JP2017219394A - Measuring method, and reaction container used in the same - Google Patents
Measuring method, and reaction container used in the same Download PDFInfo
- Publication number
- JP2017219394A JP2017219394A JP2016113269A JP2016113269A JP2017219394A JP 2017219394 A JP2017219394 A JP 2017219394A JP 2016113269 A JP2016113269 A JP 2016113269A JP 2016113269 A JP2016113269 A JP 2016113269A JP 2017219394 A JP2017219394 A JP 2017219394A
- Authority
- JP
- Japan
- Prior art keywords
- mineral oil
- liquid
- injected
- wells
- transparent mineral
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 72
- 238000000034 method Methods 0.000 title abstract description 14
- 239000002480 mineral oil Substances 0.000 claims abstract description 88
- 235000010446 mineral oil Nutrition 0.000 claims abstract description 88
- 239000007788 liquid Substances 0.000 claims abstract description 83
- 230000005284 excitation Effects 0.000 claims abstract description 20
- 239000012295 chemical reaction liquid Substances 0.000 claims abstract description 6
- 238000000691 measurement method Methods 0.000 claims description 13
- 230000001678 irradiating effect Effects 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 16
- 230000035945 sensitivity Effects 0.000 abstract description 9
- 239000000243 solution Substances 0.000 description 20
- 238000004020 luminiscence type Methods 0.000 description 18
- 230000005499 meniscus Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 239000005022 packaging material Substances 0.000 description 5
- 239000003566 sealing material Substances 0.000 description 5
- 238000009461 vacuum packaging Methods 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 229930195734 saturated hydrocarbon Natural products 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 102000016911 Deoxyribonucleases Human genes 0.000 description 2
- 108010053770 Deoxyribonucleases Proteins 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 2
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 2
- 102000006382 Ribonucleases Human genes 0.000 description 2
- 108010083644 Ribonucleases Proteins 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical group C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000005090 green fluorescent protein Substances 0.000 description 2
- 229940057995 liquid paraffin Drugs 0.000 description 2
- 238000002493 microarray Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000013076 target substance Substances 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 238000001917 fluorescence detection Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Optical Measuring Cells (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
Description
本発明は、測定方法とそれに用いる反応容器に関する。 The present invention relates to a measurement method and a reaction vessel used therefor.
現在、タンパク質や遺伝子などの分析には、複数のウェルが形成されたマイクロプレートが使用されている(たとえば、特許文献1参照)。このようなマイクロプレートを用いた分析方法としては、ウェル内に細胞などの試料や試薬を注入し、抗原抗体反応や酵素反応など目的に応じた化学反応を実施し、反応液から放射される発光または蛍光の強度を測定して、目的物質を検出または定量する方法が挙げられる。一度に複数の分析を行うため、近年では、ウェルの容積が小さく数が多いマイクロプレートが使用されるようになってきている。このマイクロプレートでは、少量の試料や試薬を用いて一度に複数の化学反応を実施し、複数の目的物質を検出または定量することができる。 Currently, microplates in which a plurality of wells are formed are used for analysis of proteins and genes (see, for example, Patent Document 1). As an analysis method using such a microplate, a sample or reagent such as a cell is injected into a well, a chemical reaction according to the purpose such as an antigen-antibody reaction or an enzyme reaction is performed, and light emitted from the reaction solution is emitted. Alternatively, a method of detecting or quantifying a target substance by measuring the intensity of fluorescence can be mentioned. In recent years, microplates having a small well volume and a large number have been used to perform a plurality of analyzes at a time. In this microplate, a plurality of chemical reactions can be performed at once using a small amount of sample or reagent, and a plurality of target substances can be detected or quantified.
しかし、ウェルの容積が小さいマイクロプレートを用いると、反応液からの発光または蛍光の絶対量が低下するため、発光または蛍光の検出感度が低下するという問題がある。 However, when a microplate having a small well volume is used, there is a problem that the absolute amount of luminescence or fluorescence from the reaction solution is lowered, and the detection sensitivity of luminescence or fluorescence is lowered.
本発明は上記のような課題を解決するためになされたものであり、発光または蛍光の検出感度が低下しない測定方法とそれに用いる反応容器を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a measurement method in which the detection sensitivity of luminescence or fluorescence does not decrease and a reaction vessel used therefor.
以下に、課題を解決するための手段として複数の態様を説明する。これら態様は必要に応じて任意に組み合わせることができる。 Hereinafter, a plurality of modes will be described as means for solving the problems. These embodiments can be arbitrarily combined as necessary.
本発明の測定方法は、
複数のウェルが形成されたマイクロプレートと、ウェル内に注入された透明な鉱油とを含んでなる反応容器のウェル内に少なくとも2種の液体を注入して反応させ、反応液から生じ透明な鉱油を通過した発光を検出し、発光の強度を測定することを特徴とするものである。
The measurement method of the present invention includes:
Transparent mineral oil produced from the reaction liquid by injecting and reacting at least two liquids into the wells of a reaction vessel comprising a microplate having a plurality of wells and a transparent mineral oil injected into the wells The light emission that has passed through is detected, and the intensity of the light emission is measured.
また、本発明の測定方法は、
複数のウェルが形成されたマイクロプレートと、ウェル内に注入された透明な鉱油とを含んでなる反応容器のウェル内に少なくとも1種の液体を注入し、液体に励起光を照射して液体から蛍光を生じさせ、透明な鉱油を通過した蛍光を検出し、蛍光の強度を測定することを特徴とするものである。
Moreover, the measuring method of the present invention comprises:
At least one liquid is injected into a well of a reaction vessel including a microplate having a plurality of wells and a transparent mineral oil injected into the well, and the liquid is irradiated with excitation light from the liquid. Fluorescence is generated, fluorescence passing through a transparent mineral oil is detected, and the intensity of the fluorescence is measured.
また、本発明の測定方法は、
複数のウェルが形成されたマイクロプレートのウェル内に少なくとも2種の液体を注入して反応させ、反応直後に透明な鉱油を注入し、反応液から生じ透明な鉱油を通過した発光を検出し、発光の強度を測定することを特徴とするものである。
Moreover, the measuring method of the present invention comprises:
Injecting and reacting at least two kinds of liquids into the wells of the microplate in which a plurality of wells are formed, injecting a transparent mineral oil immediately after the reaction, and detecting light emitted from the reaction liquid and passing through the transparent mineral oil; It measures the intensity of light emission.
また、本発明の測定方法は、
複数のウェルが形成されたマイクロプレートのウェル内に、少なくとも1種の液体と透明な鉱油を注入し、液体に励起光を照射して液体から蛍光を生じさせ、透明な鉱油を通過した蛍光を検出し、蛍光の強度を測定することを特徴とするものである。
Moreover, the measuring method of the present invention comprises:
At least one kind of liquid and transparent mineral oil are injected into the well of the microplate in which a plurality of wells are formed, and the liquid is irradiated with excitation light to generate fluorescence from the liquid, and the fluorescence that has passed through the transparent mineral oil is emitted. It detects and measures the intensity | strength of fluorescence.
また、本発明の反応容器は、
複数のウェルが形成されたマイクロプレートと、ウェル内に注入された透明な鉱油とを含んでなることを特徴とするものである。
The reaction container of the present invention is
It comprises a microplate in which a plurality of wells are formed, and a transparent mineral oil injected into the wells.
本発明の測定方法は、複数のウェルが形成されたマイクロプレートと、ウェル内に注入された透明な鉱油とを含んでなる反応容器のウェル内に少なくとも2種の液体を注入して反応させ、反応液から生じ透明な鉱油を通過した発光を検出し、発光の強度を測定するように構成した。 In the measurement method of the present invention, at least two kinds of liquids are injected into a well of a reaction vessel containing a microplate in which a plurality of wells are formed and a transparent mineral oil injected into the wells, and reacted. Light emission generated from the reaction solution and passing through transparent mineral oil was detected, and the intensity of light emission was measured.
また、本発明の測定方法は、複数のウェルが形成されたマイクロプレートと、ウェル内に注入された透明な鉱油とを含んでなる反応容器のウェル内に少なくとも1種の液体を注入し、液体に励起光を照射して液体から蛍光を生じさせ、透明な鉱油を通過した蛍光を検出し、蛍光の強度を測定するように構成した。 Further, the measurement method of the present invention injects at least one liquid into a well of a reaction vessel including a microplate in which a plurality of wells are formed and a transparent mineral oil injected into the well. The liquid was irradiated with excitation light to generate fluorescence from the liquid, the fluorescence that passed through the transparent mineral oil was detected, and the intensity of the fluorescence was measured.
また、本発明の測定方法は、複数のウェルが形成されたマイクロプレートのウェル内に少なくとも2種の液体を注入して反応させ、反応直後に透明な鉱油を注入し、反応液から生じ透明な鉱油を通過した発光を検出し、発光の強度を測定するように構成した。 In the measurement method of the present invention, at least two kinds of liquids are injected into the wells of a microplate in which a plurality of wells are formed and reacted, and transparent mineral oil is injected immediately after the reaction to produce a transparent liquid. The luminescence that passed through the mineral oil was detected and the intensity of the luminescence was measured.
また、本発明の測定方法は、複数のウェルが形成されたマイクロプレートのウェル内に、少なくとも1種の液体と透明な鉱油を注入し、液体に励起光を照射して液体から蛍光を生じさせ、透明な鉱油を通過した蛍光を検出し、蛍光の強度を測定するように構成した。 In the measurement method of the present invention, at least one liquid and transparent mineral oil are injected into a well of a microplate having a plurality of wells, and the liquid is irradiated with excitation light to generate fluorescence from the liquid. The fluorescence passing through the transparent mineral oil was detected, and the intensity of the fluorescence was measured.
したがって、本発明の測定方法によれば、発光または蛍光の検出感度が低下することがない。 Therefore, according to the measurement method of the present invention, the detection sensitivity of luminescence or fluorescence does not decrease.
また、本発明の反応容器は、複数のウェルが形成されたマイクロプレートと、ウェル内に注入された透明な鉱油とを含んでなるように構成した。したがって、本発明によれば、発光または蛍光の検出感度が低下することがない反応容器を得ることができる。 Moreover, the reaction container of the present invention was configured to include a microplate in which a plurality of wells were formed and a transparent mineral oil injected into the wells. Therefore, according to the present invention, it is possible to obtain a reaction vessel in which the detection sensitivity of luminescence or fluorescence does not decrease.
以下、本発明の加飾品の製造方法について、実施形態の一例を説明する。 Hereinafter, an example of an embodiment is explained about a manufacturing method of a decoration article of the present invention.
<第1実施形態>
本発明の測定方法は、複数のウェル10aが形成されたマイクロプレート10と、ウェル10a内に注入された透明な鉱油11とを含んでなる反応容器1のウェル10a内に少なくとも2種の液体2、3を注入して反応させ、反応液4から生じ透明な鉱油11を通過した発光を検出し、発光の強度を測定することを特徴とするものである(図1参照)。
<First Embodiment>
In the measurement method of the present invention, at least two kinds of liquids 2 are contained in a well 10a of a reaction vessel 1 including a microplate 10 in which a plurality of wells 10a are formed and a transparent mineral oil 11 injected into the well 10a. 3 is injected and reacted, and the luminescence generated from the reaction solution 4 and passing through the transparent mineral oil 11 is detected, and the intensity of the luminescence is measured (see FIG. 1).
マイクロプレート10は、長さ0.1〜130mm、幅0.1〜90mm、高さ0.1〜30mmであり、材質はポリエチレン、ポリスチレン、ポリプロピレンなどの樹脂やガラスなどを用いることができる。マイクロプレート10には複数のウェル10aが形成されている。ウェル10aは、深さ0.01mm〜20mm、直径0.01mm〜80mm、容積0.8pL〜100mL、数1〜42400000、ウェル間距離15μm〜145mmであるマイクロプレート10を用いることができる。なお、ウェル10aの底は平らでもよいし、丸くてもよい。 The microplate 10 has a length of 0.1 to 130 mm, a width of 0.1 to 90 mm, and a height of 0.1 to 30 mm. The material can be a resin such as polyethylene, polystyrene, or polypropylene, or glass. The microplate 10 has a plurality of wells 10a. As the well 10a, the microplate 10 having a depth of 0.01 mm to 20 mm, a diameter of 0.01 mm to 80 mm, a volume of 0.8 pL to 100 mL, a number of 1 to 42400000, and a distance between wells of 15 μm to 145 mm can be used. The bottom of the well 10a may be flat or round.
ウェル10a内にはあらかじめ透明な鉱油11を注入しておく(図1(a)、図3参照)。透明な鉱油11は、精製されたものであり、不揮発性を有し、水相よりも比重が低いものを用いる。たとえば、流動パラフィンなどの炭素数が6以上の炭化水素化合物(直鎖飽和炭化水素、分岐鎖飽和炭化水素、環状飽和炭化水素)、エチルエーテル、石油エーテル、ジフェニルエーテル、イオン液体、フッ素油、大豆油、シリコーンオイル、植物油などを用いることができる。これらは、単体または混合物として用いることができる。中でも、流動パラフィンまたはミネラルオイルと呼ばれるものが好ましい。透明であり不純物が少ないため、反応液4から生じた発光を吸収または減衰しにくい。 A transparent mineral oil 11 is poured into the well 10a in advance (see FIGS. 1A and 3). The transparent mineral oil 11 is refined, non-volatile, and has a specific gravity lower than that of the aqueous phase. For example, hydrocarbon compounds having 6 or more carbon atoms such as liquid paraffin (linear saturated hydrocarbons, branched saturated hydrocarbons, cyclic saturated hydrocarbons), ethyl ether, petroleum ether, diphenyl ether, ionic liquid, fluorine oil, soybean oil Silicone oil, vegetable oil, etc. can be used. These can be used alone or as a mixture. Among these, what is called liquid paraffin or mineral oil is preferable. Since it is transparent and contains few impurities, it is difficult to absorb or attenuate the light emitted from the reaction solution 4.
上記のマイクロプレート10のウェル10a内に透明な鉱油11を注入した反応容器1に、液体2を注入する(図1(b)参照)。注入には、たとえばディスペンサ8を用いることができる。液体2はたとえば、細胞組織、抗体、DNA、RNAなどの試料を用いることができる。このとき、ウェル10a内には透明な鉱油11が注入されているため、透明な鉱油11によって液体2の蒸発を防ぐことができる。 The liquid 2 is injected into the reaction vessel 1 in which the transparent mineral oil 11 is injected into the well 10a of the microplate 10 (see FIG. 1B). For the injection, for example, a dispenser 8 can be used. As the liquid 2, for example, a sample such as a cell tissue, an antibody, DNA, or RNA can be used. At this time, since the transparent mineral oil 11 is injected into the well 10a, the transparent mineral oil 11 can prevent the liquid 2 from evaporating.
次に、ウェル10a内に液体3を注入する(図1(c)参照)。注入には、たとえばディスペンサ8を用いることができる。液体3はたとえば、試薬、抗原、基質などを用いることができる。 Next, the liquid 3 is injected into the well 10a (see FIG. 1C). For the injection, for example, a dispenser 8 can be used. As the liquid 3, for example, a reagent, an antigen, a substrate, or the like can be used.
液体2、3をウェル10a内に注入した後、化学反応が開始される(図1(d)参照)。反応液4から発光が生じ、その光が透明な鉱油11を通過して、測定器9の検出部9aに届く(図1(e)参照)。検出部9aで光を検出し、発光強度を測定する。測定器9としては、マイクロプレートリーダ、マイクロアレイスキャナ、ルミノメーター、CCDイメージャーなどを用いることができる。 After injecting the liquids 2 and 3 into the well 10a, a chemical reaction is started (see FIG. 1 (d)). Luminescence is generated from the reaction solution 4, and the light passes through the transparent mineral oil 11 and reaches the detection unit 9a of the measuring instrument 9 (see FIG. 1 (e)). The detection unit 9a detects light and measures the emission intensity. As the measuring instrument 9, a microplate reader, a microarray scanner, a luminometer, a CCD imager, or the like can be used.
反応液4から生じた発光は、透明な鉱油11を通過して検出部9aへ集められる。透明な鉱油11がない従来の方法においては、反応液からの発光が拡散してしまう(図2(b)参照)。一方、反応液4の液面に透明な鉱油11が存在している本発明においては(図2(a)参照)、透明な鉱油11が凸メニスカスレンズを形成している。ここで、マイクロプレート10は上記したように樹脂やガラスでできており、反応液4は水溶液である。そのため、反応液4がウェル10aの内壁を濡らし、反応液4の液面は下に凸のメニスカスとなる。その液面上にある透明な鉱油11も同様にウェル10aの内壁を濡らすため、下に凸のメニスカスを形成する。したがって、反応液4から生じた発光は凸メニスカスレンズ状の透明な鉱油11によって集光され、従来の方法と比較して発光の検出感度を高めることができる。凸メニスカスレンズによる効果を得るためには、透明な鉱油11の注入量は反応液4の体積の半分以下であることが好ましい。 The luminescence generated from the reaction solution 4 passes through the transparent mineral oil 11 and is collected in the detection unit 9a. In the conventional method without the transparent mineral oil 11, light emission from the reaction solution diffuses (see FIG. 2B). On the other hand, in the present invention in which the transparent mineral oil 11 exists on the liquid surface of the reaction solution 4 (see FIG. 2A), the transparent mineral oil 11 forms a convex meniscus lens. Here, the microplate 10 is made of resin or glass as described above, and the reaction solution 4 is an aqueous solution. Therefore, the reaction solution 4 wets the inner wall of the well 10a, and the liquid surface of the reaction solution 4 becomes a downward meniscus. The transparent mineral oil 11 on the liquid surface similarly wets the inner wall of the well 10a, and forms a downward meniscus. Therefore, the luminescence generated from the reaction solution 4 is collected by the convex meniscus lens-like transparent mineral oil 11, and the detection sensitivity of the luminescence can be increased as compared with the conventional method. In order to obtain the effect of the convex meniscus lens, the injection amount of the transparent mineral oil 11 is preferably half or less of the volume of the reaction solution 4.
なお、透明な鉱油11があらかじめ注入されたウェル10a内に反応液4を注入し、直後に液体2、3とは異なる試料をさらに注入する形態であってもよい。この形態においても、透明な鉱油の凸メニスカスレンズ効果によって、発光の検出感度を高めることができる。 In addition, the form which inject | pours the reaction liquid 4 in the well 10a in which the transparent mineral oil 11 was previously injected, and inject | pours the sample different from the liquids 2 and 3 immediately after that may be sufficient. Also in this embodiment, the detection sensitivity of light emission can be increased by the convex meniscus lens effect of transparent mineral oil.
反応容器1は、複数のウェル10aが形成されたマイクロプレート10と、ウェル10a内に注入された透明な鉱油11とを含んでなる(図3参照)。なお、ウェル10aは角穴であってもよい。 The reaction vessel 1 includes a microplate 10 in which a plurality of wells 10a are formed, and a transparent mineral oil 11 injected into the wells 10a (see FIG. 3). The well 10a may be a square hole.
ウェル10a内には透明な鉱油11があらかじめ注入されている。したがって、反応容器1を保管する際は、透明な鉱油11がウェル10aから漏れないようにする必要がある。そのような例としては、たとえば、図4(a)〜(c)に示すような形態が挙げられる。図4(a)は、マイクロプレート10と同じ大きさの蓋材12を用いる形態である。蓋材12の材質は、たとえばマイクロプレート10と同じものにすることができる。四隅に突起を設けた蓋材12と、突起に対応した箇所に穴を形成したマイクロプレート10とを用いて蓋材12を固定することができる。また、蓋材12は粘着剤などでマイクロプレート10に密着させて固定することもできる。蓋材12を固定すると、ウェル10aから透明な鉱油11が漏れることを防止できる。なお、蓋材12はマイクロプレート10に固定しなくてもよい。蓋材12を固定しない場合は、反応容器を使用したい時にすぐ使用することができる。 A transparent mineral oil 11 is injected into the well 10a in advance. Therefore, when storing the reaction vessel 1, it is necessary to prevent the transparent mineral oil 11 from leaking from the well 10a. As such an example, the form as shown to FIG.4 (a)-(c) is mentioned, for example. FIG. 4A shows a form in which a lid member 12 having the same size as the microplate 10 is used. The material of the lid member 12 can be the same as that of the microplate 10, for example. The lid member 12 can be fixed using the lid member 12 provided with projections at the four corners and the microplate 10 having holes formed at locations corresponding to the projections. Further, the lid member 12 can be fixed by being brought into close contact with the microplate 10 with an adhesive or the like. When the lid 12 is fixed, the transparent mineral oil 11 can be prevented from leaking from the well 10a. The lid member 12 may not be fixed to the microplate 10. When the lid member 12 is not fixed, it can be used immediately when it is desired to use the reaction vessel.
図4(b)は、マイクロプレート10と同じ大きさのシール材13を用いる形態である。シール材13の材質は、たとえば樹脂フィルムなどを用いることができる。シール材13は、マイクロプレート10に粘着剤で密着させて固定する。蓋材12を固定すると、ウェル10aから透明な鉱油11が漏れることを防止できる。 FIG. 4B shows a form in which the sealing material 13 having the same size as the microplate 10 is used. As the material of the sealing material 13, for example, a resin film can be used. The sealing material 13 is fixed in close contact with the microplate 10 with an adhesive. When the lid 12 is fixed, the transparent mineral oil 11 can be prevented from leaking from the well 10a.
図4(c)は、真空包装材14を用いてマイクロプレート10を密封する形態である。真空包装材14の材質は、たとえば、ガスバリア性を有する樹脂フィルムなどを用いることができる。透明な鉱油11をウェル10a内に注入したマイクロプレート10を真空包装材14で覆い、脱気シーラーなどを用いて密封する。このようにすると、図4(a)や(b)と比較してより確実に、ウェル10aから透明な鉱油11が漏れることを防止できる。なお、上記した蓋材12やシール材13を用いた上で、真空包装材14を用いて密封する形態も好ましい。このようにすると、さらに確実にウェル10aから透明な鉱油11が漏れることを防止できる。 FIG. 4C shows a form in which the microplate 10 is sealed using the vacuum packaging material 14. As the material of the vacuum packaging material 14, for example, a resin film having a gas barrier property can be used. The microplate 10 in which the transparent mineral oil 11 is injected into the well 10a is covered with a vacuum packaging material 14, and sealed using a degassing sealer or the like. If it does in this way, it can prevent that the transparent mineral oil 11 leaks from the well 10a more reliably compared with Fig.4 (a) and (b). In addition, after using the above-mentioned cover material 12 and the sealing material 13, the form sealed with the vacuum packaging material 14 is also preferable. In this way, it is possible to more reliably prevent the transparent mineral oil 11 from leaking from the well 10a.
<第2実施形態>
次に、本発明の第2実施形態について説明する。本発明の測定方法は、複数のウェル10aが形成されたマイクロプレート10と、ウェル10a内に注入された透明な鉱油11とを含んでなる反応容器1のウェル10a内に少なくとも1種の液体5を注入し、液体5に励起光を照射して液体5から蛍光を生じさせ、透明な鉱油11を通過した蛍光を検出し、蛍光の強度を測定することを特徴とするものである(図5参照)。
Second Embodiment
Next, a second embodiment of the present invention will be described. In the measurement method of the present invention, at least one kind of liquid 5 is contained in a well 10a of a reaction vessel 1 including a microplate 10 in which a plurality of wells 10a are formed and a transparent mineral oil 11 injected into the well 10a. The liquid 5 is irradiated with excitation light to generate fluorescence from the liquid 5, the fluorescence that has passed through the transparent mineral oil 11 is detected, and the intensity of the fluorescence is measured (FIG. 5). reference).
第2実施形態は、ウェル内に注入する液体が少なくとも1種であり、液体に励起光を照射して液体から蛍光を生じさせる点において、第1実施形態とは異なる。以下、第1実施形態と異なる点を中心に説明する。 The second embodiment is different from the first embodiment in that at least one type of liquid is injected into the well, and the liquid is irradiated with excitation light to generate fluorescence from the liquid. Hereinafter, a description will be given focusing on differences from the first embodiment.
まず、マイクロプレート10のウェル10a内にあらかじめ透明な鉱油11を注入した反応容器1を準備する(図5(a))。この反応容器1に、たとえばディスペンサ8を用いて液体5を注入する(図5(b)参照)。液体5は、励起光を照射して蛍光を発するものであれば、特に制限されない。蛍光物質としては、たとえば、フルオレセイン、Cy3、Cy5などの蛍光色素、GFP(Green Fluorescent Protein;緑色蛍光タンパク質)をはじめとする蛍光タンパク質、およびこれらが標識された蛍光標識抗体などを用いることができる。なお、液体5とは異なる種類の液体を複数注入してもよい。 First, a reaction vessel 1 is prepared in which a transparent mineral oil 11 is poured into a well 10a of a microplate 10 in advance (FIG. 5A). A liquid 5 is injected into the reaction vessel 1 using, for example, a dispenser 8 (see FIG. 5B). The liquid 5 is not particularly limited as long as it emits fluorescence when irradiated with excitation light. As the fluorescent substance, for example, fluorescent dyes such as fluorescein, Cy3, and Cy5, fluorescent proteins such as GFP (Green Fluorescent Protein), and fluorescently labeled antibodies labeled with these can be used. A plurality of types of liquid different from the liquid 5 may be injected.
次に、励起光を反応容器の上方から液体5に向けて照射する(図5(c)参照)。励起光としては、たとえば紫外線、可視光線、X線、赤外線などを用いることができ、ウェル10a内に注入する蛍光物質によって励起光の種類を変えてもよい。なお、励起光の照射は反応容器の下方から液体5に向けて照射してもよい。 Next, excitation light is irradiated from above the reaction vessel toward the liquid 5 (see FIG. 5C). As the excitation light, for example, ultraviolet rays, visible rays, X-rays, infrared rays, and the like can be used, and the type of excitation light may be changed depending on the fluorescent material injected into the well 10a. The excitation light may be irradiated toward the liquid 5 from below the reaction vessel.
液体5に励起光を照射した後、液体5から蛍光が発生する(図5(d)参照)。その蛍光が透明な鉱油11を通過して、測定器9の検出部9aに届く(図5(e)参照)。検出部9aで蛍光を検出し、蛍光強度を測定する。測定器9としては、マイクロプレートリーダ、マイクロアレイスキャナ、CCDイメージャー、蛍光顕微鏡、共焦点顕微鏡などを用いることができる。 After the liquid 5 is irradiated with excitation light, fluorescence is generated from the liquid 5 (see FIG. 5D). The fluorescence passes through the transparent mineral oil 11 and reaches the detection unit 9a of the measuring instrument 9 (see FIG. 5 (e)). The detection unit 9a detects the fluorescence and measures the fluorescence intensity. As the measuring instrument 9, a microplate reader, a microarray scanner, a CCD imager, a fluorescence microscope, a confocal microscope, or the like can be used.
液体5から生じた蛍光の検出感度を高めることができる理由および透明な鉱油11の好ましい注入量については、第1実施形態と同様である。 The reason why the detection sensitivity of the fluorescence generated from the liquid 5 can be increased and the preferable injection amount of the transparent mineral oil 11 are the same as in the first embodiment.
<第3実施形態>
次に、本発明の第3実施形態について説明する。本発明の測定方法は、複数のウェル10aが形成されたマイクロプレート10のウェル10a内に少なくとも2種の液体2、3を注入して反応させ、反応直後に透明な鉱油11を注入し、反応液4から生じ透明な鉱油11を通過した発光を検出し、発光の強度を測定することを特徴とするものである(図6参照)。
<Third Embodiment>
Next, a third embodiment of the present invention will be described. In the measurement method of the present invention, at least two kinds of liquids 2 and 3 are injected and reacted in the well 10a of the microplate 10 in which a plurality of wells 10a are formed, and transparent mineral oil 11 is injected immediately after the reaction. The luminescence emitted from the liquid 4 and passing through the transparent mineral oil 11 is detected, and the intensity of the luminescence is measured (see FIG. 6).
第3実施形態は、ウェル内にまず液体2、3を注入してから透明な鉱油を注入する点において、第1実施形態とは異なる。以下、第1実施形態と異なる点を中心に説明する。 The third embodiment is different from the first embodiment in that the liquids 2 and 3 are first injected into the well and then the transparent mineral oil is injected. Hereinafter, a description will be given focusing on differences from the first embodiment.
まず、マイクロプレート10のウェル10a内にディスペンサ8などを用いて液体2を注入する(図6(a)参照)。次いで液体3を注入する(図6(b)参照)。液体3を注入すると化学反応が始まり、発光が生じる。反応直後に、ディスペンサ8などを用いて透明な鉱油11を注入する(図6(c)参照)。反応液4から生じた発光は、透明な鉱油11を通過して測定器9の検出部9aに届く(図6(d)参照)。 First, the liquid 2 is injected into the well 10a of the microplate 10 using the dispenser 8 or the like (see FIG. 6A). Next, the liquid 3 is injected (see FIG. 6B). When the liquid 3 is injected, a chemical reaction starts and light emission occurs. Immediately after the reaction, transparent mineral oil 11 is injected using a dispenser 8 or the like (see FIG. 6C). The luminescence generated from the reaction solution 4 passes through the transparent mineral oil 11 and reaches the detection unit 9a of the measuring instrument 9 (see FIG. 6D).
液体2と液体3との化学反応が始まるとすぐに発光が生じるため、透明な鉱油11はできるだけ早く注入することが好ましい。たとえば、液体3を注入するディスペンサと透明な鉱油11を注入するディスペンサとを用意し、液体3を注入するディスペンサが移動すると、透明な鉱油11を注入するディスペンサがそれを追跡する形態とすることができる。なお、始めに液体2を注入し、その後、透明な鉱油11、液体3を順番に注入する形態であってもよい。また、始めに液体2を注入し、透明な鉱油11と液体3を同時に注入する形態であってもよい。
このようにすると、反応直後もしくは反応とほぼ同時に透明な鉱油11を注入することになるため、反応液から生じた発光を凸メニスカスレンズ効果により効率よく集光できる(図2(a)参照)。
Since light emission occurs as soon as the chemical reaction between the liquid 2 and the liquid 3 starts, it is preferable to inject the transparent mineral oil 11 as soon as possible. For example, a dispenser that injects the liquid 3 and a dispenser that injects the transparent mineral oil 11 are prepared, and when the dispenser that injects the liquid 3 moves, the dispenser that injects the transparent mineral oil 11 tracks the dispenser. it can. The liquid 2 may be injected first, and then the transparent mineral oil 11 and the liquid 3 may be sequentially injected. Moreover, the form which inject | pours the liquid 2 first and injects the transparent mineral oil 11 and the liquid 3 simultaneously may be sufficient.
In this way, since the transparent mineral oil 11 is injected immediately after the reaction or almost simultaneously with the reaction, the light emitted from the reaction solution can be efficiently collected by the convex meniscus lens effect (see FIG. 2A).
<第4実施形態>
次に、本発明の第4実施形態について説明する。本発明の測定方法は、複数のウェルが形成されたマイクロプレートのウェル内に、少なくとも1種の液体と透明な鉱油を注入し、液体に励起光を照射して液体から蛍光を生じさせ、透明な鉱油を通過した蛍光を検出し、蛍光の強度を測定することを特徴とするものである(図7参照)。
<Fourth embodiment>
Next, a fourth embodiment of the present invention will be described. In the measurement method of the present invention, at least one liquid and transparent mineral oil are injected into a well of a microplate having a plurality of wells, and the liquid is irradiated with excitation light to generate fluorescence from the liquid. The fluorescent light passing through the mineral oil is detected and the intensity of the fluorescent light is measured (see FIG. 7).
第4実施形態は、ウェル10a内にまず液体5を注入し、その後に透明な鉱油11を注入し、液体5に励起光を照射する点において、第2実施形態とは異なる。以下、第2実施形態と異なる点を中心に説明する。 The fourth embodiment is different from the second embodiment in that the liquid 5 is first injected into the well 10a, the transparent mineral oil 11 is then injected, and the liquid 5 is irradiated with excitation light. Hereinafter, a description will be given focusing on differences from the second embodiment.
ウェル10a内に、たとえばディスペンサ8を用いて液体5を注入する(図7(a)参照)。その後、ディスペンサ8などを用いて透明な鉱油11を注入する(図7(b)参照)。励起光を照射する(図7(c)参照)。励起光を照射すると化学反応が始まり、液体5から蛍光が発生する。生じた蛍光は、透明な鉱油11を通過して測定器9の検出部9aに届く(図7(d)参照)。液体5に励起光を照射して化学反応が始まるとすぐに蛍光が生じ、蛍光が発生している時間はきわめて短い(たとえばナノ秒単位)ため、測定器9は蛍光強度の測定と励起光の照射とが可能なものが好ましい。第4実施形態においても、透明な鉱油の凸メニスカスレンズ効果によって、蛍光の検出感度を高めることができる。 The liquid 5 is injected into the well 10a using, for example, the dispenser 8 (see FIG. 7A). Thereafter, a transparent mineral oil 11 is injected using a dispenser 8 or the like (see FIG. 7B). Excitation light is irradiated (see FIG. 7C). When the excitation light is irradiated, a chemical reaction starts and fluorescence is generated from the liquid 5. The generated fluorescence passes through the transparent mineral oil 11 and reaches the detection unit 9a of the measuring instrument 9 (see FIG. 7D). As soon as the liquid 5 is irradiated with excitation light and a chemical reaction starts, fluorescence is generated, and the time during which the fluorescence is generated is extremely short (for example, in nanosecond units). What can be irradiated is preferable. Also in the fourth embodiment, the fluorescence detection sensitivity can be increased by the convex meniscus lens effect of transparent mineral oil.
上記では液体5を先に注入し、その後に透明な鉱油11を注入しているが、液体5と透明な鉱油11は同時に注入してもよい。透明な鉱油11は液体5よりも比重が小さいため、同時に注入しても、所定の時間が経過すれば透明な鉱油11と液体5は二層に分かれ、透明な鉱油11が液体5に対して上の層となる。したがって、反応液から生じた蛍光を凸メニスカスレンズ効果により効率よく集光できる(図2(a)参照)。 In the above, the liquid 5 is injected first and then the transparent mineral oil 11 is injected. However, the liquid 5 and the transparent mineral oil 11 may be injected simultaneously. Since the transparent mineral oil 11 has a specific gravity smaller than that of the liquid 5, the transparent mineral oil 11 and the liquid 5 are separated into two layers when a predetermined time elapses even when injected simultaneously. It becomes the upper layer. Therefore, the fluorescence generated from the reaction solution can be efficiently collected by the convex meniscus lens effect (see FIG. 2A).
(実施例1)
マイクロプレートは白色であり、96個のウェルを有するものを用いた。ウェルの各寸法は、直径6.35mm、深さ10.67mm、容積338μLである。ウェルの底面はフラットのものを用いた。このマイクロプレートのウェル内にあらかじめ透明な鉱油を50μL注入した反応容器を準備した。透明な鉱油としてミネラルオイルを用いた。これは無色透明であり、比重0.85、25℃における粘度が22.5mPa・s、DNase(デオキシリボヌクレアーゼ)、RNase(リボヌクレアーゼ)、Protease(プロテアーゼ)は含まれないことが特徴である。
Example 1
The microplate was white and had 96 wells. Each dimension of the well has a diameter of 6.35 mm, a depth of 10.67 mm, and a volume of 338 μL. The bottom of the well was a flat one. A reaction vessel in which 50 μL of a transparent mineral oil was previously injected into the well of the microplate was prepared. Mineral oil was used as a transparent mineral oil. This is colorless and transparent, and has a specific gravity of 0.85, a viscosity at 25 ° C. of 22.5 mPa · s, DNase (deoxyribonuclease), RNase (ribonuclease), and protease (protease) are not included.
次に、反応容器に次の2種の試料を注入して化学反応させた。1μMのATP溶液(rATP10mMをTrisバッファーを加えて濃度調整したもの)とReagent溶液(Kinase‐Glo(登録商標)SubstrateとKinase‐Glo(登録商標)Bufferの混合液)を1ウェルあたり50μLずつ使用して酵素基質反応を行った。なお、反応時間は16分とした。試料の注入にはピペットとピペットチップを用いた。 Next, the following two types of samples were injected into the reaction vessel to cause a chemical reaction. Use 1 μM ATP solution (rATP 10 mM with concentration adjusted by adding Tris buffer) and Reagent solution (mixture of Kinase-Glo (registered trademark) Substrate and Kinase-Glo (registered trademark) Buffer) at 50 μL per well. Then, an enzyme substrate reaction was performed. The reaction time was 16 minutes. Pipettes and pipette tips were used for sample injection.
反応液から生じた発光を測定器で検出して発光強度を測定した。使用した測定器はマルチモードマイクロプレートリーダー(DSファーマバイオメディカル社製 パワースキャンHT、吸光・蛍光・化学発光測定に対応)である。3回測定を行い、算出した平均値382631RLUを測定結果とした。 Luminescence generated from the reaction solution was detected with a measuring instrument to measure luminescence intensity. The measuring instrument used was a multi-mode microplate reader (Power Scan HT, manufactured by DS Pharma Biomedical Co., Ltd., corresponding to absorbance / fluorescence / chemiluminescence measurement). The measurement was performed three times, and the calculated average value 382631 RLU was taken as the measurement result.
(実施例2)
上記の試料をウェル内に注入して化学反応させ、反応直後に透明な鉱油を50μL注入した。それ以外は実施例1と同様にして行った。平均値は392935RLUであった。
(Example 2)
The sample was injected into the well for chemical reaction, and 50 μL of transparent mineral oil was injected immediately after the reaction. Other than that was carried out in the same manner as in Example 1. The average value was 392935 RLU.
(比較例1)
透明な鉱油を注入せず、上記の試料をウェル内に注入して化学反応させた。それ以外は、実施例1と同様にして行った。平均値は330859RLUであった。
(Comparative Example 1)
Without injecting clear mineral oil, the above sample was injected into the well for chemical reaction. Otherwise, the same procedure as in Example 1 was performed. The average value was 330859 RLU.
実施例1および2と比較例1の結果を、表1と表2に示す。表2に示すグラフ中の縦軸は発光量(RLU)である。 The results of Examples 1 and 2 and Comparative Example 1 are shown in Tables 1 and 2. The vertical axis in the graph shown in Table 2 represents the light emission amount (RLU).
表1および表2より、実施例1と2は比較例1よりも発光量が大きいものであった。 From Table 1 and Table 2, Examples 1 and 2 had larger light emission amounts than Comparative Example 1.
1 :反応容器
10 :マイクロプレート
10a :ウェル
11 :透明な鉱油
12 :蓋材
13 :シール材
14 :真空包装材
2、3、5:液体
4 :反応液
8 :ディスペンサ
9 :測定器
9a :検出部
DESCRIPTION OF SYMBOLS 1: Reaction container 10: Microplate 10a: Well 11: Transparent mineral oil 12: Cover material 13: Sealing material 14: Vacuum packaging material 2, 3, 5: Liquid 4: Reaction liquid 8: Dispenser 9: Measuring instrument 9a: Detection Part
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016113269A JP6757527B2 (en) | 2016-06-07 | 2016-06-07 | Measurement method and reaction vessel used for it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016113269A JP6757527B2 (en) | 2016-06-07 | 2016-06-07 | Measurement method and reaction vessel used for it |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017219394A true JP2017219394A (en) | 2017-12-14 |
JP6757527B2 JP6757527B2 (en) | 2020-09-23 |
Family
ID=60655975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016113269A Active JP6757527B2 (en) | 2016-06-07 | 2016-06-07 | Measurement method and reaction vessel used for it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6757527B2 (en) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01105849U (en) * | 1988-01-07 | 1989-07-17 | ||
JPH05203562A (en) * | 1992-01-28 | 1993-08-10 | Hitachi Chem Co Ltd | Photoemission reactor and photometry using it |
US5545528A (en) * | 1993-04-15 | 1996-08-13 | Hitachi Chemical Research Center | Rapid screening method of gene amplification products in polypropylene plates |
JPH095335A (en) * | 1995-06-22 | 1997-01-10 | Sanyo Electric Co Ltd | Dispensing method |
JPH1090186A (en) * | 1996-09-03 | 1998-04-10 | Nippon Dpc Corp | Method and kit for measurement of chemiluminescence |
JPH10318929A (en) * | 1997-05-19 | 1998-12-04 | Toa Medical Electronics Co Ltd | Method for measuring emission reaction |
JPH1123469A (en) * | 1997-06-30 | 1999-01-29 | Suzuki Motor Corp | Fluorescence immunoassay system |
JP2006349557A (en) * | 2005-06-17 | 2006-12-28 | Toppan Printing Co Ltd | Reaction container and substance detecting method using it |
US20070166204A1 (en) * | 2005-10-05 | 2007-07-19 | Dongqing Li | Disposable reactor module and detection system |
JP2010043882A (en) * | 2008-08-11 | 2010-02-25 | Panasonic Corp | Luminescence measurement method |
JP2011017964A (en) * | 2009-07-10 | 2011-01-27 | Nikon Corp | Culture observation device |
WO2011162285A1 (en) * | 2010-06-22 | 2011-12-29 | ユニバーサル・バイオ・リサーチ株式会社 | Composition for preventing evaporation of reaction solution during nucleic acid amplification reaction |
-
2016
- 2016-06-07 JP JP2016113269A patent/JP6757527B2/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01105849U (en) * | 1988-01-07 | 1989-07-17 | ||
JPH05203562A (en) * | 1992-01-28 | 1993-08-10 | Hitachi Chem Co Ltd | Photoemission reactor and photometry using it |
US5545528A (en) * | 1993-04-15 | 1996-08-13 | Hitachi Chemical Research Center | Rapid screening method of gene amplification products in polypropylene plates |
JPH095335A (en) * | 1995-06-22 | 1997-01-10 | Sanyo Electric Co Ltd | Dispensing method |
JPH1090186A (en) * | 1996-09-03 | 1998-04-10 | Nippon Dpc Corp | Method and kit for measurement of chemiluminescence |
JPH10318929A (en) * | 1997-05-19 | 1998-12-04 | Toa Medical Electronics Co Ltd | Method for measuring emission reaction |
JPH1123469A (en) * | 1997-06-30 | 1999-01-29 | Suzuki Motor Corp | Fluorescence immunoassay system |
JP2006349557A (en) * | 2005-06-17 | 2006-12-28 | Toppan Printing Co Ltd | Reaction container and substance detecting method using it |
US20070166204A1 (en) * | 2005-10-05 | 2007-07-19 | Dongqing Li | Disposable reactor module and detection system |
JP2010043882A (en) * | 2008-08-11 | 2010-02-25 | Panasonic Corp | Luminescence measurement method |
JP2011017964A (en) * | 2009-07-10 | 2011-01-27 | Nikon Corp | Culture observation device |
WO2011162285A1 (en) * | 2010-06-22 | 2011-12-29 | ユニバーサル・バイオ・リサーチ株式会社 | Composition for preventing evaporation of reaction solution during nucleic acid amplification reaction |
US20130084606A1 (en) * | 2010-06-22 | 2013-04-04 | Universal Bio Research Co., Ltd. | Composition for Preventing Evaporation of Reaction Solution During Nucleic Acid Amplification Reaction |
Also Published As
Publication number | Publication date |
---|---|
JP6757527B2 (en) | 2020-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7392749B2 (en) | analysis method | |
CN110564604B (en) | Droplet formation method, biomolecule analysis method, and biomolecule analysis kit | |
JP7009993B2 (en) | Biomaterial detection method and biomaterial introduction method | |
JP4992524B2 (en) | Reaction vessel plate and reaction processing method | |
CN107109320B (en) | Nucleic acid introduction method, nucleic acid detection method, biological component analysis method, reagent kit, and array device for quantitative determination of biological component | |
JP5889639B2 (en) | Disc type analysis chip | |
CN103502795B (en) | The fast quantification of the biomolecule in the nano-fluid biology sensor of selectively functionalized and method thereof | |
CN102782115A (en) | Microfluidic assay platforms | |
CN105917240B (en) | Microchamber plate | |
WO2016170345A1 (en) | Mifrofluidic apparatus and method for producing an emulsion, use of the apparatus, method for making a microfluidic apparatus and a surfactant | |
JPWO2006062149A1 (en) | Biological sample analysis plate | |
JP6757527B2 (en) | Measurement method and reaction vessel used for it | |
JP2009258013A (en) | Microchip | |
JP2006349559A (en) | Reaction container and substance detecting method using it | |
JP2014219424A (en) | Rotary analysis chip and measurement system using the same | |
JP2010249520A (en) | Container for liquid sample analysis, and method of analyzing liquid sample | |
Wang et al. | An open-pattern droplet-in-oil planar array for single cell analysis based on sequential inkjet printing technology | |
US20090291025A1 (en) | Microchip And Method Of Using The Same | |
JP4483608B2 (en) | Fluorescence analyzer | |
WO2018021103A1 (en) | Pipette tip, liquid delivery method and liquid delivery system | |
US10618051B2 (en) | Method and system for tempering capillaries without sealing them | |
WO2019131592A1 (en) | Method for suppressing occurrence of false-negative determination in detection of target molecule, and detection device | |
JP2006308447A (en) | Plate for biological sample analysis and biological sample analysis method | |
JP6958547B2 (en) | Reaction vessel and biochemical analysis method | |
JP2006345807A (en) | Reaction chip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190322 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200325 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200428 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200604 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200804 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200819 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6757527 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |