JP2017219449A - Liquid level sensor - Google Patents

Liquid level sensor Download PDF

Info

Publication number
JP2017219449A
JP2017219449A JP2016114694A JP2016114694A JP2017219449A JP 2017219449 A JP2017219449 A JP 2017219449A JP 2016114694 A JP2016114694 A JP 2016114694A JP 2016114694 A JP2016114694 A JP 2016114694A JP 2017219449 A JP2017219449 A JP 2017219449A
Authority
JP
Japan
Prior art keywords
liquid level
level sensor
holes
thermocouple
temperature measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016114694A
Other languages
Japanese (ja)
Other versions
JP6663799B2 (en
Inventor
勝 山名
Masaru Yamana
勝 山名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okazaki Manufacturing Co Ltd
Original Assignee
Okazaki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okazaki Manufacturing Co Ltd filed Critical Okazaki Manufacturing Co Ltd
Priority to JP2016114694A priority Critical patent/JP6663799B2/en
Publication of JP2017219449A publication Critical patent/JP2017219449A/en
Application granted granted Critical
Publication of JP6663799B2 publication Critical patent/JP6663799B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquid level sensor capable of improving a manufacturing property, and improving response speed of liquid level detection by being narrowed as far as possible.SOLUTION: A liquid level sensor 10 includes: a housing 11 which are formed with four through-holes 21-24 having an insulation property and liquid resistance and arranged in parallel with each other; a heating line 12 which has a heating portion 31a heated by energization, and is stored in a folded back state over the two through-holes 21 and 22; a thermocouple 13 which is stored in a folded back state over the other 2 through-holes 23 and 24; an insulation material 20 fitted in each through-hole 21-24; and sealing members 14 and 15 which have an insulation property and liquid resistance, and seal opening end portions of the through-holes 21-24.SELECTED DRAWING: Figure 2

Description

本発明は、発熱体と熱電対とを利用して、容器等に貯留された液体の液面の高さ(液位)を検出する液位センサに関する。   The present invention relates to a liquid level sensor that detects the height (liquid level) of a liquid stored in a container or the like using a heating element and a thermocouple.

従来、容器等に貯留された液体の液面の高さを検出する液位センサとして、通電により発熱する発熱体と、当該発熱体に隣接して測温点が配設された熱電対とを収容する金属製の被覆管で構成され、一つの測温点で温度を測定して液位を検出するものが知られている。   Conventionally, as a liquid level sensor that detects the height of the liquid level of a liquid stored in a container or the like, a heating element that generates heat by energization and a thermocouple in which a temperature measuring point is disposed adjacent to the heating element are provided. It is known to be composed of a metal cladding tube to be accommodated and to detect the liquid level by measuring the temperature at one temperature measuring point.

この液位センサは、発熱体が液体中にある場合と気体中にある場合とで発熱体からの放熱量が異なるため、これらの2つの状態での温度差によって液位を検知する。例えば、発熱体が液体中にある場合は気体中にある場合に比べて放熱量が多いため、発熱体ないしその近傍領域の温度が気体中にある場合に比べて低くなる。したがって、液位センサは、その温度を熱電対により測定するとともに、測定した温度が所定の基準温度よりも低い場合には液位センサが液体中にあると判別する。しかし、この構成による液位センサは、周囲の液体又は気体の温度変化に応じて測温点の温度が変化するため、液位を誤って検知する可能性がある。   This liquid level sensor detects the liquid level based on the temperature difference between these two states because the amount of heat released from the heating element differs depending on whether the heating element is in liquid or in gas. For example, when the heating element is in a liquid, the amount of heat released is larger than when it is in a gas, so the temperature of the heating element or its vicinity is lower than when the temperature is in the gas. Therefore, the liquid level sensor measures the temperature with a thermocouple, and determines that the liquid level sensor is in the liquid when the measured temperature is lower than a predetermined reference temperature. However, the liquid level sensor according to this configuration may detect the liquid level by mistake because the temperature at the temperature measuring point changes according to the temperature change of the surrounding liquid or gas.

そこで、周囲の温度の変化に影響を受け難い液位センサとして、2つの測温点間の温度差によって水位を検出するものが知られている。例えば、下記特許文献1には、原子炉プラントの圧力抑制プールの水位を検出するのに適した水位センサが開示されている。この水位センサは、絶縁材が充填される被覆管と、被覆管内の絶縁材に埋設された電熱線(発熱線)及び熱電対とから構成されている。   Therefore, a liquid level sensor that detects a water level based on a temperature difference between two temperature measuring points is known as a liquid level sensor that is hardly affected by changes in ambient temperature. For example, Patent Document 1 below discloses a water level sensor suitable for detecting the water level of a pressure suppression pool of a nuclear reactor plant. The water level sensor includes a cladding tube filled with an insulating material, and a heating wire (heating wire) and a thermocouple embedded in the insulating material in the cladding tube.

被覆管は金属製であり、一端が閉鎖し他端が開放した有底円筒形状に形成されている。電熱線は、被覆管内にU字状に折り返された状態で挿入されている。また、熱電対も、被覆管内にU字状に折り返された状態で挿入されている。熱電対は、2種類の異なる金属線を交互に接続することで2箇所の異種金属接合点を有し、一方の第1接合点が電熱線の近傍に配置され、他方の第2接合点が電熱線から離れた位置に配置されている。また、電熱線及び熱電対は、被覆管内に充填された絶縁材によって互いの接触が防止され、絶縁が保たれている。   The cladding tube is made of metal and has a bottomed cylindrical shape with one end closed and the other end open. The heating wire is inserted in a state of being folded into a U shape in the cladding tube. Moreover, the thermocouple is also inserted in the state folded in the U shape in the cladding tube. A thermocouple has two dissimilar metal junctions by alternately connecting two different metal wires, one first junction is located near the heating wire, and the other second junction is It is arranged at a position away from the heating wire. Further, the heating wire and the thermocouple are prevented from contacting each other by the insulating material filled in the cladding tube, and the insulation is maintained.

この熱電対の構成によれば、熱電対の両端の間に生ずる電位差は、第1接合点と第2接合点の熱起電力の差になるため、この電位差を測定することにより、両接合点の温度差がわかる。
特許文献1に記載のように、第1接合点と第2接合点が水中にある場合は、気体中にある場合に比べて放熱量が多いことから、電熱線による加熱領域内に配置された第1接合点と加熱領域外に配置された第2接合点の温度がともに低く、当該接合点間の温度差が小さい。一方、第1接合点と第2接合点が気体中にある場合は、水中にある場合に比べて放熱量が少ないことから、電熱線による加熱領域内に配置された第1接合点の方が加熱領域外に配置された第2接合点よりも温度が高く、当該接合点間の温度差が大きい。また、水位センサ周囲の温度変化は、第1接合点と第2接合点の両方に同じく影響するため、実質的に相殺される。したがって、当該水位センサは、周囲の温度変化に関わりなく水位を検出することができる。
According to the configuration of this thermocouple, the potential difference generated between both ends of the thermocouple is the difference in the thermoelectromotive force between the first junction point and the second junction point. Therefore, by measuring this potential difference, both junction points You can see the temperature difference.
As described in Patent Document 1, when the first joint point and the second joint point are in water, the amount of heat radiation is larger than in the case of being in gas. The temperature of the first junction point and the second junction point arranged outside the heating region are both low, and the temperature difference between the junction points is small. On the other hand, when the first junction point and the second junction point are in the gas, the amount of heat radiation is less than in the case of being in water, so the first junction point arranged in the heating area by the heating wire is more The temperature is higher than the second junction point arranged outside the heating region, and the temperature difference between the junction points is large. Further, the temperature change around the water level sensor has the same effect on both the first junction point and the second junction point, and thus is substantially canceled out. Therefore, the water level sensor can detect the water level regardless of the ambient temperature change.

特開平10−153681号公報Japanese Patent Laid-Open No. 10-153681

特許文献1に記載された水位センサは、電熱線及び熱電対が、いずれも被覆管内で折り返された状態で挿入されているため、被覆管内には4本の電線が並行した状態で存在する。したがって、水位センサを製造する際には、折り返された状態の電熱線及び熱電対を被覆管内に挿入しつつこれらの間隔を保持しながら絶縁材を充填する必要がある。このような作業を確実に行うには、被覆管の内径をある程度大きく形成する必要があり、故に被覆管の細径化が困難となっている。   In the water level sensor described in Patent Document 1, since the heating wire and the thermocouple are both inserted in a state of being folded back in the cladding tube, four electric wires exist in parallel in the cladding tube. Therefore, when manufacturing the water level sensor, it is necessary to fill the insulating material while keeping the space between the heating wire and the thermocouple in a folded state while inserting them into the cladding tube. In order to perform such work reliably, it is necessary to make the inner diameter of the cladding tube large to some extent, and therefore it is difficult to reduce the diameter of the cladding tube.

この問題は、前述の背景技術に記載しているような、通電により発熱する発熱体と、それに隣接して一つの測温点が配設された熱電対を収容する金属製の被覆管で構成された、液位センサにも同様に生じる。   This problem consists of a metal cladding tube that contains a heating element that generates heat when energized and a thermocouple with a temperature measuring point adjacent to it, as described in the background art above. This also occurs in the liquid level sensor.

被覆管の内径が大きくなると、被覆管の内部の熱電対と外部の気体又は液体との距離が大きくなり、外部の温度の影響が熱電対に及び難くなる。そのため、外部の温度変化に対する熱電対の応答性が低下し、水位検出の応答速度が悪化する可能性がある。
一方、被覆管の内径が小さくなると電熱線及び熱電対の接触を防止することが困難となり、水位センサの製造性が悪化する。つまり、被覆管の細径化と水位センサの製造性との間には二律背反の関係がある。
When the inner diameter of the cladding tube increases, the distance between the thermocouple inside the cladding tube and the external gas or liquid increases, and the influence of the external temperature hardly reaches the thermocouple. Therefore, the response of the thermocouple to an external temperature change may be reduced, and the response speed of water level detection may be deteriorated.
On the other hand, when the inner diameter of the cladding tube is reduced, it becomes difficult to prevent the contact between the heating wire and the thermocouple, and the manufacturability of the water level sensor is deteriorated. In other words, there is a trade-off relationship between the diameter reduction of the cladding tube and the manufacturability of the water level sensor.

本発明は、このような実情に鑑みてなされたものであり、製造性を向上させることができるとともに、可及的に細く形成して液位検出の応答速度を向上させることができる液位センサを提供することを目的とする。   The present invention has been made in view of such circumstances, and a liquid level sensor that can improve manufacturability and can be formed as thin as possible to improve the response speed of liquid level detection. The purpose is to provide.

(1) 本発明の液位センサは、絶縁性及び防液性を有しかつ互いに並行して配置される4個の貫通孔が形成された筐体と、
通電によって発熱する発熱部を有しかつ2個の前記貫通孔に跨って折り返した状態で収容される発熱線と、
他の2個の前記貫通孔に跨って折り返した状態で収容される熱電対と、
前記各貫通孔に充填される絶縁材と、
絶縁性及び防液性を有しかつ前記貫通孔の開口端を封止する封止部材とを備えているものである。
(1) The liquid level sensor of the present invention has an insulating and liquidproof property, and a housing in which four through holes are arranged in parallel with each other;
A heating wire that has a heating portion that generates heat when energized and is housed in a folded state across the two through holes;
A thermocouple housed in a folded state across the other two through holes;
An insulating material filled in each through hole;
It has insulation and liquid-proof property, and is provided with the sealing member which seals the opening end of the said through-hole.

上記構成によれば、液位センサを製造する際に、筐体に形成された4個の貫通孔に熱電対及び発熱線をそれぞれ収容することによって、熱電対及び発熱線の互いに並行する部分が接触しないように配置される。したがって、従来のように被覆管における一つの筒内に互いの接触に留意しながら熱電対及び発熱線を収容しなくてもよく、液位センサの製造性を向上させることができる。   According to the above configuration, when the liquid level sensor is manufactured, the thermocouple and the heating wire are accommodated in the four through holes formed in the housing, respectively, so that the portions of the thermocouple and the heating wire that are parallel to each other can be obtained. Arranged so as not to touch. Therefore, it is not necessary to house the thermocouple and the heating wire while paying attention to mutual contact in one tube of the cladding tube as in the conventional case, and the manufacturability of the liquid level sensor can be improved.

また、製造の際の熱電対及び発熱線の接触が問題とならないため、筐体を可及的に細く形成することが可能となり、筐体を細く形成すると、筐体の熱容量が小さくなるとともに、発熱線と液位センサの外部との距離が縮まる。筐体の熱容量が小さくなることによって、液位センサが液体中に没した際の筐体の温度降下と、気体中に出た際の筐体の温度上昇が速くなり、加えて、発熱線と外部との距離が縮まることにより、液体中に没した際の放熱が増して筐体の温度降下がさらに速まる。このように、液体中に没した際及び気体中に出た際の筐体の温度変化が速まるので、液位検出の応答速度を向上させることができる。なお、気体中での放熱は元々少ないので、発熱線と外部との距離が縮まることによる気体中での放熱量増加は僅かで、この増加が応答速度へ悪影響を及ぼすことはない。   In addition, since the contact between the thermocouple and the heating wire at the time of manufacture does not become a problem, it becomes possible to form the casing as thin as possible. When the casing is formed thin, the heat capacity of the casing is reduced, The distance between the heating wire and the outside of the liquid level sensor is reduced. By reducing the heat capacity of the housing, the temperature drop of the housing when the liquid level sensor is submerged in the liquid and the temperature rise of the housing when exiting into the gas are accelerated, and in addition, By reducing the distance from the outside, heat dissipation when submerged in the liquid is increased, and the temperature drop of the housing is further accelerated. Thus, since the temperature change of the housing at the time of submerging in the liquid and exiting into the gas is accelerated, the response speed of the liquid level detection can be improved. In addition, since heat radiation in the gas is originally small, an increase in the heat radiation amount in the gas due to a reduction in the distance between the heating wire and the outside is slight, and this increase does not adversely affect the response speed.

(2) 前記熱電対は、前記貫通孔に収容される第1の測温点と第2の測温点とを備え、第1の測温点と第2の測温点とは前記貫通孔の長さ方向に間隔をあけて配置され、かつ、前記第1の測温点が前記第2の測温点よりも前記発熱部の近くに配置されていることが好ましい。
この構成によれば、第1の測温点が発熱部に近く、第2の測温点が発熱部から離れて配置されるので、前述の様に、周囲の温度変化に関わりなく水位を検出することができ、第1の測温点と第2の測温点の距離が前もって決定されている熱電対を貫通孔に挿通するため、熱電対の装着作業が容易にできる。
(2) The thermocouple includes a first temperature measuring point and a second temperature measuring point accommodated in the through hole, and the first temperature measuring point and the second temperature measuring point are the through hole. It is preferable that the first temperature measuring point is arranged closer to the heat generating part than the second temperature measuring point.
According to this configuration, the first temperature measuring point is located close to the heat generating part, and the second temperature measuring point is arranged away from the heat generating part. As described above, the water level is detected regardless of the surrounding temperature change. Since the thermocouple in which the distance between the first temperature measuring point and the second temperature measuring point is determined in advance is inserted into the through hole, the mounting operation of the thermocouple can be facilitated.

(3) 前記筐体は、セラミックス製であることが好ましい。
これにより、4個の貫通孔を予め形成した筐体を容易に製造することが可能となり、しかも、筐体をより細く形成することも可能となる。また、一般に、セラミックスは金属に比べて熱伝導率が小さいため、上記(2)のように2点測温タイプの熱電対を用いた場合、第1の測温点を加熱する発熱部の熱が筐体を介して第2の測温点には伝わり難くなる。そのため、2つの測温点の距離を近づけることができ、液位センサを、筐体の貫通孔の軸心方向(以下「長軸方向」と称する。)に短小化を図ることができる。
(3) The casing is preferably made of ceramics.
As a result, it is possible to easily manufacture a casing in which four through holes are formed in advance, and it is also possible to make the casing thinner. In general, ceramics have a lower thermal conductivity than metal, so when a two-point temperature measurement type thermocouple is used as in (2) above, the heat of the heat generating part that heats the first temperature measurement point. Becomes difficult to be transmitted to the second temperature measuring point through the housing. Therefore, the distance between the two temperature measuring points can be reduced, and the liquid level sensor can be shortened in the axial center direction (hereinafter referred to as “long axis direction”) of the through hole of the housing.

(4) 前記4個の貫通孔は、横断面視で縦横に2個ずつ並べて配置され、互いに隣接する2個の貫通孔に前記発熱線が収容され、互いに隣接する他の2個の貫通孔に前記熱電対が収容されていることが好ましい。
このような構成によって、発熱線と熱電対とが、2個の貫通孔に跨って折り返した部分で互いに交差しないように各貫通孔に収容されるため、発熱線及び熱電対の相互の接触に注意を払う必要がなく、製造を効率的に行うことができる。
(4) The four through holes are arranged side by side in the vertical and horizontal directions in a cross-sectional view, and the heating wire is accommodated in the two adjacent through holes, and the other two through holes adjacent to each other. It is preferable that the thermocouple is accommodated.
With such a configuration, the heating wire and the thermocouple are accommodated in each through hole so as not to cross each other at the portion folded back over the two through holes, so that the heating wire and the thermocouple are in contact with each other. There is no need to pay attention and manufacturing can be carried out efficiently.

(5) 前記発熱部は、コイル状に形成されていることが好ましい。
このような構成によって、発熱部の単位長さ当たりの発熱量(以下、「発熱密度」と称する)を高めることができ、液位の検出精度を向上させることができる。また、発熱部をコイル状に形成することで発熱密度が高められるので、上記(2)のような2点測温タイプの熱電対を用いる場合に、発熱部をより短く形成して2つの測温点の間隔を小さくすることができ、液位センサを筐体の長軸方向に短小化を図ることができる。
(5) It is preferable that the said heat_generation | fever part is formed in the coil shape.
With such a configuration, the amount of heat generated per unit length of the heat generating portion (hereinafter referred to as “heat generation density”) can be increased, and the liquid level detection accuracy can be improved. In addition, since the heat generation density can be increased by forming the heat generating portion in a coil shape, when using the two-point temperature measurement type thermocouple as described in (2) above, the heat generating portion is formed to be shorter and two measurement results are obtained. The interval between the hot spots can be reduced, and the liquid level sensor can be shortened in the major axis direction of the casing.

本発明の液位センサによれば、製造性を向上させることができるとともに、筐体を可及的に細くできることにより、液位検出の応答速度も向上させることができる。   According to the liquid level sensor of the present invention, manufacturability can be improved and the response speed of liquid level detection can be improved by making the casing as thin as possible.

本発明の一実施形態に係る液位センサの使用形態を示す説明図である。It is explanatory drawing which shows the usage condition of the liquid level sensor which concerns on one Embodiment of this invention. 一部を破断して示す液位センサの斜視図である。It is a perspective view of the liquid level sensor shown partially broken. 液位センサの正面図である。It is a front view of a liquid level sensor. 図3のA−A線断面を、絶縁材を透明視した状態で示す図である。It is a figure which shows the AA line cross section of FIG. 3 in the state which looked at the insulating material transparently. 図3のB−B線断面を、絶縁材を透明視した状態で示す図である。It is a figure which shows the BB line cross section of FIG. 3 in the state which looked at the insulating material transparently. 図3のC−C線断面図である。It is CC sectional view taken on the line of FIG.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明の一実施形態に係る液位センサの使用形態を示す説明図である。
本実施形態の液位センサ10は、例えば原子力プラントに用いられる圧力容器等の大型容器、或いは、家電製品に用いられる小型の液体容器など、その用途や容器の大きさに関わらず、容器内の液体の高さ(液位)を検出するために用いられる。また、液位センサ10は、水や油など、容器内に貯留される液体の種類に関わらず、容器内の液位を検出するために用いることができるものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory diagram showing a usage pattern of a liquid level sensor according to an embodiment of the present invention.
The liquid level sensor 10 of the present embodiment is a large container such as a pressure container used for a nuclear power plant, or a small liquid container used for home appliances, regardless of its use or the size of the container. It is used to detect the height (liquid level) of the liquid. The liquid level sensor 10 can be used to detect the liquid level in the container regardless of the type of liquid stored in the container, such as water or oil.

図1に示す例では、液位センサ10は、液体Lを貯留した貯液容器71の壁部72に支持部材73を介して取り付けられている。液位センサ10には、絶縁被覆されたケーブル18,19が接続され、このケーブル18,19を介して電力供給や電気信号の送受信が行われる。液位センサ10は、例えば貯液容器71の最低液位に対応する位置に取り付けられ、貯液容器71内の液体が最低液位に達したことを検出する。   In the example shown in FIG. 1, the liquid level sensor 10 is attached to a wall portion 72 of a liquid storage container 71 that stores a liquid L via a support member 73. Cables 18 and 19 with insulation coating are connected to the liquid level sensor 10, and power supply and transmission / reception of electric signals are performed via the cables 18 and 19. The liquid level sensor 10 is attached at a position corresponding to the lowest liquid level of the liquid storage container 71, for example, and detects that the liquid in the liquid storage container 71 has reached the lowest liquid level.

図2は、一部を破断して示す液位センサ10の斜視図(一部断面図)、図3は、液位センサ10の正面図である。また、図4は、図3のA−A線断面図、図5は、図3のB−B線断面図、図6は、図3のC−C線断面図である。図4及び図5では、貫通孔21〜24の内部空間における熱電対13及びコイル部31aの配置状態が分かるように、絶縁材20を透明視して示す。
図2及び図3に示すように、液位センサ10は、筐体11と、発熱線12と、熱電対13と、封止部材14,15と、被覆部材16,17と、ケーブル18,19と、絶縁材20とを備えている。
FIG. 2 is a perspective view (partially sectional view) of the liquid level sensor 10 shown with a part broken away, and FIG. 3 is a front view of the liquid level sensor 10. 4 is a cross-sectional view taken along line AA in FIG. 3, FIG. 5 is a cross-sectional view taken along line BB in FIG. 3, and FIG. 6 is a cross-sectional view taken along line CC in FIG. 4 and 5, the insulating material 20 is shown transparently so that the arrangement state of the thermocouple 13 and the coil portion 31a in the internal space of the through holes 21 to 24 can be understood.
As shown in FIGS. 2 and 3, the liquid level sensor 10 includes a housing 11, a heating wire 12, a thermocouple 13, sealing members 14 and 15, covering members 16 and 17, and cables 18 and 19. And an insulating material 20.

筐体11は、絶縁性(電気を通さない性質)及び防液性(液体を通さない性質;防水性、防油性等)を有する素材により形成されている。例えば、筐体11は、アルミナ、マグネシア、シリカもしくはこれらの混合物を材料とした焼結体であるセラミックスにより形成されている。ただし、筐体11は、これらの材料に限らず、絶縁性及び防液性を有する材料であれば、他の材料(ガラスや合成樹脂等)を採用し得る。また、筐体11は、自身の形状を保持することができる剛性を有している。本実施形態の筐体11は、円柱形状に形成されている。例えば、筐体11は、外径1.2mm、長さ15mmの細長い円柱形状に形成される。   The casing 11 is formed of a material having insulating properties (property that does not conduct electricity) and liquidproof properties (property that does not allow liquids to pass; waterproofness, oilproofness, etc.). For example, the housing 11 is formed of ceramics which is a sintered body made of alumina, magnesia, silica, or a mixture thereof. However, the casing 11 is not limited to these materials, and any other material (glass, synthetic resin, or the like) can be employed as long as it is a material having insulating properties and liquid-proof properties. Moreover, the housing | casing 11 has the rigidity which can hold | maintain own shape. The housing 11 of this embodiment is formed in a cylindrical shape. For example, the housing 11 is formed in an elongated cylindrical shape having an outer diameter of 1.2 mm and a length of 15 mm.

筐体11の内部には、軸方向(長手方向)に沿って4個の貫通孔21〜24が形成されている。この貫通孔21〜24は、筐体11を軸方向に貫通し、筐体11の軸方向の両端において開口している。各貫通孔21〜24は、断面円形状であり、長手方向全体にわたって一定の内径を有している。また、4個の貫通孔21〜24は同一の内径に形成されている。なお、以下においては、筐体11の長手方向の一方側を上側、他方側を下側として説明する。   In the housing 11, four through holes 21 to 24 are formed along the axial direction (longitudinal direction). The through holes 21 to 24 penetrate the housing 11 in the axial direction and open at both ends of the housing 11 in the axial direction. Each through-hole 21-24 is circular in cross section, and has a fixed internal diameter over the whole longitudinal direction. Further, the four through holes 21 to 24 are formed to have the same inner diameter. In the following description, one side of the casing 11 in the longitudinal direction is referred to as an upper side and the other side is referred to as a lower side.

図4に示すように、4個の貫通孔21〜24は、横断面視で4角形状(正方形状)に配置されている。すなわち、4個の貫通孔21〜24は、縦横に2個ずつ等間隔に並べられている。また、4個の貫通孔21〜24は、筐体11の中心(軸心)Xから等距離でかつ中心X回りに等間隔に配置されている。以下の説明では、互いに隣接する2個の貫通孔21,22を第1及び第2の貫通孔といい、互いに隣接する他の2個の貫通孔23,24を第3及び第4の貫通孔という。   As shown in FIG. 4, the four through holes 21 to 24 are arranged in a quadrangular shape (square shape) in a cross-sectional view. That is, the four through holes 21 to 24 are arranged at equal intervals two by two vertically and horizontally. Further, the four through holes 21 to 24 are arranged at equal intervals from the center (axial center) X of the housing 11 and at equal intervals around the center X. In the following description, the two through holes 21 and 22 adjacent to each other are referred to as first and second through holes, and the other two through holes 23 and 24 adjacent to each other are referred to as third and fourth through holes. That's it.

図5に示すように、発熱線12は、第1の貫通孔21と第2の貫通孔22とに収容されている。発熱線12は、抵抗線31と、導線32とを有している。抵抗線31は、コイル状に巻回されたコイル部(発熱部)31aを長さ方向の2箇所に有している。各コイル部31aは、第1の貫通孔21と第2の貫通孔22の下部側にそれぞれ収容されている。2個のコイル部31aの間は、コイル状に形成されていない素線とされており、第1の貫通孔21及び第2の貫通孔22の下端の開口から突出し、両貫通孔21,22の間に架け渡されている。   As shown in FIG. 5, the heating wire 12 is accommodated in the first through hole 21 and the second through hole 22. The heating wire 12 has a resistance wire 31 and a conducting wire 32. The resistance wire 31 has coil portions (heat generating portions) 31a wound in a coil shape at two locations in the length direction. Each coil part 31a is accommodated in the lower side of the first through hole 21 and the second through hole 22, respectively. Between the two coil parts 31a, it is made into the strand which is not formed in the coil shape, protrudes from the opening of the lower end of the 1st through-hole 21 and the 2nd through-hole 22, and both through-holes 21 and 22 are carried out. It is bridged between.

抵抗線31は、公称抵抗値が100Ωの抵抗線、具体的にはPt100(JIS C1604−1997準拠)が組み込まれる測温抵抗体に用いられる既存の白金抵抗線が採用されている。ただし、本実施形態の抵抗線31は、例えば、JIS C1604(2013年制定)や、ASTM E1137(1995年制定)、IEC60751(2008年制定)などの現在又は過去の国内規格や国際規格に規定されるものを採用してもよい。汎用性の高さの観点では、現在制定されている規格に規定されている測温抵抗体に用いられる白金抵抗線を採用することが好ましい。また、抵抗線31に採用される白金測温抵抗線は、例えば50μm以下の極細の径のものが好適に用いられ、本実施形態では25μmのものが採用されている。この白金抵抗線に用いられる白金は、上記規格に適合するものであればその種別は問わないが、本実施形態では不可避的に残存する不純物を含むものの、実質的には100%の純度に近いものが用いられている。   As the resistance wire 31, a resistance wire having a nominal resistance value of 100Ω, specifically, an existing platinum resistance wire used for a resistance temperature detector incorporating Pt100 (conforming to JIS C1604-1997) is adopted. However, the resistance wire 31 of the present embodiment is stipulated in current or past domestic standards and international standards such as JIS C1604 (established in 2013), ASTM E1137 (established in 1995), IEC60751 (established in 2008), etc. A thing may be adopted. From the viewpoint of high versatility, it is preferable to employ a platinum resistance wire used for the resistance temperature detector defined in the currently established standard. In addition, as the platinum resistance thermometer wire employed for the resistance wire 31, for example, an ultrafine diameter of 50 μm or less is preferably used, and in this embodiment, a 25 μm wire is employed. The platinum used for this platinum resistance wire may be of any type as long as it conforms to the above standards, but in the present embodiment, it contains impurities that inevitably remain, but is substantially close to 100% purity. Things are used.

発熱線12の導線32は、その下端が第1及び第2の貫通孔21,22に収容されたコイル部31aの上端にそれぞれ接続されている。また、各導線32の上端部は、第1及び第2の貫通孔21,22の上端の開口から突出している。各導線32の上端は、それぞれ電源ケーブル18の内部導線18aに接続されている。コイル部31aと導線32との接続部分aは、第1及び第2の貫通孔21,22の長手方向の略中央部に配置されている。したがって、発熱線12は、一方のコイル部31a及び導線32が第1の貫通孔21に収容され、他方のコイル部31a及び導線32が第2の貫通孔22に収容され、下端部が略U字状に折り返された状態になっている。言い換えると、発熱線12は、2個の貫通孔21,22に跨って折り返した状態で収容されている。   The lower end of the conducting wire 32 of the heating wire 12 is connected to the upper end of the coil portion 31a accommodated in the first and second through holes 21 and 22, respectively. Further, the upper end portion of each conductive wire 32 protrudes from the opening at the upper end of the first and second through holes 21 and 22. The upper end of each conducting wire 32 is connected to the internal conducting wire 18 a of the power cable 18. A connection portion a between the coil portion 31 a and the conductive wire 32 is disposed at a substantially central portion in the longitudinal direction of the first and second through holes 21 and 22. Therefore, in the heating wire 12, one coil part 31a and the conducting wire 32 are accommodated in the first through hole 21, the other coil part 31a and the conducting wire 32 are accommodated in the second through hole 22, and the lower end is substantially U. It is in a folded state in a letter shape. In other words, the heating wire 12 is accommodated in a state of being folded back across the two through holes 21 and 22.

発熱線12が収容された第1及び第2の貫通孔21,22内には、絶縁材20が充填されている。絶縁材20は、機械的に発熱線12を保持しているとともに、熱伝導率を上げて応答性をよくするための熱媒体として機能する。本実施形態において、アルミナ、マグネシア、シリカもしくはこれらの混合物などを材料とする無機絶縁材粉末で構成されている。絶縁材20の無機絶縁材粉末としては、例えば、比較的熱伝導率が高く安価なアルミナ粉末を用いることが好適である。   An insulating material 20 is filled in the first and second through holes 21 and 22 in which the heating wires 12 are accommodated. The insulating material 20 mechanically holds the heating wire 12 and functions as a heat medium for increasing the thermal conductivity and improving the responsiveness. In the present embodiment, it is composed of an inorganic insulating material powder made of alumina, magnesia, silica, or a mixture thereof. As the inorganic insulating material powder of the insulating material 20, for example, it is preferable to use an alumina powder that has a relatively high thermal conductivity and is inexpensive.

発熱線12が収容された第1及び第2の貫通孔21,22の下端と上端とは、それぞれ封止部材14,15によって封止されている。封止部材14,15は、絶縁性及び防液性を有する素材により形成されている。例えば、封止部材14,15は、アルミナ、マグネシア、シリカ、ジルコン、もしくはこれらの混合物を主成分とする接着剤を使用することができる。また、エポキシ樹脂などのエナメル(ガラス琺瑯)を使用してもよい。封止部材14,15は、第1,第2の貫通孔21,22内への液体の浸入を防止するとともに貫通孔21,22に充填された絶縁材20の漏出を防止する。   The lower ends and the upper ends of the first and second through holes 21 and 22 in which the heating wires 12 are accommodated are sealed by sealing members 14 and 15, respectively. The sealing members 14 and 15 are formed of a material having insulating properties and liquid-proof properties. For example, the sealing members 14 and 15 can use an adhesive mainly composed of alumina, magnesia, silica, zircon, or a mixture thereof. Further, enamel (glass bottle) such as epoxy resin may be used. The sealing members 14 and 15 prevent liquid from entering the first and second through holes 21 and 22 and prevent leakage of the insulating material 20 filled in the through holes 21 and 22.

下側の封止部材14は、第1,第2の貫通孔21,22の下端開口から突出する抵抗線31をも覆うように設けられている。上側の封止部材15は、第1,第2の貫通孔21,22の上端開口から突出する導線32の下部側をも覆うように設けられている。導線32の上端部は封止部材15から上方に突出している。   The lower sealing member 14 is provided so as to cover the resistance wire 31 protruding from the lower end openings of the first and second through holes 21 and 22. The upper sealing member 15 is provided so as to cover the lower side of the conducting wire 32 protruding from the upper end openings of the first and second through holes 21 and 22. The upper end portion of the conducting wire 32 protrudes upward from the sealing member 15.

封止部材15から突出する2本の導線32は、一対の電源ケーブル18に接続されている。また、電源ケーブル18は、発熱線12に電力を供給するための電源に接続されている。電源ケーブル18は、銅線等の内部導線18aの外面を防液性のある絶縁被膜18bによって被覆してなり、絶縁被膜18bから突出した内部導線18aの下端部が導線32に接続されている。この導線32と内部導線18aとは、被覆部材16によって覆われている。また、被覆部材16は、直方体形状、具体的には薄板形状に形成されている。   The two conducting wires 32 protruding from the sealing member 15 are connected to the pair of power cables 18. The power cable 18 is connected to a power supply for supplying power to the heating wire 12. The power cable 18 is formed by coating the outer surface of an internal conductor 18a such as a copper wire with a liquid-proof insulating coating 18b, and the lower end portion of the internal conducting wire 18a protruding from the insulating coating 18b is connected to the conductive wire 32. The conductive wire 32 and the internal conductive wire 18 a are covered with the covering member 16. The covering member 16 is formed in a rectangular parallelepiped shape, specifically, a thin plate shape.

被覆部材16は、絶縁性及び防液性を有する素材、例えば合成樹脂材により形成されている。より具体的には、被覆部材16は、フッ素樹脂(中でもFEP)により形成される。ただし、被覆部材16は、フッ素樹脂に限らず、シリコンゴムやエチレンプロピレンゴム等、絶縁性及び防液性を有する公知の合成樹脂材により形成することができる。   The covering member 16 is formed of a material having insulating properties and liquid-proof properties, for example, a synthetic resin material. More specifically, the covering member 16 is formed of a fluororesin (in particular, FEP). However, the covering member 16 is not limited to a fluororesin, and can be formed of a known synthetic resin material having insulating properties and liquid-proof properties such as silicon rubber and ethylene propylene rubber.

被覆部材16は、封止部材15から突出する導線32と、電源ケーブル18の内部導線18aと、これらの接続部分bと、電源ケーブル18の絶縁被膜18bの下端部をも含む範囲で覆っている。被覆部材16の下端部は、封止部材15内に挿入され、接着されている。   The covering member 16 covers the conductor 32 protruding from the sealing member 15, the internal conductor 18 a of the power cable 18, the connection portion b thereof, and the lower end portion of the insulating coating 18 b of the power cable 18. . The lower end portion of the covering member 16 is inserted into the sealing member 15 and bonded thereto.

図6に示すように、熱電対13は、異なる金属から構成される2種類の熱電対線41,42を有している。具体的に、熱電対13は、1本の第1の熱電対線41と、2本の第2の熱電対線42とからなり、第1の熱電対線41の両端に第2の熱電対線42が接続されている。第1の熱電対線41と第2の熱電対線42との一の接合部分cが第1測温点となり、他の接合部分dが第2測温点となっている。そして、熱電対13は、第1測温点cと第2測温点dとの温度差によって、発生する熱起電力が異なることを利用して温度を検出する。本実施形態の熱電対13は、例えばK型熱電対が採用される。具体的に、第1の熱電対線41は、アルメル線であり、第2の熱電対線42は、クロメル線である。ただし、熱電対13は、K型熱電対に限定されるものではなく、T型熱電対等の他の種類の熱電対であってもよい。   As shown in FIG. 6, the thermocouple 13 has two types of thermocouple wires 41 and 42 made of different metals. Specifically, the thermocouple 13 includes one first thermocouple wire 41 and two second thermocouple wires 42, and a second thermocouple is connected to both ends of the first thermocouple wire 41. Line 42 is connected. One joining portion c between the first thermocouple wire 41 and the second thermocouple wire 42 is a first temperature measuring point, and the other joining portion d is a second temperature measuring point. And the thermocouple 13 detects temperature using the thermoelectromotive force which generate | occur | produces with the temperature difference of the 1st temperature measuring point c and the 2nd temperature measuring point d. As the thermocouple 13 of this embodiment, for example, a K-type thermocouple is adopted. Specifically, the first thermocouple wire 41 is an alumel wire, and the second thermocouple wire 42 is a chromel wire. However, the thermocouple 13 is not limited to a K-type thermocouple, and may be another type of thermocouple such as a T-type thermocouple.

第2の熱電対線42は、一対の熱電対用のケーブル19の内部導線19aが用いられている。熱電対用ケーブル19は、熱電対13に生ずる熱起電力を測定する計器に接続されている。熱電対用ケーブル19は、内部導線19aの外面を防液性のある絶縁被膜19bによって被覆してなる。一対の熱電対用ケーブル19の下部側において、内部導線19aは絶縁被膜19bから突出しており、内部導線19aの下端は、第1の熱電対線41の両端部に接合されている。   As the second thermocouple wire 42, the internal conductor 19a of the pair of thermocouple cables 19 is used. The thermocouple cable 19 is connected to an instrument that measures the thermoelectromotive force generated in the thermocouple 13. The thermocouple cable 19 is formed by coating the outer surface of the internal conductor 19a with a liquid-proof insulating coating 19b. On the lower side of the pair of thermocouple cables 19, the internal conducting wire 19 a protrudes from the insulating coating 19 b, and the lower end of the internal conducting wire 19 a is joined to both ends of the first thermocouple wire 41.

熱電対13は、第3及び第4の貫通孔23,24に収容されている。具体的に、熱電対13は、筐体11の下方でU字状に折り返された状態で、第3及び第4の貫通孔23,24に跨って収容されている。また、第1測温点cは、第4の貫通孔24に配置され、第2測温点dは、第3の貫通孔23に配置されている。より具体的には、第1測温点cは、第4の貫通孔24の下部側に配置され、第2測温点dは、第3の貫通孔23の上部側に配置されている。したがって、第1測温点cと第2測温点dとは、上下方向(筐体11の長手方向)に間隔をあけて配置されている。   The thermocouple 13 is accommodated in the third and fourth through holes 23 and 24. Specifically, the thermocouple 13 is accommodated across the third and fourth through holes 23 and 24 in a state where the thermocouple 13 is folded in a U shape below the housing 11. The first temperature measurement point c is disposed in the fourth through hole 24, and the second temperature measurement point d is disposed in the third through hole 23. More specifically, the first temperature measurement point c is disposed on the lower side of the fourth through hole 24, and the second temperature measurement point d is disposed on the upper side of the third through hole 23. Therefore, the first temperature measuring point c and the second temperature measuring point d are arranged with a space in the vertical direction (longitudinal direction of the housing 11).

また、第1測温点cは、第4の貫通孔24の下部側に配置されているので、第1及び第2の貫通孔21,22に収容された発熱線12のコイル部31aにより近くなり、第2測温点dは、第3の貫通孔23の上部側に配置されているので、発熱線12のコイル部31aからより遠くなる。したがって、コイル部31aの熱は、第2測温点dよりも第1測温点cに伝達されやすい。   Further, since the first temperature measuring point c is disposed on the lower side of the fourth through hole 24, it is closer to the coil portion 31a of the heating wire 12 accommodated in the first and second through holes 21 and 22. Thus, since the second temperature measuring point d is arranged on the upper side of the third through hole 23, it is further away from the coil portion 31 a of the heating wire 12. Therefore, the heat of the coil part 31a is more easily transmitted to the first temperature measuring point c than the second temperature measuring point d.

熱電対13が収容された第3及び第4の貫通孔23,24内には、絶縁材20が充填されている。この絶縁材20は、機械的に熱電対13を保持している。絶縁材20は、第1及び第2の貫通孔21,22に充填されたものと同一のものが用いられる。
また、第3及び第4の貫通孔23,24の下端と上端とは、それぞれ前述した封止部材14,15によって封止されている。
An insulating material 20 is filled in the third and fourth through holes 23 and 24 in which the thermocouple 13 is accommodated. The insulating material 20 mechanically holds the thermocouple 13. The insulating material 20 is the same as that filled in the first and second through holes 21 and 22.
Further, the lower and upper ends of the third and fourth through holes 23 and 24 are sealed by the sealing members 14 and 15 described above, respectively.

下側の封止部材14は、第3,第4の貫通孔23,24の下端開口から突出する第1の熱電対線41をも覆っている。また、上側の封止部材15は、第3,第4の貫通孔23,24の上端開口から突出する第2の熱電対線42をも覆っている。
上側の封止部材15から上方へ突出する第2の熱電対線42(19a)とこれを被覆する絶縁被膜19bの下端部は、被覆部材17によって覆われている。この被覆部材17は、前述した被覆部材16と同一材料、同一形状のものが用いられる。被覆部材17の下部側は、封止部材15に挿入され、接着されている。
The lower sealing member 14 also covers the first thermocouple wire 41 protruding from the lower end openings of the third and fourth through holes 23 and 24. The upper sealing member 15 also covers the second thermocouple wire 42 protruding from the upper end openings of the third and fourth through holes 23 and 24.
The second thermocouple wire 42 (19 a) protruding upward from the upper sealing member 15 and the lower end portion of the insulating coating 19 b covering the second thermocouple wire 42 (19 a) are covered with the covering member 17. The covering member 17 is made of the same material and shape as the covering member 16 described above. The lower side of the covering member 17 is inserted into the sealing member 15 and bonded thereto.

以上の構成を有する液位センサ10による液位の検出方法について説明する。
液位センサ10は、電源ケーブル18を介した通電により発熱線12のコイル部31aが発熱することによって熱電対13の第1測温点cが第2測温点dよりも加熱される。熱電対13は、第1及び第2測温点c,dの温度差に応じた熱起電力が生じる。熱電対13に生ずる熱起電力は、熱電対用ケーブル19を介して図示しない計器により測定される。
A liquid level detection method by the liquid level sensor 10 having the above configuration will be described.
In the liquid level sensor 10, the first temperature measuring point c of the thermocouple 13 is heated more than the second temperature measuring point d when the coil portion 31 a of the heating wire 12 generates heat by energization via the power cable 18. The thermocouple 13 generates a thermoelectromotive force according to the temperature difference between the first and second temperature measuring points c and d. The thermoelectromotive force generated in the thermocouple 13 is measured by a meter (not shown) via the thermocouple cable 19.

図1に示すように、液体中に液位センサ10がある場合、第1測温点c及び第2測温点dはともに液体によって冷却されるため、両者c,dの温度差はほとんど生じない。したがって、熱電対13には熱起電力は生じない。
一方、貯液容器71内の液体が減少し、液位センサ10が気体中に晒されると、第1測温点cが発熱線12のコイル部31aによって加熱されるため、第2測温点dとの温度差が大きくなり、熱電対13に熱起電力が生じる。したがって、その熱起電力を検出することによって貯液容器71内の液体が液位センサ10よりも減少したことを検出することができる。
As shown in FIG. 1, when the liquid level sensor 10 is present in the liquid, the first temperature measuring point c and the second temperature measuring point d are both cooled by the liquid, so that there is almost no temperature difference between the two c and d. Absent. Therefore, no thermoelectromotive force is generated in the thermocouple 13.
On the other hand, when the liquid in the liquid storage container 71 decreases and the liquid level sensor 10 is exposed to the gas, the first temperature measuring point c is heated by the coil portion 31a of the heating wire 12, and therefore the second temperature measuring point. The temperature difference from d increases and a thermoelectromotive force is generated in the thermocouple 13. Therefore, it is possible to detect that the liquid in the liquid storage container 71 has decreased from the liquid level sensor 10 by detecting the thermoelectromotive force.

液位センサ10は、筐体11が、絶縁性と防液性とを有する材料により形成され、内部に4個の貫通孔21〜24が形成され、この貫通孔21〜24に発熱線12と熱電対13とが収容される。そのため、各貫通孔21〜24に発熱線12及び熱電対13を収容するだけでこれらの接触が防止され、絶縁が保たれることになる。したがって、液位センサ10を製造する際に、発熱線12及び熱電対13の接触に留意しながらこれらを筐体11内に収容しなくてもよく、液位センサ10の製造が容易となる。   In the liquid level sensor 10, the casing 11 is formed of a material having insulating properties and liquid-proof properties, and four through holes 21 to 24 are formed therein, and the heating wires 12 and 24 are formed in the through holes 21 to 24. A thermocouple 13 is accommodated. Therefore, the contact between the heating wire 12 and the thermocouple 13 is prevented only by housing the through holes 21 to 24 and the insulation is maintained. Therefore, when manufacturing the liquid level sensor 10, it is not necessary to house these in the housing 11 while paying attention to the contact between the heating wire 12 and the thermocouple 13, and the liquid level sensor 10 is easily manufactured.

また、発熱線12及び熱電対13の接触が問題とならないため、筐体11を可及的に細く(外径を小さく)形成することが可能となり、筐体11を細く形成すると、筐体11の熱容量が小さくなるとともに、発熱線12と液位センサ10の外部との距離が縮まる。筐体11の熱容量が小さくなることによって、液位センサ10が液体中に没した際の筐体11の温度降下と、気体中に出た際の筐体11の温度上昇が速くなり、加えて、発熱線12と外部との距離が縮まることにより、液体中に没した際の放熱が増して筐体11の温度降下がさらに速まる。このように、液体中に没した際及び気体中に出た際の筐体11の温度変化が速まるので、液位センサ10による液位検出の応答速度を向上させることができる。なお、気体中での放熱は元々少ないので、発熱線12と外部との距離が縮まることによる気体中での放熱量増加は僅かで、この増加が応答速度へ悪影響を及ぼすことはない。   Further, since the contact between the heating wire 12 and the thermocouple 13 does not become a problem, the housing 11 can be formed as thin as possible (the outer diameter is reduced). If the housing 11 is formed thin, the housing 11 And the distance between the heating wire 12 and the outside of the liquid level sensor 10 is reduced. Since the heat capacity of the housing 11 is reduced, the temperature drop of the housing 11 when the liquid level sensor 10 is submerged in the liquid and the temperature rise of the housing 11 when the liquid level sensor 10 comes out into the gas are accelerated. By reducing the distance between the heating wire 12 and the outside, heat dissipation when immersed in the liquid is increased, and the temperature drop of the housing 11 is further accelerated. Thus, since the temperature change of the housing | casing 11 at the time of immersing in a liquid and coming out in gas becomes quick, the response speed of the liquid level detection by the liquid level sensor 10 can be improved. Since heat radiation in the gas is originally small, an increase in the heat radiation amount in the gas due to a reduction in the distance between the heating wire 12 and the outside is slight, and this increase does not adversely affect the response speed.

また、筐体11は、アルミナ等の焼結体からなるセラミックスにより形成されている。このセラミックスは、金属よりも熱伝導率が小さい。例えば、筐体11は、ステンレス系金属の10%程度の熱伝導率を有する。そのため、発熱線12のコイル部31aの熱は、筐体11を通じて伝達し難くなる。したがって、コイル部31aからより離れた熱電対13の第2測温点dにはコイル部31aの熱が伝わり難くなり、液位センサ10が気体中にある場合の第1測温点cと第2測温点dとの間の温度差を十分に確保することができる。そのため、第1測温点cと第2測温点dとの間隔を短くすることが可能となり、液位センサ10の長さも短くすることが可能となる。   The housing 11 is made of ceramics made of a sintered body such as alumina. This ceramic has a lower thermal conductivity than metal. For example, the housing 11 has a thermal conductivity of about 10% of stainless steel. Therefore, the heat of the coil portion 31 a of the heating wire 12 is difficult to be transmitted through the housing 11. Therefore, it becomes difficult for the heat of the coil part 31a to be transmitted to the second temperature measuring point d of the thermocouple 13 further away from the coil part 31a, and the first temperature measuring point c and the first temperature measuring point c when the liquid level sensor 10 is in the gas. A sufficient temperature difference between the two temperature measuring points d can be secured. Therefore, the interval between the first temperature measurement point c and the second temperature measurement point d can be shortened, and the length of the liquid level sensor 10 can also be shortened.

発熱線12は、コイル部31aからなる発熱部を備えているので、発熱密度を高めることができる。そのため、第1測温点cと第2測温点dとの温度差を大きくすることができ、液位の検出精度を高めることができる。また、コイル部31aをより短くしても第1測温点cを十分に加熱することができるため、第1測温点cと第2測温点dとの間隔を短くし、液位センサ10を小型化するために有効となる。   Since the heating wire 12 includes a heating portion including the coil portion 31a, the heat generation density can be increased. Therefore, the temperature difference between the first temperature measurement point c and the second temperature measurement point d can be increased, and the liquid level detection accuracy can be increased. In addition, since the first temperature measuring point c can be sufficiently heated even if the coil portion 31a is made shorter, the interval between the first temperature measuring point c and the second temperature measuring point d is shortened, and the liquid level sensor This is effective for reducing the size of 10.

したがって、本実施形態の液位センサ10は、筐体11を細くすることに加え、長さを短くすることができるので、液位センサ10をより小型化することができる。そのため、小型の貯液容器71における液位の検出にも好適に使用することが可能となる。   Accordingly, the liquid level sensor 10 of the present embodiment can be reduced in length in addition to making the casing 11 thinner, so that the liquid level sensor 10 can be further downsized. Therefore, it can be suitably used for detecting the liquid level in the small liquid storage container 71.

本発明の熱処理装置は、上記実施形態に限定されるものではなく、特許請求の範囲に記載された発明の範囲内において適宜変更することができる。
例えば、上記実施形態の筐体11は、横断面の外形が真円形状とされているが、これに限らず、楕円形状等に形成されていてもよい。また、筐体11は、円柱形状に限らず角柱形状に形成されていてもよい。上記実施形態の貫通孔21〜24は、横断面形状が真円形状とされているが、楕円形状等に形成されていてもよく、多角形状に形成されていてもよい。4個の貫通孔21〜24は、横断面視で正方形状に配置(配列)されるに限らず、長方形状、ひし形状に配置されていてもよい。ただし、筐体11をより細く、より容易に製造するうえでは、貫通孔21〜24が横断面視で正方形状に配置されていることがより好ましい。
The heat treatment apparatus of the present invention is not limited to the above embodiment, and can be appropriately changed within the scope of the invention described in the claims.
For example, the casing 11 of the above embodiment has a perfect cross-sectional outer shape, but is not limited thereto, and may be formed in an elliptical shape or the like. The housing 11 is not limited to a cylindrical shape, and may be formed in a prismatic shape. The through-holes 21 to 24 of the above embodiment have a perfect circular shape in cross section, but may be formed in an elliptical shape or the like, or may be formed in a polygonal shape. The four through holes 21 to 24 are not limited to be arranged (arranged) in a square shape in a cross-sectional view, but may be arranged in a rectangular shape or a rhombus shape. However, in order to make the casing 11 thinner and more easily, it is more preferable that the through holes 21 to 24 are arranged in a square shape in a cross-sectional view.

発熱線12と熱電対13とは、互いに対角線上に位置する貫通孔21〜24に収容されていてもよい。例えば、発熱線12は、第1及び第3の貫通孔21,23に収容され、熱電対13は、第2及び第4の貫通孔22,24に収容されていてもよい。ただし、この場合、筐体11の下方において発熱線12と熱電対13とがクロスし、互いに接触する可能性が高まるため、上記実施形態のように、互いに隣接する第1及び第2貫通孔21,22に発熱線12を収容し、第3及び第4貫通孔23,24に熱電対13を収容することがより好適である。   The heating wire 12 and the thermocouple 13 may be accommodated in the through holes 21 to 24 positioned diagonally to each other. For example, the heating wire 12 may be accommodated in the first and third through holes 21 and 23, and the thermocouple 13 may be accommodated in the second and fourth through holes 22 and 24. However, in this case, since the heat generation wire 12 and the thermocouple 13 cross below the casing 11 and the possibility of contact with each other increases, the first and second through holes 21 adjacent to each other as in the above embodiment. More preferably, the heating wire 12 is accommodated in the second through holes 22, and the thermocouple 13 is accommodated in the third and fourth through holes 23, 24.

熱電対13は、第1の測温点c及び第2の測温点dの両方が、同一の貫通孔に収容されていてもよい。
本発明の液位センサ10は、発熱線12の発熱部31aの近傍のみに測温点を有する、1点測温タイプのものであってもよい。この場合、測温点が液体中にある場合と気体中にある場合との温度変化を測定することによって液位を検出することができる。
また、本発明は、液位センサ10の強度や耐久性をより高めるため、筐体11の外面に金属製等の被覆部材が設けられることを妨げるものではない。
As for the thermocouple 13, both the 1st temperature measuring point c and the 2nd temperature measuring point d may be accommodated in the same through-hole.
The liquid level sensor 10 of the present invention may be a one-point temperature measuring type having a temperature measuring point only in the vicinity of the heat generating portion 31a of the heating wire 12. In this case, the liquid level can be detected by measuring the temperature change between when the temperature measuring point is in the liquid and when it is in the gas.
Further, the present invention does not preclude the provision of a covering member made of metal or the like on the outer surface of the housing 11 in order to further increase the strength and durability of the liquid level sensor 10.

10 :液位センサ
11 :筐体
12 :発熱線
13 :熱電対
14 :封止部材
15 :封止部材
20 :絶縁材
21 :第1貫通孔
22 :第2貫通孔
23 :第3貫通孔
24 :第4貫通孔
31a :コイル部(発熱部)
L :液体
c :第1測温点
d :第2測温点
10: Liquid level sensor 11: Housing 12: Heating wire 13: Thermocouple 14: Sealing member 15: Sealing member 20: Insulating material 21: First through hole 22: Second through hole 23: Third through hole 24 : 4th through-hole 31a: Coil part (heat generating part)
L: Liquid c: First temperature point d: Second temperature point

Claims (5)

絶縁性及び防液性を有しかつ互いに並行して配置される4個の貫通孔が形成された筐体と、
通電によって発熱する発熱部を有しかつ2個の前記貫通孔に跨って折り返した状態で収容される発熱線と、
他の2個の前記貫通孔に跨って折り返した状態で収容される熱電対と、
前記各貫通孔に充填される絶縁材と、
絶縁性及び防液性を有しかつ前記貫通孔の開口端を封止する封止部材とを備えている、液位センサ。
A casing having four through-holes that are insulative and liquid-proof and arranged in parallel with each other;
A heating wire that has a heating portion that generates heat when energized and is housed in a folded state across the two through holes;
A thermocouple housed in a folded state across the other two through holes;
An insulating material filled in each through hole;
A liquid level sensor comprising: a sealing member that has an insulating property and a liquid-proof property and seals an opening end of the through hole.
前記熱電対は、前記貫通孔に収容される第1の測温点と第2の測温点とを備え、第1の測温点と第2の測温点とは前記貫通孔の長さ方向に間隔をあけて配置され、かつ、前記第1の測温点が前記第2の測温点よりも前記発熱部の近くに配置されている、請求項1に記載の液位センサ。   The thermocouple includes a first temperature measuring point and a second temperature measuring point accommodated in the through hole, and the first temperature measuring point and the second temperature measuring point are the length of the through hole. 2. The liquid level sensor according to claim 1, wherein the liquid level sensor is arranged at intervals in a direction, and the first temperature measuring point is arranged closer to the heat generating portion than the second temperature measuring point. 前記筐体がセラミックス製である、請求項1又は2に記載の液位センサ。   The liquid level sensor according to claim 1 or 2, wherein the casing is made of ceramics. 前記4個の貫通孔が、横断面視で縦横に2個ずつ並べて配置され、互いに隣接する2個の貫通孔に前記発熱線が収容され、互いに隣接する他の2個の貫通孔に前記熱電対が収容されている、請求項1〜3のいずれか1項に記載の液位センサ。   The four through-holes are arranged two by two in a cross-sectional view, and the heating wires are accommodated in two adjacent through-holes, and the other two through-holes are adjacent to each other. The liquid level sensor according to any one of claims 1 to 3, wherein a pair is accommodated. 前記発熱部が、コイル状に形成されている、請求項1〜4のいずれか1項に記載の液位センサ。
The liquid level sensor according to claim 1, wherein the heat generating portion is formed in a coil shape.
JP2016114694A 2016-06-08 2016-06-08 Liquid level sensor Active JP6663799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016114694A JP6663799B2 (en) 2016-06-08 2016-06-08 Liquid level sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016114694A JP6663799B2 (en) 2016-06-08 2016-06-08 Liquid level sensor

Publications (2)

Publication Number Publication Date
JP2017219449A true JP2017219449A (en) 2017-12-14
JP6663799B2 JP6663799B2 (en) 2020-03-13

Family

ID=60657926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016114694A Active JP6663799B2 (en) 2016-06-08 2016-06-08 Liquid level sensor

Country Status (1)

Country Link
JP (1) JP6663799B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143411A1 (en) 2017-02-02 2018-08-09 三井化学東セロ株式会社 Foam body, polyolefin-based foam sheet and complex

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143411A1 (en) 2017-02-02 2018-08-09 三井化学東セロ株式会社 Foam body, polyolefin-based foam sheet and complex

Also Published As

Publication number Publication date
JP6663799B2 (en) 2020-03-13

Similar Documents

Publication Publication Date Title
JP5395897B2 (en) High vibration resistance temperature sensor
CA2819757C (en) Protective tube inner part for a thermometer with a protective tube
JP6600730B2 (en) Broadband molten metal liquid level measuring device and thermal system using multi-contact temperature sensor
JP5618310B1 (en) Temperature sensor for high temperature
JPS6014127A (en) Device for remotely measuring liquid level
JP6663799B2 (en) Liquid level sensor
JP4936184B2 (en) Induction heating type liquid level sensor
WO2015083298A1 (en) Water level sensor
CN219015483U (en) Temperature probe and insert for a temperature probe
US3663799A (en) Fluoroplastic encapsulated electrical resistance heaters
US9671265B2 (en) Thermal dispersion mass flow rate, material interface, and liquid level sensing transducer
JPS62278421A (en) Temperature sensor
CN115701529A (en) Temperature sensor assembly
JP5780809B2 (en) Conductive liquid detection sensor
JP5257099B2 (en) Sensor for temperature measurement
US3664882A (en) Immersion temperature responsive device
JP2007078433A (en) Sheathed thermocouple coated with polyimide
JP6484462B2 (en) Temperature measurement system
JP3226933U (en) Temperature sensor
EP0190858A2 (en) Temperature-sensitive probes
KR101009658B1 (en) Alumina mandrel type thermocouple and its fabrication method
JPS6333633A (en) Manufacture of temperature detector
JP2017015504A (en) Temperature sensor
JP2022003357A (en) Manufacturing method for sheath type resistance temperature detector
JP3711281B2 (en) Conductive liquid substance leakage sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200217

R150 Certificate of patent or registration of utility model

Ref document number: 6663799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250