JP2017220656A - Air-permeable packing - Google Patents

Air-permeable packing Download PDF

Info

Publication number
JP2017220656A
JP2017220656A JP2016123959A JP2016123959A JP2017220656A JP 2017220656 A JP2017220656 A JP 2017220656A JP 2016123959 A JP2016123959 A JP 2016123959A JP 2016123959 A JP2016123959 A JP 2016123959A JP 2017220656 A JP2017220656 A JP 2017220656A
Authority
JP
Japan
Prior art keywords
gas
melting point
sealed container
packing
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016123959A
Other languages
Japanese (ja)
Other versions
JP2017220656A5 (en
JP6739027B2 (en
Inventor
聖一 斎
Seiichi Sai
聖一 斎
邦年 睦月
Kunitoshi Mutsuki
邦年 睦月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mutsuki Electric KK
Original Assignee
Mutsuki Electric KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mutsuki Electric KK filed Critical Mutsuki Electric KK
Priority to JP2016123959A priority Critical patent/JP6739027B2/en
Publication of JP2017220656A publication Critical patent/JP2017220656A/en
Publication of JP2017220656A5 publication Critical patent/JP2017220656A5/ja
Application granted granted Critical
Publication of JP6739027B2 publication Critical patent/JP6739027B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air-permeable packing hardly permitting transmission of moisture and readily permitting transmission of gas, for use in an air-tight container in which gas is generated inside and the generated gas at a high temperature invites a pressure rise in the air-tight container, to discharge the generated gas out of the air-tight container.SOLUTION: In an air-permeable packing, low melting point elements 3A are dispersed in gas permeating base material 3D to cause the low melting point elements 3A to prevent permeation of moisture and gas and to melt the low melting point elements 3A at or above their melting point thereby to cause a gas bypass route to be created within the gas permeating base material 3D by the gas pressure. This air-permeable packing 3 is arranged in an air-tight container body 1 having minute ventilation holes 2 with the result that the air-permeable packing is given functions to have a state in which the ventilation holes 2 is blocked by not allowing the low melting point elements 3A to be molten and a state in which the ventilation holes 2 are opened by the gas bypass route generated at or above the melting point and temperature.SELECTED DRAWING: Figure 1

Description

本発明は、水分を透過させにくくガスを透過させやすくする通気性パッキングに関する。The present invention relates to a breathable packing that makes it difficult for moisture to permeate and facilitates gas permeation.

内部にガスが発生し、高温になるとガスの発生が盛んになってその発生したガスにより密閉容器内の圧力が上昇する密閉容器にあっては、密閉容器内の圧力により密閉容器が膨張し、密閉容器が破裂することがある。このような内部にガスが発生し、密閉容器が高温になるとガスの発生が盛んになってその発生したガスにより密閉容器内の圧力が上昇する密閉容器として、例えば、電解液を有するコンデンサやリチウム電池などの密閉型電気化学デバイスにあっては、電解液が密閉容器外に漏れ出ないように密閉されているので、充放電サイクルを繰り返したり、高温で放置したり、短絡・過充電・逆充電などにより電解液が分解されて、その密閉容器内で水素ガスや炭酸ガスなどのガスが発生し、そのガスが密閉容器内に蓄積されることにより急激に内圧が上昇して、その密閉容器が膨張したり、破裂したりするおそれがあるので、発生したガスが密閉容器内に蓄積しすぎないようにその発生したガスを適宜、密閉容器外に排出する通気性パッキングが望まれている。また、電解液の代わりに固体電解質を密閉容器に密閉収容したリチウム電池にあっても、密閉容器は外部からの水分およびガス透過させないようにしているので、密閉容器内の固体電解質に含まれる溶媒のガスが発生してそのガスが密閉容器内に蓄積されることにより急激に内圧が上昇して、その密閉容器が膨張したり、破裂したりするおそれがあるので、発生したガスが密閉容器内に蓄積しすぎないようにその発生したガスを適宜、密閉容器外に排出する通気性パッキングが望まれている。Gas is generated inside, and when the temperature rises, the generation of gas becomes active and the pressure in the sealed container rises due to the generated gas, and the sealed container expands due to the pressure in the sealed container, Sealed container may burst. As such a sealed container in which gas is generated inside and the pressure of the sealed container increases when the temperature of the sealed container becomes high and the pressure in the sealed container increases due to the generated gas, for example, a capacitor having an electrolyte or lithium In sealed electrochemical devices such as batteries, the electrolyte is sealed so that it does not leak out of the sealed container, so it can be repeatedly charged and discharged, left at high temperatures, shorted, overcharged, reversed The electrolytic solution is decomposed by charging, etc., and gas such as hydrogen gas or carbon dioxide gas is generated in the sealed container. The gas is accumulated in the sealed container, so that the internal pressure increases rapidly, and the sealed container Therefore, a breathable packing that discharges the generated gas to the outside of the sealed container appropriately so that the generated gas does not accumulate excessively in the sealed container is desired. It has been. In addition, even in a lithium battery in which a solid electrolyte is hermetically housed in a sealed container instead of an electrolyte, the sealed container prevents moisture and gas from passing through from outside, so the solvent contained in the solid electrolyte in the sealed container As the gas is generated and accumulated in the sealed container, the internal pressure suddenly rises and the sealed container may expand or rupture. Therefore, there is a demand for a breathable packing that appropriately discharges the generated gas to the outside of the sealed container so that it does not accumulate excessively.

ガスが発生する液体又は固体を内容物とする容器の破裂防止に有効であり、しかも容器が転倒して液体である内容物により濡らされても非透液性および通気性が長期にわたって損なわれず、且つ内容物が洩れ出すことのない通気性パッキングとしては、特許文献1にて、極限粘度が3dl/g以上を有するポリオレフィンからなる微多孔フィルムを、気体の通路を形成したポリオレフィンからなるパッキング基材の少なくとも片面に貼合せて、ガスが発生する液体又は固体を内容物とする容器のキャップのパッキングに用いた際に、発生するガスは逃がすが、液体又は固体は洩らさないようにした通気性パッキングが提案されている。It is effective in preventing the bursting of containers containing gas or liquid or solid content, and even if the container falls over and gets wet with liquid contents, the liquid-imperviousness and air permeability are not impaired over a long period of time. In addition, as a breathable packing which does not leak the contents, in Patent Document 1, a packing substrate made of a polyolefin having a microporous film made of a polyolefin having an intrinsic viscosity of 3 dl / g or more and a gas passage is formed. Ventilation that prevents gas or liquid from leaking when it is used for packing caps of containers that contain gas or liquid or solid as a content. Sex packing has been proposed.

しかし、特許文献1の通気性パッキングにおいては、気体流路を有するポリオレフィンからなるパッキング基材に積層する微多孔フィルムについては、非透液性および通気性とのバランスをもたせるように空孔率、透気度、平均孔径を設定作業が必要である。However, in the breathable packing of Patent Document 1, the porosity of the microporous film laminated on the packing substrate made of polyolefin having a gas flow path so as to have a balance between non-liquid permeability and breathability, It is necessary to set the air permeability and average pore diameter.

また、電解液を有するコンデンサやリチウム電池などの密閉型電気化学デバイスとしては、特許文献2にて、電解コンデンサの封口板に表裏を貫通する貫通孔を形成するとともに、その貫通孔を発泡シリコンゴムで密封し、電解コンデンサの内部で発生したガスのみを透過させ、外部に放出(排出)させて、内圧の上昇を緩和して安全弁動作を遅らせることができ、電解コンデンサの寿命特性の向上を図ることが提案されている。Further, as a sealed electrochemical device such as a capacitor having an electrolytic solution or a lithium battery, in Patent Document 2, a through-hole penetrating the front and back is formed in a sealing plate of the electrolytic capacitor, and the through-hole is formed with foamed silicon rubber. Sealed with, allows only the gas generated inside the electrolytic capacitor to permeate and discharge (exhaust) it to the outside, so that the increase of internal pressure can be mitigated and the safety valve operation can be delayed, thereby improving the life characteristics of the electrolytic capacitor It has been proposed.

しかし、特許文献2の電解コンデンサにおいては、発泡シリコンゴムはガスの透過性が高く、電解液は透過しない性質を利用しているが、電解コンデンサの内部が急激な温度上昇に伴いガスの発生が盛んになることへの配慮が必要である。すなわち高温になってガスの発生に追従してそのガスを電解コンデンサ外へ排出をしなければ、電解コンデンサの安全弁動作遅らすことができなくなることに対する配慮が必要である。However, in the electrolytic capacitor of Patent Document 2, foamed silicon rubber uses a property that gas permeability is high and electrolyte solution does not permeate, but gas is generated inside the electrolytic capacitor as the temperature rises rapidly. Consideration to become prosperous is necessary. That is, consideration must be given to the fact that the safety valve operation of the electrolytic capacitor cannot be delayed unless the gas is discharged to the outside of the electrolytic capacitor following the generation of the gas at a high temperature.

また、特許文献3にて、高温下で電池内部の気密性を低下させ電池内部で発生したガスを外部へ散逸させて電池の放電性能の劣化を防ぐために、封口ガスケットの上面と正極端子板の周縁部下面との間に融点が40から45℃となるように設定されたパラフィンを含浸したパッキングを挟み込んで耐漏液性能を向上させた乾電池が提案されている。Further, in Patent Document 3, in order to reduce the gas tightness inside the battery at high temperature and dissipate the gas generated inside the battery to the outside to prevent deterioration of the discharge performance of the battery, the upper surface of the sealing gasket and the positive terminal plate A dry battery has been proposed in which a packing impregnated with paraffin set to have a melting point of 40 to 45 ° C. is sandwiched between the lower surface of the peripheral portion and the leakage resistance is improved.

しかし、特許文献3においては、低温あるいは常温下ではパラフィンを含浸したパッキングは封口ガスケットの上面と正極端子板の周縁部下面に良好に密着して気密性は高いが、40℃以上の高温下ではこのパラフィンが溶融して流動し、パッキングと封口ガスケットの上面および正極端子板の周縁部下面の密着性が低下して電池内部に発生したガスを外部に散逸させるが、その際、溶融して流動したパラフィンが外部に流出しないようにする配慮が必要である。However, in Patent Document 3, the packing impregnated with paraffin at low temperature or normal temperature is well adhered to the upper surface of the sealing gasket and the lower surface of the peripheral edge of the positive terminal plate, and is highly airtight, but at a high temperature of 40 ° C. or higher. This paraffin melts and flows, and the adhesion between the upper surface of the packing and the sealing gasket and the lower surface of the peripheral edge of the positive terminal plate is reduced to dissipate the gas generated inside the battery. Care must be taken to prevent the paraffin from flowing out.

また、特許文献4では、密閉容器に電解液ではなく固体電解質もしくはゲル電解質が収容された薄型電池で、密閉容器本体を樹脂層および金属箔層を含む防湿性多層フィルムでできた外装材とし、熱融着または接着性樹脂により封口されてなるリチウム電池などの薄型電池が提案されている。この薄型電池、高エネルギー密度であるが故に、万が一、内部ショートや外部からの力による破壊等が起こった場合に、短時間にエネルギーを放出して電池が高温になる虞れがあり、電池内部の電解質に含まれる溶媒の蒸気圧の上昇が起こり、電池の内圧が溶媒由来のガスにより高圧になる。そこで、防湿性多層フィルムの内側の樹脂層に切り込みを入れて、電池の内圧が上昇した場合に、この切り込み部分が裂け、線状に開裂して電池内のガスを排出し電池の破裂を防ぐ安全弁を形成している。Further, in Patent Document 4, in a thin battery in which a solid electrolyte or gel electrolyte is housed in a sealed container instead of an electrolyte, the sealed container body is an exterior material made of a moisture-proof multilayer film including a resin layer and a metal foil layer, Thin batteries such as lithium batteries that have been sealed by heat sealing or adhesive resin have been proposed. Due to the high energy density of this thin battery, in the unlikely event that internal short-circuiting or destruction due to external force occurs, there is a risk that the battery will be discharged in a short time and the battery will become hot. The vapor pressure of the solvent contained in the electrolyte increases, and the internal pressure of the battery becomes higher due to the solvent-derived gas. Therefore, a cut is made in the resin layer inside the moisture-proof multilayer film, and when the internal pressure of the battery rises, this cut portion tears and breaks linearly to discharge the gas in the battery and prevent the battery from bursting. A safety valve is formed.

しかし、特許文献4では、外装材が開裂することによる安全弁を用いているので、電池の内圧が上昇して外装材の切り込み部分が裂けるにはその外装材が膨らむほど内圧が上昇する必要があり、ガス発生による電池内圧と外装材の開裂とガス排出との関連を管理して安全にガスを排出する必要がある。また、この外装材の開裂により薄型電池として適正な機能を果たさなくなる。However, in Patent Document 4, since the safety valve is used by the exterior material being cleaved, in order for the internal pressure of the battery to rise and the cut portion of the exterior material to tear, the internal pressure needs to increase as the exterior material expands. Therefore, it is necessary to safely discharge the gas by managing the relationship between the internal pressure of the battery due to gas generation, the cleavage of the exterior material, and the gas discharge. In addition, due to the cleavage of the exterior material, an appropriate function as a thin battery is not achieved.

特開2002−347821号公報Japanese Patent Laid-Open No. 2002-347821 特開2001−15391号公報JP 2001-15391 A 実開昭62−31369号公報Japanese Utility Model Publication No. 62-31369 特開平11−312505号公報JP 11-31505 A

本発明は、上記の問題点を解消するために、内部にガスが発生し、高温になるとガスの発生が盛んになってその発生したガスにより密閉容器内の圧力が上昇する密閉容器において、ガス透過基材と低融点素子を用いて、水分を透過させにくくするとともに発生したガスを密閉容器外に排出できるようにする通気性パッキングを提供することを目的とする。In order to solve the above-described problems, the present invention provides a gas container in which a gas is generated, and when the temperature becomes high, the generation of gas increases and the generated gas increases the pressure in the closed container. An object of the present invention is to provide a breathable packing that makes it difficult for moisture to permeate and allows the generated gas to be discharged out of the sealed container by using a transmissive substrate and a low melting point element.

本発明の請求項1に記載の通気性パッキングは、内部にガスが発生し高温になるとガスの発生が盛んになってその発生したガスにより密閉容器内の圧力が上昇する密閉容器に用いられ、前記密閉容器内の圧力が上昇する過程で前記ガスを前記密閉容器外に排出させる通気性パッキングであって、前記通気性パッキングはガス透過基材に低融点素子を分散させて、前記低融点素子により水分およびガスを透過させないようにするとともに前記低融点素子を融点以上の温度で溶融させてガスの圧力により前記ガス透過基材の内部にガスを透過させるガスバイパス路を発生させてなり、微細孔でできた通気孔を有する密閉容器本体に前記通気性パッキングを配設して、前記低融点素子を溶融させないで通気孔を閉塞させる状態と融点以上の温度および圧力で発生させた前記ガスバイパス路により前記通気孔を開放させる状態との機能を備えたことを特徴とする。同請求項2に記載の発明は、請求項1に記載の通気性パッキングで、前記通気性パッキングを微細孔でできた通気孔を有する密閉容器本体の内側に配設したことを特徴とする。同請求項3に記載の発明は、請求項1または2に記載の通気性パッキングで、前記ガス透過基材は不織布シートで構成したことを特徴とする。同請求項4に記載の発明は、請求項1から3の何れかひとつに記載の通気性パッキングで、前記低融点素子は低融点オレフィン化合物で構成したことを特徴とする。同請求項5に記載の発明は、請求項1から4の何れかひとつに記載の通気性パッキングで、前記微細孔でできた通気孔を有する密閉容器本体の内側に空間を介して通気性パッキングを配設して使用することを特徴とする。The air-permeable packing according to claim 1 of the present invention is used for a sealed container in which gas is generated and gas is actively generated and the pressure in the sealed container is increased by the generated gas. A gas-permeable packing that discharges the gas to the outside of the sealed container in the process of increasing the pressure in the sealed container, wherein the gas-permeable packing disperses low-melting-point elements in a gas-permeable substrate, and the low-melting-point elements The gas bypass passage that prevents the moisture and gas from permeating and melts the low melting point element at a temperature equal to or higher than the melting point and allows the gas to permeate the gas permeable substrate by the gas pressure is generated. The air-permeable packing is disposed in a sealed container body having a vent hole made of a hole to close the vent hole without melting the low melting point element, and to a temperature higher than the melting point. Characterized in that a function of a state for opening the vent by the gas bypass passage which is generated by the pressure. The invention described in claim 2 is the breathable packing according to claim 1, wherein the breathable packing is disposed inside a sealed container body having a vent hole made of fine holes. The invention described in claim 3 is the breathable packing according to claim 1 or 2, wherein the gas-permeable base material is composed of a nonwoven fabric sheet. The invention described in claim 4 is the breathable packing according to any one of claims 1 to 3, wherein the low melting point element is composed of a low melting point olefin compound. The invention according to claim 5 is the air-permeable packing according to any one of claims 1 to 4, wherein the air-permeable packing is provided inside the sealed container body having the air holes made of the fine holes via a space. It is characterized by arranging and using.

本発明の通気性パッキングは、内部にガスが発生し高温になるとガスの発生が盛んになってその発生したガスにより密閉容器内の圧力が上昇する密閉容器に用いられ、前記密閉容器内の圧力が上昇する過程で前記ガスを前記密閉容器外に排出させる通気性パッキングであって、前記通気性パッキングはガス透過基材に低融点素子を分散させて、前記低融点素子により水分およびガスを透過させないようにするとともに前記低融点素子を融点以上の温度で溶融させてガスの圧力により前記ガス透過基材の内部にガスを透過させるガスバイパス路を発生させてなり、微細孔でできた通気孔を有する密閉容器本体に前記通気性パッキングを配設して、前記低融点素子を溶融させないで通気孔を閉塞させる状態と融点以上の温度および圧力で発生させた前記ガスバイパス路により前記通気孔を開放させる状態との機能を備えることにより、通常は前記通気孔を閉鎖して水分を透過させにくくガスを透過させないようにしており、高温になってガスの発生が盛んになると前記ガスバイパス路を介して前記通気孔を開放してガスを密閉容器内に蓄積しすぎないように前記通気孔から前記ガスを密閉容器外に排出し、温度が低下すると前記ガス透過基材は前記低融点素子により水分およびガスを透過させない状態に復帰して前記通気孔を閉鎖して水分およびガスを透過させないようにすることができる。The air-permeable packing of the present invention is used in a sealed container in which gas is generated and gas is actively generated and the pressure in the sealed container rises due to the generated gas. A gas-permeable packing that discharges the gas to the outside of the hermetic container in the process of rising, wherein the gas-permeable packing disperses low-melting-point elements in a gas-permeable base material and allows moisture and gas to permeate through the low-melting-point elements. The low-melting point element is melted at a temperature equal to or higher than the melting point, and a gas bypass passage is formed to allow gas to permeate into the gas-permeable substrate by gas pressure. The air-permeable packing is disposed in a sealed container body having a structure in which the low-melting point element is closed without melting the low-melting point element, and is generated at a temperature and pressure higher than the melting point. By providing the function of opening the vent hole with the gas bypass path, the vent hole is normally closed to prevent moisture from permeating and preventing gas from permeating. When the gas becomes active, the gas vent is opened through the gas bypass passage, and the gas is discharged from the gas vent to the outside of the airtight container so that the gas does not accumulate in the airtight container. The permeable substrate can be returned to a state in which moisture and gas are not permeated by the low melting point element, and the vent hole is closed to prevent moisture and gas from permeating.

本発明の実施形態1で密閉容器本体に用いる通気性パッキングの構成を拡大した図2に示すAA断面図である。It is AA sectional drawing which expanded the structure of the air permeable packing used for an airtight container main body in Embodiment 1 of this invention shown in FIG. 図1の平面図であるIt is a top view of FIG. 本発明の実施形態1で通気性パッキングが融点以上の温度および圧力を受けた状態を示す断面図である。It is sectional drawing which shows the state which breathable packing received temperature and pressure beyond melting | fusing point in Embodiment 1 of this invention. 本発明の通気性パッキングの低融点素子の部位を拡大した断面図である。It is sectional drawing to which the site | part of the low melting point element of the air permeable packing of this invention was expanded. 図4の平面図である。FIG. 5 is a plan view of FIG. 4. 本発明の通気性パッキングで低融点素子を溶融させる実験装置の断面図である。It is sectional drawing of the experimental apparatus which fuses a low melting-point element with the air permeable packing of this invention. 本発明の低融点素子を溶融させない状態の通気性パッキングを測定顕微鏡で撮影した写真の平面図である。It is a top view of the photograph which photoed the breathability packing of the state where the low melting point element of the present invention was not melted with the measuring microscope. 本発明の低融点素子を溶融させた状態の通気性パッキングを測定顕微鏡で撮影した写真の平面図である。It is a top view of the photograph which image | photographed the air permeable packing of the state which fuse | melted the low melting point element of this invention with the measurement microscope. 本発明の通気性パッキングを使用した密閉型電気化学デバイスを示す断面図である。It is sectional drawing which shows the sealing type electrochemical device using the air permeable packing of this invention. 本発明の実施形態2で密閉容器本体に用いる通気性パッキングの構成を拡大した図11に示すBB断面図である。It is BB sectional drawing which expanded the structure of the air permeable packing used for an airtight container main body in Embodiment 2 of this invention shown in FIG. 図10の平面図である。It is a top view of FIG. 本発明の実施形態3で密閉容器本体に用いる通気性パッキングの構成を拡大した図13に示すCC断面図である。It is CC sectional drawing shown in FIG. 13 which expanded the structure of the air permeable packing used for an airtight container main body in Embodiment 3 of this invention. 図12の平面図である。FIG. 13 is a plan view of FIG. 12. 本発明の実施形態3の通気性パッキングを使用した密閉型電気化学デバイスの異なった実施形態を示す断面図である。It is sectional drawing which shows different embodiment of the sealed electrochemical device using the air permeable packing of Embodiment 3 of this invention.

(実施形態1)
図1〜図5を参照して、通気性パッキングの構成を説明する。
(Embodiment 1)
With reference to FIGS. 1-5, the structure of a breathable packing is demonstrated.

図1および図2において、1は、密閉容器本体の一部を示し、この密閉容器本体1には微細孔でできた通気孔2が形成されている。この通気孔2は密閉容器本体1の内外に貫通した直径が0.5〜100μmの断面が円形の孔でできており、水分を透過させにくくガスを透過させるように形成されている。この場合、通気孔2の設定には通気性パッキング3との組み合わせで水分を透過させにくくガスを透過させるように設定してもよい。この密閉容器本体1の内側(図1では下面)には通気性パッキング3が配設されている。この通気性パッキング3はガス透過基材3Dに融点が40〜120℃の低融点素子3Aを分散させてできている。この場合、ガス透過基材3Dとしては厚さが0.2mm程度の矩形状または円形状のシートで、上面と下面とが微小な空間で連通して水分およびガスが透過する素材で、例えば、ポリフェニレンサルファイド(PPS)樹脂、ポリプロピン(PP)樹脂やアルミニウム、ガラス繊維材でできた不織布、布、微小な多孔もしくは単孔のフィルム、ペーパなどの素材である。このガス透過基材3Dに低分子量のポリエチレン系ワックス、パラフィンや低融点オレフィン化合物などを充填して低融点素子3Aがガス透過基材3D内に分散されている。このようにしてできた通気性パッキング3は、一端が開口した有底の筒でできた支持体4の底面の部位(底部)に固着されることにより、この通気性パッキング3は支持体4の底部を構成して支持体4の内部に空間4Aが形成されている。この支持体4の形状は一端が開口し、他端の底部も開口させておいてこの底部に通気性パッキング3が固着されるように円筒状や角筒状で形成されており、その素材は、水分やガスを透過させないような金属材や合成樹脂材でできている。この支持体4は通気性パッキング3が空間4Aを介して通気孔2と連通して露出するようにして密閉容器本体1の内側(図1では下面)に固着されている。また、密閉容器本体1の内側には保護シート5が配置されている。この保護シート5はガス透過基材3Dの素材と同様な素材でできた厚さ0.2mm程度の矩形状または円形状でできており、図1においては、保護シート5は密閉容器本体1の内側(図1では下面)で通気孔2を閉塞するように固着されており、その結果、この保護シート5にて支持体4の一端の開口した部位(開口端)が閉塞されていることを示す。この場合、保護シート5を予め支持体4の前記開口端を閉塞するように固着させておいて、支持体4を保護シート5とともに密閉容器本体1の内側に固着させてもよい。このようにして、通気性パッキング3が密閉容器本体1の内側に空間4Aを介して固着された通気性パッキングブロック10が得られ、通気性パッキング3はガス透過基材3Dに低融点素子3Aを分散させてできているので、この低融点素子3Aにより水分およびガスを透過させないようにした状態となる。なお、保護シート5は溶融した低融点素子3Aが密閉本体1の通気孔2に飛散するのを保護することに有用であるが、省いてもよい。1 and 2, reference numeral 1 denotes a part of the sealed container body, and the sealed container body 1 has a ventilation hole 2 made of fine holes. The vent hole 2 is a hole having a circular cross section with a diameter of 0.5 to 100 μm that penetrates the inside and outside of the sealed container body 1, and is formed so as to hardly allow moisture to permeate. In this case, the air holes 2 may be set such that the gas is permeated less easily in combination with the air-permeable packing 3. An air-permeable packing 3 is disposed on the inner side (the lower surface in FIG. 1) of the sealed container body 1. This breathable packing 3 is made by dispersing a low melting point element 3A having a melting point of 40 to 120 ° C. in a gas permeable substrate 3D. In this case, the gas-permeable base material 3D is a rectangular or circular sheet having a thickness of about 0.2 mm, and a material through which moisture and gas permeate through a minute space between the upper surface and the lower surface. It is a material such as polyphenylene sulfide (PPS) resin, polypropyne (PP) resin, aluminum, nonwoven fabric made of glass fiber material, cloth, fine porous or single-hole film, and paper. The gas permeable substrate 3D is filled with a low molecular weight polyethylene wax, paraffin, a low melting point olefin compound or the like, and the low melting point element 3A is dispersed in the gas permeable substrate 3D. The breathable packing 3 made in this way is fixed to the bottom portion (bottom) of the support 4 made of a bottomed cylinder with one end open, so that the breathable packing 3 is attached to the support 4. A space 4 </ b> A is formed inside the support 4 so as to constitute the bottom. The support 4 is formed in a cylindrical shape or a rectangular tube shape so that one end is open and the bottom of the other end is opened and the breathable packing 3 is fixed to the bottom. It is made of a metal material or a synthetic resin material that does not allow moisture or gas to permeate. The support 4 is fixed to the inner side (lower surface in FIG. 1) of the sealed container body 1 so that the air-permeable packing 3 is exposed through the space 4A in communication with the air holes 2. A protective sheet 5 is disposed inside the sealed container body 1. The protective sheet 5 is made of a material similar to the material of the gas permeable substrate 3D and has a rectangular or circular shape with a thickness of about 0.2 mm. In FIG. It is fixed so as to close the vent hole 2 on the inner side (lower surface in FIG. 1), and as a result, the opening portion (opening end) of one end of the support 4 is blocked by this protective sheet 5. Show. In this case, the protective sheet 5 may be fixed in advance so as to close the open end of the support 4, and the support 4 may be fixed together with the protective sheet 5 to the inside of the sealed container body 1. In this way, a breathable packing block 10 is obtained in which the breathable packing 3 is fixed to the inside of the sealed container body 1 via the space 4A. The breathable packing 3 has the low melting point element 3A on the gas permeable substrate 3D. Since they are dispersed, the low melting point element 3A is in a state where moisture and gas are not allowed to pass therethrough. The protective sheet 5 is useful for protecting the melted low melting point element 3A from scattering into the vent hole 2 of the sealed body 1, but may be omitted.

次に、図3において、密閉容器本体1の内側に配設された通気性パッキング3が密閉容器内で融点以上の温度および圧力Pを受けると、低融点素子3Aが融点以上の温度で溶融し圧力Pを受けてガス透過基材3Dの上面および下面にそれぞれ低融点素子除去部3Bおよび3Cが形成される。この低融点素子除去部3Bと低融点素子除去部3Cとはガス透過基材3Dの上面および下面が連通していることを示し、ガス透過基材3Dの内部にガスを透過させるガスバイパス路を発生させて、通気孔2を開放させる状態となった通気性パッキングブロック10が得られる。Next, in FIG. 3, when the air-permeable packing 3 disposed inside the sealed container body 1 is subjected to a temperature and pressure P above the melting point in the sealed container, the low melting point element 3A melts at a temperature above the melting point. Under the pressure P, low melting point element removing portions 3B and 3C are formed on the upper and lower surfaces of the gas permeable substrate 3D, respectively. The low melting point element removing unit 3B and the low melting point element removing unit 3C indicate that the upper surface and the lower surface of the gas permeable base material 3D communicate with each other, and a gas bypass passage that allows gas to pass through the gas permeable base material 3D. Thus, the air-permeable packing block 10 that is in a state of opening the air holes 2 is obtained.

図4および5は、通気性パッキング3の低融点素子3Aの部位の一部を拡大して示し、通気性パッキング3が密閉容器内で融点以上の温度および圧力Pを受けると、低融点素子3Aの一部が融点以上の温度および圧力で上述のとおり、低融点素子除去部3Bおよび3Cとなり、ガス透過基材3Dの内部にガスバイパス路を発生させる状態になることを示す。4 and 5 show a part of the low melting point element 3A of the breathable packing 3 in an enlarged manner. When the breathable packing 3 receives a temperature and a pressure P higher than the melting point in the sealed container, the low melting point element 3A is shown. As described above, a part of the low-melting-point element removal portions 3B and 3C at a temperature and a pressure equal to or higher than the melting point, and a gas bypass path is generated inside the gas-permeable base material 3D.

図6は、ポリフェニレンサルファイド(PPS)不織布でできたガス透過基材3Dにパラフィンワックス低融点素子3Aを浸透させ厚さ0.2mmのフィルムを通気性パッキング3として用いて、この通気性パッキング3の低融点素子3Aを溶融させて低融点素子除去部3Bおよび3Cを形成する実験装置を示す。この実験装置では、温度が80℃で、圧力Pが0.1MPaGとして設定して、その加熱・加圧空気を下面から上面に向かって送り、通気性パッキング3の上面を測定顕微鏡(株式会社にニコン製測定顕微鏡MM−800)Cを用いて通気性パッキング3を観察した。FIG. 6 shows a gas permeable base material 3D made of a polyphenylene sulfide (PPS) nonwoven fabric, in which a paraffin wax low melting point element 3A is infiltrated, and a film having a thickness of 0.2 mm is used as the air permeable packing 3. An experimental apparatus is shown in which the low melting point element 3A is melted to form the low melting point element removal portions 3B and 3C. In this experimental apparatus, the temperature was set to 80 ° C., the pressure P was set to 0.1 MPaG, the heated / pressurized air was sent from the lower surface to the upper surface, and the upper surface of the breathable packing 3 was The breathable packing 3 was observed using a Nikon measuring microscope MM-800) C.

図7は低融点素子3Aが溶融しない状態の通気性パッキング3の上面を測定顕微鏡で観察して得られた写真図で、図8は低融点素子3Aが溶融して低融点素子除去部3Bが形成された状態の通気性パッキング3の上面を測定顕微鏡で観察して得られた写真図である。図8においては、通気性パッキング3の上面に破線○印で囲んだ3箇所のガスバイパス路となる微小径の低融点素子除去部3Bを確認できる。FIG. 7 is a photograph obtained by observing the upper surface of the breathable packing 3 in a state where the low melting point element 3A is not melted with a measuring microscope. FIG. 8 is a view showing that the low melting point element 3A is melted and the low melting point element removing portion 3B is formed. It is the photograph figure obtained by observing the upper surface of the air-permeable packing 3 of the formed state with a measurement microscope. In FIG. 8, low-melting-point element removal portions 3 </ b> B having a small diameter, which are three gas bypass passages surrounded by a broken line ○ on the upper surface of the air-permeable packing 3, can be confirmed.

(通気性パッキングの水分不透過とガス透過作用の原理)
図1から図5において、通気性パッキングは水分を透過させにくくするように微細孔でできた通気孔2を有する密閉容器本体1に適用し、この通気性パッキングはガス透過基材3Dに低融点素子3Aが分散されているので、この低融点素子3Aが溶融しない温度すなわち常温では低融点素子3Aがガス透過基材3Dの微細孔もしくは隙間を閉塞して水分およびガスを透過させないようにするガスバリヤとなって、ガス透過基材3Dは密閉容器本体1の通気孔2を閉塞させ、水分およびガスを通気孔2から透過させにくくするように作用する。この作用により、密閉容器は、常温では水分およびガスを透過させにくくしている。次に、密閉容器本体1が低融点素子3Aの溶融温度すなわち高温になると、この低融点素子3Aが溶融状態となりガス透過基材3Dの微細孔もしくは隙間から低融点素子3Aの閉塞作用が弱くなり、この状態でガス圧を受けるとそのガス圧によりガス透過基材3Dの微細孔もしくは隙間から低融点素子3Aが除去される部位が発生し、この部位(低融点素子除去部)によりガス透過基材3Dの微細孔もしくは隙間が開放されてガス透過基材3Dにガスバイパス路が形成されて、ガス透過基材3Dにより閉塞されていた密閉容器本体1の通気孔2を開放させ、通気孔2から水分を透過させにくくガスを透過させるように作用する。次に、密閉容器本体1が低融点素子3Aの溶融しない温度に低下すると、低融点素子3Aがガス透過基材3Dの微細孔もしくは隙間を閉塞してガスバリヤとなって、ガス透過基材3Dは密閉容器本体1の通気孔2を閉塞させ、水分およびガスを通気孔2から透過させにくくするように状態に復帰する。このように通気性パッキングを密閉容器本体1の温度や内圧によりガス透過が可能となる。温度によりガスを透過させない状態とガスを透過させる状態との開閉サイクルが得られる。
(Principle of moisture impermeability and gas permeation of breathable packing)
In FIG. 1 to FIG. 5, the air-permeable packing is applied to the closed container body 1 having the air holes 2 made of fine holes so as to make it difficult to permeate moisture. Since the element 3A is dispersed, a gas barrier that prevents the low-melting point element 3A from blocking moisture and gas by closing the micropores or gaps of the gas-permeable substrate 3D at a temperature at which the low-melting point element 3A does not melt, that is, at room temperature. Thus, the gas permeable base material 3D acts to block the vent hole 2 of the sealed container body 1 and make it difficult for moisture and gas to permeate through the vent hole 2. By this action, the sealed container makes it difficult for moisture and gas to permeate at room temperature. Next, when the airtight container body 1 reaches the melting temperature of the low melting point element 3A, that is, a high temperature, the low melting point element 3A is in a molten state, and the blocking action of the low melting point element 3A is weakened through the fine holes or gaps of the gas permeable substrate 3D. When the gas pressure is received in this state, a portion where the low melting point element 3A is removed from the fine hole or gap of the gas permeable substrate 3D is generated by the gas pressure, and the gas permeable group is generated by this portion (low melting point element removing portion). A fine hole or gap in the material 3D is opened to form a gas bypass path in the gas permeable base material 3D, and the vent hole 2 of the sealed container body 1 closed by the gas permeable base material 3D is opened. It acts to make gas difficult to permeate from the gas. Next, when the airtight container body 1 is lowered to a temperature at which the low melting point element 3A does not melt, the low melting point element 3A closes the micropores or gaps of the gas permeable base material 3D to form a gas barrier. The air vent 2 of the sealed container body 1 is closed, and the state is restored so that moisture and gas are hardly transmitted through the air vent 2. In this way, the gas can be transmitted through the air-permeable packing according to the temperature and internal pressure of the sealed container body 1. Depending on the temperature, an open / close cycle between a state in which gas is not permeated and a state in which gas is permeated is obtained.

(通気性パッキングの利用)
図9は、本発明の通気性パッキングが用いられる密閉容器本体として、電極素子および電解液を有する密閉型電気化学デバイスの密閉容器に形成して、水蒸気などの水分を透過させないようにして密閉容器内に発生したガスを密閉容器外に排出しやすくする密閉型電気化学デバイスへの利用例を示す。
(Use of breathable packing)
FIG. 9 shows a sealed container body in which the air-permeable packing of the present invention is used, formed in a sealed container of a sealed electrochemical device having an electrode element and an electrolytic solution so as not to allow moisture such as water vapor to permeate. An example of use in a sealed electrochemical device that facilitates discharge of gas generated inside to a sealed container will be described.

図9において、密閉容器本体1となる蓋体に一対の電極端子100、100を並設した密閉型電気化学デバイスを示し、この密閉型電気化学デバイスは電解液104を有するコンデンサやリチウム電池などで、円板(楕円を含む)状や矩形状の合成樹脂材でできた蓋体(密閉容器本体1)が開口端のある円筒状または直方体状の箱型ケース11を閉蓋するように接合部材12で接合された密閉型電気化学デバイスの密閉容器を構成する。この密閉容器の内部には電極端子100の接続部101、この接続部101と電気的に接続されるリード102、このリード102と電機接続される電極素子部103および電解液104が密閉されて収容されている。このように、電極素子部103および電解液104を有するコンデンサやリチウム電池などの密閉型電気化学デバイスにあっては、電解液104が外に漏れ出ないように密閉されているので、充放電サイクルを繰り返したり、高温で放置したり、短絡・過充電・逆充電などにより電解液8が分解されて、酸素や二酸化炭素などのガスが発生し、そのガスが蓄積されることにより急激に内圧が上昇して、密閉容器本体1となる蓋体や箱型ケース11が膨れたり、破裂したりするおそれがある。そこで、発生したガスが密閉容器内に蓄積しすぎないように蓋体(密閉容器本体1に通気孔2を形成しこの蓋体の下面に配置した通気性パッキングブロック10を用いて、水蒸気などの水分を透過させないようにするとともに、密閉容器内に発生したガスを適宜、通気孔2から密閉容器本体1となる蓋体の外に排出してガスが密閉容器内に蓄積しつづけることを防ぐことができる。なお、上記密閉型電気化学デバイスの密閉容器には図示しないが、密閉容器内の高圧で密閉容器内を開放してガスを排出させる安全弁を併置させてもよい。FIG. 9 shows a sealed electrochemical device in which a pair of electrode terminals 100 and 100 are arranged side by side on a lid that becomes the sealed container body 1, and this sealed electrochemical device is a capacitor or a lithium battery having an electrolytic solution 104. A joining member such that a lid (sealed container body 1) made of a synthetic resin material having a disc shape (including an ellipse) or a rectangular shape closes a cylindrical or rectangular box-shaped case 11 having an open end. 12 constitutes a sealed container of the sealed electrochemical device joined together. Inside the sealed container, the connection portion 101 of the electrode terminal 100, the lead 102 electrically connected to the connection portion 101, the electrode element portion 103 electrically connected to the lead 102 and the electrolyte 104 are sealed and accommodated. Has been. As described above, in a sealed electrochemical device such as a capacitor or a lithium battery having the electrode element portion 103 and the electrolytic solution 104, the electrolytic solution 104 is hermetically sealed so as not to leak out. Repeatedly, left at high temperature, or the electrolyte solution 8 is decomposed by short circuit, overcharge, reverse charge, etc., and gas such as oxygen and carbon dioxide is generated, and the internal pressure rapidly increases due to accumulation of the gas. There is a possibility that the lid body and the box-shaped case 11 that will become the sealed container body 1 will rise or rupture. In order to prevent the generated gas from accumulating excessively in the sealed container, a lid (the ventilating packing block 10 formed on the lower surface of the lid body with the vent hole 2 formed in the sealed container body 1 and the like) is used. Preventing moisture from permeating and preventing the gas generated in the sealed container from being appropriately discharged from the vent hole 2 to the outside of the lid as the sealed container body 1 and continuing to accumulate in the sealed container. Although not shown in the figure, the sealed container of the above-mentioned sealed electrochemical device may be provided with a safety valve for releasing the gas by opening the sealed container at a high pressure in the sealed container.

(実施形態2)
図10および11は、実施形態1で説明した通気性パッキングで、水分不透過とガス透過作用の原理にもとづき、通気性パッキングを密閉容器本体に配置させる異なった構成を示す。
(Embodiment 2)
10 and 11 show different configurations in which the air-permeable packing described in the first embodiment is arranged in the airtight container body based on the principle of moisture impermeability and gas permeation.

図10および11において、実施形態1と同様な密閉容器本体1の貫通孔でできた通気孔2を有し、この通気孔2には内側(図11では下部)に径大な空間2Aが形成されている。密閉容器本体1の通気孔2の上面と下面にはそれぞれ、保護シート6、7が固着されている。これら保護シート6、7の形状は、厚さ0.2mm程度の矩形状または円形状で、その素材は実施形態1に示す保護シート5のようにガス透過基材3Dの素材と同様な素材でできている。また、この空間2Aには通気性パッキング3が配設されており、この通気性パッキング3の上面には通気孔2と離間し、下面には保護シート7と離間している。この場合、保護シート6は通気孔2から溶融した低融点素子3Aが密閉本体1の外部(図10では上部)に飛散するのを保護し、保護シート7は通気性パッキング3が密閉容器の内部の電解液(図1では密閉容器本体1の下部の電解液)に浸漬されるのを保護することに有用であるが、省いてもよい。10 and 11, a vent hole 2 made of a through hole of the sealed container main body 1 similar to that of the first embodiment is provided, and a space 2A having a large diameter is formed inside (lower part in FIG. 11). Has been. Protective sheets 6 and 7 are fixed to the upper and lower surfaces of the vent hole 2 of the sealed container main body 1, respectively. The shape of these protective sheets 6 and 7 is a rectangular or circular shape with a thickness of about 0.2 mm, and the material thereof is the same material as the material of the gas permeable substrate 3D like the protective sheet 5 shown in the first embodiment. is made of. In addition, a breathable packing 3 is disposed in the space 2A. The breathable packing 3 is spaced from the vent hole 2 on the upper surface and spaced from the protective sheet 7 on the lower surface. In this case, the protective sheet 6 protects the low-melting point element 3A melted from the vent hole 2 from splashing outside the sealed body 1 (upper part in FIG. 10), and the protective sheet 7 has the breathable packing 3 inside the sealed container. This is useful for protecting immersion in the electrolyte solution (the electrolyte solution in the lower part of the sealed container body 1 in FIG. 1), but may be omitted.

このようにして、通気性パッキングブロック10が得られる。この場合、通気性パッキング3は実施形態1と同様な素材でできており、密閉容器本体1の厚さは大きくなるが、その構成は簡素化ができる。In this way, a breathable packing block 10 is obtained. In this case, the air-permeable packing 3 is made of the same material as that of the first embodiment, and the thickness of the sealed container body 1 is increased, but the configuration can be simplified.

(実施形態3)
図12および13は、実施形態1で説明した通気性パッキングの水分不透過とガス透過作用の原理にもとづき、通気性パッキングを密閉容器本体に配置させる異なった構成を示す。
(Embodiment 3)
12 and 13 show different configurations in which the breathable packing is arranged in the sealed container body based on the principle of moisture impermeability and gas permeation of the breathable packing described in the first embodiment.

図12および13において、密閉容器本体1は特許文献4のようなポリプロピレン樹脂等の熱融着樹脂でできた内層1Aとアルミニウム等の金属箔層1Bとポリエチレンテレフタレート樹脂等でできたが外層1Cとを積層した防湿性多層フィルムでできている。この密閉容器本体1には、外層1Cと金属箔層1Bとを貫通するライン状の切込み2Bとこの切込み2Bに連通して内層1Aに切り込み2Bよりも径大な空間2Aとからなる通気孔2が形成されている。密閉容器本体1の内側(図12では下面)にはこの通気孔2を空間2Aを介して閉塞する実施形態1または2と同様な通気性パッキング3が直接固着されて、通気性パッキングブロック10が得られる。12 and 13, the sealed container body 1 is made of an inner layer 1A made of a heat-sealing resin such as a polypropylene resin as in Patent Document 4, a metal foil layer 1B such as aluminum, a polyethylene terephthalate resin, etc., but an outer layer 1C. It is made of a moisture-proof multilayer film with laminated layers. The airtight container body 1 has a vent 2 comprising a line-shaped cut 2B passing through the outer layer 1C and the metal foil layer 1B, and a space 2A having a diameter larger than the cut 2B in the inner layer 1A in communication with the cut 2B. Is formed. The air-permeable packing 3 similar to the embodiment 1 or 2 that closes the air hole 2 via the space 2A is directly fixed to the inner side (the lower surface in FIG. 12) of the airtight container body 1, and the air-permeable packing block 10 is provided. can get.

(通気性パッキングの利用の異なる実施形態)
図14は、この実施形態3の通気性パッキングを使用した密閉型電気化学デバイスで、通気性パッキングが用いられる密閉容器本体として、電極素子および固体電解質を有する密閉型電気化学デバイスの密閉容器に形成して、水蒸気などの水分を透過させないようにして密閉容器内に発生したガスを密閉容器外に排出しやすくする密閉型電気化学デバイスへの利用例を示す。
(Different embodiments of the use of breathable packing)
FIG. 14 shows a sealed electrochemical device using the breathable packing of Embodiment 3, which is formed in a sealed container of a sealed electrochemical device having an electrode element and a solid electrolyte as a sealed container body in which the breathable packing is used. An example of use in a sealed electrochemical device that makes it easy to discharge the gas generated in the sealed container so as not to allow moisture such as water vapor to pass through will be described.

図14において、防湿性多層フィルムでできた密閉容器本体1を上側とし同様な防湿性多層フィルムでできた密閉容器本体11を下側とし、それぞれの端面に電極端子100,100を備えるようにして、密閉容器本体1と密閉容器本体11とを電極端子100の接続部101を介して熱溶着させて密閉容器を構成する。この密閉容器の内部には電極端子100の接続部101と電気的に接続されるリード102、このリード102と電機接続される電極素子部103および固体電解質105が密閉されて収容されている。このように、電極素子部103および固体電解質105を有するリチウム電池などの密閉型電気化学デバイスにあっては、水分およびガスを透過させにくくするように密閉されているので、充放電サイクルを繰り返したり、高温で放置したり、短絡・過充電・逆充電などにより固体電解質105の溶媒が分解されて、ガスが発生し、そのガスが蓄積されることにより急激に内圧が上昇して、密閉容器本体1と密閉容器本体11とからなる密閉容器が膨れたり、破裂したりするおそれがある。そこで、発生したガスが密閉容器内に蓄積しすぎないように密閉容器本体1に通気孔2を形成しこの密閉容器本体1の下面に配置した通気性パッキングブロック10を用いて、水蒸気などの水分を透過させないようにしたり、密閉容器内に発生したガスを適宜、通気孔2から密閉容器の外に排出したりしてガスが密閉容器内に蓄積しつづけることを防ぐことができる。In FIG. 14, the sealed container body 1 made of a moisture-proof multilayer film is on the upper side, and the sealed container body 11 made of a similar moisture-proof multilayer film is on the lower side, and electrode terminals 100 and 100 are provided on the respective end faces. The hermetic container body 1 and the hermetic container body 11 are thermally welded via the connection portion 101 of the electrode terminal 100 to constitute a hermetic container. Inside this sealed container, a lead 102 electrically connected to the connection part 101 of the electrode terminal 100, an electrode element part 103 electrically connected to the lead 102 and a solid electrolyte 105 are sealed and accommodated. Thus, in a sealed electrochemical device such as a lithium battery having the electrode element portion 103 and the solid electrolyte 105, it is sealed so as to make it difficult for moisture and gas to permeate. The solid electrolyte 105 is decomposed by being left at a high temperature, short-circuited, overcharged, reverse charged, etc., and gas is generated. By accumulating the gas, the internal pressure suddenly increases, and the sealed container body 1 and the sealed container body 11 may swell or rupture. In view of this, moisture such as water vapor is formed by using the air-permeable packing block 10 formed on the lower surface of the sealed container main body 1 with the vent hole 2 formed in the sealed container main body 1 so that the generated gas does not accumulate in the sealed container. It is possible to prevent the gas from continuing to accumulate in the sealed container by preventing the gas from permeating through or by appropriately discharging the gas generated in the sealed container from the vent hole 2 to the outside of the sealed container.

なお、実施形態1から3において、ガス透過基材3Dに分散させた低融点素子3Aがガス透過基材3Dの微細孔もしくは隙間を温度により閉塞してガスバリヤとしたり、開放してガスバイパス路としたり、ガスバリヤに復帰したりする作用ができるようにガス透過基材3Dの微細孔もしくは隙間と低融点素子3Aの分散の配分とを考慮する必要があり、その考慮に際しては、保護シート6、7の有無や容器本体内のガス圧などで低融点素子3Aが密閉容器外に飛散しないように設定することも必要である。In the first to third embodiments, the low melting point element 3A dispersed in the gas permeable base material 3D closes the fine holes or gaps of the gas permeable base material 3D with temperature to form a gas barrier or open to form a gas bypass path. It is necessary to consider the fine holes or gaps of the gas permeable substrate 3D and the distribution of the dispersion of the low melting point element 3A so that the action of returning to the gas barrier can be performed. It is also necessary to set the low melting point element 3A so that it does not scatter outside the sealed container due to the presence or absence of gas or the gas pressure in the container body.

また、前記通気性パッキングは、図示しないが、微細孔でできた通気孔2を有する密閉容器本体1の上面すなわち密閉容器本体1の外側に配設させてもよい。Further, although not shown, the breathable packing may be disposed on the upper surface of the sealed container body 1 having the vent holes 2 made of fine holes, that is, outside the sealed container body 1.

本発明の通気性パッキングは、内部にガスが発生する密閉容器が高温になりガスの発生が盛んになってその発生したガスにより密閉容器内の圧力が上昇する密閉容器に用いられ、特に密閉容器内に電解液や固体電解質を有するコンデンサやリチウム電池などの密閉型電気化学デバイスとして有用である。The air-permeable packing of the present invention is used for a sealed container in which gas is generated at a high temperature and gas is actively generated, and the pressure in the sealed container increases due to the generated gas. It is useful as a sealed electrochemical device such as a capacitor or a lithium battery having an electrolytic solution or a solid electrolyte therein.

1 密閉容器本体
2 通気孔
3 通気性パッキング
3A 低融点素子
DESCRIPTION OF SYMBOLS 1 Airtight container body 2 Vent hole 3 Breathable packing 3A Low melting point element

Claims (5)

内部にガスが発生し、高温になるとガスの発生が盛んになってその発生したガスにより密閉容器内の圧力が上昇する密閉容器に用いられ、前記密閉容器内の圧力が上昇する過程で前記ガスを前記密閉容器外に排出させる通気性パッキングであって、前記通気性パッキングはガス透過基材に低融点素子を分散させて、前記低融点素子により水分とガスの透過をさせないようにするとともに前記低融点素子を融点以上の温度で溶融させてガスの圧力により前記ガス透過基材の内部にガスバイパス路を発生させてなり、微細孔でできた通気孔を有する密閉容器本体に前記通気性パッキングを配設して、前記低融点素子を溶融させないで通気孔を閉塞させる状態と融点以上の温度および圧力で発生させた前記ガスバイパス路により前記通気孔を開放させる状態との機能を備えたことを特徴とする通気性パッキング。Gas is generated inside, and when the temperature rises, the generation of gas becomes active, and the generated gas increases the pressure in the sealed container, and the gas in the process of increasing the pressure in the sealed container A gas-permeable packing that disperses low-melting-point elements in a gas-permeable base material so that moisture and gas cannot be permeated by the low-melting-point elements. The low-melting point element is melted at a temperature equal to or higher than the melting point, and a gas bypass path is generated inside the gas-permeable substrate by gas pressure, and the air-permeable packing is provided in a sealed container body having vent holes made of fine holes. The vent hole is opened by the gas bypass path generated at a temperature and pressure higher than the melting point and the state in which the vent hole is closed without melting the low melting point element. Breathable packing, characterized in that a function with that state. 前記通気性パッキングを微細孔でできた通気孔を有する密閉容器本体の内側に配設したことを特徴とする請求項1に記載の通気性パッキング。The breathable packing according to claim 1, wherein the breathable packing is disposed inside a sealed container body having a vent hole made of fine holes. 前記ガス透過基材は不織布シートで構成したことを特徴とする請求項1または2に記載の通気性パッキング。The breathable packing according to claim 1 or 2, wherein the gas permeable substrate is formed of a nonwoven fabric sheet. 前記低融点素子は低融点オレフィン化合物で構成したことを特徴とする請求項1から3の何れかひとつに記載の通気性パッキング。The breathable packing according to any one of claims 1 to 3, wherein the low melting point element is composed of a low melting point olefin compound. 前記微細孔でできた通気孔を有する密閉容器本体の内側に空間を介して通気性パッキングを配設して使用することを特徴とする請求項1から4の何れかひとつに記載の通気性パッキング。The breathable packing according to any one of claims 1 to 4, wherein a breathable packing is disposed inside a sealed container main body having a vent hole made of fine holes through a space. .
JP2016123959A 2016-06-06 2016-06-06 Breathable packing blocks Active JP6739027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016123959A JP6739027B2 (en) 2016-06-06 2016-06-06 Breathable packing blocks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016123959A JP6739027B2 (en) 2016-06-06 2016-06-06 Breathable packing blocks

Publications (3)

Publication Number Publication Date
JP2017220656A true JP2017220656A (en) 2017-12-14
JP2017220656A5 JP2017220656A5 (en) 2019-07-04
JP6739027B2 JP6739027B2 (en) 2020-08-12

Family

ID=60657663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016123959A Active JP6739027B2 (en) 2016-06-06 2016-06-06 Breathable packing blocks

Country Status (1)

Country Link
JP (1) JP6739027B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019202306A (en) * 2018-05-22 2019-11-28 睦月電機株式会社 Gas permeation structure
JP2022518415A (en) * 2019-10-30 2022-03-15 エルジー エナジー ソリューション リミテッド Battery module, battery rack including it and power storage device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6231369U (en) * 1985-08-07 1987-02-25
JPH09115498A (en) * 1995-10-19 1997-05-02 Sanyo Electric Co Ltd Sealed storage battery
WO2006098242A1 (en) * 2005-03-17 2006-09-21 Nec Corporation Film enclosed electric device and production method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6231369U (en) * 1985-08-07 1987-02-25
JPH09115498A (en) * 1995-10-19 1997-05-02 Sanyo Electric Co Ltd Sealed storage battery
WO2006098242A1 (en) * 2005-03-17 2006-09-21 Nec Corporation Film enclosed electric device and production method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019202306A (en) * 2018-05-22 2019-11-28 睦月電機株式会社 Gas permeation structure
JP2022518415A (en) * 2019-10-30 2022-03-15 エルジー エナジー ソリューション リミテッド Battery module, battery rack including it and power storage device
JP7252347B2 (en) 2019-10-30 2023-04-04 エルジー エナジー ソリューション リミテッド Battery modules, battery racks containing same and power storage devices

Also Published As

Publication number Publication date
JP6739027B2 (en) 2020-08-12

Similar Documents

Publication Publication Date Title
JP5010467B2 (en) Film-clad electrical device and method for manufacturing the same
JP5495179B2 (en) Battery mounting body, laminated assembled battery and film-clad battery
JP5261908B2 (en) Flat electrochemical cell
JP5619154B2 (en) Battery pack
JP5127258B2 (en) Gas permeable safety valve and electrochemical element
JP5125053B2 (en) Flat electrochemical cell and assembled battery comprising the same
KR20120093253A (en) Electrochemical cell
JP4900339B2 (en) Film-clad electrical device and method for manufacturing the same
JP2002321323A (en) Polyolefin micro-porous film
JP2017220656A (en) Air-permeable packing
JP2017220656A5 (en)
JP2015090760A (en) Unit battery, assembled battery and battery pack
JP2016181326A (en) Lithium ion secondary battery separator
KR101547056B1 (en) Closed secondary battery and manufacturing method of closed secondary battery
JP2006286311A (en) Composite porous film
KR20170019020A (en) Secondary battery and battery module having the same
JP2007150055A (en) Electric double-layer capacitor
JP2014232856A (en) Explosion-proof apparatus for sealed electrochemical device
JP5261882B2 (en) Lithium ion battery
US10553369B2 (en) Electric storage cell, covering film and electric storage module
JP4356291B2 (en) Relief valve structure of electric double layer capacitor
JP2016143524A (en) Battery pack
JP7226259B2 (en) battery pack
JP2015041767A (en) Sealing material for sealed type electrochemical device use
KR20120052340A (en) Galvanic element and separator having improved safety properties

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200701

R150 Certificate of patent or registration of utility model

Ref document number: 6739027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250