JP3171581B2 - Battery pass / fail determination device - Google Patents

Battery pass / fail determination device

Info

Publication number
JP3171581B2
JP3171581B2 JP30289999A JP30289999A JP3171581B2 JP 3171581 B2 JP3171581 B2 JP 3171581B2 JP 30289999 A JP30289999 A JP 30289999A JP 30289999 A JP30289999 A JP 30289999A JP 3171581 B2 JP3171581 B2 JP 3171581B2
Authority
JP
Japan
Prior art keywords
voltage
secondary battery
component
output terminal
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30289999A
Other languages
Japanese (ja)
Other versions
JP2001126774A (en
Inventor
正二 羽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Data Corp
Original Assignee
NTT Data Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Data Corp filed Critical NTT Data Corp
Priority to JP30289999A priority Critical patent/JP3171581B2/en
Publication of JP2001126774A publication Critical patent/JP2001126774A/en
Application granted granted Critical
Publication of JP3171581B2 publication Critical patent/JP3171581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電池良否判別装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery quality judgment device.

【0002】[0002]

【従来の技術】二次電池(すなわち、充電が可能な電
池)の良否(すなわち、正常な充放電能力の有無)を知
る手法として、二次電池の満充電後、二次電池の両端間
の電圧が低下して所定値に達するまでの放電時間の長さ
に基づいて良否を判別する手法が知られている。
2. Description of the Related Art As a method of knowing whether a secondary battery (that is, a rechargeable battery) is good or not (that is, whether or not it has a normal charge / discharge capability), after the secondary battery is fully charged, a voltage between both ends of the secondary battery is obtained. There is known a method of determining pass / fail based on the length of the discharge time required for the voltage to decrease to a predetermined value.

【0003】[0003]

【発明が解決しようとする課題】しかし、満充電後の放
電時間の長さに基づいて二次電池の良否を判別する上述
の手法においては、判別の対象である二次電池に長時間
放電を行わせる必要がある。また、二次電池が放電した
電荷量と二次電池の両端間の電圧の関係は複雑であり、
また、単位時間当たりに放電される電荷量と二次電池の
両端間の電圧との関係も複雑である。
However, in the above-described method of determining the quality of a secondary battery based on the length of discharge time after full charge, the secondary battery to be determined is discharged for a long time. It needs to be done. Also, the relationship between the amount of charge discharged by the secondary battery and the voltage across the secondary battery is complicated,
Also, the relationship between the amount of charge discharged per unit time and the voltage across the secondary battery is complicated.

【0004】従って、放電時間の長さに基づいて二次電
池の良否を判別するには、単位時間量当たりに放電され
た電荷量の推移を継続的にモニタする必要があり、その
ようなモニタを可能とする装置の構成は複雑となる。ま
た、充放電能力が正常な二次電池の放電時間の長さを特
定すること自体も容易ではない。
Therefore, in order to determine the quality of the secondary battery based on the length of the discharge time, it is necessary to continuously monitor the change in the amount of charge discharged per unit time. The configuration of the device that enables the above is complicated. Further, it is not easy to specify the length of discharge time of a secondary battery having a normal charge / discharge capability.

【0005】この発明は、上述した事情に鑑みてなされ
たもので、二次電池の良否を短時間で容易に判別できる
電池良否判別装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and has as its object to provide a battery pass / fail determination device that can easily determine pass / fail of a secondary battery in a short time.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、この発明による電池良否判別装置は、正極及び負極
の両極を備える二次電池の両極間に、直流電流成分及び
交流電流成分を含む脈流電流を流す脈流印加手段と、前
記二次電池の両極間に生じた電圧に含まれる交流電圧成
分を抽出する交流電圧抽出手段と、前記交流電圧抽出手
段により抽出された前記交流電圧成分の大きさに従っ
て、前記二次電池が異常であるか否かを判別して、判別
結果を表す情報を出力する判別手段と、を備え、前記脈
流印加手段は、複数の二次電池の各両極間に、複数の前
記脈流電流を1対1に流し、前記交流電圧抽出手段は、
各々の前記二次電池の両極間に生じた電圧に含まれる交
流電圧成分を抽出し、前記判別手段は、前記交流電圧抽
出手段が抽出した各交流電圧成分の平均値を表す平均電
圧を発生する手段と、前記交流電圧抽出手段が抽出した
各々の交流電圧成分の大きさと、前記平均電圧の値との
差が所定値に達しているか否かを判別し、達していると
判別したとき、前記二次電池が異常であると判別する手
段と、を備える、ことを特徴とする。
In order to achieve the above object, a battery quality discriminating apparatus according to the present invention comprises a battery including a DC current component and an AC current component between both poles of a secondary battery having both a positive pole and a negative pole. Pulsating current applying means for flowing a flowing current, AC voltage extracting means for extracting an AC voltage component included in a voltage generated between both poles of the secondary battery, and an AC voltage component extracted by the AC voltage extracting means. Determining whether or not the secondary battery is abnormal according to the size, and outputting information representing the determination result, wherein the pulsating flow applying unit includes a bipolar unit for each of the plurality of secondary batteries. In the meantime, the plurality of pulsating currents are caused to flow one-to-one, and the AC voltage extracting means
An AC voltage component included in a voltage generated between both poles of each of the secondary batteries is extracted, and the determining unit generates an average voltage representing an average value of the AC voltage components extracted by the AC voltage extracting unit. Means, the magnitude of each of the AC voltage components extracted by the AC voltage extraction means, to determine whether the difference between the value of the average voltage has reached a predetermined value, when it is determined that the difference has been reached, Means for determining that the secondary battery is abnormal.

【0007】この場合、二次電池の両極間の電圧に含ま
れる交流電圧成分の大きさは、二次電池の両極間のイン
ピーダンスに依存して決まる。従って、このような電池
良否判別装置によれば、二次電池の良否は二次電池の両
極間のインピーダンスに基づいて決まる。従って、二次
電池の良否が、二次電池の放電時間を測ることを要せ
ず、短時間で容易に判別される。
In this case, the magnitude of the AC voltage component included in the voltage between the two electrodes of the secondary battery is determined depending on the impedance between the two electrodes of the secondary battery. Therefore, according to such a battery quality determination device, the quality of the secondary battery is determined based on the impedance between both electrodes of the secondary battery. Therefore, the quality of the secondary battery can be easily determined in a short time without measuring the discharge time of the secondary battery.

【0008】[0008]

【0009】[0009]

【0010】[0010]

【0011】前記判別手段は、前記交流電圧抽出手段が
抽出した各交流電圧成分の平均値を表す平均電圧を発生
する手段と、前記交流電圧抽出手段が抽出した各々の交
流電圧成分の大きさと、前記平均電圧の値との差が所定
値に達しているか否かを判別し、達していると判別した
とき、前記二次電池が異常であると判別する手段と、を
備えるので、複数の二次電池のうち、充放電能力が特に
劣っているものが特定され、異常と判別される。
The determination means includes means for generating an average voltage representing an average value of each AC voltage component extracted by the AC voltage extraction means, a magnitude of each AC voltage component extracted by the AC voltage extraction means, the difference between the value of the average voltage to determine whether or not reach the predetermined value, when it is determined to have reached, so and means for the secondary battery is judged to be abnormal, a plurality of two Of the following batteries, those having particularly poor charge / discharge capability are identified and determined to be abnormal.

【0012】前記脈流印加手段は、例えば、単相交流電
流を整流し、整流により得られる電流を出力する整流手
段を備えることにより、二次電池に流すための脈流電流
を発生する。この場合、前記電池良否判別手段は、前記
整流手段が出力した電流を前記二次電池の両極間に流す
手段を備えればよい。
The pulsating current applying means includes, for example, a rectifying means for rectifying a single-phase alternating current and outputting a current obtained by the rectification, thereby generating a pulsating current for flowing to the secondary battery. In this case, the battery quality determination means may include a means for flowing the current output by the rectification means between the two electrodes of the secondary battery.

【0013】[0013]

【0014】[0014]

【0015】[0015]

【発明の実施の形態】以下、この発明の実施の形態を、
二次電池を充電するための充電器を例とし、図面を参照
して説明する。 (第1の実施の形態)図1は、この発明の第1の実施の
形態にかかる充電器の構成を示す回路図である。図示す
るように、この充電器は、整流器RECT1と、コンデ
ンサC1と、差動増幅器AMP1と、発光ダイオードL
ED1と、負荷Z1とより構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described.
A charger for charging a secondary battery will be described as an example with reference to the drawings. (First Embodiment) FIG. 1 is a circuit diagram showing a configuration of a charger according to a first embodiment of the present invention. As shown, the charger comprises a rectifier RECT1, a capacitor C1, a differential amplifier AMP1, and a light emitting diode L
It is composed of an ED1 and a load Z1.

【0016】整流器RECT1は、例えばブリッジ型全
波整流回路から構成されており、2個の極を備える入力
端と、正極及び負極を備える出力端とを備える。充電す
る対象の二次電池Bの正極は、整流器RECT1の出力
端の正極に接続され、二次電池Bの負極は、整流器RE
CT1の出力端の負極に接続される。なお、整流器RE
CT1の入力端は、この充電器の電源入力端をなす。
The rectifier RECT1 is composed of, for example, a bridge-type full-wave rectifier circuit, and has an input terminal having two poles and an output terminal having a positive electrode and a negative electrode. The positive electrode of the secondary battery B to be charged is connected to the positive electrode of the output terminal of the rectifier RECT1, and the negative electrode of the secondary battery B is connected to the rectifier RE.
It is connected to the negative terminal of the output terminal of CT1. The rectifier RE
The input of CT1 is the power input of this charger.

【0017】整流器RECT1は、入力端の両極間に単
相交流電圧が印加されたとき、その単相交流電圧を全波
整流して得られる脈流の電圧を、出力端の両極間に発生
させる。ただし、整流器RECT1は、出力端の負極の
電位を基準として、出力端の正極の電圧が0ボルト以上
となるように、脈流の電圧を発生させる。
When a single-phase AC voltage is applied between the two poles of the input terminal, the rectifier RECT1 generates a pulsating voltage obtained by full-wave rectification of the single-phase AC voltage between the two poles of the output terminal. . However, the rectifier RECT1 generates a pulsating voltage such that the voltage of the positive electrode of the output terminal becomes 0 volt or more with reference to the potential of the negative electrode of the output terminal.

【0018】コンデンサC1は、整流器RECT1の出
力端の正極と、差動増幅器AMP1の非反転入力端との
間に接続されている。コンデンサC1は、自己の一端に
印加される電圧に含まれる交流の成分を他端へと通過さ
せる。
The capacitor C1 is connected between the positive terminal of the output terminal of the rectifier RECT1 and the non-inverting input terminal of the differential amplifier AMP1. The capacitor C1 passes an AC component included in a voltage applied to one end of the capacitor C1 to the other end.

【0019】差動増幅器AMP1は、演算増幅器などか
ら構成されており、非反転入力端と、反転入力端と、出
力端とを備える。差動増幅器AMP1は、反転入力端の
電位を基準とした非反転入力端の電圧に実質的に比例し
た電圧を、出力端に発生させる。
The differential amplifier AMP1 is composed of an operational amplifier and the like, and has a non-inverting input terminal, an inverting input terminal, and an output terminal. The differential amplifier AMP1 generates at the output terminal a voltage substantially proportional to the voltage at the non-inverting input terminal with reference to the potential at the inverting input terminal.

【0020】発光ダイオードLED1は、アノード及び
カソードを備えている。発光ダイオードLED1は、負
荷Z1とカスケードに接続されて直列回路を形成してお
り、この直列回路の両端のうち、発光ダイオードLED
1のアノードに近い方の端は差動増幅器AMP1の出力
端に接続されており、他方の端は、整流器RECT1の
出力端の負極に接続されている。
The light emitting diode LED1 has an anode and a cathode. The light-emitting diode LED1 is connected in cascade with the load Z1 to form a series circuit.
One of the terminals near the anode is connected to the output terminal of the differential amplifier AMP1, and the other terminal is connected to the negative terminal of the output terminal of the rectifier RECT1.

【0021】この充電器の電源入力端の両極間に単相交
流電圧を印加すると、整流器RECT1の出力端の両極
間には、整流器RECT1の出力端の正極が負極に対し
て正極性であるような向きの脈流の電圧が発生する。そ
して、整流器RECT1が発生させる脈流の電圧は二次
電池Bの両極間に印加される。そして、この脈流の電圧
の瞬時値が、二次電池Bが充電される程度の電圧に達し
ている間は、二次電池Bが充電される。
When a single-phase AC voltage is applied between both terminals of the power input terminal of the charger, the positive terminal of the output terminal of the rectifier RECT1 has a positive polarity with respect to the negative terminal between the two terminals of the output terminal of the rectifier RECT1. A pulsating voltage in an appropriate direction is generated. Then, the pulsating voltage generated by the rectifier RECT1 is applied between the two poles of the secondary battery B. The secondary battery B is charged while the instantaneous value of the voltage of the pulsating current has reached a voltage at which the secondary battery B is charged.

【0022】このとき、二次電池Bの両極間に発生する
電圧に含まれる交流成分の大きさは、整流器RECT1
の出力端の両極間の出力インピーダンスと二次電池Bの
両極間のインピーダンスとに依存した値となる。
At this time, the magnitude of the AC component included in the voltage generated between the two poles of the secondary battery B depends on the rectifier RECT1.
The value depends on the output impedance between the two electrodes at the output end of the secondary battery B and the impedance between the two electrodes of the secondary battery B.

【0023】また、二次電池Bの正極に発生している電
圧に含まれる交流成分は、コンデンサC1を通過して差
動増幅器AMP1の非反転入力端に印加される。また、
差動増幅器AMP1の反転入力端の電位は、二次電池B
の負極の電位と実質的に同電位となる。従って、差動増
幅器AMP1の反転入力端の電位を基準とした場合、差
動増幅器AMP1の非反転入力端の電圧の値は、二次電
池Bの正極の電圧の交流成分の値に実質的に等しくな
る。
The AC component included in the voltage generated at the positive electrode of the secondary battery B passes through the capacitor C1 and is applied to the non-inverting input terminal of the differential amplifier AMP1. Also,
The potential at the inverting input terminal of the differential amplifier AMP1 is
Is substantially the same as the potential of the negative electrode. Therefore, when the potential at the inverting input terminal of the differential amplifier AMP1 is used as a reference, the value of the voltage at the non-inverting input terminal of the differential amplifier AMP1 is substantially equal to the value of the AC component of the positive electrode voltage of the secondary battery B. Become equal.

【0024】この結果、差動増幅器AMP1の出力端に
は、二次電池Bの負極に対する正極の電圧のうちの交流
成分に実質的に比例した大きさの電圧が発生する。そし
て、差動増幅器AMP1の出力端と、整流器RECT1
の出力端の負極との間の電圧は、発光ダイオードLED
1と負荷Z1とが形成する直列回路の両端間に印加され
る。
As a result, a voltage having a magnitude substantially proportional to the AC component of the positive electrode voltage with respect to the negative electrode of the secondary battery B is generated at the output terminal of the differential amplifier AMP1. The output terminal of the differential amplifier AMP1 and the rectifier RECT1
The voltage between the negative terminal of the output terminal of the
1 and the load Z1 are applied between both ends of a series circuit formed by the load.

【0025】発光ダイオードLED1と負荷Z1とが形
成する直列回路の両端間に交流電圧が印加される結果、
発光ダイオードLED1は、自己が順バイアスされたと
き(具体的には、例えば、発光ダイオードLED1のア
ノードの電圧がカソードの電位に対して約0.6ボルト
以上高くなったとき)導通し、発光する。
As a result of applying an AC voltage across the series circuit formed by the light emitting diode LED1 and the load Z1,
The light emitting diode LED1 conducts and emits light when it is forward biased (specifically, for example, when the voltage of the anode of the light emitting diode LED1 becomes higher than the potential of the cathode by about 0.6 V or more). .

【0026】差動増幅器AMP1の反転入力端−非反転
入力端間の電圧がいかなる値のときに発光ダイオードL
ED1が順バイアスされるかは、差動増幅器AMP1の
増幅率と、負荷Z1のインピーダンスに依存する。一
方、二次電池は、充放電能力が正常である状態で両極間
に交流成分を含む電流を流した場合、両極間に発生する
電圧の交流成分の振幅が一定値以下になる、という性質
を有する。
When the voltage between the inverting input terminal and the non-inverting input terminal of the differential amplifier AMP1 has any value, the light emitting diode L
Whether the ED1 is forward-biased depends on the amplification factor of the differential amplifier AMP1 and the impedance of the load Z1. On the other hand, a secondary battery has a property that when a current including an AC component flows between both electrodes in a state where the charge / discharge capacity is normal, the amplitude of the AC component of a voltage generated between the two electrodes becomes equal to or less than a certain value. Have.

【0027】従って、差動増幅器AMP1の増幅率と、
負荷Z1のインピーダンスとを適切に選択することによ
り、発光ダイオードLED1は、充放電の能力が正常で
ない二次電池Bが脈流の電圧を印加されているときに発
光するようになる。
Therefore, the amplification factor of the differential amplifier AMP1
By appropriately selecting the impedance of the load Z1, the light emitting diode LED1 emits light when the rechargeable battery B whose charging / discharging ability is not normal is applied with a pulsating voltage.

【0028】例えば、二次電池Bが、充放電能力が正常
であるときに両極間に発生させる電圧の交流成分が10
ミリボルト未満であるとする。この場合、差動増幅器A
MP1の非反転入力端間の電圧が反転入力端の電位を基
準として10ミリボルトに達したときに発光ダイオード
LED1が順バイアスされるよう、差動増幅器AMP1
の増幅率と、負荷Z1のインピーダンスとを選択すれ
ば、発光ダイオードLED1は、二次電池Bが正常であ
るときは発光しない。
For example, when the rechargeable battery B has a normal charging / discharging ability, the AC component of the voltage generated between both electrodes is 10%.
Assume that it is less than millivolt. In this case, the differential amplifier A
When the voltage between the non-inverting input terminals of MP1 reaches 10 millivolts with respect to the potential of the inverting input terminal, the differential amplifier AMP1 is forward-biased so that the light emitting diode LED1 is forward-biased.
Is selected, and the impedance of the load Z1 is selected, the light emitting diode LED1 does not emit light when the secondary battery B is normal.

【0029】一方、二次電池Bの両電極の少なくとも一
方が、両極間を満たす電解質に接しなくなった場合(例
えば、二次電池Bが鉛蓄電池より構成される場合、二次
電池Bのいずれかの電極が硫酸鉛に覆われて、正負両電
極間を満たす希硫酸に直接接しなくなった場合)、二次
電池Bの両極間の抵抗値は、二次電池Bが正常である場
合に比べて増大する。従ってこの場合、整流器RECT
1の出力端の両極間の脈流の電圧を印加された二次電池
Bの両極間の電圧の直流成分及び交流成分の振幅は、い
ずれも、二次電池Bが正常であった場合に比べて増大
し、発光ダイオードLED1は発光する。
On the other hand, when at least one of the two electrodes of the secondary battery B is no longer in contact with the electrolyte filling the gap between the two electrodes (for example, when the secondary battery B is constituted by a lead storage battery, any one of the secondary batteries B Is no longer in direct contact with the dilute sulfuric acid that fills the space between the positive and negative electrodes), and the resistance between the two electrodes of the secondary battery B is lower than when the secondary battery B is normal. Increase. Therefore, in this case, the rectifier RECT
The amplitude of the DC component and the AC component of the voltage between the two electrodes of the secondary battery B to which the voltage of the pulsating current between the two electrodes at the output terminal 1 is applied is smaller than that in the case where the secondary battery B is normal. The light emitting diode LED1 emits light.

【0030】なお、この充電器の構成は、上述のものに
限られない。例えば、この充電器は、二次電池Bの両端
間の電圧の交流成分が一定値以上であるとき(すなわ
ち、差動増幅器AMP1の出力端の電圧が、発光ダイオ
ードLED1を順バイアスするに足る値となったと
き)、二次電池Bへの脈流の供給を遮断するようにして
もよい。
The configuration of the charger is not limited to the above. For example, when the AC component of the voltage between both ends of the secondary battery B is equal to or more than a certain value (that is, the voltage at the output terminal of the differential amplifier AMP1 is a value sufficient to forward bias the light emitting diode LED1). ), The supply of the pulsating flow to the secondary battery B may be cut off.

【0031】具体的には、この充電器は、例えば、整流
器RECT1の入力端の一方と単相交流電流の供給源の
一方の極との間に接続された電流路を含んだリレー回路
を備えるものとし、このリレー回路が、差動増幅器AM
P1の出力端の電圧が、発光ダイオードLED1を順バ
イアスするに足る値となったことを検知し、自己の電流
路を遮断するようにすればよい。
Specifically, the charger includes, for example, a relay circuit including a current path connected between one of the input terminals of the rectifier RECT1 and one of the poles of the single-phase alternating current supply source. This relay circuit is a differential amplifier AM
It is sufficient to detect that the voltage at the output terminal of P1 has reached a value sufficient to forward bias the light emitting diode LED1, and to interrupt its own current path.

【0032】また、二次電池Bの両端間の電圧の交流成
分が一定値以下であるか否かをこの充電器が示す手法は
任意であり、発光ダイオードLED1の発光の有無によ
り示す必要はない。従って、この充電器は、二次電池B
の両端間の電圧の交流成分が一定値以下であるか否か
を、音の有無で示してもよい。この場合、この充電器
は、例えば、差動増幅器AMP1の出力端と二次電池B
の負極との間に接続されたブザー等を備えるようにすれ
ばよい。
The method of indicating by the charger whether or not the AC component of the voltage between both ends of the secondary battery B is equal to or less than a predetermined value is arbitrary, and it is not necessary to indicate whether or not the light emitting diode LED1 emits light. . Therefore, this charger uses the secondary battery B
The presence or absence of a sound may indicate whether or not the AC component of the voltage between both ends is equal to or less than a predetermined value. In this case, the charger includes, for example, the output terminal of the differential amplifier AMP1 and the secondary battery B.
And a buzzer or the like connected between the negative electrode and the negative electrode.

【0033】なお、二次電池Bがデンドライトショート
の状態にあるとき(すなわち、二次電池Bの両極間を満
たす電解質中の金属イオンが充電などにより還元された
結果、両極間に樹枝状の金属の結晶が成長して両極間を
短絡するに至ったとき)、二次電池Bの両極間の抵抗値
は、二次電池Bが正常であるときに比べて低下する。従
ってこの場合、整流器RECT1の出力端の両極間に生
じた脈流の電圧を印加された二次電池Bの両極間の電圧
の直流成分及び交流成分の振幅は、いずれも、二次電池
Bが正常であった場合に比べて減少するので、発光ダイ
オードLED1は発光しない。
When the secondary battery B is in a dendrite short state (that is, as a result of the reduction of the metal ions in the electrolyte filling between the electrodes of the secondary battery B by charging or the like, a dendritic metal When the crystal grows and short-circuits between the two electrodes), the resistance value between the two electrodes of the secondary battery B is lower than when the secondary battery B is normal. Therefore, in this case, the amplitude of the DC component and the alternating current component of the voltage between the two electrodes of the secondary battery B to which the voltage of the pulsating current generated between the two electrodes at the output terminal of the rectifier RECT1 is both The light emitting diode LED1 does not emit light because the light emitting diode LED1 decreases in comparison with the normal case.

【0034】しかし、二次電池Bのデンドライトショー
ト等、二次電池Bの両極間の抵抗値が減少する異常は、
二次電池Bの両極間の電圧の直流成分をモニタすること
により検知することができる。具体的には、例えば図2
に示すように、この充電器を、図1に示す構成に加えて
さらに、ローパスフィルタLPFと、基準電圧源REF
1と、コンパレータCMPと、発光ダイオードLED2
と、負荷Z2とを備えるものとすればよい。
However, abnormalities in which the resistance between the two electrodes of the secondary battery B decreases, such as dendrite short-circuit of the secondary battery B, are as follows.
It can be detected by monitoring the DC component of the voltage between the two electrodes of the secondary battery B. Specifically, for example, FIG.
As shown in FIG. 1, in addition to the configuration shown in FIG. 1, this charger further includes a low-pass filter LPF
1, a comparator CMP, and a light emitting diode LED2
And a load Z2.

【0035】ローパスフィルタLPFは、入力端及び出
力端を備え、自己の入力端に印加された電圧のうち、交
流成分を実質的に除去した成分に相当する電圧を自己の
出力端に発生させる。ローパスフィルタLPFの入力端
は二次電池Bの正極に接続され、出力端は、コンパレー
タCMPの後述する非反転入力端に接続されている。
The low-pass filter LPF has an input terminal and an output terminal, and generates, at its own output terminal, a voltage corresponding to a component obtained by substantially removing an AC component among voltages applied to its own input terminal. The input terminal of the low-pass filter LPF is connected to the positive electrode of the secondary battery B, and the output terminal is connected to a later-described non-inverting input terminal of the comparator CMP.

【0036】基準電圧源REF1は、公知の構成の定電
圧源などより構成されており、正常な二次電池Bの両極
間に整流器RECT1の出力端の電圧が印加されたとき
の二次電池Bの両極間の電圧の直流成分の最低値に実質
的に等しい電圧を発生し、コンパレータCMPの後述す
る反転入力端に印加する。
The reference voltage source REF1 is constituted by a known constant voltage source or the like, and the secondary battery B when the voltage at the output terminal of the rectifier RECT1 is applied between both poles of the normal secondary battery B. And generates a voltage substantially equal to the lowest value of the DC component of the voltage between both electrodes of the comparator CMP, and applies it to an inverting input terminal of the comparator CMP, which will be described later.

【0037】コンパレータCMPは、反転入力端、非反
転入力端及び出力端を備え、非反転入力端が反転入力端
より高電位であるとき、整流器RECT1の出力端の負
極の電位を基準として正極性の電圧を出力端に発生し、
その他のときは、約0ボルトの電圧を発生する。
The comparator CMP has an inverting input terminal, a non-inverting input terminal, and an output terminal. When the non-inverting input terminal has a higher potential than the inverting input terminal, the comparator CMP has a positive polarity with reference to the negative potential of the output terminal of the rectifier RECT1. Voltage at the output end,
At other times, it produces a voltage of about 0 volts.

【0038】発光ダイオードLED2は、アノード及び
カソードを備え、抵抗器等からなる負荷Z2とカスケー
ドに接続されて直列回路を形成しており、この直列回路
の両端のうち、発光ダイオードLED2のアノードに近
い方の端はコンパレータCMPの出力端に接続されてお
り、他方の端は、整流器RECT1の出力端の負極に接
続されている。負荷Z2のインピーダンスは、コンパレ
ータCMPの出力端が整流器RECT1の出力端の電位
を基準として正極性の電圧を発生しているとき、発光ダ
イオードLED2が順バイアスされて発光するような値
に選ばれている。
The light emitting diode LED2 has an anode and a cathode, and is connected in cascade with a load Z2 composed of a resistor or the like to form a series circuit. Of both ends of the series circuit, the end is close to the anode of the light emitting diode LED2. One end is connected to the output terminal of the comparator CMP, and the other end is connected to the negative terminal of the output terminal of the rectifier RECT1. The impedance of the load Z2 is selected to be a value such that when the output terminal of the comparator CMP generates a positive voltage with reference to the potential of the output terminal of the rectifier RECT1, the light emitting diode LED2 is forward-biased and emits light. I have.

【0039】図2の構成の充電器においては、二次電池
Bの正極の電圧の直流成分が、ローパスフィルタLPF
を介してコンパレータCMPの非反転入力端に印加され
る。そして、二次電池Bの両極間の電圧の直流成分の値
が、正常な二次電池Bの両極間に整流器RECT1の出
力端の電圧が印加されたときの二次電池Bの両極間の電
圧の直流成分の最低値以上になると、コンパレータCM
Pの非反転入力端は、コンパレータCMPの反転入力端
に比べて高電位となる。従って、コンパレータCMPの
出力端には整流器RECT1の出力端の電位を基準とし
て正極性の電圧が発生し、発光ダイオードLED2が発
光する。一方、二次電池Bの両極間の電圧の直流成分の
値が、正常な二次電池Bの両極間に整流器RECT1の
出力端の電圧が印加されたときの二次電池Bの両極間の
電圧の直流成分の最低値を下回ったときは、発光ダイオ
ードLED2は発光しない。
In the charger having the configuration shown in FIG. 2, the DC component of the voltage of the positive electrode of the secondary battery B is converted to a low-pass filter LPF.
To the non-inverting input terminal of the comparator CMP. The value of the DC component of the voltage between the two electrodes of the secondary battery B is the voltage between the two electrodes of the secondary battery B when the voltage of the output terminal of the rectifier RECT1 is applied between the two electrodes of the normal secondary battery B. When the DC component value exceeds the minimum value, the comparator CM
The non-inverting input terminal of P has a higher potential than the inverting input terminal of the comparator CMP. Therefore, a positive voltage is generated at the output terminal of the comparator CMP with reference to the potential of the output terminal of the rectifier RECT1, and the light emitting diode LED2 emits light. On the other hand, the value of the DC component of the voltage between the two electrodes of the secondary battery B is the voltage between the two electrodes of the secondary battery B when the voltage of the output terminal of the rectifier RECT1 is applied between the two electrodes of the normal secondary battery B. When the DC component falls below the minimum value of the DC component, the light emitting diode LED2 does not emit light.

【0040】また、二次電池Bの両極間の電圧の交流成
分は、必ずしも直接に差動増幅器AMP1の反転入力端
−非反転入力端間に印加される必要はなく、変成器等に
より電圧が変換された上で印加されてもよい。具体的に
は、この充電器は、例えば図3に示す構成を有していて
もよい。
The AC component of the voltage between the two electrodes of the secondary battery B does not necessarily need to be directly applied between the inverting input terminal and the non-inverting input terminal of the differential amplifier AMP1. It may be applied after being converted. Specifically, this charger may have a configuration shown in FIG. 3, for example.

【0041】図3の充電器は、図示するように、図1の
構成に加え、変成器T1を備える。変成器T1は、一次
巻線及び二次巻線を備え、一次巻線の一端は整流器RE
CT1の出力端の負極に接続され、他端は、コンデンサ
C1の両端のうち整流器RECT1の出力端の正極に接
続されていない方に接続されている。変成器T1の二次
巻線の両端は、差動増幅器AMP1の反転入力端及び非
反転入力端に1対1に接続されている。なお、図3の構
成においては、コンデンサC1の両端のうち二次電池B
の正極に接続されていない方の端は、差動増幅器AMP
1には接続されていない。そして、発光ダイオードLE
D1のカソード及び差動増幅器AMP1の反転入力端は
グラウンドに接地されている。ただし、発光ダイオード
LED1及び差動増幅器AMP1が接続されているグラ
ウンドは、変成器T1の一次巻線、整流器RECT1、
二次電池B及びコンデンサC1からは実質的に絶縁され
た状態にある。
As shown, the charger of FIG. 3 includes a transformer T1 in addition to the configuration of FIG. The transformer T1 has a primary winding and a secondary winding, and one end of the primary winding is connected to a rectifier RE.
The other end of the capacitor C1 is connected to the other end of the capacitor C1 that is not connected to the positive end of the output end of the rectifier RECT1. Both ends of the secondary winding of the transformer T1 are connected one-to-one to the inverting input terminal and the non-inverting input terminal of the differential amplifier AMP1. Note that, in the configuration of FIG.
The other end not connected to the positive terminal of the differential amplifier AMP
1 is not connected. And the light emitting diode LE
The cathode of D1 and the inverting input terminal of the differential amplifier AMP1 are grounded. However, the ground to which the light emitting diode LED1 and the differential amplifier AMP1 are connected is connected to the primary winding of the transformer T1, the rectifier RECT1,
It is substantially insulated from the secondary battery B and the capacitor C1.

【0042】図3の構成においては、二次電池Bの両極
間の電圧の交流成分は、変成器T1により変圧された上
で、差動増幅器AMP1の反転入力端−非反転入力端間
に印加される。このため、二次電池Bの両極間の電圧の
交流成分の大きさが、差動増幅器AMP1の反転入力端
−非反転入力端間に印加し得る上限である定格入力電圧
を超え、この交流成分を差動増幅器AMP1の反転入力
端−非反転入力端間に印加すると差動増幅器AMP1が
破壊されるおそれがあるような場合にも、この充電器を
用いて二次電池Bの良否を判定することが可能となる。
また、図3の構成においては、変成器T1の二次巻線、
差動増幅器AMP1、負荷Z1及び発光ダイオードLE
D1は、変成器T1の一次巻線、整流器RECT1、二
次電池B及びコンデンサC1から実質的に絶縁される。
In the configuration of FIG. 3, the AC component of the voltage between the two electrodes of the secondary battery B is transformed by the transformer T1, and then applied between the inverting input terminal and the non-inverting input terminal of the differential amplifier AMP1. Is done. For this reason, the magnitude of the AC component of the voltage between the two electrodes of the secondary battery B exceeds the rated input voltage which is the upper limit that can be applied between the inverting input terminal and the non-inverting input terminal of the differential amplifier AMP1, and this AC component Is applied between the inverting input terminal and the non-inverting input terminal of the differential amplifier AMP1 and the differential amplifier AMP1 may be destroyed. It becomes possible.
Also, in the configuration of FIG. 3, the secondary winding of the transformer T1,
Differential amplifier AMP1, load Z1, and light emitting diode LE
D1 is substantially isolated from the primary winding of transformer T1, rectifier RECT1, secondary battery B and capacitor C1.

【0043】なお、二次電池Bの両極間の電圧の交流成
分を差動増幅器AMP1に印加した場合に差動増幅器A
MP1の反転入力端や非反転入力端の定格入力電圧を超
える危険が大きい場合としては、例えば、二次電池B
が、カスケードに接続された複数の二次電池からなる場
合がある。従って、図3の構成の充電器は、カスケード
に接続された複数の二次電池を同時に充電しながらこれ
ら複数の二次電池の良否を判別する動作を行うのに好適
である。
When the AC component of the voltage between the two electrodes of the secondary battery B is applied to the differential amplifier AMP1, the differential amplifier A
As a case where the risk of exceeding the rated input voltage of the inverting input terminal or the non-inverting input terminal of MP1 is large, for example, the secondary battery B
May be composed of a plurality of secondary batteries connected in cascade. Therefore, the charger having the configuration shown in FIG. 3 is suitable for performing the operation of judging the quality of the plurality of secondary batteries while simultaneously charging the plurality of secondary batteries connected in cascade.

【0044】(第2の実施の形態)図4は、この発明の
第2の実施の形態にかかる充電器の構成を示す回路図で
ある。図示するように、この充電器は、整流器RECT
2と、個数n個(ただし、nは任意の正の整数)のリプ
ル検出部DET1〜DETnと、コンデンサC4とより
構成されている。
(Second Embodiment) FIG. 4 is a circuit diagram showing a configuration of a charger according to a second embodiment of the present invention. As shown, this charger comprises a rectifier RECT
It comprises two, n (where n is an arbitrary positive integer) ripple detection units DET1 to DETn, and a capacitor C4.

【0045】整流器RECT2は、例えば、各自に供給
された電圧を整流する個数nの全波整流回路と、一次巻
線及びn個の二次巻線を備え各二次巻線の両端間の電圧
を1対1に各全波整流回路に供給する変成器と、から構
成されている。整流器RECT2は、2個の極を備える
入力端INと、各々が正極及び負極を備えるn組の出力
端OUT1〜OUTnとを備える。
The rectifier RECT2 includes, for example, a number n of full-wave rectifier circuits for rectifying the voltage supplied thereto, a primary winding and n secondary windings, and a voltage between both ends of each secondary winding. And a transformer for supplying each one-to-one to each full-wave rectifier circuit. The rectifier RECT2 has an input terminal IN having two poles, and n sets of output terminals OUT1 to OUTn each having a positive electrode and a negative electrode.

【0046】整流器RECT2の入力端INは、この充
電器の電源入力端をなす。充電する対象の二次電池Bk
(ただし、kは1以上n以下の整数)の正極は、整流器
RECT2の出力端OUTkの正極に接続され、二次電
池Bkの負極は、整流器RECT2の出力端OUTkの
負極に接続される。
The input terminal IN of the rectifier RECT2 forms the power input terminal of the charger. Secondary battery Bk to be charged
The positive electrode (where k is an integer of 1 to n) is connected to the positive electrode of the output terminal OUTk of the rectifier RECT2, and the negative electrode of the secondary battery Bk is connected to the negative electrode of the output terminal OUTk of the rectifier RECT2.

【0047】整流器RECT2は、入力端INの両極間
に単相交流電圧が印加されたとき、その単相交流電圧を
全波整流して得られる脈流の電圧を、出力端OUTkの
両極間に発生させる。ただし、整流器RECT2は、出
力端OUTkの負極の電位を基準として、出力端OUT
kの正極の電圧が0ボルト以上となるように、脈流の電
圧を発生させる。
When a single-phase AC voltage is applied between the two terminals of the input terminal IN, the rectifier RECT2 outputs a pulsating voltage obtained by full-wave rectification of the single-phase AC voltage between the two terminals of the output terminal OUTk. generate. However, the rectifier RECT2 is connected to the output terminal OUTk with reference to the negative potential of the output terminal OUTk.
A pulsating voltage is generated so that the voltage of the positive electrode of k becomes 0 volt or more.

【0048】リプル検出部DET1〜DETnは、互い
に実質的に同一の構成を有しており、リプル検出部DE
Tk(kは1以上n以下の整数)は、差動増幅器AMP
2kと、コンデンサC2k及びC3kと、変成器T2k
と、ダイオードD1kと、抵抗器Rkと、負荷Z3k
と、発光ダイオードLED3kとを備える。
The ripple detectors DET1 to DETn have substantially the same configuration as each other, and
Tk (k is an integer of 1 or more and n or less) is a differential amplifier AMP
2k, capacitors C2k and C3k, and transformer T2k
, A diode D1k, a resistor Rk, and a load Z3k.
And a light emitting diode LED3k.

【0049】コンデンサC2kは、第1の実施の形態に
おけるコンデンサC1と実質的に同一のものである。整
流器RECT2の出力端OUTkの正極と、変成器T2
kの後述する一次巻線の一端との間に接続されている
The capacitor C2k is substantially the same as the capacitor C1 in the first embodiment. The positive terminal of the output terminal OUTk of the rectifier RECT2 and the transformer T2
k and one end of a primary winding described later.

【0050】変成器T2kは、例えば上述の変成器T1
と実質的に同一のものである。変成器T2kの一次巻線
の一端は整流器RECT2の出力端OUTkの負極に接
続され、他端は、コンデンサCの両端のうち整流器RE
CT2の出力端OUTkの正極に接続されていない方に
接続されている。変成器T2kの二次巻線の一端はダイ
オードD1kの後述するアノードに接続され、他端は接
地されている。
The transformer T2k is, for example, the transformer T1 described above.
Are substantially the same. One end of the primary winding of the transformer T2k is connected to the negative electrode of the output terminal OUTk of the rectifier RECT2, and the other end is connected to the rectifier RE
The output terminal OUTk of CT2 is connected to the other end that is not connected to the positive electrode. One end of the secondary winding of the transformer T2k is connected to an anode of the diode D1k described later, and the other end is grounded.

【0051】ダイオードD1kはアノード及びカソード
を備え、ダイオードD1kのアノードは、上述の通り、
変成器T2kの二次巻線のうち接地されていない方の端
に接続されている。ダイオードD1kのカソードは、第
1の実施の形態における差動増幅器AMP1と実質的に
同一の差動増幅器AMP2kの非反転入力端に接続され
ている。
The diode D1k has an anode and a cathode, and the anode of the diode D1k is, as described above,
It is connected to the non-grounded end of the secondary winding of the transformer T2k. The cathode of the diode D1k is connected to the non-inverting input terminal of the differential amplifier AMP2k substantially the same as the differential amplifier AMP1 in the first embodiment.

【0052】コンデンサC3kは、ダイオードD1kの
カソードとグラウンドとの間の電圧を平滑化するための
ものである。コンデンサC3kの一端はダイオードD1
kのカソードに接続されており、他端は接地されてい
る。
The capacitor C3k is for smoothing the voltage between the cathode of the diode D1k and the ground. One end of the capacitor C3k is connected to a diode D1.
k, and the other end is grounded.

【0053】抵抗器Rkは、ダイオードD11〜D1n
のカソードに発生する電圧の平均値に当たる電圧を発生
させるためのものである。抵抗器Rkの一端は差動増幅
器AMP2kの非反転入力端に接続されており、他端は
差動増幅器AMP2kの反転入力端に接続されている。
The resistor Rk includes diodes D11 to D1n.
For generating a voltage corresponding to the average value of the voltages generated at the cathodes. One end of the resistor Rk is connected to the non-inverting input terminal of the differential amplifier AMP2k, and the other end is connected to the inverting input terminal of the differential amplifier AMP2k.

【0054】発光ダイオードLED3kは、第1の実施
の形態における発光ダイオードLED1と実質的に同一
のものであり、負荷Z3kとカスケードに接続されて直
列回路を形成している。この直列回路の両端のうち、発
光ダイオードLED3kのアノードに近い方の端は差動
増幅器AMP2kの出力端に接続されており、他方の端
は接地されている。
The light emitting diode LED3k is substantially the same as the light emitting diode LED1 in the first embodiment, and is connected in cascade with the load Z3k to form a series circuit. Of the two ends of the series circuit, the end near the anode of the light emitting diode LED3k is connected to the output terminal of the differential amplifier AMP2k, and the other end is grounded.

【0055】なお、コンデンサC31〜C3nの静電容
量は互いに実質的に等しく、また、抵抗器R1〜Rnの
抵抗値も互いに実質的に等しい。
The capacitances of the capacitors C31 to C3n are substantially equal to each other, and the resistance values of the resistors R1 to Rn are also substantially equal to each other.

【0056】コンデンサC4は、ダイオードD11〜D
1nのカソードに発生する電圧の平均値に当たる電圧を
平滑化するためのものである。コンデンサC4の一端
は、差動増幅器AMP21〜AMP2nの反転増幅器に
共通に接続され、他端は接地されている。
The capacitor C4 includes diodes D11 to D11.
This is for smoothing the voltage corresponding to the average value of the voltage generated at the 1n cathode. One end of the capacitor C4 is commonly connected to the inverting amplifiers of the differential amplifiers AMP21 to AMP2n, and the other end is grounded.

【0057】この充電器の電源入力端INの両極間に単
相交流電圧を印加すると、整流器RECT2の出力端O
UTkの両極間には、出力端OUTkの正極が出力端O
UTkの負極に対して正極性であるような向きの脈流の
電圧が発生する。そして、出力端OUTkの両極間に生
じる脈流の電圧は二次電池Bkの両極間に印加され、こ
の脈流の電圧の瞬時値が、二次電池Bkが充電される程
度の電圧に達している間、二次電池Bkは充電される。
When a single-phase AC voltage is applied between both terminals of the power supply input terminal IN of this charger, the output terminal O of the rectifier RECT2 is
Between the two poles of UTk, the positive pole of the output terminal OUTk is connected to the output terminal O.
A pulsating voltage is generated that has a positive polarity with respect to the negative electrode of UTk. The voltage of the pulsating current generated between the two electrodes of the output terminal OUTk is applied between the two electrodes of the secondary battery Bk, and the instantaneous value of the voltage of the pulsating current reaches a voltage at which the secondary battery Bk is charged. During this time, the secondary battery Bk is charged.

【0058】この結果、二次電池Bkの両極間には整流
器RECT2の出力端OUTkの両極間の出力インピー
ダンスと二次電池Bkの両極間のインピーダンスとに依
存する値を有する電圧が発生し、この電圧の交流成分
は、コンデンサC2kを通過して変成器T2kの一次巻
線の両端間に印加される。
As a result, a voltage having a value dependent on the output impedance between the two electrodes of the output terminal OUTk of the rectifier RECT2 and the impedance between the two electrodes of the secondary battery Bk is generated between the two electrodes of the secondary battery Bk. The AC component of the voltage passes through capacitor C2k and is applied across the primary winding of transformer T2k.

【0059】すると、変成器T2kの二次巻線の両端間
には、変成器T2kの一次巻線の両端間の電圧に実質的
に比例する電圧が発生し、ダイオードD1kのカソード
には、変成器T2kの二次巻線の両端間の電圧を半波整
流した結果がコンデンサC3kにより平滑化されたもの
にあたる電圧が発生する。そして、ダイオードD1kの
カソードの電圧は、差動増幅器AMP2kの非反転入力
端に印加される。
Then, a voltage which is substantially proportional to the voltage between both ends of the primary winding of the transformer T2k is generated between both ends of the secondary winding of the transformer T2k. As a result of half-wave rectification of the voltage between both ends of the secondary winding of the device T2k, a voltage corresponding to a result smoothed by the capacitor C3k is generated. Then, the voltage of the cathode of the diode D1k is applied to the non-inverting input terminal of the differential amplifier AMP2k.

【0060】一方、差動増幅器AMP2kの反転入力端
の電位は、ダイオードD11〜D1nの各カソードの電
圧(すなわち、差動増幅器AMP21〜AMP2nの各
非反転入力端の電圧)の平均値に実質的に等しくなる。
従って、差動増幅器AMP2kの出力端の電圧の値は、
二次電池Bkの正極の電圧の交流成分を半波整流して平
滑化した値から、二次電池B1〜Bnの正極の電圧の交
流成分をそれぞれ半波整流して平滑化した値の平均値を
差し引いた値に実質的に比例した値となる。そして、差
動増幅器AMP2kの出力端の電圧は、発光ダイオード
LED3kと負荷Z3kとが形成する直列回路の両端間
に印加される。
On the other hand, the potential at the inverting input terminal of the differential amplifier AMP2k is substantially equal to the average value of the voltages at the cathodes of the diodes D11 to D1n (ie, the voltages at the non-inverting input terminals of the differential amplifiers AMP21 to AMP2n). Is equal to
Therefore, the value of the voltage at the output terminal of the differential amplifier AMP2k is
The average value of the values obtained by half-wave rectifying and smoothing the AC components of the positive electrode voltages of the secondary batteries B1 to Bn from the values obtained by half-wave rectifying and smoothing the AC components of the positive electrode voltage of the secondary battery Bk. Is substantially proportional to the value obtained by subtracting. Then, the voltage at the output terminal of the differential amplifier AMP2k is applied across the series circuit formed by the light emitting diode LED3k and the load Z3k.

【0061】このため、差動増幅器AMP2kの増幅率
と、負荷Z3kのインピーダンスとを適切に選択するこ
とにより、発光ダイオードLED3kは、二次電池Bk
の両端間の電圧の交流成分の大きさが、二次電池B1〜
Bnの各両端間の電圧の交流成分の平均値を一定程度以
上上回っているときに発光するようになる。そして、二
次電池Bkの両端間の電圧の交流成分の値が小さいほど
二次電池Bkの充放電の能力が高いものとみれば、結
局、発光ダイオードLED3kは、二次電池Bkの充放
電の能力が、二次電池B1〜Bnの各両端間の充放電の
能力の平均より一定程度以上劣っているときに発光す
る、ということになる。
For this reason, by appropriately selecting the amplification factor of the differential amplifier AMP2k and the impedance of the load Z3k, the light emitting diode LED3k can be connected to the secondary battery Bk.
The magnitude of the AC component of the voltage between both ends of the secondary battery B1
Light is emitted when the average value of the AC component of the voltage between both ends of Bn exceeds a certain value or more. Then, assuming that the smaller the value of the AC component of the voltage between both ends of the secondary battery Bk is, the higher the charging / discharging ability of the secondary battery Bk is, the light emitting diode LED3k eventually ends up charging / discharging the secondary battery Bk. It means that light is emitted when the capacity is lower than the average of the charge and discharge capacities between both ends of the secondary batteries B1 to Bn by a certain degree or more.

【0062】なお、この実施の形態の充電器の構成も上
述のものに限られず、例えば、リプル検出部DET1〜
DETnは、それぞれ、図2に示すローパスフィルタL
PF、基準電圧源REF1、コンパレータCMP、発光
ダイオードLED2及び負荷Z2と実質的に同一のもの
を備えていてもよい。ただし、リプル検出部DETkの
ローパスフィルタLPFの入力端は二次電池Bkの正極
に接続され、リプル検出部DETkの発光ダイオードL
ED2及び負荷Z2が形成する直列回路の両端のうち、
発光ダイオードLED2のカソードに近い方の端は、整
流器RECT2の出力端OUTkの負極に接続されるも
のとする。また、リプル検出部DETkの基準電圧源R
EF1は、正常な二次電池Bkの両極間に整流器REC
T2の出力端OUTkの電圧が印加されたときの二次電
池Bkの両極間の電圧の直流成分の最低値に実質的に等
しい電圧を発生するものとする。この場合、二次電池B
kの両極間の電圧の直流成分の値が当該最低値以上にな
ると、リプル検出部DETkの発光ダイオードLED2
が発光する。
The configuration of the charger according to this embodiment is not limited to the above-described one.
DETn is a low-pass filter L shown in FIG.
It may include substantially the same components as the PF, the reference voltage source REF1, the comparator CMP, the light emitting diode LED2, and the load Z2. However, the input terminal of the low-pass filter LPF of the ripple detection unit DETk is connected to the positive electrode of the secondary battery Bk, and the light emitting diode L of the ripple detection unit DETk is
Of the two ends of the series circuit formed by the ED2 and the load Z2,
The end closer to the cathode of the light emitting diode LED2 is connected to the negative terminal of the output terminal OUTk of the rectifier RECT2. Further, the reference voltage source R of the ripple detection unit DETk
EF1 has a rectifier REC between both poles of a normal secondary battery Bk.
It is assumed that a voltage substantially equal to the minimum value of the DC component of the voltage between both electrodes of the secondary battery Bk when the voltage of the output terminal OUTk of T2 is applied. In this case, the secondary battery B
When the value of the DC component of the voltage between both poles of the first and second electrodes k is equal to or greater than the minimum value, the light emitting diode LED2
Emits light.

【0063】(第3の実施の形態)図5は、この発明の
第3の実施の形態にかかる充電器の構成を示す回路図で
ある。図示するように、この充電器は、ダイオードD2
及びD3と、コンデンサC5と、変成器T3と、差動増
幅器AMP3と、基準電圧源REF2と、発光ダイオー
ドLED4と、負荷Z4と、トリガ発生器TRGと、ト
ランジスタQと、直流電源Eとより構成されている。
(Third Embodiment) FIG. 5 is a circuit diagram showing a configuration of a charger according to a third embodiment of the present invention. As shown, the charger comprises a diode D2
And D3, a capacitor C5, a transformer T3, a differential amplifier AMP3, a reference voltage source REF2, a light emitting diode LED4, a load Z4, a trigger generator TRG, a transistor Q, and a DC power source E. Have been.

【0064】ダイオードD2及びD3は、いずれもアノ
ード及びカソードを備える。ダイオードD2のアノード
は変成器T3の後述する一次巻線の一端に接続され、カ
ソードは、差動増幅器AMP3の非反転入力端に接続さ
れている。なお、差動増幅器AMP3は、第1の実施の
形態におけるものと実質的に同一のものである。ダイオ
ードD3のアノードは変成器T3の後述する二次巻線の
一端に接続され、カソードは充電の対象である二次電池
Bの正極に接続されている。
Each of the diodes D2 and D3 has an anode and a cathode. The anode of the diode D2 is connected to one end of a primary winding described later of the transformer T3, and the cathode is connected to the non-inverting input terminal of the differential amplifier AMP3. The differential amplifier AMP3 is substantially the same as that in the first embodiment. The anode of the diode D3 is connected to one end of a later-described secondary winding of the transformer T3, and the cathode is connected to the positive electrode of the secondary battery B to be charged.

【0065】ただし、ダイオードD2及びD3の各アノ
ードが接続される端は、変成器T3の一次巻線に電流が
流れたとき、変成器T3の一次巻線の両端のうちダイオ
ードD2のアノードが接続されている方の端の他端に対
する電圧の極性が、変成器T3の二次巻線の両端のうち
ダイオードD3のアノードが接続されている方の端の他
端に対する電圧の極性と同極性となるように選ばれてい
るものとする。
However, the end to which the anodes of the diodes D2 and D3 are connected is connected to the anode of the diode D2 among the both ends of the primary winding of the transformer T3 when a current flows through the primary winding of the transformer T3. The polarity of the voltage with respect to the other end of the connected end is the same as the polarity of the voltage with respect to the other end of the end of the secondary winding of the transformer T3 to which the anode of the diode D3 is connected. It is assumed that they are chosen to be

【0066】変成器T3は一次巻線及び二次巻線を備え
る。変成器T3の一次巻線の一端は上述の通りダイオー
ドD2のアノードに接続されており、他端は接地されて
いる。変成器T3の二次巻線の一端は上述の通りダイオ
ードD3のアノードに接続されており、他端は二次電池
Bの負極に接続されている。
The transformer T3 has a primary winding and a secondary winding. One end of the primary winding of the transformer T3 is connected to the anode of the diode D2 as described above, and the other end is grounded. One end of the secondary winding of the transformer T3 is connected to the anode of the diode D3 as described above, and the other end is connected to the negative electrode of the secondary battery B.

【0067】コンデンサC5は、ダイオードD2のカソ
ードとグラウンドとの間の電圧を平滑化するためのもの
である。コンデンサC5の一端はダイオードD2のカソ
ードに接続されており、他端は接地されている。
The capacitor C5 is for smoothing the voltage between the cathode of the diode D2 and the ground. One end of the capacitor C5 is connected to the cathode of the diode D2, and the other end is grounded.

【0068】基準電圧源REF2は、公知の構成の定電
圧源などより構成されており、所定の基準電圧を発生し
て、差動増幅器AMP3の反転入力端に印加する。
The reference voltage source REF2 is composed of a constant voltage source having a known configuration, generates a predetermined reference voltage, and applies it to the inverting input terminal of the differential amplifier AMP3.

【0069】トリガ発生器TRGは、矩形波を発生する
発振器等より構成され、一対の極を備える出力端を備え
ており、出力端の両極間に矩形波を発生させる。ただ
し、この矩形波の振幅は、トランジスタQをオンするた
めにトランジスタQの後述のベース−エミッタ間に印加
する必要がある電圧の最小値以上とする。トリガ発生器
TRGの出力端の一方の極は、トランジスタQの後述す
るベースに接続されており、他方の極は、トランジスタ
Qの後述するエミッタに接続されている。
The trigger generator TRG is composed of an oscillator or the like that generates a rectangular wave, has an output terminal having a pair of poles, and generates a rectangular wave between both the output terminals. However, the amplitude of this rectangular wave is equal to or greater than the minimum value of the voltage that needs to be applied between the base and the emitter of the transistor Q described later to turn on the transistor Q. One pole of the output terminal of the trigger generator TRG is connected to a base of the transistor Q described later, and the other pole is connected to an emitter of the transistor Q described later.

【0070】直流電源Eは、正極及び負極を備える出力
端を備え、自己の出力端の両極間に、正極が負極に対し
て正極性となるような向きの直流電圧を発生する。
The DC power supply E has an output terminal provided with a positive electrode and a negative electrode, and generates a DC voltage between both electrodes of its own output terminal such that the positive electrode has a positive polarity with respect to the negative electrode.

【0071】トランジスタQは、NPN型バイポーラト
ランジスタより構成されており、ベース、エミッタ及び
コレクタを備える。トランジスタQのベース及びエミッ
タは上述の通りトリガ発生器TRGの出力端の各極に1
対1に接続されている。また、トランジスタQのコレク
タ及びエミッタを両端とする電流路と直流電源Eとはカ
スケードに接続されて直流回路を形成している。ただ
し、この電流路及び直流電源Eは、トランジスタQのコ
レクタ−エミッタ間が導通した場合、この直流回路の両
端のうちトランジスタQのエミッタに近い方の端が正極
性となるように接続されている。そして、トランジスタ
Qと直流電源Eとが形成するこの直列回路の両端のうち
直流電源Eの負極に近い方の端はダイオードD2のアノ
ードに接続され、他方の端は接地されている。
The transistor Q is formed of an NPN type bipolar transistor and has a base, an emitter and a collector. As described above, the base and the emitter of the transistor Q are connected to each pole of the output terminal of the trigger generator TRG by one.
They are connected one to one. Further, a current path having both ends of the collector and the emitter of the transistor Q and the DC power supply E are connected in cascade to form a DC circuit. However, the current path and the DC power supply E are connected such that, when the collector-emitter of the transistor Q conducts, one end of the DC circuit closer to the emitter of the transistor Q has a positive polarity. . The end of the series circuit formed by the transistor Q and the DC power supply E, which is closer to the negative electrode of the DC power supply E, is connected to the anode of the diode D2, and the other end is grounded.

【0072】発光ダイオードLED4は、第1の実施の
形態における発光ダイオードLED1と実質的に同一の
ものであり、負荷Z4とカスケードに接続されて直列回
路を形成している。そして、発光ダイオードLED4と
負荷Z4とが形成するこの直列回路の両端のうち、発光
ダイオードLED4のアノードに近い方の端は差動増幅
器AMP3の出力端に接続され、他方の端は接地されて
いる。
The light emitting diode LED4 is substantially the same as the light emitting diode LED1 in the first embodiment, and is connected in cascade with the load Z4 to form a series circuit. Then, of the two ends of this series circuit formed by the light emitting diode LED4 and the load Z4, the end closer to the anode of the light emitting diode LED4 is connected to the output terminal of the differential amplifier AMP3, and the other end is grounded. .

【0073】この充電器のトリガ発生器TRGの出力端
に矩形波が発生すると、この矩形波はトランジスタQの
ベース−エミッタ間に印加される。そして、この矩形波
によりトランジスタQのベースがエミッタより高電位に
なる期間は、トランジスタQがオンする。
When a rectangular wave is generated at the output terminal of the trigger generator TRG of the charger, the rectangular wave is applied between the base and the emitter of the transistor Q. Then, during a period in which the base of the transistor Q is at a higher potential than the emitter due to the rectangular wave, the transistor Q is turned on.

【0074】そして、トランジスタQがオンしている期
間は、トランジスタQ及び直流電源Eが形成する直列回
路の両端のうち接地されている方の端から、変成器T3
の一次巻線に向かって電流が流れる。なお、変成器T3
の一次巻線の両端のうち、ダイオードD2に接続されて
いる方の端は、グラウンドを基準として負極性になるの
で、ダイオードD2は逆バイアスされるので、ダイオー
ドD2には実質的に電流が流れない。一方、変成器T3
の一次巻線に流れる電流により、変成器T3の二次巻線
にも起電力が誘起される。しかし、この起電力は、二次
巻線の両端のうち、ダイオードD3に接続された方の端
が他端に比べ低電位となる向きである。従って、ダイオ
ードD3も逆バイアスされ、変成器T3の二次巻線から
二次電池Bへと電流が供給される経路は実質的に断たれ
る。
During the period in which the transistor Q is on, the transformer T3 is connected from the grounded end of the two ends of the series circuit formed by the transistor Q and the DC power supply E.
Current flows toward the primary winding of The transformer T3
Of the two ends of the primary winding connected to the diode D2 has a negative polarity with respect to the ground, so that the diode D2 is reverse-biased, so that current substantially flows through the diode D2. Absent. On the other hand, the transformer T3
The electromotive force is also induced in the secondary winding of the transformer T3 by the current flowing through the primary winding of the transformer T3. However, this electromotive force is such that, of the two ends of the secondary winding, the end connected to the diode D3 has a lower potential than the other end. Accordingly, the diode D3 is also reverse-biased, and the path through which current is supplied from the secondary winding of the transformer T3 to the secondary battery B is substantially cut off.

【0075】次いで、トリガ発生器TRGが発生する矩
形波によりトランジスタQのベースがエミッタより低電
位になると、トランジスタQはオフし、直流電源Eから
変成器T3の一次巻線への電流の供給が実質的に断たれ
る。
Next, when the base of the transistor Q becomes lower in potential than the emitter due to the rectangular wave generated by the trigger generator TRG, the transistor Q is turned off, and the current is supplied from the DC power supply E to the primary winding of the transformer T3. Virtually refused.

【0076】すると、変成器T3の一次巻線には逆起電
力が生じ、一次巻線の両端のうちダイオードD2に接続
されている方の端が正極性になる。この結果、ダイオー
ドD2は順バイアスされ、差動増幅器AMP3の非反転
入力端には、変成器T3の一次巻線が接続されたダイオ
ードD2のアノードの電圧がコンデンサC5により実質
的に積分された値を有する電圧が供給される。
Then, a back electromotive force is generated in the primary winding of the transformer T3, and one end of the primary winding connected to the diode D2 has a positive polarity. As a result, the diode D2 is forward-biased, and the non-inverting input terminal of the differential amplifier AMP3 has a value obtained by substantially integrating the voltage of the anode of the diode D2 to which the primary winding of the transformer T3 is connected by the capacitor C5. Is supplied.

【0077】一方、変成器T3の一次巻線に生じた逆起
電力により一次巻線に流れる電流は、変成器T3の二次
巻線に、ダイオードD3を順バイアスする向きの起電力
を誘起させる。そして、二次巻線に生じたこの起電力の
大きさと二次電池Bの両極間の電圧の差がダイオードD
3の順方向電圧より大きければ、ダイオードD3は順バ
イアスされ、変成器T3の二次巻線から、ダイオードD
3を経て二次電池Bの正極へと流れ込む電流が発生す
る。この電流により、二次電池Bは充電される。
On the other hand, the current flowing in the primary winding due to the back electromotive force generated in the primary winding of the transformer T3 induces an electromotive force in the secondary winding of the transformer T3 in a direction to forward bias the diode D3. . The difference between the magnitude of the electromotive force generated in the secondary winding and the voltage between the two electrodes of the secondary battery B is the diode D
3, the diode D3 is forward biased and the secondary winding of the transformer T3
Then, a current flows into the positive electrode of the secondary battery B via 3. The secondary battery B is charged by this current.

【0078】変成器T3の二次巻線に生じた起電力によ
って二次電池Bに流れ込む電流の大きさは、変成器T3
の二次巻線に生じた起電力の大きさ及び変化率と、二次
電池Bの両極間のインピーダンスとに依存した値とな
る。従って、変成器T3の二次巻線に生じた起電力の大
きさ及び変化率が同一の条件下では、二次電池Bの両極
間のインピーダンスが小さいほど、二次電池Bの正極に
流れ込む電流が大きくなる。
The magnitude of the current flowing into the secondary battery B due to the electromotive force generated in the secondary winding of the transformer T3 is
The value depends on the magnitude and rate of change of the electromotive force generated in the secondary winding and the impedance between the two electrodes of the secondary battery B. Therefore, under the condition that the magnitude and the rate of change of the electromotive force generated in the secondary winding of the transformer T3 are the same, the current flowing into the positive electrode of the secondary battery B decreases as the impedance between the two electrodes of the secondary battery B decreases. Becomes larger.

【0079】一方、変成器T3の一次巻線の両端間に生
じる起電力の大きさと一次巻線に流れる電流の大きさの
積は、変成器T3の二次巻線の両端間に生じる起電力の
大きさと二次巻線に流れる電流の大きさの積に実質的に
等しい。このため、変成器T3の二次巻線から二次電池
Bに流れ込む電流が大きいほど、変成器T3の一次巻線
からダイオードD2のアノードへと流れる電流は小さく
なり、従って、ダイオードD2のカソードからコンデン
サC5に流れ込む電流も小さくなる。この結果、変成器
T3の二次巻線から二次電池Bに流れ込む電流が大きい
ほど、トランジスタQがオフしている間にコンデンサC
5の両端間の電圧が到達する最大値が小さくなる。
On the other hand, the product of the magnitude of the electromotive force generated across the primary winding of the transformer T3 and the magnitude of the current flowing through the primary winding is the electromotive force generated across the secondary winding of the transformer T3. And the magnitude of the current flowing through the secondary winding. For this reason, the larger the current flowing from the secondary winding of the transformer T3 to the secondary battery B, the smaller the current flowing from the primary winding of the transformer T3 to the anode of the diode D2, and therefore, from the cathode of the diode D2. The current flowing into the capacitor C5 also decreases. As a result, the larger the current flowing from the secondary winding of the transformer T3 to the secondary battery B is, the more the capacitor C is turned off while the transistor Q is off.
5, the maximum value at which the voltage between both ends reaches is reduced.

【0080】そして、差動増幅器AMP3の出力端に
は、差動増幅器AMP3の反転入力端の電位を基準とし
た場合の非反転入力端の電圧に比例した大きさの電圧、
すなわち、コンデンサC5の両端間の電圧から基準電圧
源REF2が発生する基準電圧を差し引いた値に実質的
に比例した大きさの電圧が発生する。
The output terminal of the differential amplifier AMP3 has a voltage proportional to the voltage of the non-inverting input terminal with respect to the potential of the inverting input terminal of the differential amplifier AMP3,
That is, a voltage having a magnitude substantially proportional to a value obtained by subtracting the reference voltage generated by the reference voltage source REF2 from the voltage between both ends of the capacitor C5 is generated.

【0081】従って、差動増幅器AMP3の増幅率と、
基準電圧源REF2の出力端の電圧と、負荷Z4のイン
ピーダンスとを適切に選択することにより、発光ダイオ
ードLED4は、充放電の能力が正常でない二次電池B
が脈流の電圧を印加されているときに発光するようにな
る。
Therefore, the amplification factor of the differential amplifier AMP3
By appropriately selecting the voltage at the output terminal of the reference voltage source REF2 and the impedance of the load Z4, the light emitting diode LED4 can be used to charge or discharge the secondary battery B having an abnormal charge / discharge capacity.
Emits light when a pulsating voltage is applied.

【0082】なお、この実施の形態の充電器の構成も上
述のものに限られず、例えば、トランジスタQはPNP
型バイポーラトランジスタや、エンハンスメント型MO
SFET(Metal-Oxide-Silicon Field Effect Transis
tor)より構成されていてもよい。トランジスタQがエ
ンハンスメント型MOSFETより構成されている場合
は、図5の構成においてトランジスタQのベース、エミ
ッタ及びコレクタが接続されるべき箇所に、順に、この
エンハンスメント型MOSFETのゲート、ソース及び
ドレインを接続するようにすればよい。
The configuration of the charger of this embodiment is not limited to the above-described configuration.
Type bipolar transistors and enhancement type MO
SFET (Metal-Oxide-Silicon Field Effect Transis
tor). When the transistor Q is composed of an enhancement-type MOSFET, the gate, source and drain of the enhancement-type MOSFET are sequentially connected to locations where the base, emitter and collector of the transistor Q are to be connected in the configuration of FIG. What should I do?

【0083】[0083]

【発明の効果】以上説明したように、この発明によれ
ば、二次電池の良否を短時間で容易に判別できる電池良
否判別装置が実現される。
As described above, according to the present invention, there is provided a battery quality determining apparatus which can easily determine the quality of a secondary battery in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施の形態に係る充電器の構
成を示す回路図である。
FIG. 1 is a circuit diagram showing a configuration of a charger according to a first embodiment of the present invention.

【図2】図1の充電器の変形例の構成を示す回路図であ
る。
FIG. 2 is a circuit diagram showing a configuration of a modification of the charger of FIG.

【図3】図1の充電器の変形例の構成を示す回路図であ
る。
FIG. 3 is a circuit diagram showing a configuration of a modification of the charger of FIG.

【図4】この発明の第2の実施の形態に係る充電器の構
成を示す回路図である。
FIG. 4 is a circuit diagram showing a configuration of a charger according to a second embodiment of the present invention.

【図5】この発明の第3の実施の形態に係る充電器の構
成を示す回路図である。
FIG. 5 is a circuit diagram showing a configuration of a charger according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

AMP1、AMP21〜AMP2n、AMP3
差動増幅器 B、B1〜Bn
二次電池 C1、C21〜C2n、C31〜C3n、C4、C5
コンデンサ CMP
コンパレータ D11〜D1n、D2、D3
ダイオード DET1〜DETn
リプル検出部 E
直流電源 LED1、LED2、LED31〜LED3n、LED
4 発光ダイオード LPF
ローパスフィルタ Q
トランジスタ R1〜Rn
抵抗器 RECT1、RECT2
整流器 REF1、REF2
基準電圧源 T1、T21〜T2n、T3
変成器 TRG
トリガ発生器 Z1、Z2、Z31〜Z3n、Z4
負荷
AMP1, AMP21-AMP2n, AMP3
Differential amplifier B, B1 to Bn
Secondary batteries C1, C21 to C2n, C31 to C3n, C4, C5
Capacitor CMP
Comparators D11 to D1n, D2, D3
Diodes DET1 to DETn
Ripple detector E
DC power supply LED1, LED2, LED31-LED3n, LED
4 Light emitting diode LPF
Low-pass filter Q
Transistors R1 to Rn
Resistors RECT1, RECT2
Rectifier REF1, REF2
Reference voltage sources T1, T21 to T2n, T3
Transformer TRG
Trigger generator Z1, Z2, Z31 to Z3n, Z4
load

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】正極及び負極の両極を備える二次電池の両
極間に、直流電流成分及び交流電流成分を含む脈流電流
を流す脈流印加手段と、 前記二次電池の両極間に生じた電圧に含まれる交流電圧
成分を抽出する交流電圧抽出手段と、 前記交流電圧抽出手段により抽出された前記交流電圧成
分の大きさに従って、前記二次電池が異常であるか否か
を判別して、判別結果を表す情報を出力する判別手段
と、を備え、 前記脈流印加手段は、複数の二次電池の各両極間に、複
数の前記脈流電流を1対1に流し、 前記交流電圧抽出手段は、各々の前記二次電池の両極間
に生じた電圧に含まれる交流電圧成分を抽出し、 前記判別手段は、 前記交流電圧抽出手段が抽出した各交流電圧成分の平均
値を表す平均電圧を発生する手段と、 前記交流電圧抽出手段が抽出した各々の交流電圧成分の
大きさと、前記平均電圧の値との差が所定値に達してい
るか否かを判別し、達していると判別したとき、前記二
次電池が異常であると判別する手段と、を備える、 ことを特徴とする電池良否判別装置。
1. A pulsating flow applying means for flowing a pulsating current including a direct current component and an alternating current component between two poles of a secondary battery having both a positive electrode and a negative electrode; AC voltage extraction means for extracting an AC voltage component included in the voltage, and according to the magnitude of the AC voltage component extracted by the AC voltage extraction means, to determine whether the secondary battery is abnormal, Determining means for outputting information indicating a determination result, wherein the pulsating current applying means causes the plurality of pulsating currents to flow in a one-to-one manner between the respective poles of the plurality of secondary batteries, and the AC voltage extraction Means for extracting an AC voltage component included in a voltage generated between both poles of each of the secondary batteries; and the determining means, an average voltage representing an average value of the AC voltage components extracted by the AC voltage extracting means. Generating means; and the AC voltage extracting means. It is determined whether or not the difference between the magnitude of each extracted AC voltage component and the value of the average voltage has reached a predetermined value, and when it is determined that the difference has been reached, the secondary battery is abnormal. Means for determining the quality of the battery.
【請求項2】前記脈流印加手段は、 単相交流電流を整流し、整流により得られる電流を出力
する整流手段と、 前記整流手段が出力した電流を前記二次電池の両極間に
流す手段と、を備える、 ことを特徴とする請求項1に記載の電池良否判別装置。
2. The pulsating flow applying means rectifies a single-phase AC current and outputs a current obtained by the rectification; and a means for flowing the current output by the rectifying means between both poles of the secondary battery. The battery quality judgment device according to claim 1, comprising:
JP30289999A 1999-10-25 1999-10-25 Battery pass / fail determination device Expired - Fee Related JP3171581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30289999A JP3171581B2 (en) 1999-10-25 1999-10-25 Battery pass / fail determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30289999A JP3171581B2 (en) 1999-10-25 1999-10-25 Battery pass / fail determination device

Publications (2)

Publication Number Publication Date
JP2001126774A JP2001126774A (en) 2001-05-11
JP3171581B2 true JP3171581B2 (en) 2001-05-28

Family

ID=17914455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30289999A Expired - Fee Related JP3171581B2 (en) 1999-10-25 1999-10-25 Battery pass / fail determination device

Country Status (1)

Country Link
JP (1) JP3171581B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3638148B2 (en) * 2002-12-26 2005-04-13 株式会社エヌ・ティ・ティ・データ Secondary battery pass / fail discrimination device and ripple generation circuit of the device
JP2007181365A (en) * 2005-12-28 2007-07-12 Ntt Data Ex Techno Corp Ac voltage applying circuit and method to battery group
JP2016039742A (en) * 2014-08-11 2016-03-22 Ntn株式会社 Charging apparatus

Also Published As

Publication number Publication date
JP2001126774A (en) 2001-05-11

Similar Documents

Publication Publication Date Title
KR100886041B1 (en) Charge and discharge controller
US9653984B2 (en) Filter capacitor degradation detection apparatus and method
JP6539365B2 (en) Power management circuit
JP4911430B2 (en) Charger
US20080150549A1 (en) Insulation deterioration detection device for motor
JPS61170678A (en) Battery state detector
JP2009187937A (en) Conversion system with balanced cell current
JP2001524300A (en) Battery protection system
CN102222882A (en) Failure detection device for power circuit including switching element
JP2010068571A (en) Charging apparatus
JP3171581B2 (en) Battery pass / fail determination device
JP6368824B2 (en) Control device and control method for charging and discharging battery unit equally
JP2010288391A (en) Charge control method of lithium ion battery
US20120182022A1 (en) Method of indicating voltage, voltage indicating apparatus, and battery pack
US20150102819A1 (en) Lithium-ion energy store with measuring cell and methods for determining properties of the lithium-ion energy store
WO2018074470A1 (en) Battery deterioration diagnosis device, charger, and battery deterioration diagnosis method
JPH0543086U (en) Power supply circuit with defective battery identification
JP2002101571A (en) Deterioration diagnosis method for accumulator battery built in dc uninterruptive power supply unit and dc uninterruptive power supply device
JP3638148B2 (en) Secondary battery pass / fail discrimination device and ripple generation circuit of the device
JP5945046B1 (en) Automatic voltage regulator
CN211456785U (en) Main and standby power supply circuit
JP2001268819A (en) Power supply unit and feeding method
WO2005111644A1 (en) Device for judging acceptableness of secondary battery and its ripple generating circuit
JP2002228729A (en) Battery quality judging device
CN219959108U (en) Load detection module, battery protection chip, system and electronic equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080323

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090323

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees