JP2017219495A - Battery degradation determination device and charger - Google Patents

Battery degradation determination device and charger Download PDF

Info

Publication number
JP2017219495A
JP2017219495A JP2016115854A JP2016115854A JP2017219495A JP 2017219495 A JP2017219495 A JP 2017219495A JP 2016115854 A JP2016115854 A JP 2016115854A JP 2016115854 A JP2016115854 A JP 2016115854A JP 2017219495 A JP2017219495 A JP 2017219495A
Authority
JP
Japan
Prior art keywords
voltage
secondary battery
resistor
power supply
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016115854A
Other languages
Japanese (ja)
Inventor
羽田 正二
Shoji Haneda
正二 羽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2016115854A priority Critical patent/JP2017219495A/en
Priority to PCT/JP2017/017471 priority patent/WO2017212844A1/en
Publication of JP2017219495A publication Critical patent/JP2017219495A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To visually determine the degree of degradation of a secondary battery.SOLUTION: A power source 200 flows a pulsating current including a DC current component and an AC current component, between the positive electrode and the negative electrode of a secondary battery 201. When the pulsating current flows between the positive electrode and the negative electrode of the secondary battery 201, a voltage amplifier 110 extracts an AC voltage component in a voltage generated between the positive electrode and the negative electrode of the secondary battery 201, amplifies and rectifies the AC voltage component, and generates an amplified voltage. An LED light emission controller 120 causes at least one of LED1 to LED5 to emit light according to the degree of degradation of the secondary battery, on the basis of the amplified voltage generated by the voltage amplifier 110.SELECTED DRAWING: Figure 1

Description

本発明は、二次電池の劣化の程度を判定する電池劣化判定装置および充電器に関する。   The present invention relates to a battery deterioration determination device and a charger that determine the degree of deterioration of a secondary battery.

特許文献1は、二次電池の正極と負極の間に直流電流成分と交流電流成分とを含む脈流電流を流し、正極と負極の間に生じる電圧に含まれる交流電圧成分の大きさに基づいて、その二次電池が異常であるか否かを判別する電池良否判別装置を開示する。   Patent document 1 is based on the magnitude | size of the alternating voltage component contained in the voltage which flows the pulsating current containing a direct current component and an alternating current component between the positive electrode and negative electrode of a secondary battery, and arises between a positive electrode and a negative electrode. A battery pass / fail discrimination device for discriminating whether or not the secondary battery is abnormal is disclosed.

また、特許文献2は、直列に接続された複数の発光ダイオード(LED:Light Emitting Diode)からなるLED回路の両端に電圧を印加し、その電圧に応じた個数だけLEDを発光させる発光制御回路を開示する。   Patent Document 2 discloses a light emission control circuit that applies a voltage to both ends of an LED circuit composed of a plurality of light emitting diodes (LEDs) connected in series and emits LEDs corresponding to the number of LEDs. Disclose.

特開2001−126774号公報JP 2001-126774 A 特開2013−179279号公報JP 2013-179279 A

特許文献1に記載の電池良否判別装置を用いれば、二次電池が異常であるか否かを判別することができる。しかし、この電池良否判別装置を用いても、その二次電池がどの程度劣化しているかを知ることはできない。例えば、その二次電池を満充電にした後に使用可能な時間の目安を知ることはできない。   If the battery quality determination device described in Patent Document 1 is used, it can be determined whether or not the secondary battery is abnormal. However, even if this battery quality determination device is used, it is impossible to know how much the secondary battery has deteriorated. For example, it is not possible to know a measure of the usable time after the secondary battery is fully charged.

本発明の目的は、二次電池の劣化の程度を目視で判定することができる電池劣化判定装置および充電器を提供することである。   The objective of this invention is providing the battery deterioration determination apparatus and charger which can determine the degree of deterioration of a secondary battery visually.

上記目的を達成するために、本発明の蓄電池劣化判定装置は、
二次電池の正極と負極の間に直流電流成分と交流電流成分とを含む脈流電流が流れるとき、当該正極と負極の間に生じる電圧に含まれる交流電圧成分を抽出し、当該交流電圧成分を増幅して整流し、増幅電圧を生成する電圧増幅部と、
直列に接続された複数のLEDと、
前記電圧増幅部で生成される増幅電圧に基づいて、前記複数のLEDを前記二次電池の劣化の程度に応じた個数だけ発光させるLED発光制御部と、
を備えることを特徴とする。
In order to achieve the above object, the storage battery deterioration determination device of the present invention is:
When a pulsating current containing a direct current component and an alternating current component flows between the positive electrode and the negative electrode of the secondary battery, the alternating voltage component included in the voltage generated between the positive electrode and the negative electrode is extracted, and the alternating voltage component A voltage amplifying unit that amplifies and rectifies and generates an amplified voltage;
A plurality of LEDs connected in series;
Based on the amplified voltage generated by the voltage amplification unit, an LED emission control unit that causes the plurality of LEDs to emit light according to the degree of deterioration of the secondary battery;
It is characterized by providing.

好ましくは、本発明の蓄電池劣化判定装置は、
前記LED発光制御部が、前記二次電池の劣化が激しいほど多くのLEDを発光させることを特徴とする。
Preferably, the storage battery deterioration determination device of the present invention is
The LED light emission control unit causes more LEDs to emit light as the secondary battery is more deteriorated.

好ましくは、本発明の蓄電池劣化判定装置は、
前記電圧増幅部が、
前記交流電圧成分または前記交流電圧成分が増幅された第1の中間交流電圧を増幅して第2の中間交流電圧を生成する増幅部と、
前記増幅部で生成される第2の中間交流電圧の正負の極性が反転した反転交流電圧を生成する反転部と、
前記増幅部で生成される第2の中間交流電圧と前記反転部で生成される反転交流電圧とに基づいて前記第2の中間交流電圧を2倍に増幅して整流し、前記増幅電圧を生成する2倍増幅部と、
を備えることを特徴とする。
Preferably, the storage battery deterioration determination device of the present invention is
The voltage amplification unit is
An amplifying unit for amplifying the AC voltage component or the first intermediate AC voltage obtained by amplifying the AC voltage component to generate a second intermediate AC voltage;
An inverting unit that generates an inverted AC voltage obtained by inverting the polarity of the second intermediate AC voltage generated by the amplifying unit;
Based on the second intermediate AC voltage generated by the amplifying unit and the inverted AC voltage generated by the inverting unit, the second intermediate AC voltage is doubled and rectified to generate the amplified voltage. A two-fold amplification unit,
It is characterized by providing.

また、本発明の充電器は、
上述した電池劣化判定装置と、
前記二次電池の正極と負極の間に前記脈流電流を流す電源と、
を備えることを特徴とする。
The charger of the present invention is
The battery deterioration determination device described above;
A power source for causing the pulsating current to flow between a positive electrode and a negative electrode of the secondary battery;
It is characterized by providing.

本発明によれば、二次電池の劣化の程度を目視で判定することができる。   According to the present invention, the degree of deterioration of the secondary battery can be visually determined.

本発明の第1の実施形態に係る電池劣化判定装置および充電器の構成の一例を示す図である。It is a figure which shows an example of a structure of the battery deterioration determination apparatus which concerns on the 1st Embodiment of this invention, and a charger. 図1の電池劣化判定装置に含まれる電圧増幅部の構成の一例を示す図である。It is a figure which shows an example of a structure of the voltage amplification part contained in the battery deterioration determination apparatus of FIG. 図1の電池劣化判定装置に含まれるLED発光制御部の構成の一例を示す図である。It is a figure which shows an example of a structure of the LED light emission control part contained in the battery deterioration determination apparatus of FIG. 本発明の第2の実施形態に係る電圧増幅部の構成の一例を示す図である。It is a figure which shows an example of a structure of the voltage amplification part which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係るLED発光制御部の構成の一例を示す図である。It is a figure which shows an example of a structure of the LED light emission control part which concerns on the 2nd Embodiment of this invention.

以下、本発明の実施形態に係る電池劣化判定装置および充電器について図面を参照しながら詳細に説明する。なお、実施形態を説明する全図において、共通の構成要素には同一の符号を付し、繰り返しの説明を省略する。   Hereinafter, a battery deterioration determination device and a charger according to an embodiment of the present invention will be described in detail with reference to the drawings. In all the drawings for explaining the embodiments, common constituent elements are denoted by the same reference numerals, and repeated explanation is omitted.

図1は、本発明の第1の実施形態に係る電池劣化判定装置100および充電器1の構成の一例を示す。第1の実施形態は、二次電池201の定格電圧が12Vである場合の例である。
充電器1は、電源200と電池劣化判定装置100とを有する。充電器1は、鉛蓄電池やリチウムイオン電池等の二次電池201を充電する。
電源200は、例えばブッリジ型全波整流回路を含む。電源200は、単相交流電圧を整流し、正極と負極の間に脈流の電圧を出力する。脈流の電圧は、負極の電位を基準として、正極の電圧が0V以上である。電源200の正極と負極は、それぞれ電源ラインL1と電源ラインL2に接続される。以下、電源ラインL2の電位を基準電位という。
二次電池201は、その正極と負極がそれぞれ電源ラインL1と電源ラインL2に接続される。電源200の出力する脈流の電圧の瞬時値が、二次電池201が充電される程度の電圧に達している間に、二次電池201は充電される。
二次電池201は、長時間使用され、充放電を繰り返すに連れて劣化し、正極と負極の間の抵抗値が徐々に増加する。このため、劣化した二次電池201の正極と負極の間に直流電流成分と交流電流成分とを含む脈流電流が流れるとき、その二次電池201の正極と負極の間に生じる電圧の交流成分の振幅は、二次電池201が正常である場合に比べて増大する。二次電池201が劣化するに連れてその正極と負極の間に発生する電圧の交流成分の振幅は、徐々に増加し、例えば20mV程度に達する。
FIG. 1 shows an example of the configuration of the battery deterioration determination device 100 and the charger 1 according to the first embodiment of the present invention. 1st Embodiment is an example in case the rated voltage of the secondary battery 201 is 12V.
The charger 1 includes a power source 200 and a battery deterioration determination device 100. The charger 1 charges a secondary battery 201 such as a lead storage battery or a lithium ion battery.
The power source 200 includes, for example, a bridge type full-wave rectifier circuit. The power source 200 rectifies the single-phase AC voltage and outputs a pulsating voltage between the positive electrode and the negative electrode. As for the voltage of the pulsating current, the voltage of the positive electrode is 0 V or more with reference to the potential of the negative electrode. The positive electrode and the negative electrode of the power supply 200 are connected to the power supply line L1 and the power supply line L2, respectively. Hereinafter, the potential of the power supply line L2 is referred to as a reference potential.
Secondary battery 201 has a positive electrode and a negative electrode connected to power supply line L1 and power supply line L2, respectively. The secondary battery 201 is charged while the instantaneous value of the pulsating voltage output from the power source 200 reaches a voltage at which the secondary battery 201 is charged.
The secondary battery 201 is used for a long time and deteriorates as charging and discharging are repeated, and the resistance value between the positive electrode and the negative electrode gradually increases. For this reason, when a pulsating current containing a direct current component and an alternating current component flows between the positive electrode and the negative electrode of the deteriorated secondary battery 201, the alternating current component of the voltage generated between the positive electrode and the negative electrode of the secondary battery 201 Is increased as compared with the case where the secondary battery 201 is normal. As the secondary battery 201 deteriorates, the amplitude of the AC component of the voltage generated between the positive electrode and the negative electrode gradually increases and reaches, for example, about 20 mV.

電池劣化判定装置100は、電圧増幅部110と、発光ダイオードであるLED1〜LED5と、LED発光制御部120とを有する。
LED1〜LED5は、直列に接続されている。すなわち、LED1のカソードにLED2のアノードが接続されている。LED2のカソードにLED3のアノードが接続されている。以下、同様にしてLED3〜LED5が接続されている。
電圧増幅部110は電源ラインL1と電源ラインL2に接続され、電源200から供給される電圧で動作する。電源201が電源ラインL1と電源ラインL2(二次電池201の正極と負極の間)に直流電流成分と交流電流成分とを含む脈流電流を流すときに二次電池201の正極と負極の間に生じる電圧に含まれる交流電圧成分を、電圧増幅部110は抽出する。そして、電圧増幅部110は、その交流電圧成分を増幅して整流し、増幅電圧を生成する。電圧増幅部110については後で詳細に説明する。
LED発光制御部120は、電源ラインL1と電源ラインL2に接続され、電源200から供給される電圧で動作する。LED発光制御部120には、電圧増幅部110の出力する増幅電圧が入力される。LED発光制御部120は、増幅電圧に基づいてLED1〜LED5を二次電池の劣化の程度に応じた個数だけ発光させる。このとき、二次電池110の劣化が激しいほど多くのLEDが発光する。LED発光制御部120については後で詳細に説明する。
The battery deterioration determination device 100 includes a voltage amplification unit 110, LEDs 1 to LED5 that are light emitting diodes, and an LED light emission control unit 120.
LED1 to LED5 are connected in series. That is, the anode of LED2 is connected to the cathode of LED1. The anode of LED 3 is connected to the cathode of LED 2. Hereinafter, LED3 to LED5 are similarly connected.
The voltage amplifier 110 is connected to the power supply line L1 and the power supply line L2, and operates with a voltage supplied from the power supply 200. When the power supply 201 passes a pulsating current including a direct current component and an alternating current component through the power supply line L1 and the power supply line L2 (between the positive electrode and the negative electrode of the secondary battery 201), between the positive electrode and the negative electrode of the secondary battery 201 The voltage amplifying unit 110 extracts the AC voltage component included in the voltage generated at. The voltage amplification unit 110 amplifies and rectifies the AC voltage component to generate an amplified voltage. The voltage amplification unit 110 will be described in detail later.
The LED light emission control unit 120 is connected to the power supply line L1 and the power supply line L2, and operates with a voltage supplied from the power supply 200. The amplification voltage output from the voltage amplification unit 110 is input to the LED light emission control unit 120. The LED light emission control unit 120 causes the LEDs 1 to 5 to emit light according to the degree of deterioration of the secondary battery based on the amplified voltage. At this time, more LEDs emit light as the secondary battery 110 is more deteriorated. The LED light emission control unit 120 will be described in detail later.

上述したように、二次電池201が著しく劣化したときにその正極と負極の間に発生する電圧の交流成分の振幅は、例えば20mV程度である。一方、赤、橙、黄、緑のLEDの順方向電圧降下は2V程度である。このため、LED1〜LED5がこれらの色のLEDである場合、二次電池201が著しく劣化したときにLED1〜LED5を全て発光させるためには、例えば10V以上の電圧をLED1〜LED5からなるLED回路に印加しなければならない。従って、電圧増幅部110は、二次電池201の正極と負極の間に生じる電圧に含まれる交流電圧成分を例えば500倍以上に増幅する必要がある。   As described above, the amplitude of the AC component of the voltage generated between the positive electrode and the negative electrode when the secondary battery 201 is significantly deteriorated is, for example, about 20 mV. On the other hand, the forward voltage drop of red, orange, yellow and green LEDs is about 2V. For this reason, in the case where the LEDs 1 to 5 are LEDs of these colors, in order to cause all of the LEDs 1 to 5 to emit light when the secondary battery 201 is significantly deteriorated, for example, an LED circuit composed of LEDs 1 to 5 with a voltage of 10 V or more. Must be applied. Therefore, the voltage amplification unit 110 needs to amplify the AC voltage component included in the voltage generated between the positive electrode and the negative electrode of the secondary battery 201 by, for example, 500 times or more.

図2は、電圧増幅部110の構成の一例を示す。
電圧増幅部110は、コンデンサC1と、変圧器T1と、増幅部111と、反転部112と、2倍増幅部113とを有する。
コンデンサC1は、一端が電源ラインL1に接続され、他端が変圧器T1の1次巻線の一端に接続される。変圧器T1の他端は、電源ラインL2に接続される。コンデンサC1は、二次電池201の正極と負極の間(電源ラインL1と電源ラインL2の間)に生じる電圧に含まれる交流電圧成分を抽出する。変圧器T1は、コンデンサC1によって抽出された交流電圧成分を例えば10倍程度増幅して第1の中間交流電圧を生成する。
FIG. 2 shows an example of the configuration of the voltage amplification unit 110.
The voltage amplification unit 110 includes a capacitor C1, a transformer T1, an amplification unit 111, an inversion unit 112, and a double amplification unit 113.
One end of the capacitor C1 is connected to the power supply line L1, and the other end is connected to one end of the primary winding of the transformer T1. The other end of the transformer T1 is connected to the power supply line L2. Capacitor C1 extracts an AC voltage component included in a voltage generated between the positive electrode and the negative electrode of secondary battery 201 (between power supply line L1 and power supply line L2). The transformer T1 amplifies the AC voltage component extracted by the capacitor C1 by about 10 times, for example, and generates a first intermediate AC voltage.

増幅部111は、抵抗R1と、抵抗R2と、コンデンサC2と、オペアンプOP1と、可変抵抗VR1と、可変抵抗VR2と、コンデンサC3とを有する。
抵抗R1は、一端が電源ラインL1に接続され、他端が抵抗R2の一端に接続される。抵抗R2の他端は電源ラインL2に接続される。抵抗R1と抵抗R2は、電源ラインL1と電源ラインL2間の電圧を分圧し、それらの接続部分に電源ラインL1と電源ラインL2間の電圧の好ましくは半分程度の中間電圧を生じる。
コンデンサC2は、一端が抵抗R1と抵抗R2の接続部分に接続され、他端が電源ラインL2に接続される。コンデンサC2は、抵抗R1と抵抗R2の接続部分の電圧からリップルやノイズを吸収する。
変圧器T1は、2次巻線の一端がオペアンプOP1の非反転入力端に接続され、2次巻線の他端が抵抗R1と抵抗R2の接続部分に接続される。変圧器T1の他端には、第1の中間交流電圧と中間電圧が加算された電圧が生じる。
The amplifying unit 111 includes a resistor R1, a resistor R2, a capacitor C2, an operational amplifier OP1, a variable resistor VR1, a variable resistor VR2, and a capacitor C3.
The resistor R1 has one end connected to the power supply line L1 and the other end connected to one end of the resistor R2. The other end of the resistor R2 is connected to the power supply line L2. The resistor R1 and the resistor R2 divide the voltage between the power supply line L1 and the power supply line L2, and generate an intermediate voltage, preferably about half of the voltage between the power supply line L1 and the power supply line L2, at their connection portion.
One end of the capacitor C2 is connected to a connection portion between the resistor R1 and the resistor R2, and the other end is connected to the power supply line L2. The capacitor C2 absorbs ripples and noise from the voltage at the connection portion between the resistor R1 and the resistor R2.
In the transformer T1, one end of the secondary winding is connected to the non-inverting input end of the operational amplifier OP1, and the other end of the secondary winding is connected to a connection portion between the resistor R1 and the resistor R2. A voltage obtained by adding the first intermediate AC voltage and the intermediate voltage is generated at the other end of the transformer T1.

オペアンプOP1の正電源端は電源ラインL1に接続され、その負電源端は電源ラインL2に接続される。オペアンプOP1の出力端は、可変抵抗VR2の一端に接続される。可変抵抗VR2の他端は、オペアンプOP1の反転入力端と可変抵抗VR1の一端とに接続される。可変抵抗VR1の他端はコンデンサC3の一端に接続される。コンデンサC3の他端は電源ラインL2に接続される。可変抵抗VR1と可変抵抗VR2の抵抗値は、両方とも変更することができる。
上述した構成により、オペアンプOP1は可変抵抗VR1と可変抵抗VR2の抵抗値で決まる増幅度の非反転増幅器として動作する。オペアンプOP1の非反転入力端には、第1の中間交流電圧と中間電圧が加算された加算電圧が入力される。加算電圧が中間電圧より大きい場合、オペアンプOP1は第1の中間交流電圧を正の方向に増幅する。一方、加算電圧が中間電圧より小さい場合、オペアンプOP1は第1の中間交流電圧を負の方向に増幅する。
このようにして、増幅部111は、第1の中間交流電圧を例えば25倍程度増幅して第2の中間交流電圧を生成する。
なお、本実施形態では、オペアンプOP1を非反転増幅器として動作させる例を示すが、オペアンプOP1を反転増幅器として動作させる構成とすることもできる。
The positive power supply terminal of the operational amplifier OP1 is connected to the power supply line L1, and the negative power supply terminal is connected to the power supply line L2. The output terminal of the operational amplifier OP1 is connected to one end of the variable resistor VR2. The other end of the variable resistor VR2 is connected to the inverting input end of the operational amplifier OP1 and one end of the variable resistor VR1. The other end of the variable resistor VR1 is connected to one end of the capacitor C3. The other end of the capacitor C3 is connected to the power supply line L2. Both the resistance values of the variable resistor VR1 and the variable resistor VR2 can be changed.
With the above-described configuration, the operational amplifier OP1 operates as a non-inverting amplifier having an amplification degree determined by the resistance values of the variable resistor VR1 and the variable resistor VR2. An addition voltage obtained by adding the first intermediate AC voltage and the intermediate voltage is input to the non-inverting input terminal of the operational amplifier OP1. When the addition voltage is larger than the intermediate voltage, the operational amplifier OP1 amplifies the first intermediate AC voltage in the positive direction. On the other hand, when the addition voltage is smaller than the intermediate voltage, the operational amplifier OP1 amplifies the first intermediate AC voltage in the negative direction.
In this way, the amplifying unit 111 amplifies the first intermediate AC voltage by about 25 times, for example, to generate a second intermediate AC voltage.
In the present embodiment, the operational amplifier OP1 is operated as a non-inverting amplifier. However, the operational amplifier OP1 may be operated as an inverting amplifier.

反転部112は、コンデンサC4と、抵抗R3と、抵抗R4と、オペアンプOP2とを有する。
コンデンサC4は、一端がオペアンプOP1の出力端に接続され、他端が抵抗R3の一端に接続される。抵抗R3の他端は、オペアンプOP2の反転入力端と抵抗R4の一端とに接続される。抵抗R4の他端は、オペアンプOP2の出力端に接続される。抵抗R3と抵抗R4の抵抗値は同一である。
オペアンプOP2の正電源端は電源ラインL1に接続され、その負電源端は電源ラインL2に接続される。オペアンプOP2の反転入力端は、抵抗R3の他端と抵抗R4の一端との接続部分に接続され、オペアンプOP2の非反転入力端には中間電圧が入力される。
上述した構成により、オペアンプOP2は増幅度が1倍の反転増幅器として動作する。オペアンプOP2は、増幅部111で生成される第2の中間交流電圧の正負の極性が反転した反転交流電圧を生成する。
The inverting unit 112 includes a capacitor C4, a resistor R3, a resistor R4, and an operational amplifier OP2.
One end of the capacitor C4 is connected to the output end of the operational amplifier OP1, and the other end is connected to one end of the resistor R3. The other end of the resistor R3 is connected to the inverting input end of the operational amplifier OP2 and one end of the resistor R4. The other end of the resistor R4 is connected to the output end of the operational amplifier OP2. The resistance values of the resistors R3 and R4 are the same.
The positive power supply terminal of the operational amplifier OP2 is connected to the power supply line L1, and the negative power supply terminal is connected to the power supply line L2. The inverting input terminal of the operational amplifier OP2 is connected to a connection portion between the other end of the resistor R3 and one end of the resistor R4, and an intermediate voltage is input to the non-inverting input terminal of the operational amplifier OP2.
With the above-described configuration, the operational amplifier OP2 operates as an inverting amplifier having an amplification factor of 1. The operational amplifier OP2 generates an inverted AC voltage in which the positive and negative polarities of the second intermediate AC voltage generated by the amplifier 111 are inverted.

2倍増幅部113は、コンデンサC5と、コンデンサC6と、ダイオードD1と、ダイオードD2と、ダイオードD3と、コンデンサC7とを有する。
ダイオードD3は、アノードが電源ラインL2に接続され、カソードがダイオードD2のアノードに接続される。ダイオードD2のカソードは、ダイオードD1のアノードに接続される。ダイオードD1のカソードは出力端子OUTに接続される。
コンデンサC5は、一端がオペアンプOP1の出力端に接続され、他端がダイオードD1のアノードとダイオードD2のカソードとの接続部分に接続される。コンデンサC6は、一端がオペアンプOP2の出力端に接続され、他端がダイオードD2のアノードとダイオードD3のカソードとの接続部分に接続される。
コンデンサC7は、出力端子OUTと電源ラインL2との間に接続される。コンデンサC7は、ダイオードD1のカソードから出力される電圧を平滑化する。
上述した構成により、2倍増幅部113は2倍電圧増幅器として動作する。2倍増幅部113は、増幅部111で生成される第2の中間交流電圧と反転部112で生成される反転交流電圧とに基づいて第2の中間交流電圧を2倍に増幅して整流し、増幅電圧を生成し、増幅電圧を出力端子OUTから出力する。
The double amplification unit 113 includes a capacitor C5, a capacitor C6, a diode D1, a diode D2, a diode D3, and a capacitor C7.
The diode D3 has an anode connected to the power supply line L2 and a cathode connected to the anode of the diode D2. The cathode of the diode D2 is connected to the anode of the diode D1. The cathode of the diode D1 is connected to the output terminal OUT.
One end of the capacitor C5 is connected to the output end of the operational amplifier OP1, and the other end is connected to a connection portion between the anode of the diode D1 and the cathode of the diode D2. One end of the capacitor C6 is connected to the output terminal of the operational amplifier OP2, and the other end is connected to a connection portion between the anode of the diode D2 and the cathode of the diode D3.
The capacitor C7 is connected between the output terminal OUT and the power supply line L2. The capacitor C7 smoothes the voltage output from the cathode of the diode D1.
With the configuration described above, the double amplification unit 113 operates as a double voltage amplifier. The double amplification unit 113 amplifies and rectifies the second intermediate AC voltage by a factor of two based on the second intermediate AC voltage generated by the amplification unit 111 and the inverted AC voltage generated by the inverter 112. , Generate an amplified voltage, and output the amplified voltage from the output terminal OUT.

このようにして、電圧増幅部110は、二次電池201の正極と負極の間に生じる電圧に含まれる交流電圧成分を、増幅部111と反転部112と2倍増幅部113で例えばそれぞれ10倍程度と25倍程度と2倍、合計で500倍程度増幅して増幅電圧を生成し、それを出力端子OUTから出力する。   In this way, the voltage amplifying unit 110 converts the AC voltage component included in the voltage generated between the positive electrode and the negative electrode of the secondary battery 201 by, for example, 10 times each of the amplifying unit 111, the inverting unit 112, and the double amplifying unit 113. Amplified voltage is generated by amplifying approximately 500 times in total, approximately 25 times and 2 times, and output from the output terminal OUT.

図3は、LED発光制御部120の構成の一例を示す。
LED発光制御部120は、NPNバイポーラトランジスタQ1と、抵抗R5と、Nチャネルエンハンスメント型電界効果トランジスタFET1〜FET5と、ダイオードD4〜D8と、抵抗R6〜R10と、NPNバイポーラトランジスタQ2と、抵抗R11と、NPNバイポーラトランジスタQ3と、抵抗R12とを有する。
FIG. 3 shows an example of the configuration of the LED light emission control unit 120.
The LED light emission control unit 120 includes an NPN bipolar transistor Q1, a resistor R5, N-channel enhancement type field effect transistors FET1 to FET5, diodes D4 to D8, resistors R6 to R10, an NPN bipolar transistor Q2, and a resistor R11. NPN bipolar transistor Q3 and resistor R12.

トランジスタQ1は、ベースBが入力端子INに接続され、コレクタCが電源ラインL1に接続され、エミッタEがLED1のアノードに接続される。入力端子INには、電圧増幅部110の出力端子OUTから出力される増幅電圧が入力される。
抵抗R5は、一端が電源ラインL1に接続され、他端がダイオードD4〜D8の各アノードとトランジスタQ2のコレクタCに接続される。
FET1の電流路(ドレインDとソースSの間の経路)は、LED1と並列に接続される。すなわち、FET1のドレインDとソースSはそれぞれLED1のアノードとカソードに接続される。FET1のゲートGは、抵抗R6の一端とダイオードD4のカソードとに接続される。抵抗R6の他端はFET1のソースSに接続される。FET1の電流路が非導通のときにLED1は点灯し、FET1の電流路が導通しているときにLED1は消灯する。
The transistor Q1 has a base B connected to the input terminal IN, a collector C connected to the power supply line L1, and an emitter E connected to the anode of the LED1. The amplified voltage output from the output terminal OUT of the voltage amplifier 110 is input to the input terminal IN.
The resistor R5 has one end connected to the power supply line L1 and the other end connected to the anodes of the diodes D4 to D8 and the collector C of the transistor Q2.
The current path (the path between the drain D and the source S) of the FET 1 is connected in parallel with the LED 1. That is, the drain D and the source S of the FET 1 are connected to the anode and the cathode of the LED 1, respectively. The gate G of the FET 1 is connected to one end of the resistor R6 and the cathode of the diode D4. The other end of the resistor R6 is connected to the source S of the FET1. LED1 is turned on when the current path of FET1 is non-conductive, and LED1 is turned off when the current path of FET1 is conductive.

LED2とFET2とダイオードD5と抵抗R7との接続は、LED1とFET1とダイオードD4と抵抗R6と同様である。また、LED3とFET3とダイオードD6と抵抗R8との接続、LED4とFET4とダイオードD7と抵抗R9との接続、およびLED5とFET5とダイオードD8と抵抗R10との接続も、LED1とFET1とダイオードD4と抵抗R6と同様である。
トランジスタQ2は、ベースBがLED5のカソードに接続され、コレクタCが抵抗R5の他端に接続され、エミッタEが抵抗R11の一端に接続される。抵抗R11の他端は電源ラインL2に接続される。トランジスタQ3は、ベースBがLED5のカソードとトランジスタQ2のベースBと自身のコレクタCとに接続され、コレクタCがLED5のカソードと自身のベースBとトランジスタQ2のベースBとに接続され、エミッタEが抵抗R12の一端に接続される。抵抗R12の他端は電源ラインL2に接続される。なお、抵抗R11の抵抗値は抵抗R12の抵抗値の10倍程度の大きさである。
Connection of LED2, FET2, diode D5, and resistor R7 is the same as that of LED1, FET1, diode D4, and resistor R6. Also, the connection between LED3, FET3, diode D6, and resistor R8, the connection between LED4, FET4, diode D7, and resistor R9, and the connection between LED5, FET5, diode D8, and resistor R10 are the same as LED1, FET1, and diode D4. The same as the resistor R6.
The transistor Q2 has a base B connected to the cathode of the LED 5, a collector C connected to the other end of the resistor R5, and an emitter E connected to one end of the resistor R11. The other end of the resistor R11 is connected to the power supply line L2. The transistor Q3 has a base B connected to the cathode of the LED 5, the base B of the transistor Q2, and its collector C. The collector C is connected to the cathode of the LED 5, its own base B, and the base B of the transistor Q2. Is connected to one end of the resistor R12. The other end of the resistor R12 is connected to the power supply line L2. Note that the resistance value of the resistor R11 is about ten times the resistance value of the resistor R12.

以下、LED発光制御部120におけるLED1〜LED5の発光制御について詳細に説明する。
(1)二次電池201の劣化が著しく、LED1〜LED5が全部発光する場合
このとき、LED1〜LED5の直列接続回路にかかる電圧は最も高い(以下、この電圧を最高電圧という。)。トランジスタQ1のコレクタCとエミッタE間の経路、およびLED1〜LED5を流れる電流により、トランジスタQ3のコレクタCに発生する電位でトランジスタQ2のベースBが順バイアスされ、トランジスタQ2のコレクタCとエミッタE間が導通状態となる。このため、トランジスタQ2のコレクタCの電位は、基準電位(電源ラインL2の電位)と同電位となる。
ただし、トランジスタQ2のコレクタCとエミッタE間は完全な導通状態である必要はない(半導通など)。FET1〜FET5のゲートGの電位がそれらの電流路を導通させない電位であれば良い。このとき、トランジスタQ2のコレクタCの電位は、基準電位より少し高めの電位である。以下、「基準電位と同電位」と「基準電位より少し高めの電位」などを総称して、「同等の電位」という。
このとき、ダイオードD4〜D8のアノードも、基準電位と同等の電位であり、FET1〜FET5のゲートGに順バイアス電位は印加されず、FET1〜FET5の電流路は非導通となり、LED1〜LED5は全て発光する。
Hereinafter, the light emission control of the LEDs 1 to 5 in the LED light emission control unit 120 will be described in detail.
(1) When the secondary battery 201 is significantly deteriorated and all of the LEDs 1 to 5 emit light. At this time, the voltage applied to the series connection circuit of the LEDs 1 to 5 is the highest (hereinafter, this voltage is referred to as the highest voltage). The base B of the transistor Q2 is forward-biased by the potential generated at the collector C of the transistor Q3 by the path between the collector C and the emitter E of the transistor Q1 and the current flowing through the LEDs 1 to LED5, and between the collector C and emitter E of the transistor Q2 Becomes conductive. For this reason, the potential of the collector C of the transistor Q2 is the same as the reference potential (the potential of the power supply line L2).
However, the collector C and the emitter E of the transistor Q2 do not have to be in a completely conductive state (semi-conductive or the like). The potential of the gate G of the FET1 to FET5 may be any potential that does not cause the current paths to conduct. At this time, the potential of the collector C of the transistor Q2 is slightly higher than the reference potential. Hereinafter, “the same potential as the reference potential” and “a potential slightly higher than the reference potential” are collectively referred to as “equivalent potential”.
At this time, the anodes of the diodes D4 to D8 are also at the same potential as the reference potential, no forward bias potential is applied to the gates G of the FET1 to FET5, the current paths of the FET1 to FET5 are non-conductive, and the LEDs 1 to LED5 are All emit light.

(2)二次電池201が正常であり、LED1〜LED5が全部発光を停止する場合
このとき、LED1〜LED5の直列接続回路にかかる電圧は最も低い。LED1〜LED5は、FET1〜FET5の各電流路により短絡(バイパス)されている。トランジスタQ2のベースBは順バイアス(電流値)されず、または順バイアス(電流値)が小さくなり、トランジスタQ2のコレクタCとエミッタE間が非導通または導通抵抗値が大となり、コレクタCの電位が上昇し、FET1〜FET5のすべてのゲートGを順バイアスする。このため、FET1〜FET5の電流路はすべて導通し、LED1〜LED5は全て発光を停止する。
(2) When the secondary battery 201 is normal and the LEDs 1 to 5 all stop emitting light At this time, the voltage applied to the series connection circuit of the LEDs 1 to 5 is the lowest. LED1 to LED5 are short-circuited (bypassed) by the respective current paths of FET1 to FET5. The base B of the transistor Q2 is not forward-biased (current value), or the forward-bias (current value) becomes small, the collector C and the emitter E of the transistor Q2 are not conducting or the conducting resistance value is large, and the potential of the collector C Rises and forward biases all the gates G of FET1 to FET5. For this reason, all of the current paths of the FET1 to FET5 are conducted, and the LEDs 1 to LED5 all stop emitting light.

(3)二次電池201の劣化が激しく、LED1〜LED4が発光し、LED5が発光を停止する場合
このとき、LED1〜LED5の直列接続回路には、最高電圧よりLED5の順方向電圧降下分だけ低い電圧がかかっている。LED1〜LED5の直列接続回路にかかる電圧が低下したことにより、トランジスタQ3のコレクタCの電位は少し低下する。このため、トランジスタQ2のベースBは順バイアスが不充分となり、そのコレクタCとエミッタE間が非導通となるように働く。
従って、トランジスタQ2のコレクタCの電位は上昇し、FET5のゲートGを順バイアスし、FET5の電流路は導通し、トランジスタQ3のコレクタCとエミッタE間に電流が流れ、トランジスタQ3のコレクタCの電位は少し回復するが、トランジスタQ2のベースBは順バイアスされず、トランジスタQ2のコレクタの電位は上昇する。FET5のみのゲートGが順バイアスされてFET5は導通し、LED5の両端に順方向電圧降下より低い電圧が印加されて非導通となり発光を停止する。
(3) When the secondary battery 201 is severely deteriorated, the LEDs 1 to 4 emit light and the LED 5 stops emitting light. At this time, the series connection circuit of LEDs 1 to LED 5 is equivalent to the forward voltage drop of the LED 5 from the maximum voltage. A low voltage is applied. Since the voltage applied to the series connection circuit of LED1 to LED5 is lowered, the potential of the collector C of the transistor Q3 is slightly lowered. For this reason, the base B of the transistor Q2 is insufficiently forward-biased so that the collector C and the emitter E are not electrically connected.
Therefore, the potential of the collector C of the transistor Q2 rises, forward biases the gate G of the FET 5, the current path of the FET 5 becomes conductive, a current flows between the collector C and the emitter E of the transistor Q3, and the collector C of the transistor Q3 Although the potential recovers a little, the base B of the transistor Q2 is not forward biased, and the collector potential of the transistor Q2 rises. The gate G of only the FET 5 is forward-biased, and the FET 5 becomes conductive, and a voltage lower than the forward voltage drop is applied to both ends of the LED 5 to become non-conductive and stop light emission.

このとき、FET1〜FET5のゲートGの電位は基準電位を基準として同一電位として上昇するが、FET1〜FET4の電流路は導通せず、LED1〜LED4は発光を継続する。
FET5のみが導通する理由は、FET5のソースSの電位は、トランジスタQ3のコレクタCの電位であり低電位である。一方、FET4のソースSの電位は、FET5のドレインDの電位であり、FET5のソースSの電位より少し高電位である。このため、FET4のソースSに対するゲートGの電位はFET5のものより低電位であり、FET5が導通してもFET4は導通しない。従って、LED4は発光する。
At this time, the potentials of the gates G of the FET1 to FET5 rise as the same potential with reference to the reference potential, but the current paths of the FET1 to FET4 are not conducted, and the LEDs 1 to LED4 continue to emit light.
The reason why only the FET 5 is conductive is that the potential of the source S of the FET 5 is the potential of the collector C of the transistor Q3 and is low. On the other hand, the potential of the source S of the FET 4 is the potential of the drain D of the FET 5 and is slightly higher than the potential of the source S of the FET 5. For this reason, the potential of the gate G with respect to the source S of the FET 4 is lower than that of the FET 5, and the FET 4 does not conduct even if the FET 5 conducts. Accordingly, the LED 4 emits light.

FET4は導通していないので、FET3、FET2、FET1のソースSの電位は、それぞれLED3、LED2、LED1のカソード電位であり、ソースSの電位は高くFET3、FET2、FET1のゲートGの電位も順バイアスされない。FET3、FET2、FET1の電流路も非導通であり、LED3、LED2、LED1は発光する。   Since FET4 is not conducting, the potential of the source S of FET3, FET2, and FET1 is the cathode potential of LED3, LED2, and LED1, respectively, the potential of the source S is high, and the potentials of the gates G of FET3, FET2, and FET1 are also in order. Not biased. The current paths of FET3, FET2, and FET1 are also non-conductive, and LED3, LED2, and LED1 emit light.

FET5は完全導通状態とならないで、ある程度の抵抗値を保持する。これは、トランジスタQ2のコレクタC、FET5のゲートG、FET5のソースS、トランジスタQ2のベースBの回路で負帰還回路を構成し、トランジスタQ3のコレクタC(ベースB)の電位を一定に保持し、FET5のドレインDとソースS間の導通抵抗値をある一定の値で均衡させるからである。   The FET 5 does not become a complete conduction state, and retains a certain resistance value. This is because a negative feedback circuit is formed by the collector C of the transistor Q2, the gate G of the FET 5, the source S of the FET 5, and the base B of the transistor Q2, and the potential of the collector C (base B) of the transistor Q3 is kept constant. This is because the conduction resistance value between the drain D and the source S of the FET 5 is balanced at a certain value.

また、この負帰還回路で、FET5はトランジスタQ3と抵抗R12を負荷としてソースフォロア回路を構成している。この負帰還回路は、トランジスタQ3のコレクタC(ベースB)の電位を一定にする作用がある。
この負帰還回路によって、トランジスタQ2のコレクタCとエミッタE間の抵抗値も一定の値で均衡する。すべては、この負帰還回路で均衡する。
なお、トランジスタQ3が無く、抵抗R12の一端がFET5のソースS(LED5のカソード、トランジスタQ2のベース)に接続されている構成であっても、抵抗R12を流れる電流を一定にする作用があるので、抵抗R12の両端の電圧は一定となる。従って、トランジスタQ3が無く、抵抗R12の一端がFET5のソースSに直接接続されている構成であってもよい。
In this negative feedback circuit, the FET 5 forms a source follower circuit with the transistor Q3 and the resistor R12 as loads. This negative feedback circuit has an effect of making the potential of the collector C (base B) of the transistor Q3 constant.
By this negative feedback circuit, the resistance value between the collector C and the emitter E of the transistor Q2 is also balanced at a constant value. Everything is balanced with this negative feedback circuit.
Even if the transistor Q3 is not provided and one end of the resistor R12 is connected to the source S of the FET 5 (the cathode of the LED 5, the base of the transistor Q2), the current flowing through the resistor R12 can be made constant. The voltage across the resistor R12 is constant. Therefore, the transistor Q3 may not be provided and one end of the resistor R12 may be directly connected to the source S of the FET 5.

FET5は完全導通ではないが導通することで、LED5の電流路をFET5が代替し、電流は通常どおり流れ、LED5は発光を停止し、その他の発光ダイオード(LED4〜LED1)は発光を維持する。
FET5の導通によるFET5の電流路の電圧降下は、発光ダイオードの順方向電圧降下より小さい。この状態ではLED5は発光しない。FET4のソースSの電位は、FET5のドレインDとソースS間の電圧降下分上昇している。このため、FET4のゲートGとソースS間の電位は導通電位よりも低くなり、FET4は導通しない。FET4が導通しなければ、FET3、FET2、FET1も導通しない。
When the FET 5 is not fully conductive, the FET 5 replaces the current path of the LED 5, the current flows as usual, the LED 5 stops emitting light, and the other light emitting diodes (LED4 to LED1) maintain the light emission.
The voltage drop in the current path of the FET 5 due to the conduction of the FET 5 is smaller than the forward voltage drop of the light emitting diode. In this state, the LED 5 does not emit light. The potential of the source S of the FET 4 is increased by the voltage drop between the drain D and the source S of the FET 5. For this reason, the potential between the gate G and the source S of the FET 4 is lower than the conduction potential, and the FET 4 does not conduct. If FET4 does not conduct, FET3, FET2, and FET1 do not conduct.

(4)二次電池201の劣化がやや激しく、LED1〜LED3が発光し、LED4とLED5が発光を停止する場合
このとき、LED1〜LED5の直列接続回路には、最高電圧よりLED5とLED4の順方向電圧降下分だけ低い電圧がかかっている。このため、FET4がFET5と同様に動作することとなる。負帰還回路もFET4が同様な動作をする。
従って、FET4は完全導通ではないが導通し、この導通による電位降下値は、LED4の順方向電圧降下より小さいため、LED4には電順方向電圧降下より低い電圧が印加されてLED4は発光を停止する。
(4) When the secondary battery 201 is slightly deteriorated, LED1 to LED3 emit light, and LED4 and LED5 stop emitting light. At this time, the series connection circuit of LED1 to LED5 has the order of LED5 and LED4 from the highest voltage. Low voltage is applied by the direction voltage drop. For this reason, the FET 4 operates in the same manner as the FET 5. In the negative feedback circuit, the FET 4 performs the same operation.
Accordingly, the FET 4 is not fully conductive but the potential drop due to this conduction is smaller than the forward voltage drop of the LED 4, so that a voltage lower than the forward voltage drop is applied to the LED 4 and the LED 4 stops emitting light. To do.

LED1〜LED5の直列接続回路にかかる電圧が更に低下すると、LED3、LED2、LED1が順番に発光を停止する。すなわち、LED1〜LED5の直列接続回路にかかる電圧が発光ダイオードの順方向電圧降下分ずつ低下すると、LED5→LED4→LED3→LED2→LED1の順に発光を停止し、発光ダイオードの順方向電圧降下分ずつ上昇すると、LED1→LED2→LED3→LED4→LED5の順に発光する。
なお、LED1〜LED5の直列接続回路にかかる電圧が最高電圧より微少電圧δV(0<δV<発光ダイオードの順方向電圧降下)だけ低いとき、FET5は不完全導通で、FET5とLED5とに電流が流れる場合がある。この微少電圧だけ低い場合でも負帰還が働いている。
When the voltage applied to the series connection circuit of LED1 to LED5 further decreases, LED3, LED2, and LED1 stop emitting light in order. That is, when the voltage applied to the series connection circuit of LED1 to LED5 decreases by the forward voltage drop of the light emitting diode, the light emission stops in the order of LED5 → LED4 → LED3 → LED2 → LED1 and the forward voltage drop of the light emitting diode increases. If it rises, it will light-emit in order of LED1->LED2->LED3->LED4-> LED5.
When the voltage applied to the series connection circuit of LED1 to LED5 is lower than the maximum voltage by a minute voltage δV (0 <δV <forward voltage drop of the light emitting diode), the FET5 is incompletely conductive, and the current flows between the FET5 and the LED5. May flow. Negative feedback works even when this minute voltage is low.

図4と図5は、それぞれ本発明の第2の実施形態に係る電圧増幅部210とLED発光制御部220の構成の一例を示す。第2の実施形態は、二次電池201の定格電圧が380Vである場合の例である。
電源ラインL3には、図示しない定電圧回路から12Vの電圧が供給される。電圧増幅部210とLED発光制御部220は、電源ラインL3と電源ラインL2に接続され、図示しない定電圧回路から供給される電圧で動作する。
4 and 5 show examples of configurations of the voltage amplification unit 210 and the LED light emission control unit 220 according to the second embodiment of the present invention, respectively. The second embodiment is an example when the rated voltage of the secondary battery 201 is 380V.
A voltage of 12 V is supplied to the power supply line L3 from a constant voltage circuit (not shown). The voltage amplification unit 210 and the LED light emission control unit 220 are connected to the power supply line L3 and the power supply line L2, and operate with a voltage supplied from a constant voltage circuit (not shown).

電圧増幅部210が第1の実施形態に係る電圧増幅部110と異なる点は以下の通りである。
電源201が電源ラインL1と電源ラインL2に(二次電池201の正極と負極の間)に直流電流成分と交流電流成分とを含む脈流電流を流すとき、二次電池201の正極と負極の間に生じる交流電圧成分は例えば600mV程度に達する。このため、電圧増幅部210は、変圧器T1を有していない。
電圧増幅部210は、抵抗R13と抵抗R14とを有する。抵抗R13は、一端が電源ラインL3に接続され、他端が抵抗R14の一端に接続される。抵抗R14の他端は電源ラインL2に接続される。抵抗R13と抵抗R14は、電源ラインL3と電源ラインL2間の電圧12Vを分圧してそれらの接続部分に好ましくは6V程度の第1の中間電圧を生じる。コンデンサC1は、一端が電源ラインL1に接続され、他端が抵抗R13と抵抗R14の接続部分に接続される。このため、抵抗R13と抵抗R14との接続部分の電圧は第1の中間電圧に交流電圧成分が加算された電圧となり、その加算された電圧がオペアンプOP1の非反転入力端に入力される。
増幅部111のオペアンプOP1とオペアンプOP2の正電源端は電源ラインL3に接続されており、負電源端は電源ラインL2に接続されている。抵抗R1の一端は電源ラインL3に接続されており、抵抗R1と抵抗R2の接続部分には好ましくは6V程度の第2の中間電圧を生じる。オペアンプOP2の非反転入力端には第2の中間電圧が入力される。
上述した点以外は、電圧増幅部210は電圧増幅部110と同一の構成である。
The voltage amplifying unit 210 is different from the voltage amplifying unit 110 according to the first embodiment as follows.
When the power supply 201 supplies a pulsating current including a direct current component and an alternating current component to the power supply line L1 and the power supply line L2 (between the positive electrode and the negative electrode of the secondary battery 201), the positive and negative electrodes of the secondary battery 201 The AC voltage component generated between them reaches, for example, about 600 mV. For this reason, the voltage amplifier 210 does not have the transformer T1.
The voltage amplification unit 210 has a resistor R13 and a resistor R14. The resistor R13 has one end connected to the power supply line L3 and the other end connected to one end of the resistor R14. The other end of the resistor R14 is connected to the power supply line L2. The resistor R13 and the resistor R14 divide the voltage 12V between the power supply line L3 and the power supply line L2 to generate a first intermediate voltage, preferably about 6V, at their connection portion. One end of the capacitor C1 is connected to the power supply line L1, and the other end is connected to a connection portion between the resistor R13 and the resistor R14. Therefore, the voltage at the connection portion between the resistor R13 and the resistor R14 is a voltage obtained by adding an AC voltage component to the first intermediate voltage, and the added voltage is input to the non-inverting input terminal of the operational amplifier OP1.
The positive power supply terminals of the operational amplifier OP1 and the operational amplifier OP2 of the amplifier 111 are connected to the power supply line L3, and the negative power supply terminals are connected to the power supply line L2. One end of the resistor R1 is connected to the power supply line L3, and a second intermediate voltage of preferably about 6V is generated at a connection portion between the resistor R1 and the resistor R2. The second intermediate voltage is input to the non-inverting input terminal of the operational amplifier OP2.
Except for the points described above, the voltage amplification unit 210 has the same configuration as the voltage amplification unit 110.

LED発光制御部220は、トランジスタQ1のコレクタCと抵抗R5の一端とが電源ラインL3に接続されている点が第1の実施形態に係るLED発光制御部120と異なる。この点を除き、LED発光制御部220はLED発光制御部120と同一の構成である。   The LED light emission control unit 220 is different from the LED light emission control unit 120 according to the first embodiment in that the collector C of the transistor Q1 and one end of the resistor R5 are connected to the power supply line L3. Except for this point, the LED light emission control unit 220 has the same configuration as the LED light emission control unit 120.

なお、上述した実施形態では発光ダイオードが5個(LED1〜LED5)の例について説明したが、発光ダイオードが2個〜4個、または5個以上直列に接続されている場合であっても本発明を適用することができる。   In the above-described embodiment, an example of five light emitting diodes (LED1 to LED5) has been described. However, the present invention is applicable even when two to four light emitting diodes or five or more light emitting diodes are connected in series. Can be applied.

以上説明したように、本発明によれば、二次電池の劣化の程度を目視で判定することができる。すなわち、本発明にかかる充電器を用いることにより、二次電池の充電中にその劣化の程度を目視で判定することができる。   As described above, according to the present invention, the degree of deterioration of the secondary battery can be visually determined. That is, by using the charger according to the present invention, it is possible to visually determine the degree of deterioration during charging of the secondary battery.

以上、本発明の実施形態について説明したが、設計上の都合やその他の要因によって必要となる様々な修正や組み合わせは、請求項に記載されている発明や発明の実施形態に記載されている具体例に対応する発明の範囲に含まれる。   Although the embodiments of the present invention have been described above, various modifications and combinations required for design reasons and other factors are described in the inventions described in the claims and in the embodiments of the invention. It is included in the scope of the invention corresponding to the example.

1…充電器、100…電池劣化判定装置、110…電圧増幅部、111…増幅部、112…反転部、113…2倍増幅部、120…LED発光制御部、200…電源、201…二次電池、210…電圧増幅部、220…LED発光制御部、LED1〜LED5…発光ダイオード DESCRIPTION OF SYMBOLS 1 ... Charger, 100 ... Battery deterioration determination apparatus, 110 ... Voltage amplification part, 111 ... Amplification part, 112 ... Inversion part, 113 ... Double amplification part, 120 ... LED light emission control part, 200 ... Power supply, 201 ... Secondary Battery, 210 ... Voltage amplification unit, 220 ... LED light emission control unit, LED1 to LED5 ... Light emitting diode

Claims (4)

二次電池の正極と負極の間に直流電流成分と交流電流成分とを含む脈流電流が流れるとき、当該正極と負極の間に生じる電圧に含まれる交流電圧成分を抽出し、当該交流電圧成分を増幅して整流し、増幅電圧を生成する電圧増幅部と、
直列に接続された複数のLEDと、
前記電圧増幅部で生成される増幅電圧に基づいて、前記複数のLEDを前記二次電池の劣化の程度に応じた個数だけ発光させるLED発光制御部と、
を備えることを特徴とする電池劣化判定装置。
When a pulsating current containing a direct current component and an alternating current component flows between the positive electrode and the negative electrode of the secondary battery, the alternating voltage component included in the voltage generated between the positive electrode and the negative electrode is extracted, and the alternating voltage component A voltage amplifying unit that amplifies and rectifies and generates an amplified voltage;
A plurality of LEDs connected in series;
Based on the amplified voltage generated by the voltage amplification unit, an LED emission control unit that causes the plurality of LEDs to emit light according to the degree of deterioration of the secondary battery;
A battery deterioration determination device comprising:
前記LED発光制御部が、前記二次電池の劣化が激しいほど多くのLEDを発光させることを特徴とする請求項1に記載の電池劣化判定装置。   2. The battery deterioration determination device according to claim 1, wherein the LED light emission control unit causes more LEDs to emit light as the deterioration of the secondary battery is more severe. 前記電圧増幅部が、
前記交流電圧成分または前記交流電圧成分が増幅された第1の中間交流電圧を増幅して第2の中間交流電圧を生成する増幅部と、
前記増幅部で生成される第2の中間交流電圧の正負の極性が反転した反転交流電圧を生成する反転部と、
前記増幅部で生成される第2の中間交流電圧と前記反転部で生成される反転交流電圧とに基づいて前記第2の中間交流電圧を2倍に増幅して整流し、前記増幅電圧を生成する2倍増幅部と、
を備えることを特徴とする請求項1または2に記載の電池劣化判定装置。
The voltage amplification unit is
An amplifying unit for amplifying the AC voltage component or the first intermediate AC voltage obtained by amplifying the AC voltage component to generate a second intermediate AC voltage;
An inverting unit that generates an inverted AC voltage obtained by inverting the polarity of the second intermediate AC voltage generated by the amplifying unit;
Based on the second intermediate AC voltage generated by the amplifying unit and the inverted AC voltage generated by the inverting unit, the second intermediate AC voltage is doubled and rectified to generate the amplified voltage. A two-fold amplification unit,
The battery deterioration determination device according to claim 1, comprising:
請求項1ないし3のいずれか1項に記載の電池劣化判定装置と、
前記二次電池の正極と負極の間に前記脈流電流を流す電源と、
を備えることを特徴とする充電器。
The battery deterioration determination device according to any one of claims 1 to 3,
A power source for causing the pulsating current to flow between a positive electrode and a negative electrode of the secondary battery;
A charger comprising:
JP2016115854A 2016-06-10 2016-06-10 Battery degradation determination device and charger Pending JP2017219495A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016115854A JP2017219495A (en) 2016-06-10 2016-06-10 Battery degradation determination device and charger
PCT/JP2017/017471 WO2017212844A1 (en) 2016-06-10 2017-05-09 Battery degradation determination device and charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016115854A JP2017219495A (en) 2016-06-10 2016-06-10 Battery degradation determination device and charger

Publications (1)

Publication Number Publication Date
JP2017219495A true JP2017219495A (en) 2017-12-14

Family

ID=60656076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016115854A Pending JP2017219495A (en) 2016-06-10 2016-06-10 Battery degradation determination device and charger

Country Status (1)

Country Link
JP (1) JP2017219495A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019192596A (en) * 2018-04-27 2019-10-31 トヨタ自動車株式会社 Sulfide solid state battery and sulfide solid state battery system including the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019192596A (en) * 2018-04-27 2019-10-31 トヨタ自動車株式会社 Sulfide solid state battery and sulfide solid state battery system including the same
JP7085124B2 (en) 2018-04-27 2022-06-16 トヨタ自動車株式会社 Sulfide solid-state battery and sulfide solid-state battery system equipped with it

Similar Documents

Publication Publication Date Title
US9954460B2 (en) Voltage control device with gate capacitor charging and discharging
US20110260648A1 (en) Light source module, lighting apparatus, and illumination device using the same
JP6570017B2 (en) Electronic equipment
US20080291699A1 (en) Low-Loss Rectifier with Optically Coupled Gate Shunting
KR101301087B1 (en) Apparatus for driving light emitting diode
JP2014217079A5 (en)
US9258857B2 (en) Light emitting system and voltage conversion device thereof
US8907583B1 (en) LED driving device
WO2018074470A1 (en) Battery deterioration diagnosis device, charger, and battery deterioration diagnosis method
JP2007318881A (en) Power supply unit for lighting of led
JP2017219495A (en) Battery degradation determination device and charger
US8044597B2 (en) Drive circuit of fluorescent display
JP2018031678A (en) Battery deterioration diagnosis device and charger
US9622308B2 (en) Lighting device, illumination device, and lighting fixture
US9632116B2 (en) DC reverse polarity detection
WO2017212844A1 (en) Battery degradation determination device and charger
JP7009737B2 (en) Control circuit for lighting equipment
US9530634B2 (en) Device for supplying voltage to the cathode of a mass spectrometer
JP3171581B2 (en) Battery pass / fail determination device
JP6635513B2 (en) Switching power supply
JP3638148B2 (en) Secondary battery pass / fail discrimination device and ripple generation circuit of the device
US8760887B2 (en) Power supply circuit
JP2017200249A (en) Dc power supply and led lighting device
JP2005086900A (en) Charging device for electric double-layer capacitor device
CN103533692B (en) For the supply unit of LED and the method for powering to LED