JP2017219206A - Tunnel type cooler - Google Patents

Tunnel type cooler Download PDF

Info

Publication number
JP2017219206A
JP2017219206A JP2016111474A JP2016111474A JP2017219206A JP 2017219206 A JP2017219206 A JP 2017219206A JP 2016111474 A JP2016111474 A JP 2016111474A JP 2016111474 A JP2016111474 A JP 2016111474A JP 2017219206 A JP2017219206 A JP 2017219206A
Authority
JP
Japan
Prior art keywords
cooling
temperature
low
liquefied gas
temperature liquefied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016111474A
Other languages
Japanese (ja)
Inventor
勇人 加藤
Isato Kato
勇人 加藤
臣哉 稲葉
Shinya Inaba
臣哉 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani Corp
Original Assignee
Iwatani International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani International Corp filed Critical Iwatani International Corp
Priority to JP2016111474A priority Critical patent/JP2017219206A/en
Publication of JP2017219206A publication Critical patent/JP2017219206A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a tunnel type cooler capable of efficiently and evenly cooling a cooling object, and further capable of avoiding occurrence of a crack or the like with abrupt temperature change.SOLUTION: A tunnel type cooler, where a cooling object 3 travels on a central axis portion of a cooling treatment unit 2 formed into a tunnel shape, is configured such that a cooling refrigerant jetting nozzle 7 configured to jet low-temperature liquefied gas from a casing outer peripheral surface side toward a travel route center is arranged on a cooling object carrying-out port side with respect to a center in a movement direction in the cooling treatment unit 2, and a nozzle port 13 of the cooling refrigerant jetting nozzle 7 is formed inclinedly so that a jetting direction of the low-temperature liquefied gas jetted from the nozzle port 13 is on a cooling object carrying-in side in the cooling treatment unit 2.SELECTED DRAWING: Figure 1

Description

本発明は、低温液化ガスの冷熱を利用したトンネル式の冷却装置に関し、より詳しくは、低温液化ガスを作用させてトンネル内を移動する冷却対象物を急速冷却するトンネル式冷却装置に関する。   The present invention relates to a tunnel-type cooling device that uses cold heat of a low-temperature liquefied gas, and more particularly to a tunnel-type cooling device that rapidly cools an object to be cooled that moves in a tunnel by applying a low-temperature liquefied gas.

従来、食品や工業製品を冷却ないし凍結処理する場合、処理室内冷媒となる液体または気体を噴射し、その保有冷熱及び気化熱を利用するものが知られている。そして、冷却対象物を均一かつ十分に冷却あるいは凍結させるため、冷媒の噴射方法について様々な検討がなされている。   2. Description of the Related Art Conventionally, when food or industrial products are cooled or frozen, a liquid or gas that serves as a refrigerant in the processing chamber is jetted and the stored cold heat and heat of vaporization are used. In order to cool or freeze the object to be cooled uniformly and sufficiently, various studies have been made on the refrigerant injection method.

たとえば、特許文献1では、凍結処理室となる断熱ケース内に複数の液化窒素噴射ノズル及び液化二酸化炭素噴射ノズルを設けることで、凍結対象物に対して均一かつ効率的に液体窒素を接触させるようにしたトンネル式の凍結装置が提案されている。   For example, in Patent Document 1, by providing a plurality of liquefied nitrogen injection nozzles and liquefied carbon dioxide injection nozzles in a heat insulating case serving as a freezing treatment chamber, liquid nitrogen is brought into contact with a frozen object uniformly and efficiently. A tunnel-type freezing device has been proposed.

また、特許文献2では、トンネル型の冷却装置内での搬送方向下手側部分に液体窒素を冷却対象物に向けて噴霧する低温液化ガスの噴霧ノズルを設けるとともに、トンネル内の低温ガスを撹拌するための複数の撹拌ファンを設けたトンネル式の凍結装置が提案されている。この凍結装置では、噴射ノズルから噴射された液体窒素は冷却対象物に接触して低温ガスへと気化し、撹拌ファンにより発生した乱流によって冷却対象物に万遍なく接触するようになっている。   Further, in Patent Document 2, a low temperature liquefied gas spray nozzle for spraying liquid nitrogen toward the object to be cooled is provided on the lower side in the transport direction in the tunnel type cooling device, and the low temperature gas in the tunnel is agitated. A tunnel-type freezing apparatus provided with a plurality of stirring fans has been proposed. In this freezing apparatus, the liquid nitrogen sprayed from the spray nozzle contacts the object to be cooled and vaporizes into a low-temperature gas, and comes into uniform contact with the object to be cooled by the turbulent flow generated by the stirring fan. .

さらに、特許文献3には、熱間加工で鋼管を形成する際に、走行する鋼管の外周に鋼管の軸方向に冷媒を噴射する複数の噴射ノズルを位置させ、冷却対象物に周方向から冷媒を作用させるようにした冷却装置が開示してある。   Further, in Patent Document 3, when forming a steel pipe by hot working, a plurality of injection nozzles for injecting refrigerant in the axial direction of the steel pipe are positioned on the outer periphery of the traveling steel pipe, and the refrigerant is cooled from the circumferential direction to the object to be cooled. A cooling device adapted to act is disclosed.

特開平7−294085号公報Japanese Patent Laid-Open No. 7-294085 特開2001−174118号公報JP 2001-174118 A 特開2005‐298861号公報JP 2005-288661 A

しかし、特許文献1に示されているような液体窒素(冷媒)を冷却対象物の移動方向に配置した複数の噴射ノズルから直接噴霧するものでは、各ノズルまでの液体窒素供給配管の長さがそれぞれ異なるため、均一かつ微細な液体窒素供給が難しいという問題があった。また、冷媒として用いる液体低温ガスは、たとえば液体窒素の場合−196℃と極低温であることから、室温状態での冷却対象物に対して直接的に散布すると、冷却対象物に対して急激な温度変化を与えることとなるため、冷却対象物にヒビ割れ等が生じる虞があった。   However, in the case where liquid nitrogen (refrigerant) as shown in Patent Document 1 is directly sprayed from a plurality of injection nozzles arranged in the moving direction of the object to be cooled, the length of the liquid nitrogen supply pipe to each nozzle is long. Since they are different, there is a problem that it is difficult to supply uniform and fine liquid nitrogen. Moreover, since the liquid low temperature gas used as a refrigerant | coolant is -196 degreeC and extremely low temperature, for example in the case of liquid nitrogen, if it sprays directly with respect to the cooling target object in a room temperature state, it will be rapid with respect to a cooling target object. Since a temperature change is given, there is a possibility that cracks or the like may occur in the cooling target.

また、特許文献2に示されているような冷却システムでは、冷却対象物が冷媒ノズル配設個所に到達されるまでに、トンネル内に生じる低温ガスの流れと接触して徐々に冷却されることから、急激な温度変化によるひび割れの発生を抑制することはできるが、冷却装置内に多数の撹拌ファンを設置して気化ガスの流れを形成しなければならないことから、設備が大型化し、設備費用も大きくなってしまうという問題があった。   Further, in the cooling system as shown in Patent Document 2, the cooling object is gradually cooled in contact with the flow of the low-temperature gas generated in the tunnel until the object to be cooled reaches the location where the refrigerant nozzle is provided. Therefore, it is possible to suppress the occurrence of cracks due to sudden temperature changes, but the installation of a large number of agitating fans in the cooling device to form a flow of vaporized gas increases the equipment size and equipment costs. There was also a problem of becoming larger.

また、特許文献3に開示されているものは、冷却対象物の外周に複数の噴射ノズルを配置するとともに、冷却対象物の移動方向でも複数の噴射ノズル群を配置していることから、周方向での冷却度合いを周方向全面にわたって均一化することはできるが、この場合でも、冷媒として液化窒素等の液体低温ガスが作用すると、冷却対象物に対して急激な温度変化を与えることとなるため、冷却対象物にヒビ割れ等が生じる虞は解消することはできない。   In addition, what is disclosed in Patent Document 3 has a plurality of injection nozzles arranged on the outer periphery of the cooling object and a plurality of injection nozzle groups arranged in the moving direction of the cooling object. However, even in this case, when a liquid low-temperature gas such as liquefied nitrogen acts as a refrigerant, a sudden temperature change is given to the object to be cooled. The risk of cracks and the like in the object to be cooled cannot be eliminated.

本発明は、このような問題に鑑み提案されたものであり、冷却対象物を効率的、かつ均一に冷却することができ、加えて、急激な温度変化に伴うヒビ割れ等の発生を回避することのできるトンネル型の冷却装置を提供することを目的とする。   The present invention has been proposed in view of such a problem, and can cool an object to be cooled efficiently and uniformly. In addition, the occurrence of cracks and the like accompanying a rapid temperature change is avoided. It is an object of the present invention to provide a tunnel-type cooling device that can be used.

上述の目的を達成するために請求項1に記載の発明は、トンネル型に形成した冷却室の内部で冷却室中心軸部分を冷却対象物が走行するトンネル型の冷却装置であって、該冷却室における移動方向中心よりも冷却対象物搬出口側にケーシング外周面側から走行経路中心に向かって低温液化ガスを噴出する冷媒噴射ノズルを配置し、この冷媒噴射ノズルのノズル口が該ノズル口から噴出される低温液化ガスの噴出方向が冷却室における冷却対象物搬入側となるように傾斜させてあることを特徴としている。   In order to achieve the above object, the invention described in claim 1 is a tunnel-type cooling device in which a cooling object travels in a central axis portion of a cooling chamber within a tunnel-shaped cooling chamber, A refrigerant injection nozzle for injecting a low-temperature liquefied gas from the outer peripheral surface of the casing toward the center of the travel path is disposed closer to the object to be cooled than the center of the moving direction in the chamber, and the nozzle port of the refrigerant injection nozzle is connected to the nozzle port. The low-temperature liquefied gas to be ejected is inclined such that the ejection direction is on the cooling object carry-in side in the cooling chamber.

また、請求項2に記載した発明は前記請求項1に記載の構成に加えて、冷媒噴射ノズルへの低温液化ガス供給経路に低温液化ガスの流量調整弁と、冷却室内の温度に基づき前記流量調整弁の開度を制御する温度調整器とを配置し、この流量調整弁の開度を冷却室の冷却対象物搬入側で検出した室内温度に基づき制御するようにしたことを特徴としている。   In addition to the configuration of the first aspect, the invention described in claim 2 includes the flow rate adjusting valve for the low-temperature liquefied gas in the low-temperature liquefied gas supply path to the refrigerant injection nozzle and the flow rate based on the temperature in the cooling chamber. A temperature regulator for controlling the opening degree of the regulating valve is arranged, and the opening degree of the flow rate regulating valve is controlled based on the room temperature detected on the cooling object carry-in side of the cooling chamber.

本発明では、冷媒噴射ノズルから冷却対象物に向けて噴出された冷媒(液体窒素)は冷却対象物を直接冷却し、かつ、噴出後に気化した低温の液化ガスが冷却室に導入された冷却対象物をあらかじめ一定温度まで予冷するので、冷媒が直接接触する際での温度変化を小さくすることができ、よって生じる冷却対象部のヒビ割れを抑制することができる。   In the present invention, the refrigerant (liquid nitrogen) ejected from the refrigerant injection nozzle toward the object to be cooled directly cools the object to be cooled, and the cooling object in which the low-temperature liquefied gas vaporized after the ejection is introduced into the cooling chamber Since the object is pre-cooled to a certain temperature in advance, the temperature change when the refrigerant is in direct contact can be reduced, and cracks in the cooling target portion caused thereby can be suppressed.

また、冷媒噴射ノズルからの噴出冷媒の噴出方向を冷却室の冷却対象物導入口側に傾斜させた場合、低温液化ガスの噴出位置が筒状冷却装置の走行方向での中心よりも出口側であることから、噴出された低温液化ガスの気化ガスを利用して冷却装置に導入された付近から予冷を行うことができるとともに、低温液化ガスとの直接接触するまでの距離を多くとることによって冷却対象物を十分に予冷する時間を確保することができる。   Further, when the jet direction of the refrigerant jetted from the refrigerant jet nozzle is inclined toward the cooling object inlet side of the cooling chamber, the jet position of the low-temperature liquefied gas is closer to the outlet side than the center in the running direction of the cylindrical cooling device. Therefore, it is possible to perform pre-cooling from the vicinity introduced into the cooling device by using the vaporized low-temperature liquefied gas, and to cool by increasing the distance until direct contact with the low-temperature liquefied gas. A time for sufficiently pre-cooling the object can be secured.

さらに、同一の冷却装置内で気化した低温ガスによる予冷と、低温液化ガスの直接接触による冷却とを同時に行うことになるので、低温液化ガスの潜熱を効率的に利用することができるとともに、冷却装置自体をコンパクトにすることができる。   Furthermore, since pre-cooling with the low-temperature gas vaporized in the same cooling device and cooling by direct contact with the low-temperature liquefied gas are performed at the same time, the latent heat of the low-temperature liquefied gas can be used efficiently and cooling The device itself can be made compact.

本発明を適用した冷却装置の概略構成図である。It is a schematic block diagram of the cooling device to which this invention is applied. 冷却処理部の取り出し説明図である。It is taking out explanatory drawing of a cooling process part. 低温液化ガス噴出ノズルの一実施形態を示す取り出し図で、図3aは正面図、図3bは縦断面図である。FIG. 3A is a front view and FIG. 3B is a longitudinal sectional view showing one embodiment of a low-temperature liquefied gas jet nozzle. バルブ開度と冷却装置内温度の経過時間変化との関係を示すグラフである。It is a graph which shows the relationship between a valve opening degree and the elapsed time change of the temperature in a cooling device. 低温液化ガスの重量と冷却装置内温度の経過時間変化との関係を示すグラフである。It is a graph which shows the relationship between the weight of a low-temperature liquefied gas, and the elapsed time change of the temperature in a cooling device.

図1は、冷却装置の一例を示す概略構成図である。この冷却装置(1)は、筒状に形成された冷却処理部(2)と、冷却処理部(2)の内部を走行して冷却される冷却対象物(3)と、冷却処理部(2)に冷却用冷媒)を供給する冷却冷媒供給部(4)とを具備している。   FIG. 1 is a schematic configuration diagram illustrating an example of a cooling device. The cooling device (1) includes a cooling processing unit (2) formed in a cylindrical shape, a cooling object (3) that is cooled by running inside the cooling processing unit (2), and a cooling processing unit (2 And a cooling refrigerant supply unit (4) for supplying a cooling refrigerant).

図2に示すように冷却処理部(2)は、冷却対象物が走行する筒状空間(5)をステンレス管(6)で構成してあり、冷却冷媒となる低温液化ガスを走行路の中心軸方向に向かって噴出する環状の冷却冷媒噴出ノズル(7)が、筒状空間(5)の中央よりも冷却対象物走行方向下手側部分(出口側)に設置してある。   As shown in FIG. 2, the cooling processing unit (2) includes a stainless steel tube (6) in which a cylindrical space (5) in which an object to be cooled travels, and a low-temperature liquefied gas serving as a cooling refrigerant is placed in the center of the travel path. An annular cooling refrigerant jet nozzle (7) that jets out in the axial direction is installed on the lower side (outlet side) in the cooling object traveling direction than the center of the cylindrical space (5).

この冷却冷媒噴出ノズル(7)は低温液化ガス貯槽(8)に低温液化ガス導出路(9)を含む冷却冷媒供給部(4)で連通接続されている。低温液化ガス貯槽(8)には低温液化ガスとしての液体窒素が貯蔵されている。低温液化ガス導出路(9)には、低温液化ガス貯槽(8)側から、サブクーラー(10)、流量調整弁(11)が装着してあり、冷却処理部(2)の筒状空間(5)の入口側(冷却対象物走行方向上手側)での気化ガス温度を温度調整器(12)にて一定制御し、その出力信号を流量調整弁(11)にフィードバックすることで、冷却液噴出ノズル(7)からの液体窒素噴出量を微調整できるようにしてある。   The cooling refrigerant jet nozzle (7) is connected to the low temperature liquefied gas storage tank (8) through a cooling refrigerant supply section (4) including a low temperature liquefied gas lead-out path (9). Liquid nitrogen as a low temperature liquefied gas is stored in the low temperature liquefied gas storage tank (8). A subcooler (10) and a flow rate adjustment valve (11) are attached to the low temperature liquefied gas lead-out path (9) from the low temperature liquefied gas storage tank (8) side, and a cylindrical space ( 5) The temperature of the vaporized gas at the inlet side (the upper side in the running direction of the object to be cooled) is controlled by the temperature regulator (12), and the output signal is fed back to the flow rate adjustment valve (11), so that the coolant The amount of liquid nitrogen ejected from the ejection nozzle (7) can be finely adjusted.

筒状空間(5)の出口側に配置されている冷却冷媒噴出ノズル(7)は、図3に示すように、内側を冷却対象物(3)の走行経路とした環状に形成してあり、この冷却冷媒噴出ノズル(7)の内周面に、口径0.4mmの冷却冷媒噴出孔(ノズル口)(13)が周面等間隔で8個形成してある。この冷却冷媒噴出孔(13)は、その噴出軸が冷却対象物(3)の走行軸線に直交する平面に対して上流側に30度の角度をなすように形成してある。このように冷却冷媒としての低温液化ガスを上流側に傾けた状態で噴出すると、冷却対象物(3)の表面に噴霧した低温液化ガスが直接的に作用するとともに、噴霧した低温液化ガスは走行方向上流側(入口側)への噴出成分を有することになるから、噴出に伴い気化した気化ガスの走行方向上流側への移動成分が形成され、冷却対象物(3)の低温ガスによる予冷をホース流入側から徐々に行うことができる。   As shown in FIG. 3, the cooling refrigerant jet nozzle (7) arranged on the outlet side of the cylindrical space (5) is formed in an annular shape with the inside as a travel path of the cooling object (3). On the inner peripheral surface of the cooling refrigerant jet nozzle (7), eight cooling refrigerant jet holes (nozzle ports) (13) having a diameter of 0.4 mm are formed at equal intervals on the peripheral surface. The cooling refrigerant jet hole (13) is formed such that its jet axis forms an angle of 30 degrees upstream with respect to a plane perpendicular to the traveling axis of the cooling object (3). When the low-temperature liquefied gas as the cooling refrigerant is jetted in a state inclined to the upstream side, the sprayed low-temperature liquefied gas directly acts on the surface of the cooling object (3), and the sprayed low-temperature liquefied gas travels. Since there is a component ejected to the upstream side (inlet side) in the direction, a moving component of the vaporized gas that has vaporized due to the ejection to the upstream side in the traveling direction is formed, and the cooling target (3) is precooled by the low-temperature gas. This can be done gradually from the hose inlet side.

この実施形態では、低温液化ガス貯槽(8)からの低温液化ガス導出路(9)の低温液化ガス貯槽(8)にサブクーラを配置していることから、低温液化ガスが気液混合状態であってもサブクーラーの過冷却効果により冷却冷媒を期待の少ない液体の状態に変えて安定供給することが可能となるうえ、冷却処理部(2)の入口側出冷却冷媒が既に気化して温度が安定していることから、前記したように冷却処理部(2)の筒状空間(5)の入口側(冷却対象物走行方向上手側)での気化ガス温度を検出して温度調整器(12)にて一定に制御している。   In this embodiment, since the subcooler is arranged in the low temperature liquefied gas storage tank (8) of the low temperature liquefied gas lead-out path (9) from the low temperature liquefied gas storage tank (8), the low temperature liquefied gas is in a gas-liquid mixed state. However, the supercooling effect of the subcooler makes it possible to stably supply the cooling refrigerant by changing it to a less expected liquid state, and the inlet side outlet cooling refrigerant of the cooling processing unit (2) has already vaporized and the temperature is increased. Since it is stable, as described above, the temperature regulator (12) detects the vaporized gas temperature on the inlet side (upper side in the running direction of the object to be cooled) of the cylindrical space (5) of the cooling processing unit (2). ) Is controlled constantly.

図4は、バルブ開度6〜30%の範囲で−100℃を設定値(目標値)とした場合の経過時間と冷却装置入口での温度変化を示している。また、図5は、−100℃を設定値(目標値)とした場合の経過時間と冷却装置入口での温度変化と冷却液(液体窒素)の重量変化を示している。   FIG. 4 shows an elapsed time and a temperature change at the inlet of the cooling device when −100 ° C. is set as a set value (target value) in a valve opening range of 6 to 30%. FIG. 5 shows the elapsed time, the temperature change at the inlet of the cooling device, and the weight change of the coolant (liquid nitrogen) when −100 ° C. is set as the set value (target value).

これらの検出結果から、冷却装置入口での温度は約−100℃で安定し、冷却液の流量は0.13Kg/minで安定制御できていることがわかる。   From these detection results, it can be seen that the temperature at the inlet of the cooling device is stable at about −100 ° C., and the flow rate of the cooling liquid can be stably controlled at 0.13 kg / min.

1…冷却装置、2…冷却処理部、3…冷却対象物、4…冷却冷媒供給部、7…冷却冷媒噴出ノズル、9…低温液化ガス導出路、11…流量調整弁、12…温度調整器、13…冷却冷媒噴出孔(ノズル口)。  DESCRIPTION OF SYMBOLS 1 ... Cooling device, 2 ... Cooling process part, 3 ... Cooling target object, 4 ... Cooling refrigerant supply part, 7 ... Cooling refrigerant jet nozzle, 9 ... Low-temperature liquefied gas lead-out path, 11 ... Flow control valve, 12 ... Temperature regulator , 13 ... Cooling refrigerant ejection holes (nozzle ports).

Claims (2)

トンネル型に形成した冷却処理部(2)の内部で冷却処理部(2)の中心軸部分を冷却対象物(3)が走行するトンネル型の冷却装置であって、該冷却処理部(2)における移動方向中心よりも冷却対象物搬出口側にケーシング外周面側から走行経路中心に向かって低温液化ガスを噴出する冷却冷媒噴出ノズル(7)を配置し、この冷却冷媒噴出ノズル(7)のノズル口(13)が該ノズル口(13)から噴出される低温液化ガスの噴出方向が冷却処理部(2)における冷却対象物搬入側となるように傾斜させてあることを特徴としたトンネル式冷却装置。   A tunnel-type cooling device in which a cooling object (3) travels on a central axis portion of a cooling processing unit (2) inside a tunnel-type cooling processing unit (2), the cooling processing unit (2) A cooling refrigerant jet nozzle (7) for jetting a low-temperature liquefied gas from the outer peripheral surface side of the casing toward the center of the travel path is arranged closer to the cooling object carry-out side than the center of the moving direction in Tunnel type characterized in that the nozzle port (13) is inclined so that the jetting direction of the low-temperature liquefied gas ejected from the nozzle port (13) is on the cooling object carrying side in the cooling processing unit (2). Cooling system. 冷却冷媒噴出ノズル(7)への低温液化ガス供給部(4)に低温液化ガスの流量調整弁(11)と、冷却処理部(2)内の温度に基づき前記流量調整弁(11)の開度を制御する温度調整器(12)とを配置し、この流量調整弁(11)の開度を冷却室の冷却対象物搬入側で検出した室内温度に基づき制御する請求項1に記載したトンネル式冷却装置。   The low-temperature liquefied gas supply unit (4) to the cooling refrigerant jet nozzle (7) has a low-temperature liquefied gas flow rate adjustment valve (11) and the flow rate adjustment valve (11) is opened based on the temperature in the cooling processing unit (2). And a temperature regulator (12) for controlling the temperature, and the opening of the flow rate regulating valve (11) is controlled based on the room temperature detected on the cooling object carry-in side of the cooling chamber. Cooling device.
JP2016111474A 2016-06-03 2016-06-03 Tunnel type cooler Pending JP2017219206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016111474A JP2017219206A (en) 2016-06-03 2016-06-03 Tunnel type cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016111474A JP2017219206A (en) 2016-06-03 2016-06-03 Tunnel type cooler

Publications (1)

Publication Number Publication Date
JP2017219206A true JP2017219206A (en) 2017-12-14

Family

ID=60657333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016111474A Pending JP2017219206A (en) 2016-06-03 2016-06-03 Tunnel type cooler

Country Status (1)

Country Link
JP (1) JP2017219206A (en)

Similar Documents

Publication Publication Date Title
US9593390B2 (en) Heat treatment method
US20120028202A1 (en) Heat treatment device and heat treatment method
CN105492135B (en) Hot-forming cooling means and heat pressing forming device
JP5851136B2 (en) Cooling device and cooling method for metal tube after heating
KR101314835B1 (en) Heat treatment apparatus and heat treatment method
KR20140007914A (en) Nozzle header
AU2016355170B2 (en) Self-adjusting cryogenic food freezer
CN101293229B (en) Dual-purpose refrigerating device for spraying gas and mist
CN102639725A (en) Mist cooling apparatus, heat treatment apparatus, and mist cooling method
JPH08114358A (en) Liquid freezing mixture feed system
JP2017219206A (en) Tunnel type cooler
CN114126782B (en) Secondary cooling method and secondary cooling device for continuous casting cast sheet
JPH07294085A (en) Freezing processing method and freezing processing device
JP2008133983A (en) Ultra low temperature gas generator
US20170038117A1 (en) Pulsed liquid-gas entrained cryogen flow generator
JP5615248B2 (en) Dry ice snow injection device and dry ice snow injection method
JP4388499B2 (en) Pipe cooling equipment and cooling method
CN102747213A (en) Cooling method for continuous heat treatment of high-strength steel
KR20090071136A (en) Apparatus for cooling hot wire
JP2019128137A (en) Cooling device and cooling method
JPS61108462A (en) Cooling method of metallic mold
JP2014189880A (en) Rail cooling header
EP3318825B1 (en) Method and apparatus for cooling objects with a cryogenic liquid using fluidic oscillating nozzles
US10907881B2 (en) Mechanical snow and ice removal for impinger
RU2077683C1 (en) Process of production of flow of ice granules

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210203