JP2007078433A - Sheathed thermocouple coated with polyimide - Google Patents

Sheathed thermocouple coated with polyimide Download PDF

Info

Publication number
JP2007078433A
JP2007078433A JP2005264539A JP2005264539A JP2007078433A JP 2007078433 A JP2007078433 A JP 2007078433A JP 2005264539 A JP2005264539 A JP 2005264539A JP 2005264539 A JP2005264539 A JP 2005264539A JP 2007078433 A JP2007078433 A JP 2007078433A
Authority
JP
Japan
Prior art keywords
thermocouple
sheathed thermocouple
polyimide
sheath
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005264539A
Other languages
Japanese (ja)
Other versions
JP4662307B2 (en
Inventor
Masaru Yamana
勝 山名
Manabu Kazaoka
学 風岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okazaki Manufacturing Co Ltd
Original Assignee
Okazaki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okazaki Manufacturing Co Ltd filed Critical Okazaki Manufacturing Co Ltd
Priority to JP2005264539A priority Critical patent/JP4662307B2/en
Publication of JP2007078433A publication Critical patent/JP2007078433A/en
Application granted granted Critical
Publication of JP4662307B2 publication Critical patent/JP4662307B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem, wherein a function of a measured device is lost or a handling person receives an electrical shock, by a flow of a current which is not meant to be caused between a potential generated portion and a grounded portion, through a metal sheath of a lead-in sheathed thermocouple, when measuring a temperature of the potential generated portion with respect to grounding in an inside of a fuel cell, by the sheathed thermocouple; also to solve a problem wherein an induction noise is generated in a measured signal of the sheathed thermocouple, when the current is fluctuated, not allowing accurate temperature measurement, or the like. <P>SOLUTION: This sheathed thermocouple is coated with a polyimide having 1-10 μm of thickness, on the whole surface ranging over from a temperature measuring side tip to 10-150 mm of length therefrom, in the sheathed thermocouple with ϕ 0.1-ϕ 0.2 mm of outside diameter. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

測定対象箇所に電位があり、かつ高温で狭隘な場所へ設置する燃料電池用のシース熱電対に関する。   The present invention relates to a sheathed thermocouple for a fuel cell that is installed in a narrow place at a high temperature with a potential to be measured.

シース熱電対は、金属製のシース内にマグネシア等の無機絶縁材を介在させて、熱電対素線を収容したもので、還元性や腐食性の雰囲気での使用に耐え、また、周辺の導電体との接触が測定に影響を及ぼさないなどの特長を持ち、広く温度センサーとして使用されている。   A sheathed thermocouple is a metal sheath containing an inorganic insulating material such as magnesia and containing a thermocouple wire. It can withstand use in a reducing or corrosive atmosphere, and it can be electrically conductive in the surroundings. It has features such as contact with the body does not affect the measurement, and is widely used as a temperature sensor.

シース熱電対には非接地式と接地式の2種類があり、これらの構造を図1から図3に示す。図1が非接地式シース熱電対の長手方向断面図である。図2が接地式シース熱電対の長手方向断面図で、図3が図1のI−I断面及び図2のII−II断面を示す図である。非接地式と接地式、いずれも、金属シース1内にマグネシア(MgO)等の無機絶縁材2を介在させて、+側熱電対素線3と−側熱電対素線4が収容されている。先端側において、2つの素線の接合(図1の非接地式)もしくは素線とシース先端部とを接合(図2の接地式)して先端部を測温部としている。また基端開口部は、無機絶縁材2に湿分が侵入して絶縁が劣化するのを防ぐために、エポキシ樹脂等でシール5が施されている。この基端には、熱電対素線と補償導線の接続部を収容するスリーブや、補償導線との接続のための端子台を収容した端子箱が設けられることもある。
特願2004−252580
There are two types of sheathed thermocouples: non-grounded type and grounded type, and these structures are shown in FIGS. FIG. 1 is a longitudinal sectional view of a non-grounded sheath thermocouple. FIG. 2 is a longitudinal sectional view of a grounding type sheathed thermocouple, and FIG. 3 is a diagram showing a II section in FIG. 1 and a II-II section in FIG. In both the non-grounding type and the grounding type, an inorganic insulating material 2 such as magnesia (MgO) is interposed in the metal sheath 1, and the + side thermocouple element 3 and the-side thermocouple element 4 are accommodated. . On the distal end side, the two strands are joined (non-grounding type in FIG. 1) or the strand and the sheath tip are joined (grounding type in FIG. 2), and the distal end portion is used as a temperature measuring section. Further, the base end opening is sealed with an epoxy resin or the like in order to prevent moisture from entering the inorganic insulating material 2 to deteriorate the insulation. The base end may be provided with a sleeve that accommodates a connection portion between the thermocouple element and the compensation conductor, and a terminal box that accommodates a terminal block for connection with the compensation conductor.
Japanese Patent Application No. 2004-252580

シース熱電対により、燃料電池内部においてアースとの間に電位の生じている部分の温度を測定する場合、引き回されたシース熱電対の金属シースを通して、電位の生じている部分とアースされている部分との間に、本来流れてはいけない電流が流れ、被測定装置の機能喪失や取扱者の感電を招き、また、この電流が変動した場合には、シース熱電対の測定信号に誘導ノイズが発生し、正確な温度測定ができなくなる。   When the temperature of a portion where a potential is generated between the fuel cell and the ground is measured by the sheath thermocouple, the portion where the potential is generated is grounded through the metal sheath of the sheathed thermocouple. A current that should not flow between the two parts flows, resulting in loss of function of the device under test and electric shock of the operator, and if this current fluctuates, inductive noise appears in the measurement signal of the sheath thermocouple. Occurs and accurate temperature measurement cannot be performed.

燃料電池内部は還元性雰囲気であるので、還元性雰囲気により劣化して測定誤差が生じるセンサーは使用できない。測定対象温度が高くない場合は、熱電対素線に絶縁材であるPFA樹脂 (フッ素樹脂の1つで、Tetra fluoro ethylene-perfluoro alkylvinyl ether copolymerを略して一般にこう呼ばれている) を被覆し、これにより電位に対する絶縁と、熱電対素線の還元性雰囲気からの遮断を行ったものが用いられている。しかし、PFA樹脂は温度が260℃を超えると軟化し、さらに高温では炭化するために260℃以上の高温では使用することが出来ない。また、燃料電池のアースとの電位差のあるセルから、アースされた場所へ通じる隙間はできるだけ狭くすることが望ましいが、PFA被覆熱電対は、扁平状の断面寸法の最小短径が0.22mm(図4に断面図を示す)で、前記隙間はこれ以上の幅が必要であり、さらに細径の熱電対が求められている。   Since the inside of the fuel cell is in a reducing atmosphere, a sensor that is deteriorated by the reducing atmosphere and causes a measurement error cannot be used. If the temperature to be measured is not high, cover the thermocouple wire with PFA resin (one of fluororesins, commonly called “Tetra fluoroethylene-perfluoroalkylvinyl ether copolymer”), As a result, a material that is insulated from the potential and shielded from the reducing atmosphere of the thermocouple wire is used. However, since the PFA resin softens when the temperature exceeds 260 ° C. and carbonizes at a higher temperature, it cannot be used at a temperature higher than 260 ° C. In addition, it is desirable that the gap leading from the cell having a potential difference from the ground of the fuel cell to the grounded place is as narrow as possible. However, the PFA-coated thermocouple has a minimum minor axis of a flat cross-sectional dimension of 0.22 mm ( 4), the gap needs to have a width larger than this, and a thermocouple with a small diameter is required.

以上の燃料電池に使用する熱電対に求められている革新要求項目をまとめると次のようになる。   The innovation requirement items required for the thermocouples used in the above fuel cells are summarized as follows.

a.還元性雰囲気中で長時間使用できること。   a. Can be used in a reducing atmosphere for a long time.

b.260℃以上のできるだけ高い温度で使用できること。   b. Can be used at the highest possible temperature of 260 ° C or higher.

c.アースに対して電位のある燃料電池セルの温度が測定可能なように、少なくとも電位のあるセルに設置される部分は、外面が絶縁材に覆われていること。   c. The outer surface of at least the part installed in the potential cell must be covered with an insulating material so that the temperature of the potential fuel cell can be measured.

d.絶縁材に覆われている部分が、0.22mm以下のできるだけ狭い隙間を通過できること。   d. The portion covered with the insulating material can pass through the narrowest possible gap of 0.22 mm or less.

このような要求に対して、図5、図6に示すシース熱電対を発明した。   In response to such a demand, the sheath thermocouple shown in FIGS. 5 and 6 was invented.

図5は、図中の外径Aがφ0.1mm乃至φ0.2mmのシース熱電対の測温側先端から10mm乃至150mm(図中Bの長さ)の表面全体に、厚さが1μm乃至10μm(図中Hの長さ)のポリイミドをコーティングしたものである。シース熱電対は製作可能な最小径若しくはそれに近い径のものであり、シース熱電対を使用することにより還元性雰囲気中で長期間使用可能である。   FIG. 5 shows a thickness of 1 μm to 10 μm over the entire surface 10 mm to 150 mm (length B in the figure) from the temperature measuring side tip of the sheath thermocouple having an outer diameter A of φ0.1 mm to φ0.2 mm in the figure. (Length of H in the figure) is coated with polyimide. The sheath thermocouple has a minimum diameter that can be manufactured or a diameter close thereto, and can be used in a reducing atmosphere for a long time by using the sheath thermocouple.

コーティングのポリイミドは、温度が350℃まで耐える絶縁材料であり、また、シース熱電対本体はシース材料にインコネル600等を用いれば1000℃以上の耐熱性があるので、350℃までの温度領域における使用が可能で、従来よりも約90℃近く使用高温域が高まっている。   The coating polyimide is an insulating material that can withstand temperatures up to 350 ° C, and the sheath thermocouple body has a heat resistance of 1000 ° C or higher if Inconel 600 is used as the sheath material, so it can be used in the temperature range up to 350 ° C. The use high temperature region is increased by about 90 ° C. compared to the conventional case.

コーティング長さ10mm乃至150mmは、アースに対して電位のある燃料電池セルの大きさに基づいたもので、この長さの範囲から選定することにより、小型セルから大型セルまで、電位のある部分の熱電対の引き回しをポリイミドコーティングした部分で行うことができる。即ち、コーティングされていない部分はアース電位の部分のみの引き回しとすることができる。また、コーティングの厚さ1μm乃至10μmは、測定部位のアースに対する電位の大きさ(+側及び−側の大きさ)により求められる。電位が±数ボルト程度であれば、厚さは数μmでよく、電位が大きくなると、厚さも増やす必要があるが、厚さ10μmとすれば、±500ボルト以上の電位に対応可能である。   The coating length of 10 mm to 150 mm is based on the size of the fuel cell having an electric potential with respect to the earth. By selecting from this length range, the portion having an electric potential from a small cell to a large cell is selected. The thermocouple can be routed at the polyimide coated part. That is, the uncoated portion can be routed only to the portion of the ground potential. The coating thickness of 1 μm to 10 μm is determined by the magnitude of the potential of the measurement site with respect to the ground (size on the + side and − side). If the potential is about ± several volts, the thickness may be several μm, and if the potential is increased, the thickness needs to be increased. However, if the thickness is 10 μm, it is possible to cope with a potential of ± 500 volts or more.

さらに、φ0.1mmのシース熱電対を使用した場合には、0.1mm+コーティング厚さの隙間があれば引き回し可能で、必要隙間は従来の1/2以下になる。φ0.2mmのシース熱電対使用の場合でも、従来のものより必要隙間は狭くなる。   Furthermore, when a sheath thermocouple with a diameter of 0.1 mm is used, if there is a gap of 0.1 mm + coating thickness, it can be routed, and the required gap is ½ or less of the conventional gap. Even when using a sheathed thermocouple with a diameter of 0.2 mm, the required gap is narrower than the conventional one.

以上のように、図5の燃料電池用熱電対センサは、求められている要求a.〜d.を満たすものである。   As described above, the fuel cell thermocouple sensor of FIG. ~ D. It satisfies.

図6は、図中の外径Cがφ0.15mm乃至φ0.2mmのシース熱電対の測温側先端から10mm乃至150mm(図中Eの長さ)の部分に径方向の力を加えて、その断面を元の直径に対して縦幅(図中F)が1/2乃至3/4、横幅(図中G)が4/3乃至2倍の扁平状に変形し、その扁平状にした部分の表面全体を覆うように(図Dの部分)、厚さ1μm乃至10μm(図中Hの厚さ)のポリイミドをコーティングしたものである。   FIG. 6 shows a radial force applied to a portion 10 mm to 150 mm (length of E in the figure) from the temperature measuring side tip of the sheath thermocouple having an outer diameter C of φ0.15 mm to φ0.2 mm in the figure, The cross section was deformed into a flat shape with a vertical width (F in the figure) of 1/2 to 3/4 and a horizontal width (G in the figure) of 4/3 to 2 times the original diameter. The surface is coated with polyimide having a thickness of 1 μm to 10 μm (thickness H in the figure) so as to cover the entire surface of the part (part of FIG. D).

図6の図5との違いは、先端部断面を扁平にした点で、上記扁平率に関する値1/2乃至幅3/4、4/3乃至2倍は、扁平率を大きくすると、素線の断線や、金属シースと熱電対素線の接触、+側と−側の熱電対素線の接触が生じ易くなるため、これらが生じない範囲で、できるだけ扁平率を大きくした結果である。また、外径がφ0.15mmに満たないシース熱電対を扁平に加工すると、やはり素線の断線や金属シースと熱電対素線の接触、+側と−側の熱電対素線の接触が生じ易くなるため、扁平に加工するシース熱電対は外径φ0.15mm以上のものとしている。図6のセンサーは、図5のものと同様に前記の要求a.〜d.を満たすものであるが、扁平断面とすることにより、必要隙間がさらに小さくなっている。   The difference between FIG. 6 and FIG. 5 is that the tip section is flattened. The values 1/2 to 3/4, 4/3 to 2 times related to the flattening rate are as follows. This is a result of increasing the flatness as much as possible within the range where no disconnection, contact between the metal sheath and the thermocouple element, and contact between the + and − thermocouple elements occur. In addition, when a sheathed thermocouple with an outer diameter of less than φ0.15 mm is processed into a flat shape, wire breakage, contact between the metal sheath and the thermocouple wire, and contact between the + and – thermocouple wires are also generated. In order to facilitate, the sheath thermocouple processed into a flat shape has an outer diameter of 0.15 mm or more. The sensor of FIG. 6 is similar to that of FIG. ~ D. However, the required gap is further reduced by adopting a flat cross section.

図5の形状のものについて、実施形態を以下に示す。   Embodiments of the shape of FIG. 5 are shown below.

寸法は次のとおりである。   The dimensions are as follows:

A:φ0.1mm、B:100mm、H:5μm、先端からシール5までの長さ:150mm、もちろんBの長さは、使用先の燃料電池の大きさによって増減する。     A: φ0.1 mm, B: 100 mm, H: 5 μm, length from the tip to the seal 5: 150 mm, of course, the length of B varies depending on the size of the fuel cell used.

電対素線3、4は、JIS C 1602に示されるK熱電対素線を使用し、シース1はインコネル600、内部に充電した無機絶縁材2はマグネネシア(MgO)、シール5材料はエポキシである。また、シース熱電対の型式は図1に示す非接地式である。   The thermocouple wires 3 and 4 use K thermocouple wires shown in JIS C 1602, the sheath 1 is Inconel 600, the inorganic insulating material 2 charged inside is magnesia (MgO), and the seal 5 material is epoxy. is there. The type of the sheath thermocouple is a non-grounding type shown in FIG.

ポリイミドコーティングは、ポリイミドを溶媒中に溶解した液にシース熱電対を漬けて先端から100mmの部分に液を付着させて引き上げ、これを焼付けることを、ポリイミド厚さが5μmになるまで繰り返すことによって形成した。無論、これ以外の方法で作成してもよい。   Polyimide coating is done by dipping a sheath thermocouple in a solution in which polyimide is dissolved in a solvent, attaching the solution to a 100 mm portion from the tip, lifting it, and baking it until the polyimide thickness reaches 5 μm. Formed. Of course, it may be created by other methods.

このポリイミドコーティングによる絶縁はDC500V以上の電圧に耐え、通常の燃料電池における使用に十分耐えうる熱電対となっていることを確認した。   It was confirmed that the insulation by this polyimide coating can withstand a voltage of 500 V DC or more and is a thermocouple that can sufficiently withstand use in a normal fuel cell.

次に、図6の形状のものについて、実施形態を示す。   Next, an embodiment is shown for the shape of FIG.

寸法は次の通りである。   The dimensions are as follows.

C:φ0.15mm、E:30mm、D:35mm、H:5μm、先端からシール5までの長さ:150mm、F:0.1mm(元の径に対し2/3)、G:約0.2mm(元の径に対し約4/3)
もちろん、Eの長さは、使用先の燃料電池の大きさによって増減する。また、燃料電池のセルの隙間を出た後は、アース電位の場所であるので、コーティングをするDの長さは基本的に、Eの長さと同じでよいが、これに熱電対位置の変位などの余裕を考慮して、Eより5mm長くしている。
C: φ0.15 mm, E: 30 mm, D: 35 mm, H: 5 μm, length from tip to seal 5: 150 mm, F: 0.1 mm (2/3 of the original diameter), G: about 0. 2mm (about 4/3 of the original diameter)
Of course, the length of E varies depending on the size of the fuel cell used. Also, after leaving the gap between the cells of the fuel cell, it is the place of ground potential, so the length of D to be coated may be basically the same as the length of E, but the displacement of the thermocouple position In consideration of such margins, it is 5 mm longer than E.

素材に関しては、図5と同様に、電対素線3、4は、JIS C 1602に示されるK熱電対素線、シース1はインコネル600、内部に充填した無機絶縁材2はマグネシア(MgO)、シール5の材料はエポキシである。また、シース熱電対の型式も図1に示す非接地式である。さらに、ポリイミドコーティングのコーティング方法も、前述の図5の場合と同じである。   As for the material, as in FIG. 5, the couple wires 3 and 4 are K thermocouple wires shown in JIS C 1602, the sheath 1 is Inconel 600, and the inorganic insulating material 2 filled therein is magnesia (MgO). The material of the seal 5 is epoxy. The type of the sheath thermocouple is also a non-grounding type as shown in FIG. Further, the coating method of the polyimide coating is the same as in the case of FIG.

この図6のコーティングの絶縁も、DC500V以上の電圧に耐え、通常の燃料電池における使用に十分耐えうるものである。   The insulation of the coating shown in FIG. 6 can withstand a voltage of 500 V DC or more and can sufficiently withstand use in a normal fuel cell.

本発明は、燃料電池の温度を測定する熱電対について述べたが、アースに対して電位のある物体の温度測定に利用できる。   Although the present invention has been described with respect to a thermocouple for measuring the temperature of a fuel cell, it can be used to measure the temperature of an object having a potential with respect to ground.

非接地式シース熱電対の長手方向断面図である。It is a longitudinal direction sectional view of a non-grounding type sheathed thermocouple. 接地式シース熱電対の長手方向断面図である。It is a longitudinal direction sectional view of a grounding type sheathed thermocouple. 図1および図2の径方向の断面図である。It is sectional drawing of the radial direction of FIG. 1 and FIG. 扁平状の断面寸法が最小短径のPFA樹脂被覆熱電対の断面図である。FIG. 3 is a cross-sectional view of a PFA resin-coated thermocouple having a flat cross-sectional dimension with a minimum minor axis. 本発明の表面にポリイミドをコーティングしたシース熱電対の状態を説明する正面図である。It is a front view explaining the state of the sheath thermocouple which coated polyimide on the surface of the present invention. 本発明の測温先端側を扁平にし、表面にポリイミドをコーティングした状態を説明する正面図と底面図の二面図である。It is a two-view figure of the front view and bottom view explaining the state which flattened the temperature measurement front end side of this invention, and coated the polyimide on the surface.

符号の説明Explanation of symbols

1…金属シース
2…無機絶縁材
3…+側熱電対素線
4…−側熱電対素線
5…シール
6…PFA樹脂被覆
DESCRIPTION OF SYMBOLS 1 ... Metal sheath 2 ... Inorganic insulating material 3 ... + side thermocouple strand 4 ...-side thermocouple strand 5 ... Seal 6 ... PFA resin coating

Claims (2)

外径がφ0.1mm乃至φ0.2mmのシース熱電対の測温側先端から10mm乃至150mmの表面全体に、厚さが1μm乃至10μmのポリイミドをコーティングしたシース熱電対。   A sheathed thermocouple in which polyimide having a thickness of 1 μm to 10 μm is coated on the entire surface of 10 mm to 150 mm from the temperature measuring side tip of the sheath thermocouple having an outer diameter of φ0.1 mm to φ0.2 mm. 外径がφ0.15mm乃至φ0.2mmのシース熱電対の測温側先端から10mm乃至150mmの部分に径方向の力を加えて、その断面を元の直径に対して縦幅が1/2乃至幅3/4、横幅が4/3乃至2倍の偏平状に変形し、その扁平状にした部分の表面全体を覆うように厚さ1μm乃至10μmのポリイミドをコーティングしたシース熱電対。   A radial force is applied to a portion 10 mm to 150 mm from the temperature measuring tip of the sheath thermocouple having an outer diameter of φ0.15 mm to φ0.2 mm, and the vertical width of the section is 1/2 to the original diameter. A sheathed thermocouple that is deformed into a flat shape with a width of 3/4 and a horizontal width of 4/3 to 2 times, and is coated with polyimide having a thickness of 1 μm to 10 μm so as to cover the entire surface of the flattened portion.
JP2005264539A 2005-09-13 2005-09-13 Polyimide-coated sheath thermocouple Active JP4662307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005264539A JP4662307B2 (en) 2005-09-13 2005-09-13 Polyimide-coated sheath thermocouple

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005264539A JP4662307B2 (en) 2005-09-13 2005-09-13 Polyimide-coated sheath thermocouple

Publications (2)

Publication Number Publication Date
JP2007078433A true JP2007078433A (en) 2007-03-29
JP4662307B2 JP4662307B2 (en) 2011-03-30

Family

ID=37938921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005264539A Active JP4662307B2 (en) 2005-09-13 2005-09-13 Polyimide-coated sheath thermocouple

Country Status (1)

Country Link
JP (1) JP4662307B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014395A (en) * 2007-07-02 2009-01-22 Okazaki Mfg Co Ltd Thermocouple for fuel cell
JP2009216492A (en) * 2008-03-10 2009-09-24 Nihon Densoku Kk Thermal sensor and temperature measuring method
JP2010528291A (en) * 2007-05-24 2010-08-19 エーエスエム アメリカ インコーポレイテッド Thermoelectric thermometer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105043U (en) * 1986-12-26 1988-07-07
JPH02183127A (en) * 1988-11-21 1990-07-17 Mold Masters Ltd Thermocouple apparatus and manufacture thereof
JPH0299330U (en) * 1989-01-24 1990-08-08
JPH0314093U (en) * 1989-06-27 1991-02-13
JPH11281497A (en) * 1998-03-27 1999-10-15 Kawasaki Steel Corp Fitting method for sheath thermocouple for measuring temperature of metal body inside
JP2001135869A (en) * 1999-08-24 2001-05-18 Ibiden Co Ltd Thermocouple and ceramic base material for semiconductor manufacturing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105043U (en) * 1986-12-26 1988-07-07
JPH02183127A (en) * 1988-11-21 1990-07-17 Mold Masters Ltd Thermocouple apparatus and manufacture thereof
JPH0299330U (en) * 1989-01-24 1990-08-08
JPH0314093U (en) * 1989-06-27 1991-02-13
JPH11281497A (en) * 1998-03-27 1999-10-15 Kawasaki Steel Corp Fitting method for sheath thermocouple for measuring temperature of metal body inside
JP2001135869A (en) * 1999-08-24 2001-05-18 Ibiden Co Ltd Thermocouple and ceramic base material for semiconductor manufacturing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528291A (en) * 2007-05-24 2010-08-19 エーエスエム アメリカ インコーポレイテッド Thermoelectric thermometer
JP2009014395A (en) * 2007-07-02 2009-01-22 Okazaki Mfg Co Ltd Thermocouple for fuel cell
JP2009216492A (en) * 2008-03-10 2009-09-24 Nihon Densoku Kk Thermal sensor and temperature measuring method

Also Published As

Publication number Publication date
JP4662307B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
US5999081A (en) Shielding unique for filtering RFI and EFI interference signals from the measuring elements
JP5395897B2 (en) High vibration resistance temperature sensor
US5864282A (en) Unique strain relief junction
US11268862B2 (en) Temperature sensor and device provided with temperature sensor
JP6228532B2 (en) Thermistor
US8256956B2 (en) Temperature sensor
JP6608088B1 (en) Temperature sensor
US20110222583A1 (en) Apparatus for determining and/or monitoring a process variable
JP5618310B1 (en) Temperature sensor for high temperature
US20180235032A1 (en) Electrical device with tubular metal sheathing and insulating element held therein
JP4662307B2 (en) Polyimide-coated sheath thermocouple
CN114072569A (en) Current feed-through
JP2016085864A (en) Heater with thermoelectric couple, and gas sensor with the same
KR101924782B1 (en) Explosion proof temperature sensor and manufacturing method thereof
US11519791B2 (en) Sealing device for a cold-end part of a thermocouple wire arrangement with a mineral-insulated cable and thermocouple
KR102091052B1 (en) Explosion-proof temperature sensor using thermocouple
JPWO2015083298A1 (en) Water level sensor
JP2515067Y2 (en) Thermistor temperature sensor
JP4813221B2 (en) Low thermal intrusion current lead device
JP6335125B2 (en) Sheath type thermocouple and manufacturing method thereof
CN105024250B (en) Adaptor for connecting resistor to cable assembly
JP4307209B2 (en) Heater with temperature measuring element
JP2018112513A (en) Temperature sensor
US20210112630A1 (en) Feedthrough for an electrical heating device, electrical heating device with such a feedthrough, system with such a feedthrough, and method for manufacturing such a feedthrough
JP5317854B2 (en) Conductive fluid detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101226

R150 Certificate of patent or registration of utility model

Ref document number: 4662307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250