JP2017219285A - Combustion method using biomass fuel and water-oil and power generating method using combustion furnace therefor - Google Patents

Combustion method using biomass fuel and water-oil and power generating method using combustion furnace therefor Download PDF

Info

Publication number
JP2017219285A
JP2017219285A JP2016115934A JP2016115934A JP2017219285A JP 2017219285 A JP2017219285 A JP 2017219285A JP 2016115934 A JP2016115934 A JP 2016115934A JP 2016115934 A JP2016115934 A JP 2016115934A JP 2017219285 A JP2017219285 A JP 2017219285A
Authority
JP
Japan
Prior art keywords
water
oil
combustion furnace
biomass fuel
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016115934A
Other languages
Japanese (ja)
Inventor
昌泰 濱津
Masayasu Hamatsu
昌泰 濱津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orbit Energy R&d Co Ltd
Orbit-Energy R&d Co Ltd
Original Assignee
Orbit Energy R&d Co Ltd
Orbit-Energy R&d Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orbit Energy R&d Co Ltd, Orbit-Energy R&d Co Ltd filed Critical Orbit Energy R&d Co Ltd
Priority to JP2016115934A priority Critical patent/JP2017219285A/en
Publication of JP2017219285A publication Critical patent/JP2017219285A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Abstract

PROBLEM TO BE SOLVED: To provide a power generating method using a combustion mechanism for biomass fuel and water-oil by adding water fine particles to oil fine particles to improve combustion efficiency.SOLUTION: There are provided an oil nozzle 2A for mixing air and oil together to atomize oil particles into a combustion furnace; and an igniter 18 for igniting the atomized oil particles. Also, there are provided a biomass fuel accumulation tank 4 for accumulating biomass fuel and drying or carbonizing the same and a hot water tank 51 for use in warming water for a steam turbine near a combustion furnace. Upon reaching of a temperature in the combustion furnace to 600°C or more, the dried or carbonized biomass fuel is fed into the combustion furnace by a biomass fuel feeding device 45 while keeping an inside part of the furnace at 600°C to 1005°C by adding water particles from a water nozzle 2B to ignite the oil, water in the warm water tank for the steam turbine is supplied to a piping 52 acting as a steam converter in the combustion furnace to be vaporized into steam, and the steam is supplied to a steam turbine 6 to operate a power generator 64.SELECTED DRAWING: Figure 1

Description

本発明は、油の微粒子に水の微粒子を付加して、燃焼効率を向上させるバイオマス燃料と水油を用いた燃焼方法、及び、その燃焼炉を用いた発電方法に関する。   The present invention relates to a combustion method using biomass fuel and water oil that adds water fine particles to oil fine particles to improve combustion efficiency, and a power generation method using the combustion furnace.

従来、廃油や重質油等の燃焼に関しては、大気汚染物質(NOX:窒素酸化物、SO2:硫黄酸化物、CO:一酸化炭素、CO2:二酸化炭素等)が発生することから、大きな環境問題・社会問題となっている。これらの問題の軽減やコスト削減などのために、特許文献1に開示されているように、原料に水と油とを用い、これら原料水と原料油とを所定の割合で混合した水油混合燃料や、これを燃焼させる水油燃焼方法が提案されている。
しかしながら、油によっては、水の量に対して油の量が80%を超えると、窒素酸化物や硫黄酸化物の量が増大して、やはり大気汚染物質の発生が問題となる一方、大気汚染物質の発生を削減し、また低コストとするために、油の量を40%〜30%以下にすると火炎状態が不安定となることから、火炎状態の安定化のためには、油の量を低くし過ぎることは避け、油と水との混合比を7:3〜4:6とすることが求められる。
Conventionally, with respect to the burning of such waste oil and heavy oil, air pollutants (NO X: Nitrogen oxides, SO 2: sulfur oxides, CO: carbon monoxide, CO 2: carbon dioxide) from that occur, It has become a major environmental and social problem. In order to alleviate these problems and reduce costs, as disclosed in Patent Document 1, water and oil are used as raw materials, and these raw water and raw oil are mixed at a predetermined ratio. Fuels and water-oil combustion methods for burning them have been proposed.
However, depending on the oil, if the amount of oil exceeds 80% of the amount of water, the amount of nitrogen oxides and sulfur oxides increases, which again causes the generation of air pollutants. In order to reduce the generation of substances and reduce the cost, if the amount of oil is reduced to 40% to 30% or less, the flame state becomes unstable. For stabilization of the flame state, the amount of oil It is required that the mixing ratio of oil and water is 7: 3 to 4: 6.

また、確かに水添加燃料であればこれらの汚染物質の発生はある程度抑制されるが、水油混合燃料を使用するには、混合燃料の水・油混合比だけでなく、混合燃料の中に含まれる油の細分化状態、混合燃料の温度、混合燃料の噴射後の拡散等といった多くの要素が良好な状態を保たねばならない。
この水・油の混合状態を保つために、特許文献2に開示されているように、界面活性剤等の乳化剤を添加することにより水・油の混合燃料を乳化して使用する例が一般的であるが、この乳化剤を添加して混合燃料を得るには、乳化剤を定量供給しながら撹拌混合しなければならず、その製造のための設備が必要となり、設備費や乳化剤の原料費が燃料単価へと反映され、その分燃料費が高くなるといった問題があった。
また、乳化剤は時間が経過すると、水と油の微粒子での混合状態が変質し、水と油の微粒子が分離する等して、燃焼効率が低下するといった問題があった。
In addition, the generation of these pollutants is suppressed to some extent if it is a water-added fuel, but in order to use a water-oil mixed fuel, not only the water / oil mixture ratio of the mixed fuel but also the mixed fuel Many factors such as the subdivided state of the contained oil, the temperature of the mixed fuel, the diffusion after the injection of the mixed fuel, etc. must be kept in good condition.
In order to maintain this mixed state of water and oil, an example of emulsifying and using a mixed fuel of water and oil by adding an emulsifier such as a surfactant is common as disclosed in Patent Document 2. However, in order to obtain a mixed fuel by adding this emulsifier, it is necessary to stir and mix while supplying a constant amount of the emulsifier, which requires equipment for its production, and the equipment cost and raw material cost of the emulsifier are fuel. There was a problem that the fuel cost was increased correspondingly to the unit price.
Further, the emulsifier has a problem that the mixing state of water and oil fine particles changes with time and the combustion efficiency is lowered due to separation of water and oil fine particles.

一方、家畜糞尿等のバイオマスを燃料として扱うには、家畜糞尿は水分を多量に含んでいるため、水分含有率が高く、そのまま着火しようとしても燃えず、着火の容易性のために多くの技術が報告されている。
例えば、家畜糞尿に助材を投入し、脱水して固形化して燃料や肥料にする方法(特許文献3)が提案されているが、助材としてパルプ滓などを使用したときに乾燥後の生成物の含有水分量が高くなり、固形までに長時間を要するという問題点があり、造粒後に乾燥する手段(特許文献4)が提案されているが工程管理の煩わしさがあり、微細粉と家畜糞尿を機械撹拌して摩擦熱で水分を蒸発させて乾燥する方法(特許文献5)は大容量の撹拌モーターを数百〜千数百rpmの高速運転をしているので、安全性の確保やエネルギー消費などに問題があった。さらに、家畜糞尿と木質系の炭化物もしくは半炭化物を所定の重量比で混合し、これを乾燥させ燃焼させる手段(特許文献6)が提案され、燃焼工程において発生した熱を混合物の乾燥に利用しているが、燃焼炉を用いているので、多量の化石燃料の必要があるといった問題点があった。
さらに、木質系材料(オガ屑)と家畜糞尿を混合し乾燥することによって、家畜糞尿の有機物から水分を25%程度まで乾燥させ、石油代替燃料とする提案(特許文献7)をしたが、この技術では、水分含有率が25%程度でも、未だ安定した自燃焼性が得られず、ボイラーの補助バーナーで化石燃料を使用しなければ燃焼の継続ができないといった問題点があった。
On the other hand, in order to handle biomass such as livestock manure as fuel, livestock manure contains a large amount of water, so the water content is high and it does not burn even if it is ignited as it is. Has been reported.
For example, a method has been proposed (Patent Document 3) in which an auxiliary material is introduced into livestock manure and dehydrated to solidify it into fuel or fertilizer (Patent Document 3). There is a problem that the moisture content of the product becomes high and it takes a long time to solidify, and a means for drying after granulation (Patent Document 4) has been proposed, but there is troublesome process control, The method of mechanically stirring livestock manure and evaporating moisture with frictional heat (Patent Document 5) operates a large capacity stirring motor at a high speed of several hundred to several hundreds of rpm, ensuring safety. There was a problem with energy consumption. Furthermore, a means for mixing livestock manure and wood-based carbide or semi-carbide at a predetermined weight ratio and drying and combusting the mixture is proposed (Patent Document 6), and heat generated in the combustion process is used for drying the mixture. However, since a combustion furnace is used, there is a problem that a large amount of fossil fuel is necessary.
Furthermore, by mixing and drying wood-based material (sawdust) and livestock manure, the water from the livestock manure was dried to about 25%, and proposed as an alternative fuel for oil (Patent Document 7). In the technology, even if the moisture content is about 25%, stable self-combustibility is not yet obtained, and there is a problem that combustion cannot be continued unless fossil fuel is used with an auxiliary burner of the boiler.

近時、バイオマス燃料は特に石油の値段の上昇があると見直され、バイオマス専用の蒸気ボイラー型発電機の開発が求められているが、例えば、蒸気式ボイラー発電機としては、大電力会社の設置運営する大型の火力発電機が主流であった。最近では、主に生ゴミを集めペレット化して燃焼する発電機も開発運営され、同時にボイラーや温水給湯の利用も併用された施設が建設されつつある。
しかし、前述の生ゴミのボイラーや温水給湯と発電機も、基本は発電効率をあげるため、更には設備費のコスト低減を計る必要から、(1)1基設置機の大型化で大資本金が必要であり、(2) 大型化ゆえ、設置場所選定の困難さがあり、(3) 広域より生ゴミを集める必要性がある。最近では広域市町村より、消費地から発電所までが遠距離になるてしまうことが問題視され、又、地区での生ゴミの分別により生ゴミ量の減少もあり、発電所への生ゴミの持込み可能量が大幅に少なくなったといった問題があり、小型で手軽に設置できる発電装置の開発が求められている。
Recently, it has been reviewed that the price of oil is particularly high for biomass fuel, and there is a need to develop a steam boiler generator dedicated to biomass. For example, as a steam boiler generator, a large power company is installed. Large thermal power generators operated were mainstream. Recently, a generator that mainly collects raw garbage and pellets and burns it has been developed and operated, and at the same time, a facility is being built that also uses a boiler and hot water hot water.
However, the above-mentioned garbage boilers, hot water hot water supply and generators are basically required to increase power generation efficiency, and further to reduce the cost of equipment. (2) Due to the increase in size, it is difficult to select the installation location. (3) There is a need to collect garbage from a wide area. Recently, it has been regarded as a problem from the regional municipalities that the distance from the consumption area to the power plant, and there is also a reduction in the amount of garbage due to the separation of garbage in the district. There is a problem that the amount that can be brought in is greatly reduced, and there is a demand for the development of a power generator that is small and easy to install.

特開2006−57921号公報JP 2006-57921 A 特開2011−21803号公報JP 2011-21803 A 特開2006−273983号公報JP 2006-273993 A 特許第3981021号公報Japanese Patent No. 3981021 特開2005−246359号公報JP 2005-246359 A 特開2007−40684号公報JP 2007-40684 A 特許第4149487号公報Japanese Patent No. 4149487

本発明は、バイオマス燃料と水油を用いた燃焼方法、及び、その燃焼炉を用いた発電方法において、燃焼効率が向上して省エネとなるとともに、水油混合燃料を使用する際の原料となる水と油を予め混濁して乳化する必要がなく、家畜糞尿等のバイオマス燃料を使用することによって農業廃棄物を有効利用でき、原料に複雑な加工がなく、供給操作が簡単で、コストも削減され、何よりも空気汚染物質の発生が少ない、小型でかつ効率の良い燃焼方法およびそれによる発電方法を提供しようとするものである。   In the combustion method using biomass fuel and water oil, and the power generation method using the combustion furnace, the present invention improves the combustion efficiency and saves energy, and becomes a raw material when using the water-oil mixed fuel. Water and oil do not need to be turbid and emulsified in advance, and by using biomass fuel such as livestock manure, agricultural waste can be used effectively, there is no complicated processing of raw materials, supply operations are simple, and costs are reduced Therefore, it is an object of the present invention to provide a compact and efficient combustion method that generates less air pollutants and a power generation method using the same.

上記課題を解決するために、請求項1の発明は、(a)燃焼炉内に空気と油とを混合して油ノズルから燃焼炉内へ油粒子を噴霧させる工程と、(b)噴霧される前記油粒子を着火装置により着火させる工程と、(c)燃焼炉内が600℃以上に上昇した後に、空気と水とを混合して水ノズルから燃焼炉内へ水粒子を噴霧して前記油ノズルから噴霧される油粒子と共に燃焼させて900℃以上に上昇させる工程と、(d)燃焼炉内を900℃以上に維持しつつバイオマス燃料を燃焼させる工程とを順次実行することを特徴とするバイオマス燃料と水と油を用いた燃焼方法である。   In order to solve the above-mentioned problems, the invention of claim 1 includes: (a) a step of mixing air and oil in a combustion furnace and spraying oil particles from the oil nozzle into the combustion furnace; and (b) spraying. Igniting the oil particles with an ignition device; and (c) after the temperature in the combustion furnace rises to 600 ° C. or higher, air and water are mixed and water particles are sprayed from the water nozzle into the combustion furnace. It is characterized by sequentially performing a step of burning together with oil particles sprayed from an oil nozzle and raising the temperature to 900 ° C. or higher, and a step (d) burning biomass fuel while maintaining the inside of the combustion furnace at 900 ° C. or higher. It is a combustion method using biomass fuel, water and oil.

請求項2の発明は、(a)燃焼炉内に空気と油とを混合して油ノズルから燃焼炉内へ油粒子を噴霧させる工程と、(b)噴霧される前記油粒子を着火装置により着火させる工程と、(c)燃焼炉内が600℃以上に上昇した後に、空気と水とを混合して水ノズルから燃焼炉内へ水粒子を噴霧して前記油ノズルから噴霧される油粒子と共に燃焼させて900℃以上に上昇させる工程と、(d)燃焼炉内を900℃以上に維持しつつバイオマス燃料を燃焼させる工程と、(e)前記燃焼炉に近接して、バイオマス燃料を蓄積し乾燥又は炭化するバイオマス燃料蓄積槽と蒸気タービン用の水を温める温水水槽とを設け、燃焼炉内が600℃以上に上昇してから、水ノズルから水の粒子を付加して燃焼させて燃焼炉内を600℃から1005℃に維持する工程と、(f)前記バイオマス燃料蓄積槽には上記乾燥又は炭化したバイオマス燃料を燃焼炉内に投入する工程と、バイオマス燃料投入装置を設け、(g)前記蒸気タービン用の温水水槽の水は、燃焼炉内の水蒸気変換器である配管に供給して配管内で加熱より水蒸気に変えて排出する工程と、 (h)該水蒸気を蒸気タービンに供給して稼働して発電機を稼働する工程とを順次実行することを特徴とするバイオマス燃料と水油の燃焼炉を用いた発電方法である。   The invention of claim 2 includes: (a) mixing air and oil in the combustion furnace and spraying oil particles from the oil nozzle into the combustion furnace; and (b) igniting the sprayed oil particles by an ignition device. And (c) oil particles sprayed from the oil nozzle by mixing air and water and spraying water particles from the water nozzle into the combustion furnace after the temperature in the combustion furnace rises to 600 ° C. or higher. And (d) a step of burning biomass fuel while maintaining the inside of the combustion furnace at 900 ° C. or higher, and (e) accumulating biomass fuel in the vicinity of the combustion furnace. A biomass fuel storage tank to dry or carbonize and a warm water tank to warm water for steam turbines are provided. After the temperature in the combustion furnace rises to 600 ° C or higher, water particles are added from the water nozzle and burned for combustion. Maintain inside the furnace from 600 ° C to 1005 ° C And (f) providing the biomass fuel storage tank with the dried or carbonized biomass fuel into a combustion furnace, and providing a biomass fuel input device, and (g) water in the hot water tank for the steam turbine. Supplying a steam which is a steam converter in the combustion furnace and discharging it into steam by heating in the pipe, and (h) supplying the steam to the steam turbine and operating it to operate the generator The power generation method using a biomass fuel and water oil combustion furnace characterized by sequentially executing the steps.

請求項3の発明は、請求項2に記載のバイオマス燃料と水油の燃焼炉を用いた発電方法において、前記熱交換器である配管は、水槽近くの配管の内径は大きくし、徐々に内径を細くして、吹きつけノズルから蒸気を蒸気タービンのブレードに吹き付けて蒸気タービンを回転させることを特徴とする。
請求項4の発明は、請求項2に記載のバイオマス燃料と水油の燃焼炉を用いた発電方法において、前記水粒子の直径は5μm以下(微粒子)であることを特徴とする。 請求項5の発明は、請求項2に記載のバイオマス燃料と水油の燃焼炉を用いた発電方法において、前記油粒子の直径は5μm以下(微粒子)であることを特徴とする。 請求項6の発明は、請求項2に記載のバイオマス燃料と水油の燃焼炉を用いた発電方法において、前記蒸気タービンの排出側には水蒸気タンクを設け、該水蒸気タンクによって水蒸気と温水を分離して、該水蒸気は前記水蒸気変換器である配管の適所に供給し、該温水は前記温水水槽に供給することを特徴とする。
A third aspect of the present invention is the power generation method using the biomass fuel and water oil combustion furnace according to the second aspect, wherein the pipe as the heat exchanger has a larger inner diameter of the pipe near the water tank and gradually increases the inner diameter. The steam turbine is rotated by spraying steam from a spray nozzle onto a blade of the steam turbine.
According to a fourth aspect of the present invention, in the power generation method using the biomass fuel and water oil combustion furnace according to the second aspect, the diameter of the water particles is 5 μm or less (fine particles). According to a fifth aspect of the present invention, in the power generation method using the biomass fuel and water oil combustion furnace according to the second aspect, the diameter of the oil particles is 5 μm or less (fine particles). The invention according to claim 6 is the power generation method using the biomass fuel and water oil combustion furnace according to claim 2, wherein a steam tank is provided on the discharge side of the steam turbine, and the steam and hot water are separated by the steam tank. Then, the water vapor is supplied to an appropriate place of a pipe which is the water vapor converter, and the hot water is supplied to the hot water tank.

請求項1のバイオマス燃料と水油を用いた燃焼方法の発明は、燃焼効率が向上して省エネとなるとともに、原料となる水と油を予め混濁して乳化する必要がなく、家畜糞尿等のバイオマス燃料を使用することによって農業廃棄物を有効利用でき、原料に複雑な加工がなく、供給操作が簡単で、コストも削減され、何よりも空気汚染物質の発生が少ない、効率的な燃焼方法となる。
請求項2〜5のバイオマス燃料と水油を用いた燃焼炉による発電方法は、請求項1の効果に加えて、本装置が小型にできる構成なので、省スペースで効率的な発電方法となる。
The invention of the combustion method using biomass fuel and water oil according to claim 1 improves the combustion efficiency and saves energy, and it is not necessary to turbidize and emulsify the raw material water and oil in advance. By using biomass fuel, agricultural waste can be used effectively, there is no complicated processing of raw materials, supply operation is simple, cost is reduced, and air pollutants are generated less than anything else. Become.
The power generation method using a combustion furnace using biomass fuel and water oil according to claims 2 to 5 is a space-saving and efficient power generation method because the present apparatus can be downsized in addition to the effect of claim 1.

本発明のバイオマス燃料と水と油の燃焼炉を用いた発電装置の主要部の装置概略図、The apparatus schematic of the principal part of the power generator using the biomass fuel of this invention, the combustion furnace of water and oil, 本発明にバイオマス燃料と水と油の燃焼炉を用いた発電装置のシステムのブロック図、A block diagram of a system of a power generation device using a biomass fuel, water and oil combustion furnace in the present invention, 図1の燃料噴射ノズルの拡大断面図、FIG. 1 is an enlarged sectional view of the fuel injection nozzle of FIG. 図3の正面図、3 is a front view of FIG. 灯油だけの場合と灯油に水を加えた場合の燃焼炉内の温度を時間経過とともに計測したグラフの図である。It is the figure of the graph which measured the temperature in a combustion furnace with time when the kerosene only and water were added to kerosene.

次に、図面を参照して、本発明の実施の形態について詳細に説明する。
図1は、本発明の一実施例に係るバイオマス燃料と水油の燃焼炉を用いた発電装置の主要部の概略図、図2は本実施例の全体のブロック図である。
図1において、水・油・バイオマス用の燃焼炉1の全体は断熱枠11で作られ、この断熱枠11の底部12の一部121は解放されるとともにファン13を設け、断熱枠11の上部14の一部141は断熱部材ではなく熱伝導性の良い材料にして、燃焼炉1の燃焼炉熱によって加熱されるバイオマス燃料蓄積槽4と温水水槽5が設けられている。
燃焼炉1の全体の大きさは、長さ5m、幅2m、高さ3mで、最大1KWで平均600Wを出力する発電装置の蒸気発生燃焼炉としては小型である。
燃焼炉1内部の前面部15には、空気と油とを混合して噴霧する燃料ノズル2である油ノズル2Aと、空気と水とを混合する水ノズル2Bが設けられ、油ノズル2Aと水ノズル2Bには、灯油を原料油Oとして貯留する油タンク2A1と、水道水(真水)Wを原料水として貯留する水タンク2B1とが、各タンク2A1,2B1から各配管2A2,2B1を経由して原料油Aと原料水Bとが供給される。なお、水道水(真水)Wは、一般の水をフィルターを通し、触媒により水を解質し、一般水の粒子を微細化しH2Oの分子をHとOに分離するまでにはしないが、結束を弱めた活性水化した水を使用すれば、より熱効率は向上する。
Next, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic view of a main part of a power generation apparatus using a biomass fuel and water oil combustion furnace according to an embodiment of the present invention, and FIG. 2 is a block diagram of the entire embodiment.
In FIG. 1, the entire combustion furnace 1 for water, oil, and biomass is made of a heat insulating frame 11. A part 121 of the bottom 12 of the heat insulating frame 11 is released and a fan 13 is provided. A portion 141 of 14 is not a heat insulating member but a material having good thermal conductivity, and a biomass fuel accumulation tank 4 and a hot water tank 5 heated by combustion furnace heat of the combustion furnace 1 are provided.
The overall size of the combustion furnace 1 is 5 m in length, 2 m in width, and 3 m in height, and is small as a steam generating combustion furnace of a power generator that outputs an average of 600 W at a maximum of 1 KW.
An oil nozzle 2A, which is a fuel nozzle 2 that mixes and sprays air and oil, and a water nozzle 2B that mixes air and water are provided on the front surface portion 15 inside the combustion furnace 1, and the oil nozzle 2A and water In the nozzle 2B, an oil tank 2A1 for storing kerosene as the raw material oil O and a water tank 2B1 for storing tap water (fresh water) W as the raw water pass from the tanks 2A1 and 2B1 via the pipes 2A2 and 2B1. Then, the raw material oil A and the raw material water B are supplied. Note that tap water (fresh water) W does not pass normal water through a filter, denatures water with a catalyst, refines general water particles, and separates H 2 O molecules into H and O. If activated water with weak binding is used, the thermal efficiency is further improved.

油ノズル2Aと水ノズル2Bの詳細は、後述する図3,4で説明するが、図1及び図2に示すように、これらの油ノズル2Aと水ノズル2Bには、油タンク2A1と水タンク2B1の各燃料が各配管2A2,2B2をから、コンプレサー3とバルブ31A、31Bにより所定の圧力のエアー(空気)Aとともに供給される。
本実施例では、前記コンプレッサー3より0.3Mpa〜0.5Mpaの圧力でエアーを油ノズル2Aと水ノズル2Bに送給している。なお、本実施例では、コンプレッサー3を用いたがギアポンプを用いてもよい。
Details of the oil nozzle 2A and the water nozzle 2B will be described later with reference to FIGS. 3 and 4. As shown in FIGS. 1 and 2, the oil nozzle 2A and the water nozzle 2B include an oil tank 2A1 and a water tank. Each fuel of 2B1 is supplied together with air (air) A of a predetermined pressure from the pipes 2A2 and 2B2 through the compressor 3 and valves 31A and 31B.
In the present embodiment, air is supplied from the compressor 3 to the oil nozzle 2A and the water nozzle 2B at a pressure of 0.3 Mpa to 0.5 Mpa. In this embodiment, the compressor 3 is used, but a gear pump may be used.

次に、燃焼炉1内の構成を説明するが、油ノズル2Aの近傍には外部からの指令により稼働する着火装置15が配備され、燃焼炉1内の適所には温度センサー14が設けられ、燃焼炉1内の油ノズル2Aと水ノズル2Bノズルの反対側の後端部16には排気ダクト161が設けてあり、燃焼炉1内の排気EAは戸外に排気する。
この排気ダクト161からの排気EAは、通常は戸外に排気するが、本発明の燃焼炉1の排気は、後述するように、人体に有害なCOガスやNOガス、NOxガスが極めて少ないことも特徴であるので、発電装置として使用した排気は、排気ダクト161中にCO2やCOセンサー1611を設けて、この排気成分を検知する検知装置であるCO2やCOセンサー1611で排気が人体に無害な場合には、排気ダクト161内に設けたダンパ1612を切り替えて、温室等の室内(図示せず)に給気SAするようにしてもよい。なお、符号1613は監視窓である。
Next, the configuration in the combustion furnace 1 will be described. An ignition device 15 that operates according to a command from the outside is provided in the vicinity of the oil nozzle 2A, and a temperature sensor 14 is provided in an appropriate position in the combustion furnace 1, An exhaust duct 161 is provided at the rear end 16 on the opposite side of the oil nozzle 2A and the water nozzle 2B in the combustion furnace 1, and the exhaust EA in the combustion furnace 1 exhausts outdoors.
The exhaust EA from the exhaust duct 161 is normally exhausted outdoors, but the exhaust of the combustion furnace 1 of the present invention may have extremely little CO gas, NO gas, and NOx gas harmful to the human body, as will be described later. Since the exhaust gas used as a power generator is provided with a CO 2 or CO sensor 1611 in the exhaust duct 161, the exhaust gas is harmless to the human body by the CO 2 or CO sensor 1611 which is a detection device for detecting the exhaust component. In such a case, the damper 1612 provided in the exhaust duct 161 may be switched to supply air SA into a room (not shown) such as a greenhouse. Reference numeral 1613 denotes a monitoring window.

ここで、上述したバイオマス燃料と水油用燃焼炉1を用いた暖房装置及び発電装置を説明すると、断熱枠11の上部14の熱伝導をよくした上部の一部141に配置されたバイオマス燃料蓄積槽4には、外部から牛糞、豚糞、鶏糞、木質チップ等のバイオマス燃料Bを一旦蓄積されるが、臭いが発生する牛糞、豚糞、鶏糞等に対しては、上部には排気ダクト42付きの蓋部41が設けられ、集臭弁(図示され)が設けられ、集臭弁から排気ダクト41に送られ、排気ダクト41は酸化チタンセラミック膜やUV照射装置等を用いた脱臭装置43が配置され、この脱臭装置43によって無臭した排気は戸外に排出する。
このバイオマス燃料蓄積槽4には、図2のシステム図に示されるようにコンプレサー3により加圧するとともに、燃焼炉1で発生した排熱により、バイオマス燃料蓄積槽4内のバイオマス燃料Bを乾燥、或いは、炭化させるもので、バイオマス燃料蓄積槽4の底部44には、粉砕スクリューコンベア45が設けられ、乾燥、或いは、炭化したバイオマス燃料Bを燃焼炉1内へ粉砕しながら自動投入し燃焼させる。
なお、このバイオマス燃料の投入工程の粉砕スクリューコンベア45の稼働も燃焼炉1内の燃焼状態によって、バイオマス燃料Bの投入量は制御されている。
Here, the heating apparatus and the power generation apparatus using the biomass fuel and the water-oil combustion furnace 1 described above will be described. The biomass fuel accumulation disposed in the upper part 141 of the heat insulating frame 11 that improves the heat conduction is provided. The tank 4 temporarily accumulates biomass fuel B such as cow dung, pig dung, chicken dung, and wood chips from the outside, but for the cow dung, pig dung, chicken dung, etc. that generate odors, the upper part is an exhaust duct 42. A lid portion 41 is provided, a odor collecting valve (illustrated) is provided, and the odor collecting valve is sent to the exhaust duct 41. The exhaust duct 41 is a deodorizing device 43 using a titanium oxide ceramic film, a UV irradiation device or the like. The deodorized device 43 emits odorless exhaust to the outdoors.
The biomass fuel storage tank 4 is pressurized by the compressor 3 as shown in the system diagram of FIG. 2, and the biomass fuel B in the biomass fuel storage tank 4 is dried by the exhaust heat generated in the combustion furnace 1, or The bottom 44 of the biomass fuel storage tank 4 is provided with a pulverizing screw conveyor 45, and the dried or carbonized biomass fuel B is automatically charged into the combustion furnace 1 and combusted.
In addition, the operation of the pulverization screw conveyor 45 in the biomass fuel charging process is controlled by the combustion state in the combustion furnace 1.

次に、温水水槽51及び水蒸気変換器52を説明するが、温水水槽51も断熱枠5の上部53に配置され、燃焼炉1で発生した排熱により貯留した水を約100℃にまで温度を上げておく、この温まった温水はポンプ511と逆止弁512によって、燃焼炉1内の配管された水蒸気変換器52に供給する。
この水蒸気変換器52は、水を高温の蒸気にして、蒸気タービン6の蒸気交換器52である熱交換配管521は、温水水槽51近くの配管5211の内径は大きくし、中間部は高温部に近づく従って徐々に内径を細くして、燃焼炉1内の高温部は最も内径を細くした配管5213から外部に導いて、蒸気タービン6の吹きつけノズル61に導いて、吹きつけノズル61から蒸気を蒸気タービン6のブレード62に吹き付けて蒸気タービン6を回転させる。本実施例の蒸気タービン6は、軸流型800CCタービンを使用した。こうすることで、細い先端ほど高温の水蒸気が得られ圧力も高まり蒸気タービン6への噴出速度も速くなるからである。
Next, the hot water tank 51 and the steam converter 52 will be described. The hot water tank 51 is also arranged on the upper part 53 of the heat insulating frame 5 and the temperature of the water stored by the exhaust heat generated in the combustion furnace 1 is increased to about 100 ° C. The warm hot water to be raised is supplied to the water vapor converter 52 piped in the combustion furnace 1 by the pump 511 and the check valve 512.
The steam converter 52 converts water into high-temperature steam, the heat exchange pipe 521 that is the steam exchanger 52 of the steam turbine 6 has a large inner diameter of the pipe 5211 near the hot water tank 51, and the middle part is a high-temperature part. As the temperature approaches, the inner diameter is gradually reduced, and the high temperature portion in the combustion furnace 1 is led to the outside from the pipe 5213 having the smallest inner diameter, led to the blowing nozzle 61 of the steam turbine 6, and steam is blown from the blowing nozzle 61. The steam turbine 6 is rotated by spraying on the blades 62 of the steam turbine 6. The steam turbine 6 of the present embodiment used an axial flow type 800CC turbine. By doing so, the thinner the tip, the higher the temperature of the steam, the higher the pressure, and the higher the jet speed to the steam turbine 6.

蒸気タービン6の稼働に使われた蒸気は水蒸気タンク63に回収され、水蒸気と温水に分離して、水蒸気は燃焼炉1内の水蒸気になった状態の配管5214に合流させ、温水は温水水槽51に戻す。このような構成により運転効率は更に向上する。
本実施例では水蒸気の循環率は約55%を回収であるが、45%は外部へ放出され、この外部放出分の一部を暖房等の利用にも可能となる。
蒸気タービン6の回転は、ベルト等で発電機64を稼働させ、この発電機64はコア型50kWhで、これに変圧器と制御盤を用いて通常の一般のACに変換して使用する。
不燃物が残渣として乾燥粉末状態(5μm)にて多少残る場合や、また、バイオマス燃料Bが燃焼途中にて装置を停止した場合に残渣として燃焼炉内の灰処理プレート(図示せず)に残るが、必要に応じて除去する。
The steam used for the operation of the steam turbine 6 is collected in the steam tank 63, separated into steam and warm water, and the steam is joined to the pipe 5214 in the state of steam in the combustion furnace 1, and the warm water is in the warm water tank 51. Return to. With such a configuration, the operation efficiency is further improved.
In this embodiment, the circulation rate of water vapor is about 55%, but 45% is discharged to the outside, and a part of this external discharge can be used for heating and the like.
The rotation of the steam turbine 6 operates a generator 64 with a belt or the like, and this generator 64 is a core type 50 kWh, which is converted into a general AC by using a transformer and a control panel.
When some non-combustible material remains in the dry powder state (5 μm) as a residue, or when biomass fuel B stops the apparatus during combustion, it remains as a residue on an ash treatment plate (not shown) in the combustion furnace Remove if necessary.

次に、油ノズル2Aと水ノズル2Bの構成を図3、及び図4に沿って説明するが、本実施例の燃料ノズル2である油ノズル2Aと水ノズル2Bとは、燃料が油か水の違だけで、他はほぼ同じ構造でなので、油ノズル2A(2)で説明する。
ノズル2(2A)の本体は円筒状で、その円筒枠部21の円周上に燃料供給部22が設けられ、この燃料供給部22は燃料ノズル先端細孔23に連なる中空部24に接続され、ノズル2の先端のノズル噴射口25から噴霧される。燃料を噴霧する為に0.3Mpa〜0.5Mpaの圧力で加圧された空気が燃料と一緒に噴霧される。この空気は燃料ノズル2の後端の空気供給部26から供給され、中間部材27の環状に配置された連通孔271を介して、環状中空部28に導入され、前記燃料ノズル先端細孔23の外周の環状隙間281から前記ノズル噴射口25に供給され、油O或いは水W等の燃料と一緒に噴霧される。
Next, the configuration of the oil nozzle 2A and the water nozzle 2B will be described with reference to FIGS. 3 and 4. The oil nozzle 2A and the water nozzle 2B, which are the fuel nozzles 2 of this embodiment, are either fuel oil or water. Only the difference is the same, and the others are almost the same structure, so the explanation will be made with the oil nozzle 2A (2).
The main body of the nozzle 2 (2A) is cylindrical, and a fuel supply portion 22 is provided on the circumference of the cylindrical frame portion 21. The fuel supply portion 22 is connected to a hollow portion 24 connected to the fuel nozzle tip pore 23. The water is sprayed from the nozzle injection port 25 at the tip of the nozzle 2. In order to spray the fuel, air pressurized at a pressure of 0.3 Mpa to 0.5 Mpa is sprayed together with the fuel. This air is supplied from the air supply portion 26 at the rear end of the fuel nozzle 2 and is introduced into the annular hollow portion 28 via the annular communication hole 271 of the intermediate member 27. It is supplied to the nozzle injection port 25 from the annular gap 281 on the outer periphery and sprayed together with fuel such as oil O or water W.

前述した環状に配置された連通孔271は、図4に示すように、本実施例では中心約45度の範囲(X)には設けていないが、これは、ノズル噴射口25からの空気の噴射方向を偏心させて、回転(トルネード)或いは渦巻くようにしたものであるが、噴射空気がある程度渦巻くものであれば、ノズルの吹き出し方向の形状を変化させてもよく、要は、燃料が燃焼炉内に広域に混在するように、空気とともに旋回すように噴射するようにすればよい。
また、油及び水粒子の直径が5μm(ミクロン)(微粒子)以下になる様に、空気圧を0.3Mpa〜0.5Mpaとするとともに、ノズル噴射口25の直径が0.3mm〜0.5mmにしてある。したがって、噴射された各燃料はガス化された状態に近いものとなる。
As shown in FIG. 4, the communication holes 271 arranged in an annular shape are not provided in the range (X) of about 45 degrees in the center in this embodiment, but this is because the air from the nozzle injection port 25 is not provided. The injection direction is decentered and rotated (tornado) or swirled, but if the injected air swirls to some extent, the shape of the nozzle blowing direction may be changed. What is necessary is just to make it inject | pour so that it may swirl with air so that it may be mixed in a furnace wide area.
In addition, the air pressure is set to 0.3 Mpa to 0.5 Mpa and the diameter of the nozzle injection port 25 is set to 0.3 mm to 0.5 mm so that the diameter of the oil and water particles is 5 μm (microns) (fine particles) or less. It is. Accordingly, each injected fuel is close to a gasified state.

[作動]
本実施例の構成は以上であるが、燃焼炉1の構成での作動を説明する。
まず、油ノズル2Aから油Oの5μm以下の微粒子を噴霧するが、微細な粒子にした方が燃焼効率が向上し、特に、5μm以下の微粒子であると、燃焼効率が向上し、本実施例でも油Oの5μm以下の微粒子を噴霧した。
着火装置15を稼働して燃焼を開始する。次に、燃焼炉内温度が500℃以上、好ましくは600℃程度まで上昇した時点で、水Wの5μm以下の微粒子を水ノズル2Bから噴霧する。もっとも、水は着火後すぐに投入してもよいが、通常は1分後、燃焼炉内温度が600℃程度まで上昇するので、この時点で投入する。
このように、各燃料が5μm以下の微粒子と噴霧され、ガスのような状態にしているので、油の燃焼効率も高く早く燃焼炉1内の温度が直ちに上昇し、水を投入してから温度を下げることなく900℃程度まで上昇する。
燃料である油O及び水Wは、コンプレサー3及び流量を制御するバルブ31A,31B等により流量が制御される。本実施例での通常運転は、油4L/h、水4L/hであるが、水Wは最高12L/hまで投入する事が可能であるが、余り水の比率を多くすると燃料燃焼炉内の温度を下げるので、温度を下げないない範囲に制限し、また、COを発生させない範囲に制限する必要がある。なお、燃料燃焼炉内の温度が1005℃位までは水を3倍程度まで投入しても上昇する。
そして、微粒子を噴霧することのない一般のバナー型のボイラーと比べ、高い水と油の比率により、400Kcal〜6000Kcal/Lとが得られる。
[Activation]
Although the configuration of the present embodiment is as described above, the operation of the configuration of the combustion furnace 1 will be described.
First, fine particles of 5 μm or less of oil O are sprayed from the oil nozzle 2A. The finer particles improve combustion efficiency. Particularly, fine particles of 5 μm or less improve combustion efficiency. However, fine particles of oil O of 5 μm or less were sprayed.
The ignition device 15 is operated to start combustion. Next, when the temperature in the combustion furnace rises to 500 ° C. or higher, preferably about 600 ° C., fine particles of 5 μm or less of water W are sprayed from the water nozzle 2B. Of course, water may be added immediately after ignition, but normally, after 1 minute, the temperature in the combustion furnace rises to about 600 ° C., so at this point of time.
Thus, since each fuel is sprayed with fine particles of 5 μm or less and is in a gas state, the combustion efficiency of oil is high and the temperature in the combustion furnace 1 rises immediately and water is added before the temperature is increased. The temperature rises to about 900 ° C. without lowering.
The flow rates of the oil O and the water W, which are fuels, are controlled by the compressor 3 and valves 31A and 31B that control the flow rate. The normal operation in this embodiment is oil 4L / h and water 4L / h, but water W can be supplied up to 12L / h. Therefore, it is necessary to limit the temperature to a range where the temperature is not lowered and to a range where CO is not generated. It should be noted that the temperature in the fuel combustion furnace rises to about 1005 ° C. even if water is added up to about 3 times.
And compared with the general banner type boiler which does not spray fine particles, 400 Kcal-6000 Kcal / L is obtained by the high ratio of water and oil.

図5のグラフは、本実施例の燃焼炉において、燃料が灯油だけの場合と、灯油に水とバイオマス燃料を加えた場合の燃焼炉1内の温度を時間経過とともに計測し、同時に温水水槽51も計測したものであり、表1はその時の燃焼炉1及び温水水槽51内の温度数値である。なお、バイオマス燃料としては本実施例では牛糞を常温で乾燥固化したものを使用したが、従来の木質系材料(オガ屑)や家畜糞尿、これらを混合し乾燥ものでもよい。

Figure 2017219285
The graph of FIG. 5 shows the temperature in the combustion furnace 1 when the fuel is only kerosene and when water and biomass fuel are added to the kerosene over time in the combustion furnace of this embodiment, and at the same time, the hot water tank 51 Table 1 shows temperature values in the combustion furnace 1 and the hot water tank 51 at that time. In addition, although the thing which dried and solidified cow dung at normal temperature was used as a biomass fuel in the present Example, the conventional woody material (scrap waste), livestock dung, and these may be mixed and dried.

Figure 2017219285

図5と表1を説明するが、まず、燃料を灯油Oのみを油ノズル2Aから投入した場合は、灯油量は投入開始(0秒)から20秒までは、細い点線で示すように噴霧量4L(量)/h(時間)になるよう徐々に増やし、以後は一定に噴霧している。この場合の燃焼炉温は図5の太い点線と表1に示すように、約80秒で0℃(或いは室温)から700℃にまで上昇し、約120秒で980℃程度に達し、以後は約980℃前後で推移する。
このように、燃焼炉1内温度は、燃料が灯油のみの場合、灯油と水の場合、灯油に水とバイオマス燃料を加えた場合とをほぼ同じ1000℃前後で推移するようにしたが、灯油の使用量は半減しることが判る。
FIG. 5 and Table 1 will be explained. First, when only kerosene O is fed from the oil nozzle 2A, the amount of kerosene is sprayed from the start of loading (0 seconds) to 20 seconds as shown by a thin dotted line. Gradually increase to 4L (amount) / h (time), and then spray continuously. The combustion furnace temperature in this case rises from 0 ° C. (or room temperature) to 700 ° C. in about 80 seconds and reaches about 980 ° C. in about 120 seconds, as shown in Table 1 in FIG. It changes around 980 ° C.
As described above, the temperature in the combustion furnace 1 is changed to about 1000 ° C., which is approximately the same as that in the case where the fuel is only kerosene, in the case of kerosene and water, and in the case where water and biomass fuel are added to kerosene. It can be seen that the amount of use is halved.

次に、燃料として、灯油Oに水WとバイオマスBを加えた場合を説明するが、灯油量は油ノズル2Aからの投入開始(0秒)から30秒までは、点線で示すように、噴霧量が約4L/hになるよう徐々に増やし、以後は一定時間の180秒経過後まで一定量を噴霧し、その後、水WとバイオマスBの燃料投入により灯油の噴霧量を約1.6L/hまで徐々に減少させる。
燃料としての水Wは図5で二点鎖線で示すが、燃焼炉温は同図で燃焼炉内温度が600℃以上になった時点(60秒後)以降での灯油O供給の90秒の時点で水ノズル2Bから噴霧を開始し、油投入から150秒後経過までに約4L/hになるよう増加させ、その後燃焼開始から180秒後まで一定に噴霧し、燃焼を安定させて、その後の灯油投入から180秒後から270秒経過までに9L/hになるよう増加させ、以後は3000秒後以降は8.5から8L/hに維持する。
この間の燃焼炉温は、図5の太い実線と表1に示すように、油投入開始(0秒)から60秒までは600℃まで徐々に上昇し、水の噴射が開始すると20秒間(油投入から80秒後)で急激に968℃(表1)上昇し、以後は1000℃前後で推移する。
一方、本実施例ではバイオマス燃料Bとして、牛糞を常温乾燥させて固形化したものを使用したが、基本的には灯油Oの代わりとなるもので灯油Oを投入後の燃焼が安定してから180秒後からこのバイオマス燃料Bを乾燥炭化装置4でより炭化させたものを投入する。この炭化したバイオマス燃料Bは燃焼開始後180秒後頃から開始するが、これらのバイオマス燃料Bを300秒までは8cm3/10分程度を供給し、その後は27cm3/10分程度を供給する。
前述したように、バイオマス燃料Bは基本的には灯油Oの代わりとなるものであるので、灯油Oを減らせるが、余り減らすと燃焼が不安定になるので、バイオマス燃料Bの種類にもよるが、灯油Oだけの使用量の半分程度が望ましい。
また、温水水槽51の温水水温は細い点線で示すが、360秒後は約100℃で推移する。もっとも、循環水が蒸発等で減少するので、通常の水道水等を補充するが、このときだけは、一時的に多少低くなるが、補充水は少ないのですぐに100℃近辺に回復する。
Next, the case where water W and biomass B are added to kerosene O as fuel will be described. The amount of kerosene is sprayed from the start of charging from the oil nozzle 2A (0 seconds) to 30 seconds as shown by the dotted line. Gradually increase the amount to about 4 L / h, and then spray a certain amount until after 180 seconds of a certain amount of time. Then, by adding fuel of water W and biomass B, the spray amount of kerosene is about 1.6 L / h Reduce gradually to h.
Water W as fuel is indicated by a two-dot chain line in FIG. 5, and the combustion furnace temperature is 90 seconds of the kerosene O supply after the time when the temperature in the combustion furnace reaches 600 ° C. or more (after 60 seconds). Spraying is started from the water nozzle 2B at the time, and is increased to about 4 L / h by 150 seconds after the oil is added, and then sprayed constantly until 180 seconds after the start of combustion to stabilize the combustion. After the lapse of 270 seconds from 180 seconds after the addition of kerosene, the pressure is increased to 9 L / h, and after 3000 seconds, the pressure is maintained from 8.5 to 8 L / h.
The combustion furnace temperature during this period, as shown in the thick solid line in FIG. 5 and Table 1, gradually rises to 600 ° C. from the start of oil addition (0 seconds) to 60 seconds, and 20 seconds (oil It rises 968 ° C (Table 1) suddenly (after 80 seconds from the introduction), and then changes around 1000 ° C.
On the other hand, in the present embodiment, the biomass fuel B used was solidified by drying cow dung at room temperature. Basically, it replaces the kerosene O, and after the combustion after the kerosene O is charged becomes stable. After 180 seconds, the biomass fuel B is carbonized by the dry carbonization apparatus 4 is charged. This carbonized biomass fuel B starts from around 180 seconds after start of combustion, these biomass fuel B to 300 seconds supplies about 8 cm 3/10 min, then supplies about 27cm 3/10 minutes .
As described above, the biomass fuel B is basically a substitute for the kerosene O, so the kerosene O can be reduced, but if it is reduced too much, the combustion becomes unstable, so it depends on the type of the biomass fuel B. However, about half of the amount of kerosene O used is desirable.
Moreover, although the warm water temperature of the warm water tank 51 is shown by a thin dotted line, it changes at about 100 ° C. after 360 seconds. However, since the circulating water decreases due to evaporation or the like, normal tap water or the like is replenished. However, only at this time, the water is temporarily lowered, but the replenishment water is small so that it immediately recovers around 100 ° C.

この図5と表1から判ることは、燃焼炉温が油だけの場合が約980℃前後で推移するのに対して、灯油Oに水Wを加えた場合には、燃焼炉温が1000℃前後で推移することに加えて、燃焼開始後120秒経過後は灯油Oの噴霧量が4L/hが約2.5L/hまで徐々に減少する。すなわち、同じ燃焼炉温を得るに、水を加えて灯油の消費量を減らすことができ、さらに、バイオマス燃料Bを灯油の代わりとして使用することができるので、全体として通常の灯油の使用量の半分以下程度にまですることができて、結果として灯油の使用量を大幅に削減することができ、熱効率が向上し、省エネルギーが達成されることが判る。   From FIG. 5 and Table 1, it can be seen that the combustion furnace temperature is about 980 ° C. when the temperature of the combustion furnace is only oil, whereas when kerosene O is added with water W, the combustion furnace temperature is 1000 ° C. In addition to the change before and after, after 120 seconds from the start of combustion, the spray amount of kerosene O gradually decreases from 4 L / h to about 2.5 L / h. That is, in order to obtain the same combustion furnace temperature, it is possible to reduce the consumption of kerosene by adding water, and furthermore, since the biomass fuel B can be used as a substitute for kerosene, As a result, it can be seen that the amount of kerosene used can be greatly reduced, thermal efficiency is improved, and energy saving is achieved.

以上を操作工程を纏めると、本実施例は次のようになる。
(1)空気と油とを混合して油ノズルから燃焼炉内へ油粒子を噴霧させる工程と、
(2)噴霧される前記油粒子を着火装置により着火させる工程と、
(3)発火後に燃焼炉内を600℃以上に上昇させる工程と、
(4)空気と水とを混合して水ノズルから燃焼炉内へ水粒子を噴霧して油粒子と共に燃焼させる工程と、
(5)燃焼炉内を900℃以上に維持させる工程と、
(6)バイオマス燃料を投入する工程と、
(7)温水水槽から水蒸気変換器に温水を供給する工程と
(8)水蒸気変換器からの蒸気で蒸気タービンを稼働する工程と、
からなる工程を順次行う発電方法、或いは発電システムである。
本実施例の油水燃焼炉1の灯油と水とを燃焼した場合(実施例)と、灯油のみの燃焼した場合(比較例1)、及び、市販の灯油をバナーで燃焼する灯油燃焼炉(比較例2)の場合の排気の組成を比較する。なお、バイオマス燃料についてはバイオマスの原料によって組成が大幅に異なるのが、本実施例では、一定量の牛糞の乾燥固化したものを使用した。

Figure 2017219285
When the operation process is summarized as above, the present embodiment is as follows.
(1) mixing air and oil and spraying oil particles from the oil nozzle into the combustion furnace;
(2) igniting the sprayed oil particles with an ignition device;
(3) raising the temperature in the combustion furnace to 600 ° C. or higher after ignition;
(4) mixing air and water, spraying water particles from the water nozzle into the combustion furnace and combusting with oil particles;
(5) maintaining the inside of the combustion furnace at 900 ° C. or higher;
(6) a step of supplying biomass fuel;
(7) supplying hot water from the hot water tank to the steam converter; (8) operating the steam turbine with steam from the steam converter;
A power generation method or a power generation system that sequentially performs the steps consisting of:
A kerosene combustion furnace (comparative example 1) when kerosene and water of the oil-water combustion furnace 1 of this embodiment are burned (Example), a kerosene-only combustion (Comparative Example 1), and a kerosene combustion furnace (comparison) The exhaust composition in the case of Example 2) is compared. In addition, although the composition of biomass fuel varies greatly depending on the raw material of biomass, in this example, a certain amount of dried and solidified cow dung was used.
Figure 2017219285

この表2の排気の成分比較の表から判ることは、実施例、比較例1,2で燃焼炉内が定常状態になった時点、例えば、着火から40分後の時点では、本実施例では燃焼炉内温度1001℃、比較例1では982℃で、比較例2では778℃であるが、O2は14%、14.8%、14.1%とさほど変わりがないが、CO2は2.1%、3.5%、4.2%と少なく、有害なCOは1%、9%、32.1%と極めて少なく、同様に、NOも2%、8%、44%、NOxも2%、7%、43%と極めて少ない。
したがって、CO2、特に、CO、NO、NOxが従来の燃焼炉に比べて極めて少ないことから、前述したように、発電方法として、排気ダクト121中にCO2やCOセンサー1211を設けて、このに排気成分を検知する検知装置であるCO2やCOセンサー1211で排気が人体に無害な場合には、排気ダクト121内に設けたダンパ1212を切り替えて、室内7に給気SAすることも可能である。
It can be seen from the exhaust gas component comparison table in Table 2 that at the time when the inside of the combustion furnace is in a steady state in Examples and Comparative Examples 1 and 2, for example, 40 minutes after ignition, The temperature in the combustion furnace is 1001 ° C., 982 ° C. in Comparative Example 1 and 778 ° C. in Comparative Example 2. O 2 is 14%, 14.8%, and 14.1%, but CO 2 is not much different. 2.1%, 3.5%, and 4.2% are low, and harmful CO is extremely low at 1%, 9%, and 32.1%. Similarly, NO is 2%, 8%, 44%, NOx 2%, 7% and 43% are very few.
Therefore, since CO 2 , particularly CO, NO, and NO x are extremely small compared to the conventional combustion furnace, as described above, CO 2 and CO sensor 1211 are provided in the exhaust duct 121 as a power generation method. If the exhaust gas is harmless to the human body by the CO 2 or CO sensor 1211 that detects the exhaust component, the damper 1212 provided in the exhaust duct 121 can be switched to supply air SA to the room 7. It is.

このように、600℃程度から水を投入すると、燃料ノズル2での旋回流が発生し、微粒子としたガス状態で噴霧するので、その近辺に陰圧が発生し、全体として排気ダクト121方向へ燃焼しながら移動することとなり、前[表2]の実験結果にも開示されているように、通常に発生するCO2,COなども同時に燃焼して、有毒ガスが極めて少なくなると考えられる。
なお、微粒子として噴霧する疑似ガス化と、燃焼炉内の高温と燃焼炉内圧力が23Mpa程 度になるので、この時、燃焼炉内温度600℃以上、圧力23Mpa以上で水Wの燃焼効率が向上するので、水の超臨界状態が発生しているものとも考えられる。
In this way, when water is introduced from about 600 ° C., a swirling flow is generated at the fuel nozzle 2 and sprayed in the form of fine particles, so that a negative pressure is generated in the vicinity thereof, and the exhaust duct 121 is moved as a whole. It moves while burning, and as disclosed in the experimental results in [Table 2], CO 2 , CO, and the like that are normally generated are also burned at the same time, and it is considered that toxic gas is extremely reduced.
In addition, since the pseudo-gasification sprayed as fine particles, the high temperature in the combustion furnace and the pressure in the combustion furnace are about 23 Mpa, the combustion efficiency of the water W at the combustion furnace temperature of 600 ° C. or higher and the pressure of 23 Mpa or higher is achieved. Since it improves, it is thought that the supercritical state of water has generate | occur | produced.

以上のように、本実施例によれば、水油用燃焼炉は原料に水と油及びバイオマス燃料とを用い、水油混合燃料を燃焼させる水油用燃焼炉において、直接燃焼炉内に空気と油の微粒子、及び、空気の水の微粒子を噴霧するので、燃焼効率が向上して、その上、灯油Oの代わりにバイオマス燃料を使用するので、稼働制御が簡単で省エネとなるとともに、原料となる水と油を予め混濁して乳化剤とする必要がなく、構造な供給操作が簡単になる。
また、実施例の油水用燃焼炉を用いた発電方法も、燃焼効率が向上して、稼働制御が簡単で省エネとなるとともに、原料となる水と油を予め混濁して乳化剤とする必要がなく、構造な供給操作が簡単になる。
なお、本実施例は発電方法(システム)で説明したが、発電に関する部分を除外すれば、バイオマス燃料と水油を用いた燃焼方法となる。また、本発明の特徴を損なうものでなければ、上述した実施例に限定されるものではない。
As described above, according to the present embodiment, the water-oil combustion furnace uses water, oil, and biomass fuel as raw materials, and in the water-oil combustion furnace that burns the water-oil mixed fuel, the air directly enters the combustion furnace. And oil fine particles and air water fine particles are sprayed to improve combustion efficiency. In addition, since biomass fuel is used instead of kerosene O, operation control is easy and energy saving is achieved. It is not necessary to turbidize water and oil in advance to make an emulsifier, and the structural supply operation is simplified.
In addition, the power generation method using the oil-water combustion furnace of the embodiment also improves combustion efficiency, simplifies operation control and saves energy, and it is not necessary to turbidize water and oil as raw materials in advance to use as an emulsifier. , Structural feeding operation becomes simple.
In addition, although the present Example demonstrated by the electric power generation method (system), if the part regarding electric power generation is excluded, it will become a combustion method using biomass fuel and water oil. Further, the present invention is not limited to the above-described embodiments as long as the features of the present invention are not impaired.

O・・油、W・・水、A・・エアー(空気)、B・・バイオマス燃料
OA・・外気、RA・・還気、SA・・給気、EA・・排気、
1・・バイオマス・水・油用の燃焼炉、11・・断熱枠、
12・・底部、121・・底部の一部、
13・・ファン13、14・・上部、141・・上部の一部、
15・・前面部、16・・後端部、
161・・排気ダクト、1611・・CO2.COセンサー(検知装置)、
1612・・ダンパ、1613・・監視窓、
17・・温度センサー、18・・着火装置、19・・制御盤
2・・燃料ノズル、2A・・油ノズル、2B・・水ノズル、
21・・円筒枠部、22・・燃料供給部、
23・・燃料ノズル先端細孔、24・・中空部、
25・・ノズル噴射口、26・・空気供給部、27・・中間部材、
271・・連通孔、28・・環状中空部、281・・環状隙間
2A1・・油タンク、2A2・・配管
2B1・・水タンク、2B2・・配管
3・・コンプレサー、31A,31B・・バルブ
4・・バイオマス燃料蓄積槽、41・・蓋部、42・・排気ダクト、
43・・脱臭装置、44・・底部、45・・粉砕スクリューコンベア、
51・・温水水槽、511・・ポンプ、512・・逆止弁、
52・・水蒸気変換器、521・・熱交換配管、
5211,5212,5213、5214・・配管
6・・蒸気タービン、61・・吹きつけノズル、62・・ブレード、
63・・水蒸気タンク、64・・発電機、
O ... Oil, W ... Water, A ... Air (Air), B ... Biomass Fuel OA ... Outside Air, RA ... Return Air, SA ... Air Supply, EA ... Exhaust,
1 .... Combustion furnace for biomass, water, oil, 11 .... Insulation frame,
12..Bottom part, 121..Part of the bottom part,
13 .. Fan 13, 14 .. Upper part, 141 .. Part of upper part,
15 .. Front part, 16 .. Rear end part,
161 .. exhaust duct, 1611 .. CO 2 .CO sensor (detection device),
1612 ... Damper, 1613 ... Monitoring window,
17 .... Temperature sensor, 18 .... Ignition device, 19 .... Control panel 2 .... Fuel nozzle, 2A ... Oil nozzle, 2B ... Water nozzle,
21 .. Cylindrical frame part, 22 .. Fuel supply part,
23 .. Fuel nozzle tip pore, 24 .. Hollow part,
25..Nozzle injection port, 26..Air supply part, 27..Intermediate member,
271 .. Communication hole 28.. Annular hollow 281.. Annular gap 2 A 1. Oil tank 2 A 2. Pipe 2 B 1. Water tank 2 B 2 ... Pipe 3 ... Compressor 31 A, 31 B ... Valve 4 ..Biomass fuel storage tank, 41..lid part, 42..exhaust duct,
43 ... Deodorizing device, 44 ... Bottom, 45 ... Grinding screw conveyor,
51 .. Hot water tank, 511 ... Pump, 512 ... Check valve,
52 ... Steam converter, 521 ... Heat exchange piping,
5211, 5212, 5213, 5214 ... Pipe 6 ... Steam turbine 61 ... Blowing nozzle 62 ... Blade
63 ... Steam tank, 64 ... Generator,

Claims (6)

(a)燃焼炉内に空気と油とを混合して油ノズルから燃焼炉内へ油粒子を噴霧させる工程と、
(b)噴霧される前記油粒子を着火装置により着火させる工程と、
(c)燃焼炉内が600℃以上に上昇した後に、空気と水とを混合して水ノズルから燃焼炉内へ水粒子を噴霧して前記油ノズルから噴霧される油粒子と共に燃焼させて900℃以上に上昇させる工程と、
(d)燃焼炉内を900℃以上に維持しつつバイオマス燃料を燃焼させる工程とを順次実行することを特徴とするバイオマス燃料と水と油を用いた燃焼方法。
(A) mixing air and oil in the combustion furnace and spraying oil particles from the oil nozzle into the combustion furnace;
(B) igniting the oil particles to be sprayed by an ignition device;
(C) After the temperature in the combustion furnace rises to 600 ° C. or higher, air and water are mixed, water particles are sprayed from the water nozzle into the combustion furnace, and burned together with the oil particles sprayed from the oil nozzle. Raising the temperature above ℃,
(D) A combustion method using biomass fuel, water, and oil, sequentially performing a step of burning biomass fuel while maintaining the inside of the combustion furnace at 900 ° C. or higher.
(a)燃焼炉内に空気と油とを混合して油ノズルから燃焼炉内へ油粒子を噴霧させる工程と、
(b)噴霧される前記油粒子を着火装置により着火させる工程と、
(c)燃焼炉内が600℃以上に上昇した後に、空気と水とを混合して水ノズルから燃焼炉内へ水粒子を噴霧して前記油ノズルから噴霧される油粒子と共に燃焼させて900℃以上に上昇させる工程と、
(d)燃焼炉内を900℃以上に維持しつつバイオマス燃料を燃焼させる工程と、
(e)前記燃焼炉に近接して、バイオマス燃料を蓄積し乾燥又は炭化するバイオマス燃料蓄積槽と蒸気タービン用の水を温める温水水槽とを設け、燃焼炉内が600℃以上に上昇してから、水ノズルから水の粒子を付加して燃焼させて燃焼炉内を600℃から1005℃に維持する工程と、
(f)前記バイオマス燃料蓄積槽には上記乾燥又は炭化したバイオマス燃料を燃焼炉内に投入する工程と、バイオマス燃料投入装置を設け、
(g)前記蒸気タービン用の温水水槽の水は、燃焼炉内の水蒸気変換器である配管に供給して配管内で加熱より水蒸気に変えて排出する工程と、
(h)該水蒸気を蒸気タービンに供給して稼働して発電機を稼働する工程と
を順次実行することを特徴とするバイオマス燃料と水油の燃焼炉を用いた発電方法。
(A) mixing air and oil in the combustion furnace and spraying oil particles from the oil nozzle into the combustion furnace;
(B) igniting the oil particles to be sprayed by an ignition device;
(C) After the temperature in the combustion furnace rises to 600 ° C. or higher, air and water are mixed, water particles are sprayed from the water nozzle into the combustion furnace, and burned together with the oil particles sprayed from the oil nozzle. Raising the temperature above ℃,
(D) burning biomass fuel while maintaining the inside of the combustion furnace at 900 ° C. or higher;
(E) In the vicinity of the combustion furnace, a biomass fuel accumulation tank for accumulating and drying or carbonizing biomass fuel and a hot water tank for warming water for the steam turbine are provided, and the temperature in the combustion furnace rises to 600 ° C. or higher. Adding a water particle from a water nozzle and burning it to maintain the inside of the combustion furnace at 600 ° C. to 1005 ° C .;
(F) The biomass fuel storage tank is provided with a step of charging the dried or carbonized biomass fuel into a combustion furnace, and a biomass fuel charging device,
(G) the water in the hot water tank for the steam turbine is supplied to a pipe which is a steam converter in the combustion furnace, and is converted into steam by heating rather than being heated in the pipe;
(h) A power generation method using a biomass fuel and water oil combustion furnace that sequentially executes a step of supplying the steam to a steam turbine to operate the generator.
前記熱交換器である配管は、水槽近くの配管の内径は大きくし、徐々に内径を細くして、吹きつけノズルから蒸気を蒸気タービンのブレードに吹き付けて蒸気タービンを回転させることを特徴とする請求項2に記載のバイオマス燃料と水油の燃焼炉を用いた発電方法。   The pipe that is the heat exchanger is characterized in that the inner diameter of the pipe near the water tank is increased, the inner diameter is gradually reduced, and the steam turbine is rotated by spraying steam from the spray nozzle onto the blades of the steam turbine. A power generation method using the biomass fuel and water oil combustion furnace according to claim 2. 前記噴霧する水粒子(の微粒子)の直径は、5μm以下であることを特徴とする請求項2に記載のバイオマス燃料と水油の燃焼炉を用いた発電方法。   The power generation method using a biomass fuel and water oil combustion furnace according to claim 2, wherein the diameter of the water particles (fine particles) to be sprayed is 5 µm or less. 前記噴霧する油粒子(の(微粒子)の直径は、5μm以下であることを特徴とする請求項2に記載のバイオマス燃料と水油の燃焼炉を用いた発電方法。   The power generation method using a biomass fuel and water oil combustion furnace according to claim 2, wherein the diameter of the sprayed oil particles (of (fine particles) thereof is 5 µm or less. 前記蒸気タービンの排出側には水蒸気タンクを設け、該水蒸気タンクによって水蒸気と温水を分離して、該水蒸気は前記水蒸気変換器である配管の適所に供給し、該温水は前記温水水槽に供給することを特徴とする請求項2に記載のバイオマス燃料と水油の燃焼炉を用いた発電方法。   A steam tank is provided on the discharge side of the steam turbine, the steam and hot water are separated by the steam tank, the steam is supplied to an appropriate place of a pipe which is the steam converter, and the hot water is supplied to the hot water tank. The power generation method using the biomass fuel and water oil combustion furnace of Claim 2 characterized by the above-mentioned.
JP2016115934A 2016-06-10 2016-06-10 Combustion method using biomass fuel and water-oil and power generating method using combustion furnace therefor Pending JP2017219285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016115934A JP2017219285A (en) 2016-06-10 2016-06-10 Combustion method using biomass fuel and water-oil and power generating method using combustion furnace therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016115934A JP2017219285A (en) 2016-06-10 2016-06-10 Combustion method using biomass fuel and water-oil and power generating method using combustion furnace therefor

Publications (1)

Publication Number Publication Date
JP2017219285A true JP2017219285A (en) 2017-12-14

Family

ID=60657446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016115934A Pending JP2017219285A (en) 2016-06-10 2016-06-10 Combustion method using biomass fuel and water-oil and power generating method using combustion furnace therefor

Country Status (1)

Country Link
JP (1) JP2017219285A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110702840A (en) * 2019-10-14 2020-01-17 刘芳 Analysis device based on energy utilization rate of carbonized urban domestic sewage biomass
KR102322660B1 (en) * 2021-03-26 2021-11-08 이재우 Pyrolysis oil eco-friendly combustion device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110702840A (en) * 2019-10-14 2020-01-17 刘芳 Analysis device based on energy utilization rate of carbonized urban domestic sewage biomass
KR102322660B1 (en) * 2021-03-26 2021-11-08 이재우 Pyrolysis oil eco-friendly combustion device

Similar Documents

Publication Publication Date Title
JP2004263572A (en) Cogeneration system
CN205279039U (en) Mud and living beings co -combustion power generation system
WO2017158649A1 (en) Semi-carbonized plant biomass production apparatus
CN103534462A (en) Gasifier power plant and management of wastes
JP2006275301A (en) Woody pellet combustion method and its device
JP2017219285A (en) Combustion method using biomass fuel and water-oil and power generating method using combustion furnace therefor
WO2010138005A2 (en) Method and apparatus for treating solid waste
JP2007297527A (en) Method and apparatus for electric power generating using waste material
US7426891B2 (en) System for converting animal waste into an environmentally friendly energy source
KR101613968B1 (en) steam generating system having ultra high temperature sludge drying apparatus
JP2020199449A (en) Sewage sludge drying system
JP2019132438A (en) Drier and drying method of disposable diaper, and fuel production apparatus and fuel production method
JP4783582B2 (en) Asphalt plant using flammable gas generated from biomass
JP2005226970A (en) Fire grate type waste incinerator and its operation method
JP5403546B2 (en) Method and apparatus for supplying fuel to combustor
CN209540898U (en) A kind of low latitude gas that bilayer is reverse compares waste incinerator
JPH0139008B2 (en)
KR20100040079A (en) Apparatus for drying and carbonating combustibile or organic waste
JP4148847B2 (en) burner
JP2003326239A (en) Waste treatment apparatus and waste treatment method
JP3790418B2 (en) Operating method of external circulating fluidized bed furnace for waste incinerator with high water content and high volatility such as sewage sludge
JPH09310830A (en) Rotary kiln type drying combustion apparatus
KR20150129516A (en) Biomass combustion system
JP2011057954A5 (en)
CN103939891B (en) A kind of water-coal-slurry turbulent flow intensifying combustion mothod and burner

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190509