical impedance property. Next, on the basis of the elastic item parameter k2 of the mechanical impedance property, the skin age is calculated, or the most approximate age is deduced from a correspondence table. The deduced age is displayed as the skin age. In place of the elastic item parameter k2, a C/K value obtained by normalizing a composite viscosity parameter C with a composite elasticity parameter K can be used. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、肌年齢の測定方法及びその装置に関する。   The present invention relates to a skin age measurement method and apparatus.

近年、皮膚等の皺(しわ)・染み・くすみの有無や弾力性、保湿性の有無など肌の老化度合いとして肌年齢という用語が化粧品関連分野や、エステなどの美容・健康分野などでよく使われている。そして、その肌年齢を合理的に得る方法、装置に需要がある。   In recent years, the term skin age is often used in cosmetics-related fields and beauty / health fields such as esthetics as the degree of skin aging, including the presence or absence of wrinkles, stains and dullness on skin, elasticity and moisture retention. It has been broken. There is a need for a method and apparatus that reasonably obtains the skin age.

この肌年齢を測定するための指標の1つとして、皮膚等に圧縮空気を吹きつけてその弾方性を測る測定方法や装置は知られており、例えば、被計測面に圧縮空気を瞬間的に吹きつけ、この吹きつけによる被計測面の変位量をレーザー変位計にて測定し、その計測結果を線形表示するようにしたものや(特許文献1参照)、噴射ノズルから圧縮ガスを被測定部に向けて噴射し、それによる被測定部の表面変位を計測し、噴射からの時間と表面変位との関係に基づいて、被測定部の応力に対する表面特性を評価するもの(特許文献2参照)がある。   As one of the indices for measuring the skin age, measurement methods and apparatuses for measuring elasticity by blowing compressed air on the skin or the like are known. For example, compressed air is instantaneously applied to a measurement surface. The measured displacement of the measurement surface by this spraying is measured with a laser displacement meter, and the measurement result is displayed linearly (see Patent Document 1), or the compressed gas is measured from the injection nozzle Injecting toward the part, measuring the surface displacement of the part to be measured, and evaluating the surface characteristics against the stress of the part to be measured based on the relationship between the time from injection and the surface displacement )

また、本発明者らが提案したものとして、皮膚や筋肉などの生体表面部等の変形特性を知るために、皮膚や筋肉に加振力を作用させ、該加振力によって生ずる加速度、速度、変位の周期的な応答のうち少なくとも1つを測定し、加振力と応答との間の伝達特性により物体の変形特性を測定するものや(特許文献3参照)、加振力を作用させるための空気ノズルの作用点と、この作用点に照射するレーザー変位計の光軸とを一致させた変形特性測定装置(特許文献4参照)がある。   Further, as proposed by the present inventors, in order to know the deformation characteristics of the surface of the living body such as skin and muscle, an excitation force is applied to the skin and muscle, and the acceleration, speed generated by the excitation force, To measure at least one of the periodic responses of displacement and measure the deformation characteristics of the object based on the transfer characteristics between the excitation force and the response (see Patent Document 3), or to apply the excitation force There is a deformation characteristic measuring apparatus (see Patent Document 4) in which the action point of the air nozzle is aligned with the optical axis of a laser displacement meter that irradiates the action point.

特許文献1記載のものは、被計測面を非接触状態で計測を行い正確な計測が行えるという利点や、圧縮空気の吹き付け部位の変位量に基づいて、コンピュータで演算されて描かれる弾性率線をディスプレイ上に線形表示させ、正確な弾性特性の判定が行われる利点があるが、肌年齢を推定する手法や算出方法については何ら開示されていない。   The one described in Patent Document 1 is an elastic modulus line that is calculated and drawn by a computer based on the advantage that the measurement surface can be measured in a non-contact state and accurate measurement can be performed, and the amount of displacement of the sprayed portion of the compressed air. Is linearly displayed on the display, and there is an advantage that accurate elastic characteristics are determined. However, no method or calculation method for estimating skin age is disclosed.

特許文献2記載のものは、被測定面に圧縮空気を吹き付けると、被測定面が最大変位で窪むが、圧縮空気の吹き付けを停止すると、窪んだ箇所の変位が回復過程に入り、変位回復の所要時間を計測することにより肌年齢を推定するものである。例えば、最大変位、変位所要時間、回復所要時間、回復全所要時間、平均変位速度、平均回復速度等をパラメーターとして年齢に対する相関係数を求め、相関係数の高いパラメーターに対して肌年齢の推定に優位性があるとするものであるが、変位と時間のみを計測して肌年齢の推定を行うので精度に欠ける面があった。   In the case of the one described in Patent Document 2, when the compressed air is blown onto the surface to be measured, the surface to be measured is depressed at the maximum displacement, but when the blowing of the compressed air is stopped, the displacement of the depressed portion enters the recovery process, and the displacement is recovered. The skin age is estimated by measuring the required time. For example, the correlation coefficient for age is obtained using parameters such as maximum displacement, time required for displacement, time required for recovery, total time required for recovery, average displacement speed, average recovery speed, etc., and skin age is estimated for parameters with a high correlation coefficient. However, since skin age is estimated by measuring only displacement and time, there is a lack of accuracy.

特許文献3及び特許文献4に記載のものは、被測定物を粘弾性体として把握し、これを質量m、バネk、ダンパーcによる機械振動系のモデルとして表し、質量m、バネk、ダンパーcの各特性を算出している(特許文献3の段落番号0021及び図4、特許文献4の段落番号0028及び図9参照)。しかしながら、これらの文献には特許文献1と同様に肌年齢を推定する手法や算出方法については何ら開示されていない。
また、計測をプローブなどを使った接触方式で行うと計測データの収集はプローブやそれを動かすアクチュエータなどの機械的な応答速度を上回ることができない。即ち、接触方式は、計測時間1秒以下の高速な計測を行うには適切でない。
The devices described in Patent Document 3 and Patent Document 4 grasp the object to be measured as a viscoelastic body, and represent this as a model of a mechanical vibration system using a mass m, a spring k, and a damper c. Each characteristic of c is calculated (see paragraph number 0021 and FIG. 4 of Patent Document 3, paragraph number 0028 of Patent Document 4 and FIG. 9). However, as in Patent Document 1, these documents do not disclose any technique or calculation method for estimating skin age.
If measurement is performed by a contact method using a probe or the like, the collection of measurement data cannot exceed the mechanical response speed of the probe and the actuator that moves the probe. That is, the contact method is not suitable for performing high-speed measurement with a measurement time of 1 second or less.

特開2003−294598号公報JP 2003-294598 A 特開2004−108794号公報JP 2004-108794 A 特開2004−069668号公報Japanese Patent Laid-Open No. 2004-069668 特開2005−121614号公報JP 2005-121614 A

本発明は上記間題点に鑑み、被測定対象となる肌を粘弾性体として把握し、これを質量m、バネk、ダンパーcによる機械振動系のモデルとして表すとともに、質量m、バネk、ダンパーcからなる機械インビーダンス特性(各パラメーター)を算出し、この機械インピーダンス特性に基づき、肌の老化度合いの指標となる肌年齢を精度よく推定することを可能にした肌年齢の測定方法及び装置を提供することにある。   In view of the above problems, the present invention grasps the skin to be measured as a viscoelastic body and represents it as a model of a mechanical vibration system by a mass m, a spring k, and a damper c, and the mass m, the spring k, A skin age measuring method capable of calculating a mechanical impedance characteristic (each parameter) including a damper c and accurately estimating a skin age as an index of the degree of skin aging based on the mechanical impedance characteristic, and To provide an apparatus.

被測定面(肌)に圧縮空気を噴射することにより、非接触で力を加え、被測定面を変形させる。変位をレーザー変位計で計測し検出する。
肌の粘弾性特性は、被測定面における質量m、バネk、ダンパーcからなる機械インピーダンス特性のパラメーターにより推定できるものとする。
検出値と変位の伝達特性から、演算・制御手段により、被測定面における質量m、バネk、ダンパーcからなる機械インピーダンス特性を算出する。
By injecting compressed air onto the surface to be measured (skin), force is applied in a non-contact manner to deform the surface to be measured. Displacement is measured and measured with a laser displacement meter.
It is assumed that the viscoelastic characteristics of the skin can be estimated from parameters of mechanical impedance characteristics including the mass m, the spring k, and the damper c on the surface to be measured.
From the detection value and the transfer characteristic of the displacement, the mechanical impedance characteristic including the mass m, the spring k, and the damper c on the surface to be measured is calculated by the calculation / control means.

演算・制御手段は、さらに、算出された機械インピーダンス特性によりBMI値〔体脂肪率=体重(kg)÷身長(m)2〕、すなわち、肥満度を推定し、算出された機械インピーダンス特牲の粘性パラメーターCを同特性中の弾性パラメーターKで正規化することにより、結果として粘性パラメーターCをBMI値で補正する。補正された粘性パラメーターC、すなわち、C/K値を肌の粘弾性特性と推定する。
そして、前記の肌の粘弾性特性を予め準備したC/K値に関する年齢別標準値のテーブルと対比して最も近似した値と対応した年齢を肌年齢と決定する。
表示手段により、決定された肌年齢を数値などで表示する。
The calculation / control means further estimates the BMI value [body fat percentage = weight (kg) ÷ height (m) 2 ], that is, the degree of obesity based on the calculated mechanical impedance characteristic, and calculates the calculated mechanical impedance characteristic. By normalizing the viscosity parameter C with the elastic parameter K in the same characteristic, the viscosity parameter C is corrected with the BMI value as a result. The corrected viscosity parameter C, that is, the C / K value is estimated as the viscoelastic property of the skin.
Then, the age corresponding to the most approximate value is determined as the skin age as compared with the table of age-specific standard values for the C / K values prepared in advance for the viscoelastic properties of the skin.
The determined skin age is displayed as a numerical value by the display means.

被測定対象となる肌の被計測面は、バネk及びダンパーcを並列結合したものを、さらに、直列に2段結合したモデルにおける機械インピーダンス特性のパラメーターで表わされるものと定義し、該モデルを利用して前記質量m、バネk、ダンパーcからなる機械インピーダンス特性を算出する。なお、質量mは、肌の変位測定では小さいので無視し得る。   The surface to be measured of the skin to be measured is defined as a parameter in which the spring k and the damper c are coupled in parallel, and further represented by a mechanical impedance characteristic parameter in a model in which two stages are coupled in series. Utilizing this, the mechanical impedance characteristic composed of the mass m, the spring k, and the damper c is calculated. The mass m is small in skin displacement measurement and can be ignored.

計測のために力を印加する圧縮空気は、充分な容量の空気タンクからレギュレータ及びバッファタンクを経由して供給されることが好ましい。空気タンクはコンプレッサーを備えた大型のタンクの場合や塗料のスプレー缶のような小型(携帯可能な)のタンクの場合とがある。   The compressed air for applying a force for measurement is preferably supplied from a sufficiently large air tank via a regulator and a buffer tank. The air tank may be a large tank with a compressor or a small (portable) tank such as a paint spray can.

1.肌を、肌表面にバネ(インピーダンスk)とダンパー(インピーダンスc)を並列結合したもの(各インピーダンスk1,c1,k2,c2)を肌の厚み方向へ直列に2段結合した構造にモデル化したことにより、このモデルから推定される粘弾性体としての変位応答曲線が肌に対する実測値による変位応答曲線とよく一致し、肌年齢を精度よく推定することができる。
2.弾性項目パラメーターk2の値は、年齢との相関係数がもっとも高いので、精度の高い肌年齢を演算することができる。
3.合成弾性パラメーターK値は、被験者の体格とやや強い相関があり、このためC/K値は、合成粘性パラメーターC値を体格で補正した結果となる。C/K値(補正粘性パラメーター)を用いることにより、精度高く肌年齢を演算することができる。
4.C/K値は、ステップ応答における時定数でもあるので、変位応答より63.2%に達する時間を測定することにより容易に求めることができる。
1. The skin was modeled as a structure in which springs (impedance k) and dampers (impedance c) connected in parallel to the skin surface (each impedance k1, c1, k2, c2) were connected in two stages in series in the thickness direction of the skin. Thus, the displacement response curve as the viscoelastic body estimated from this model is in good agreement with the displacement response curve based on the actual measurement values for the skin, and the skin age can be estimated with high accuracy.
2. Since the value of the elasticity item parameter k2 has the highest correlation coefficient with age, a highly accurate skin age can be calculated.
3. The synthetic elasticity parameter K value has a slightly strong correlation with the physique of the subject. Therefore, the C / K value is a result of correcting the synthetic viscosity parameter C value with the physique. By using the C / K value (corrected viscosity parameter), the skin age can be calculated with high accuracy.
4). Since the C / K value is also a time constant in the step response, it can be easily obtained by measuring the time to reach 63.2% from the displacement response.

5.圧縮空気の供給経路にバッファタンクを設けたので安定したステップ状の圧力特性を得られ、計測時に常に一定した印加力を得られる。また、圧力センサーを省略できる。このため、演算・制御手段で処理しなければならないデータの種類が少なくなり、演算・制御手段に能力の高いものが要求されない。その一方で、肌年齢を精度よく推定することができる。
6.変位応答の計測が非接触なので、肌に損傷を与えるとか、非衛生であるといった問題点を解決できる。
5. Since a buffer tank is provided in the compressed air supply path, a stable step-like pressure characteristic can be obtained, and a constant applied force can always be obtained during measurement. Further, the pressure sensor can be omitted. For this reason, the types of data that must be processed by the calculation / control unit are reduced, and a high-performance calculation / control unit is not required. On the other hand, the skin age can be accurately estimated.
6). Since displacement response measurement is non-contact, problems such as damage to the skin and non-hygiene can be solved.

〔装置〕
図1は、肌年齢測定装置1の基本構造を模式的に示している。この装置1は、基板2に非測定対象となる手や腕3を載置して上方から圧縮空気を吹き付けて測定のための力を印加するタイプのものであり、基板2に対して一体に起立させて構成した支柱4にガイド5を設け、ガイド5にスライダー6を上下方向に位置調整可能に組み付けてある。スライダー6にはヒトの肌表面pに圧縮空気を噴射するノズル7と力の印加による肌の変位を三角測量の原理で計測する変位センサ−8を備える。実施例において変位センサー8は、(株)キーエンスが市販しているレーザ変位センサーLK−030を用いている。
〔apparatus〕
FIG. 1 schematically shows the basic structure of the skin age measuring apparatus 1. This apparatus 1 is of a type in which a hand or arm 3 to be measured is placed on a substrate 2 and a force for measurement is applied by blowing compressed air from above, and is integrated with the substrate 2. A guide 5 is provided on a support column 4 that is constructed upright, and a slider 6 is assembled to the guide 5 so that the position can be adjusted in the vertical direction. The slider 6 includes a nozzle 7 that injects compressed air onto the human skin surface p, and a displacement sensor 8 that measures the displacement of the skin due to the application of force by the principle of triangulation. In the embodiment, the displacement sensor 8 uses a laser displacement sensor LK-030 commercially available from Keyence Corporation.

ノズル7には、圧縮空気を蓄えたボンベ9から、圧力を一定にするレギュレータ10と一定圧力の空気を蓄え圧力変動を低減するバッファタンク11及び圧縮空気の流れを制御する電磁弁12を経由した圧縮空気供給路13が接続されている。
肌年齢測定装置1は、さらに、演算装置14とその出力ポートに接続された表示装置15を備え、演算装置14には電磁弁12へ弁の開閉信号が送られる一方、変位センサー8からの検出信号が入力ポートに伝達される。
The nozzle 7 is passed through a cylinder 9 storing compressed air, a regulator 10 for keeping the pressure constant, a buffer tank 11 for storing air at a constant pressure to reduce pressure fluctuation, and an electromagnetic valve 12 for controlling the flow of compressed air. A compressed air supply path 13 is connected.
The skin age measuring device 1 further includes a computing device 14 and a display device 15 connected to its output port. The computing device 14 sends a valve opening / closing signal to the electromagnetic valve 12 while detecting from the displacement sensor 8. A signal is transmitted to the input port.

演算装置14と表示装置15はいわゆるパソコンで構成され、ユーザー利用の記憶部に装置全体の作動制御を行うプログラムと変位センサー8から取得した情報に基づき機械インピーダンス特性の推定(各パラメーターの推定)と肌年齢の算出を行うプログラムをパソコンのOSとリンクさせて格納してある。表示装置への信号の伝達と表示データの処理はパソコンが備えた機能による。   The computing device 14 and the display device 15 are constituted by a so-called personal computer. Based on a program for controlling the operation of the entire device in a user-use storage unit and information acquired from the displacement sensor 8, estimation of mechanical impedance characteristics (estimation of each parameter) A program for calculating skin age is stored linked to the OS of the personal computer. Signal transmission to the display device and display data processing depend on the functions of the personal computer.

計測の手順は、図2のフローチャートに示すように、スライダー6を調整してノズル7、変位センサー8と肌表面pとの距離(実施例10mm)、ボンベ圧(同0.6MPa)やレギュレータ10による圧力調整値(同0.3MPa)を適正に調節、又は確認する(初期化)。ついで、計測の開始により、前記プログラムが稼動して、電磁弁12が開かれ(同0.25sec)ノズル7からの圧縮空気の噴流によって肌に印加力f(同0.17N)が印加される(図3)。肌表面pの変位x(へこみの規模1.5〜2.0mm程度)が変位センサー8で計測される。計測された検出値はデータとして演算装置14のRAMに保存され、このデータに基づいて、あらかじめ格納された数式のプログラムにより機械インピーダンス特性(各パラメーター)が推定され、さらに、同様に格納された数式と対応年齢テーブルとから肌年齢の算出が行われる。計測の結果としての算出された肌年齢は、表示用バッファとしてのRAMに収められ、表示装置15に表示される。表示の形態は数字、グラフ、ポインターなど適宜なものを選択できる。   As shown in the flowchart of FIG. 2, the measurement procedure is performed by adjusting the slider 6, the distance between the nozzle 7, the displacement sensor 8 and the skin surface p (Example 10 mm), the cylinder pressure (0.6 MPa), and the regulator 10. Adjust or check the pressure adjustment value (0.3MPa) properly by (initialization). Next, when the measurement is started, the program is operated to open the solenoid valve 12 (0.25 sec.), And an applied force f (0.17 N) is applied to the skin by the jet of compressed air from the nozzle 7. (Figure 3). A displacement x of the skin surface p (a dent scale of about 1.5 to 2.0 mm) is measured by the displacement sensor 8. The measured detection value is stored as data in the RAM of the arithmetic unit 14, and based on this data, mechanical impedance characteristics (each parameter) are estimated by a program of a mathematical formula stored in advance, and the mathematical formula stored in the same manner. The skin age is calculated from the corresponding age table. The calculated skin age as a result of the measurement is stored in a RAM as a display buffer and displayed on the display device 15. Appropriate display forms such as numbers, graphs, and pointers can be selected.

機械インピーダンス特性の推定では印加力とこれによる肌表面pの変位を高精度で計測する必要があるが、本装置では圧力レギュレータ10とバッファタンク11を備えることで再現性の高い圧力特性を得ることに成功し、噴射のたびに圧縮空気の圧力を計測する圧力センサを用いなくとも、調整後にパソコンへあらかじめ記億させた空気圧に基づいて機械インピーダンス特性を推定することができる。また、通常何の対策もされていない場合のノズル位置での圧力特性は図4(a)のようになるが、本装置で得られる圧力特性は図4(b)のようなステップ状であり、機械インピーダンス特性の推定において計算が容易かつ精度のよい推定が可能となる。
以上のことは、演算装置が実行速度やメモリ容量の非力なプロセッサであってもよいことを意味し、緒果として、肌年齢測定装置1のコスト削減を図ることができる。
In the estimation of the mechanical impedance characteristic, it is necessary to measure the applied force and the displacement of the skin surface p due to this with high accuracy. In this apparatus, the pressure regulator 10 and the buffer tank 11 are provided to obtain a highly reproducible pressure characteristic. Therefore, the mechanical impedance characteristic can be estimated based on the air pressure previously stored in the personal computer after the adjustment without using a pressure sensor that measures the pressure of the compressed air at each injection. In addition, the pressure characteristic at the nozzle position when no measures are usually taken is as shown in FIG. 4 (a), but the pressure characteristic obtained with this apparatus is stepped as shown in FIG. 4 (b). In addition, in the estimation of the mechanical impedance characteristic, the calculation can be performed easily and with high accuracy.
The above means that the arithmetic device may be a processor with low execution speed and memory capacity, and as a result, the cost of the skin age measuring device 1 can be reduced.

〔方法1〕
基本の考え方
ヒトの肌は加齢とともにその「はり」を失っていく。図5は、ヒト肌に力を加えたときの変位データを最大変位で正規化したグラフであり、20代男性の場合へこませてもすぐに元に戻るが、50代男性では、元に戻るまでに時間がかかる。このことは、肌表面pは、バネや粘っこさといった粘弾性特性を備えた面であり、この特性は加齢と共に変化するものとして捉えることができる。本発明の方法はこの点に着目し、肌年齢を計測するものである。
[Method 1]
Basic concept Human skin loses its “beam” as it ages. FIG. 5 is a graph obtained by normalizing the displacement data when force is applied to human skin with the maximum displacement, and it returns immediately even if it is depressed in the case of a man in their 20s. It takes time to return. This means that the skin surface p is a surface having viscoelastic properties such as a spring and stickiness, and this property can be understood as changing with aging. The method of the present invention pays attention to this point and measures skin age.

具体的手段
このため肌表面pに圧縮空気を噴射して非接触で力を印加し、このときの肌の変位応答を非接触で取得する。すなわち、印加力と肌表面pの変位応答から肌の粘弾性特性を測定し、あらかじめ記憶させた肌年齢と肌の粘弾性特性の関係より肌年齢を算出する。肌の粘弾性特性の測定は肌の粘弾性モデルのインピーダンス特性(パラメーター)を推定することによって行う。
インピーダンスパラメーターの推定にあたっては、図6(a),(b)のように、肌表面pに、バネkとダンパーcを並列結合したものを直列に二段結合したバネ・ダンパーをもつ機械インピーダンスモデルを用いる。すなわち、機械インピーダンス特性としてk1,c1,k2,c2の4つのパラメーターを推定する。k1,k2は弾性項目パラメーター、c1,c2は粘性項目パラメーターである。
Specific Means For this purpose, compressed air is sprayed onto the skin surface p to apply force without contact, and the displacement response of the skin at this time is acquired without contact. That is, the viscoelastic property of the skin is measured from the applied force and the displacement response of the skin surface p, and the skin age is calculated from the relationship between the skin age stored in advance and the viscoelastic property of the skin. The measurement of the viscoelastic characteristics of the skin is performed by estimating the impedance characteristics (parameters) of the skin viscoelastic model.
When estimating the impedance parameter, as shown in FIGS. 6 (a) and 6 (b), a mechanical impedance model having a spring / damper in which the spring k and the damper c are connected in parallel to each other on the skin surface p in two stages in series. Is used. That is, four parameters k1, c1, k2, and c2 are estimated as mechanical impedance characteristics. k1 and k2 are elastic item parameters, and c1 and c2 are viscosity item parameters.

このモデルは2自由度系の運動であり、次式の運動方程式で表される。   This model is a two-degree-of-freedom motion and is represented by the following equation of motion.

Figure 2007159798
さらに(I)式を印加力fと全体の変位xとの運動方程式に変形すると
Figure 2007159798
Furthermore, when equation (I) is transformed into a motion equation of applied force f and overall displacement x,

Figure 2007159798
となる、なお、係数はそれぞれ
Figure 2007159798
In addition, each coefficient is

Figure 2007159798
である。
Figure 2007159798
It is.

印加力fと変位xは既知のデータであるが、計測データにはノイズが含まれていると考えられるので、データを微分して扱うと精度が極端に低下する。本手法ではこの影響を避けるために微分が表れない積分方程式の形に(2)式を変形する。   Although the applied force f and the displacement x are known data, it is considered that noise is included in the measurement data. Therefore, when the data is differentiated and handled, the accuracy is extremely lowered. In this method, in order to avoid this influence, the equation (2) is transformed into an integral equation that does not show differentiation.

Figure 2007159798
これを行列で表示すると
Figure 2007159798
If you display this as a matrix

Figure 2007159798
ただし
Figure 2007159798
However,

Figure 2007159798
である。
Figure 2007159798
It is.

fとxはそれぞれ計測データであり、時系列に従って f and x are measurement data, respectively, according to time series

Figure 2007159798
と表される。
これより、
Figure 2007159798
It is expressed.
Than this,

Figure 2007159798
でインピーダンスパラメーターzを推定することができる。
ただし
Figure 2007159798
The impedance parameter z can be estimated with
However,

Figure 2007159798
である。
Figure 2007159798
It is.

表1は、この方法によって機械インピーダンスの各パラメーターを推定した結果である。20代と50代とを比較するとk1には大きな違いは見られないが、k2、c1、c2、に大きな違いがあらわれていることが分かる。   Table 1 shows the result of estimating each parameter of the mechanical impedance by this method. Comparing 20's and 50's, it can be seen that there is no significant difference in k1, but there are significant differences in k2, c1, c2.

Figure 2007159798
インピーダンス推定結果
Figure 2007159798
Impedance estimation result

図7(a)〜(d)は被験者67人に対する年齢と4つのパラメーターkl,k2,c1,c2との関係を示したものである。表2は、そのときのそれぞれのパラメーターと年齢との相関係数である。このうち、弾性項目k2との相関係数−0.632は、従来の肌に力を印加し変形させ、力を除いてから変形が回復するまでの時間を扱うという方法で得た場合には年齢との相関係数が、0.561程度であることに比べるとこの相関はかなり高く、精度の高い肌年齢測定が可能といえる。   FIGS. 7A to 7D show the relationship between the age for 67 subjects and the four parameters kl, k2, c1, and c2. Table 2 shows the correlation coefficient between each parameter and age at that time. Among these, when the correlation coefficient −0.632 with the elasticity item k2 is obtained by a method of applying a force to the conventional skin and deforming it, and handling the time from the removal of the force until the deformation is recovered, This correlation is considerably higher than that of the correlation coefficient with age of about 0.561, and it can be said that accurate skin age measurement is possible.

Figure 2007159798
粘弾性パラメーターと年齢との相関係数
なお、年齢の算出は、次式によっても良いし、あらかじめ粘性項目パラメーターk2と年齢を対応させたテーブルから近似のものを抽出してもよい。
肌年齢=6665.3×(c/k)+12.164
Figure 2007159798
Correlation coefficient between viscoelastic parameter and age The age may be calculated by the following equation, or an approximate one may be extracted from a table in which the viscosity item parameter k2 is associated with age in advance.
Skin age = 6665.3 × (c / k) +12.164

これだけ高い精度が得られたのは、回復するまでの時間という従来手法では「力を除いた時間」と「変位が回復した時間」の2つだけの情報のみで測定しているのに対し、本発明による手法では肌がどのように変化したのか、例えば、すばやく変位が生じた、ゆっくりと変化した、というような力に対する肌の変位応答を、肌表面pを粘弾性と捉え、これに機械インピーダンス特性(パラメーター)を使うことによって年齢との関係をうまく表現できるためと考えられる。   This high accuracy was obtained in the conventional method of time to recovery, while measuring only two pieces of information, “time excluding force” and “time when displacement was recovered”. In the method according to the present invention, how the skin changes, for example, the displacement response of the skin to a force such as a rapid displacement or a slow change, the skin surface p is regarded as viscoelasticity, This is probably because the relationship with age can be expressed well by using impedance characteristics (parameters).

この実施例のように、力の印加を圧縮空気で行うときは、きわめて高速に印加を行うことができる。また、圧縮空気の圧力、流量を適切に調整することにより力の印加特性を、容易に変更可能であるといった利点も生まれる。さらに、先に述べたとおり、本発明による肌年齢装置の印加空気の圧力特性はステップ状となるから、測定データが安定する。
実施例では、力の印加に圧縮空気を用いたが、人の肌に吹き付けても格別な支障のない他の気体でもよく、一般には圧縮気体である。
As in this embodiment, when the force is applied with compressed air, the application can be performed at a very high speed. Further, there is an advantage that the force application characteristics can be easily changed by appropriately adjusting the pressure and flow rate of the compressed air. Furthermore, as described above, since the pressure characteristic of the applied air of the skin age apparatus according to the present invention is stepped, the measurement data is stabilized.
In the embodiment, compressed air is used for applying force, but other gases that do not cause any special trouble even when sprayed on human skin may be used, and are generally compressed gases.

〔方法2〕
前記方法1で用いた図6(b)の4要素モデルの合成の粘性パラメーターCと合成弾性パラメーターKは、次のように求めることができる。
C=c1・c2(c1+c2)
K=k1・k2(k1+k2)
そして、合成粘性パラメーターCと合成弾性パラメーターK、及び前記パラメーターCをパラメーターKで正規化した値C/Kと被験者の年齢との相関を取ってみると、表3のようになる。
[Method 2]
The synthetic viscosity parameter C and synthetic elasticity parameter K of the four-element model of FIG. 6B used in the method 1 can be obtained as follows.
C = c1 · c2 (c1 + c2)
K = k1 · k2 (k1 + k2)
Table 3 shows the correlation between the synthetic viscosity parameter C, the synthetic elasticity parameter K, and the value C / K obtained by normalizing the parameter C with the parameter K and the age of the subject.

Figure 2007159798
C/K値と年齢との関係
Figure 2007159798
Relationship between C / K value and age

合成弾性パラメーターKに、年齢との相関は見られないが、被験者の体格との相関を取ってみると図8の相関図が得られ、相関係数−0.344というやや強い相関が現れることから、合成弾性パラメーターKは体格の情報を有し、合成粘性パラメーターCを合成弾性パラメーターKで正規化したC/K値は合成粘性パラメーターCを体格で補正していると言える。その結果、表3及び図9のように、C/K値と年齢との間に高い相関があらわれている。したがって、方法2では方法1の場合の粘性項目パラメーターk2に替え、C/K値を肌年齢の算定に用いる。年齢との相関係数が、0.609であることは、C/K値と年齢との相関はかなり高く、この方法によっても、精度の高い肌年齢測定が可能といえる。   Although there is no correlation with age in the synthetic elasticity parameter K, when the correlation with the physique of the subject is taken, the correlation diagram of FIG. 8 is obtained, and a slightly strong correlation with a correlation coefficient of −0.344 appears. Therefore, it can be said that the synthetic elastic parameter K has information on the physique, and the C / K value obtained by normalizing the synthetic viscosity parameter C with the synthetic elastic parameter K corrects the synthetic viscosity parameter C with the physique. As a result, as shown in Table 3 and FIG. 9, there is a high correlation between the C / K value and the age. Therefore, in method 2, instead of the viscosity item parameter k2 in the case of method 1, the C / K value is used for calculation of skin age. The correlation coefficient with age being 0.609 indicates that the correlation between C / K value and age is quite high, and it can be said that accurate skin age measurement is possible even with this method.

模式的に示した肌年齢測定装置の機構図Schematic diagram of skin age measuring device schematically shown 肌年齢の測定手順を示したフロー図Flow diagram showing skin age measurement procedure 変位センサーとノズル部分の斜視図Perspective view of displacement sensor and nozzle part ノズル先端部における圧縮空気の圧力波形、従来例Pressure waveform of compressed air at the nozzle tip, conventional example ノズル先端部における圧縮空気の圧力波形、本願の発明Pressure waveform of compressed air at nozzle tip, invention of the present application ヒト肌に力を加えたときの変位データを最大変位で正規化したグラフGraph that normalizes displacement data when applying force to human skin with maximum displacement (a)肌モデルに示す4要素モデル (b)機械インピーダンスの4要素モデル(A) Four-element model shown in skin model (b) Four-element model of mechanical impedance 被験者67名の年齢とパラメーターの関係を示すグラフGraph showing the relationship between age and parameters of 67 subjects 被験者67名の年齢とパラメーターの関係を示すグラフGraph showing the relationship between age and parameters of 67 subjects 被験者67名の年齢とパラメーターの関係を示すグラフGraph showing the relationship between age and parameters of 67 subjects 被験者67名の年齢とパラメーターの関係を示すグラフGraph showing the relationship between age and parameters of 67 subjects 合成弾性パラメーターKと体格指数BMIとの関係を示すグラフGraph showing the relationship between the synthetic elastic parameter K and the body mass index BMI C/Kと年齢との関係を示すグラフGraph showing the relationship between C / K and age

符号の説明Explanation of symbols

1 肌年齢測定装置
2 基板
3 被測定対象
4 支柱
5 ガイド
6 スライダー
7 ノズル
8 変位センサー
9 ボンベ
10 レギュレータ
11 バッファタンク
12 電磁弁
13 圧縮空気供給路
14 演算装置
15 表示装置
DESCRIPTION OF SYMBOLS 1 Skin age measuring device 2 Board | substrate 3 Object to be measured 4 Support | pillar 5 Guide 6 Slider 7 Nozzle 8 Displacement sensor 9 Cylinder 10 Regulator 11 Buffer tank 12 Electromagnetic valve 13 Compressed air supply path 14 Computation device 15 Display device

Claims (7)

被測定対象となる肌を、肌表面にバネ(インピーダンスk)とダンパー(インピーダンスc)を並列結合したもの(各インピーダンスk1,c1,k2,c2)を肌の厚み方向へ直列に2段結合した構造をもつ4要素モデルとみなし、肌の被計測面に圧縮気体を噴射して非接触で肌に力を印加し、印加力(f)と変位(x)間の伝達特性から被計測面における機械インピーダンス特性を算出し、この機械インピーダンス特性の弾性項目パラメーターk2の値を、被計測面における肌の粘弾性特性とし、これをあらかじめ準備した前記パラメーターk2に関する年齢別標準値と対比し、最も近似する値と対応した年齢を肌年齢とすることを特徴とした肌年齢の測定方法。   The skin to be measured is connected to the skin surface in parallel with springs (impedance k) and dampers (impedance c) (each impedance k1, c1, k2, c2) in series in the skin thickness direction. It is regarded as a four-element model having a structure, a compressed gas is sprayed onto the surface to be measured of the skin, a force is applied to the skin in a non-contact manner, and a transfer characteristic between the applied force (f) and the displacement (x) The mechanical impedance characteristic is calculated, and the value of the elastic item parameter k2 of the mechanical impedance characteristic is set as the viscoelastic characteristic of the skin on the surface to be measured, which is compared with the standard value by age regarding the parameter k2 prepared in advance, and is the most approximate A method for measuring skin age, wherein the age corresponding to the value to be determined is defined as skin age. 被測定対象となる肌を、肌表面にバネ(インピーダンスk)とダンパー(インピーダンスc)を並列結合したもの(各インピーダンスk1,c1,k2,c2)を肌の厚み方向へ直列に2段結合した構造をもつ4要素モデルとみなし、被測定対象となる肌の被計測面に圧縮気体を噴射して非接触で肌に力を印加し,印加力による被計測面の変位量を測定して、印加力(f)と変位(x)間の伝達特性から被測定面における機械インピーダンス特性を算出し、その合成粘性パラメーターC(c1・c2/(c1+c2))をもうひとつの同機械インピーダンス特性の合成弾性パラメーターK(k1・k2/(k1+k2))で正規化することによってBMI値で補正された補正粘性パラメーターC/Kを得、C/K値を被測定個所の肌の粘弾性特性と推定し、ついでC/K値をあらかじめ準備したC/K値に関する年齢別標準値と対比し、最も近似する値と対応した年齢を肌年齢とすることを特徴とした肌年齢の測定方法。   The skin to be measured is connected to the skin surface in parallel with springs (impedance k) and dampers (impedance c) (each impedance k1, c1, k2, c2) in series in the skin thickness direction. Considering a four-element model with a structure, injecting a compressed gas onto the measurement surface of the skin to be measured, applying force to the skin in a non-contact manner, measuring the displacement of the measurement surface by the applied force, The mechanical impedance characteristic on the surface to be measured is calculated from the transmission characteristic between the applied force (f) and the displacement (x), and the resultant viscosity parameter C (c1 · c2 / (c1 + c2)) is combined with another mechanical impedance characteristic. The corrected viscosity parameter C / K corrected with the BMI value is obtained by normalizing with the elasticity parameter K (k1 · k2 / (k1 + k2)), and the C / K value is obtained as the viscoelasticity of the skin at the measurement site. The skin age is characterized in that the age corresponding to the most approximate value is used as the skin age by estimating the sex and then comparing the C / K value with the standard value by age relating to the C / K value prepared in advance. . 肌の被測定面に噴射する圧縮気体は、肌への印加力がほぼ一定に持続される短時間のステップ状の圧力を有するものであることを特徴とした請求項1又は2に記載の肌年齢測定方法。   The skin according to claim 1 or 2, wherein the compressed gas sprayed to the surface to be measured has a step-like pressure for a short time in which the force applied to the skin is maintained substantially constant. Age measurement method. 被測定対象となる肌の被計測面に圧縮空気を連続的又はパルス状に噴射して非接触で力を印加する力印加手段と、
該力印加手段の圧縮空気の振幅、振動周波数又はデューティ比を変化させるための空圧制御手段と、
被計測面に加えられた加振力によって生じる変位を測定するレーザー変位計からなる計測手段と、
前記力印加手段からの印加力と当該被測定面の変位との間の伝達特性から、被測定面における質量m、バネk、ダンパーcからなる機械インピーダンス特性を算出し、算出された機械インビーダンス特性における弾性パラメーターkにより肥満度の指標であるBMI値(体脂肪率)を推定し、次いで、同機械インビーダンス特性における粘性パラメーターcを前記弾性パラメーターkで正規化し、BMI値で該肌年齢を補正して推定する演算・制御手段と、
該演算・制御手段で推定された肌年齢を数値で表示する表示手段と、
を備えたことを特徴とする肌年齢の測定装置。
Force application means for applying force in a non-contact manner by injecting compressed air continuously or in a pulsed manner onto the measurement surface of the skin to be measured;
A pneumatic control means for changing the amplitude, vibration frequency or duty ratio of the compressed air of the force application means;
A measuring means comprising a laser displacement meter for measuring the displacement caused by the excitation force applied to the surface to be measured;
From the transmission characteristic between the applied force from the force applying means and the displacement of the measured surface, a mechanical impedance characteristic composed of the mass m, the spring k, and the damper c on the measured surface is calculated, and the calculated mechanical inbee The BMI value (body fat percentage), which is an index of obesity, is estimated from the elastic parameter k in the dance characteristic, and then the viscosity parameter c in the machine impedance characteristic is normalized by the elastic parameter k, and the skin is expressed by the BMI value. Calculation / control means for correcting and estimating age,
Display means for displaying the skin age estimated by the calculation / control means numerically;
An apparatus for measuring skin age, comprising:
前記演算・制御手段は、被測定対象となる肌の被計測面を、バネk及びダンパーcを並列結合したものを、直列に2段結合したモデルで表し、該モデルを利用して前記質量m、バネk、ダンパーcからなる各機械インピーダンス特性を算出してなる請求項4記載の肌年齢の測定装置。   The calculation / control means represents the surface to be measured of the skin to be measured as a model in which a spring k and a damper c are connected in parallel and connected in two stages in series, and the mass m is calculated using the model. The skin age measuring apparatus according to claim 4, wherein each mechanical impedance characteristic comprising a spring k and a damper c is calculated. ノズルを備えた気体噴出装置、レーザー変位測定装置、制御・演算装置および表示装置を備え、気体噴出装置は、ノズルを、被測定対象となる肌に選定した被計測面に向け近接させて配置することができるとともに、ノズルを電磁弁を備えた定圧気体供給経路に接続しており、レーザー変位測定装置は前記被計測面における肌の変位量を検出して制御・演算装置に伝達するものであり、制御・演算装置は、前記電磁弁を設定した時間で開閉するとともに、肌に対する定圧気体の印加力(f)と前記レーザー測定装置から電磁弁の「開」状態に同期して取り込む被計測面における肌の検出変位量(x)とから4要素モデルに基づいた下記数式の計算を行って機械インピーダンスを推定する演算機能と、推定した4要素による機械インピーダンスのパラメーターから選択したいずれかのパラメーターを被計測面における肌の粘弾性特性とし、選択したパラメーターと対応させてあらかじめ記憶させた年齢の対応テーブルとを対比して最も近似するパラメーター値に対応した年齢を選択する演算機能を備え、選択した対応年齢を表示装置に表示することを特徴とした肌年齢測定装置。
Figure 2007159798
A gas ejection device including a nozzle, a laser displacement measurement device, a control / calculation device, and a display device are provided, and the gas ejection device is arranged with the nozzle close to a measurement surface selected for the skin to be measured. The nozzle is connected to a constant pressure gas supply path equipped with a solenoid valve, and the laser displacement measuring device detects the amount of skin displacement on the surface to be measured and transmits it to the control / calculation device. The control / calculation device opens and closes the solenoid valve at a set time, and captures the synchronized pressure of the constant pressure gas to the skin (f) and the “open” state of the solenoid valve from the laser measuring device. The calculation function of estimating the mechanical impedance by calculating the following mathematical formula based on the four-element model from the detected displacement (x) of the skin, and the mechanical impedance of the estimated four elements One of the parameters selected from the parameters is used as the viscoelastic property of the skin on the measurement surface, and the age corresponding to the closest parameter value is compared with the age correspondence table stored in advance corresponding to the selected parameter. A skin age measuring device comprising a calculation function for selecting and displaying a selected corresponding age on a display device.
Figure 2007159798
電磁弁を備えた定圧気体供給経路は、圧縮気体源から圧力レギュレータ、バッファタンクを経て電磁弁に接続されていることを特徴とした請求項6に記載の肌年齢測定装置。
The skin age measuring apparatus according to claim 6, wherein the constant pressure gas supply path including the electromagnetic valve is connected to the electromagnetic valve from a compressed gas source through a pressure regulator and a buffer tank.
JP2005359724A 2005-12-14 2005-12-14 Method and apparatus for measuring skin age Expired - Fee Related JP4583296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005359724A JP4583296B2 (en) 2005-12-14 2005-12-14 Method and apparatus for measuring skin age

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005359724A JP4583296B2 (en) 2005-12-14 2005-12-14 Method and apparatus for measuring skin age

Publications (2)

Publication Number Publication Date
JP2007159798A true JP2007159798A (en) 2007-06-28
JP4583296B2 JP4583296B2 (en) 2010-11-17

Family

ID=38243371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005359724A Expired - Fee Related JP4583296B2 (en) 2005-12-14 2005-12-14 Method and apparatus for measuring skin age

Country Status (1)

Country Link
JP (1) JP4583296B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110026321A (en) * 2009-09-07 2011-03-15 (주)아모레퍼시픽 Method and kit for assessment of the neck skin age
JP2012251844A (en) * 2011-06-02 2012-12-20 Shimadzu Corp Material testing machine
KR101484026B1 (en) 2013-06-13 2015-01-19 국립암센터 Apparatus for estimating elasticity of skin
WO2015076617A1 (en) * 2013-11-22 2015-05-28 (주)아모레퍼시픽 Device and method for predicting skin age by using quantifying means
WO2016002432A1 (en) * 2014-06-30 2016-01-07 株式会社トプコン Apparatus for evaluating skin conditions
JP2016507056A (en) * 2013-02-06 2016-03-07 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Power generation system and method using VES charge storage energy
USD788748S1 (en) 2016-04-07 2017-06-06 Samsung Electronics Co., Ltd Television
JP2017221543A (en) * 2016-06-17 2017-12-21 学校法人早稲田大学 Intra-tissue fat detection system, intra-tissue fat measuring device, and program
JP2020142061A (en) * 2019-03-01 2020-09-10 ポーラ化成工業株式会社 Skin analysis method, skin analysis system and skin analysis program
JP2021040792A (en) * 2019-09-09 2021-03-18 ポーラ化成工業株式会社 Method, device and program for estimating obesity level, and method, device and program for estimating viscoelasticity of subcutaneous tissue or oxygen level of whole body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10314122A (en) * 1997-05-14 1998-12-02 Shiseido Co Ltd Sensor incorporating vibration exciter for measuring dynamic characteristic of biological surface part
JP2004108794A (en) * 2002-09-13 2004-04-08 Kao Corp Method for evaluating surface characteristic against stress

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10314122A (en) * 1997-05-14 1998-12-02 Shiseido Co Ltd Sensor incorporating vibration exciter for measuring dynamic characteristic of biological surface part
JP2004108794A (en) * 2002-09-13 2004-04-08 Kao Corp Method for evaluating surface characteristic against stress

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110026321A (en) * 2009-09-07 2011-03-15 (주)아모레퍼시픽 Method and kit for assessment of the neck skin age
KR101633345B1 (en) 2009-09-07 2016-06-28 (주)아모레퍼시픽 Method and Kit for assessment of the neck skin age
JP2012251844A (en) * 2011-06-02 2012-12-20 Shimadzu Corp Material testing machine
JP2016507056A (en) * 2013-02-06 2016-03-07 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Power generation system and method using VES charge storage energy
KR101484026B1 (en) 2013-06-13 2015-01-19 국립암센터 Apparatus for estimating elasticity of skin
WO2015076617A1 (en) * 2013-11-22 2015-05-28 (주)아모레퍼시픽 Device and method for predicting skin age by using quantifying means
CN105745657A (en) * 2013-11-22 2016-07-06 株式会社爱茉莉太平洋 Device and method for predicting skin age by using quantifying means
WO2016002432A1 (en) * 2014-06-30 2016-01-07 株式会社トプコン Apparatus for evaluating skin conditions
USD788748S1 (en) 2016-04-07 2017-06-06 Samsung Electronics Co., Ltd Television
JP2017221543A (en) * 2016-06-17 2017-12-21 学校法人早稲田大学 Intra-tissue fat detection system, intra-tissue fat measuring device, and program
JP2020142061A (en) * 2019-03-01 2020-09-10 ポーラ化成工業株式会社 Skin analysis method, skin analysis system and skin analysis program
JP7321951B2 (en) 2019-03-01 2023-08-07 ポーラ化成工業株式会社 SKIN ANALYSIS METHOD, SKIN ANALYSIS SYSTEM AND SKIN ANALYSIS PROGRAM
JP2021040792A (en) * 2019-09-09 2021-03-18 ポーラ化成工業株式会社 Method, device and program for estimating obesity level, and method, device and program for estimating viscoelasticity of subcutaneous tissue or oxygen level of whole body
JP7428460B2 (en) 2019-09-09 2024-02-06 ポーラ化成工業株式会社 Obesity level estimation method, estimation device and estimation program, and estimation method, estimation device and estimation program of subcutaneous tissue viscoelasticity or whole body oxygen level

Also Published As

Publication number Publication date
JP4583296B2 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
JP4583296B2 (en) Method and apparatus for measuring skin age
US8758271B2 (en) Nonlinear system identification techniques and devices for discovering dynamic and static tissue properties
EP2910895B1 (en) Coordinate measuring machine and method for calculating correction matrix by coordinate measuring machine
US9265461B2 (en) Identification techniques and device for testing the efficacy of beauty care products and cosmetics
US8655602B2 (en) Hardness test method, hardness tester, and computer-readable storage medium storing program
US11134852B2 (en) Pressure pulse wave detector and biometric information measurement device
US11141074B2 (en) Pulse wave detector, biological information measurement device, pulse wave detection method and storage medium
CN104887195A (en) Vascular endothelial function inspection apparatus
JP6040915B2 (en) Respiratory function testing device and program
JP4154720B2 (en) Measuring device for mechanical properties of viscoelastic surface
JP7252863B2 (en) Abnormal location evaluation system for inspection device and method for evaluating abnormal location of inspection device
JP2009232990A (en) Apparatus and program for evaluating condition
US9055893B2 (en) Degree of hardness measurement system and degree of hardness measurement method
US20180085016A1 (en) Upper limb multi-joint impedance measurement method and apparatus using the same
JP5660608B2 (en) Dynamic knee joint diagnosis device
JP6506726B2 (en) Biological information acquisition device
JP2009052911A (en) Physical property measuring instrument and physical property measuring method
JP5632877B2 (en) Center of gravity measurement system
US20220082462A1 (en) Load estimation apparatus, method and non-transitory computer-readable storage medium
JP2018146572A (en) Viscoelasticity measuring apparatus
Yamazaki et al. Force Sensing Based on Nail Deformation for Measurement of Fingertip Force in Detailed Work
CN112839570A (en) Skin evaluation method and skin evaluation device
US10806410B2 (en) Method, arrangement, computer program product and computer-readable medium for automatically determining patient weight with a patient positioning device
CN113811238A (en) Sphygmomanometer, sphygmomanometer control method, and method for detecting effective pulse wave
JP6440157B2 (en) Conversation evaluation apparatus, conversation evaluation system, and conversation evaluation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100831

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees