JP2017219098A - Rotation synchronous phase detection device and magnetic bearing device - Google Patents

Rotation synchronous phase detection device and magnetic bearing device Download PDF

Info

Publication number
JP2017219098A
JP2017219098A JP2016113134A JP2016113134A JP2017219098A JP 2017219098 A JP2017219098 A JP 2017219098A JP 2016113134 A JP2016113134 A JP 2016113134A JP 2016113134 A JP2016113134 A JP 2016113134A JP 2017219098 A JP2017219098 A JP 2017219098A
Authority
JP
Japan
Prior art keywords
rotation
speed
rotation speed
rotating body
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016113134A
Other languages
Japanese (ja)
Other versions
JP6911284B2 (en
Inventor
隼人 越智
Hayato Ochi
隼人 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2016113134A priority Critical patent/JP6911284B2/en
Publication of JP2017219098A publication Critical patent/JP2017219098A/en
Application granted granted Critical
Publication of JP6911284B2 publication Critical patent/JP6911284B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To measure a rotation synchronous phase of the body of rotation of a magnetic bearing device accurately, inexpensively, and stably.SOLUTION: With a rotation synchronous phase detection device 4, when a first revolution speed v1 is accelerating, a speed determination part 43 selects the first revolution speed v1 or a second revolution speed v2 as a revolution speed v for providing to a phase operation part 44 based on the difference between the first revolution speed v1 and the maximum second revolution speed v2_max. When the first revolution speed v1 is decelerating, the speed determination part selects the first revolution speed v1 or the second revolution speed v2 as the revolution speed v for providing to the phase operation part 44 based on the difference between the first revolution speed v1 and the minimum second revolution speed v2_min. In addition, the first revolution speed v1 is detected based on the x shaft displacement and a zero-cross cycle of the y shaft displacement of the body 2 of rotation. The second revolution speed v2 is detected based on the d shaft displacement when the q shaft displacement becomes 0, which is obtained by the dq coordinate conversion on the basis of the x shaft displacement and the y shaft displacement of the body 2 of rotation.SELECTED DRAWING: Figure 2

Description

本発明は磁気軸受やベアリングレスモータに例示される磁気軸受装置の回転体の変位信号に基づき回転体の回転速度を検出する技術に関する。   The present invention relates to a technique for detecting the rotational speed of a rotating body based on a displacement signal of the rotating body of a magnetic bearing device exemplified by a magnetic bearing and a bearingless motor.

磁気軸受装置は、磁性体である回転体を磁気浮上により支持する装置であって、回転体の振れ回りの変位信号に基づき当該回転体を浮上させる電磁石に供給する励磁電流をフィードバック制御することにより、回転体の浮上位置を制御する(例えば、特許文献1)。   A magnetic bearing device is a device that supports a rotating body, which is a magnetic body, by magnetic levitation, and feedback-controls an excitation current supplied to an electromagnet that levitates the rotating body based on a displacement signal about the swing of the rotating body. The floating position of the rotating body is controlled (for example, Patent Document 1).

図9に示したように、特許文献1の磁気軸受装置9において、電流制御部3は、電磁石1x,1yにより浮上させた回転体2を回転制御する。回転体2が回転すると回転体2の重心と幾何学的中心の不一致により、回転体2の振り回りが発生する。この振れ回りの変位信号(X,Y)は図示省略の変位センサにより検出される。同図に記載のXはX軸方向(回転体2の一方の径方向)の振れ回りの変位信号を示し、YはY軸方向(当該一方の径方向と直交する他方の径方向)の振れ回りの変位信号を示す。また、同時に回転同期位相θが図示省略のロータリーエンコーダ若しくはレゾルバにより検出される。この検出された回転同期位相θは電流制御部3のトラッキングフィルタ機能により変位信号の回転同期成分が除去される。電流制御部3は、この回転同期成分が除去された変位信号に基づく電流指令値を算出し、この電流指令値に基づく励磁電流Ix、Iyを電磁石1x,1yの励磁コイルに各々供給する。以上のように、変位信号から回転同期成分が除去されることにより、変位座標軸の原点で回転子が運動することになる。   As shown in FIG. 9, in the magnetic bearing device 9 of Patent Document 1, the current control unit 3 controls the rotation of the rotating body 2 levitated by the electromagnets 1x and 1y. When the rotating body 2 rotates, the rotating body 2 swings due to a mismatch between the center of gravity of the rotating body 2 and the geometric center. The displacement signal (X, Y) around this swing is detected by a displacement sensor (not shown). In the figure, X represents a displacement signal around the swing in the X-axis direction (one radial direction of the rotating body 2), and Y represents a swing signal in the Y-axis direction (the other radial direction orthogonal to the one radial direction). The surrounding displacement signal is shown. At the same time, the rotational synchronization phase θ is detected by a rotary encoder or resolver (not shown). The detected rotation synchronization phase θ is removed from the rotation synchronization component of the displacement signal by the tracking filter function of the current control unit 3. The current control unit 3 calculates a current command value based on the displacement signal from which the rotational synchronization component is removed, and supplies excitation currents Ix and Iy based on the current command value to the excitation coils of the electromagnets 1x and 1y, respectively. As described above, by removing the rotation synchronization component from the displacement signal, the rotor moves at the origin of the displacement coordinate axis.

変位信号は正弦波に近似した波形を成している。変位信号から正弦波の位相への近似法としては、以下の2つの手法が知られている。手法[1]は、変位信号のゼロクロス周期に基づき算出された速度の積分により正弦波の位相を算出する。手法[2]は、変位信号のq軸信号に対してPLL(Phase Locked Loop)を適用して速度を求め、これを積分して正弦波の位相を算出する。   The displacement signal has a waveform approximating a sine wave. As an approximation method from the displacement signal to the phase of the sine wave, the following two methods are known. Method [1] calculates the phase of the sine wave by integrating the velocity calculated based on the zero cross period of the displacement signal. Method [2] calculates the speed by applying a PLL (Phase Locked Loop) to the q-axis signal of the displacement signal and integrates it to calculate the phase of the sine wave.

手法[1]について図10を参照しながら具体的に説明する。変位座標軸の原点(回転子の幾何学的中心点若しくは二対のセンサの直交点)から観て変位信号がゼロクロスした間隔の逆数を周波数fとして、式(1)に示すモータの速度を算出できる。この速度に対して式(2)を適用することにより回転同期位相θが算出される。図示のブロック構成は、x軸方向の変位信号のゼロクロスに基づき周波数を算出する構成例である。尚、y軸方向の変位信号のゼロクロス、または、x軸方向、y軸方向の両方の変位信号のゼロクロスに基づいても同様の方法により周波数を算出できる。   The method [1] will be specifically described with reference to FIG. The speed of the motor shown in the equation (1) can be calculated with the frequency f as the reciprocal of the interval at which the displacement signal crosses zero when viewed from the origin of the displacement coordinate axis (the geometric center point of the rotor or the orthogonal point of the two pairs of sensors). . By applying equation (2) to this speed, the rotational synchronization phase θ is calculated. The illustrated block configuration is a configuration example in which the frequency is calculated based on the zero cross of the displacement signal in the x-axis direction. The frequency can be calculated by the same method based on the zero cross of the displacement signal in the y-axis direction or the zero cross of the displacement signal in both the x-axis direction and the y-axis direction.

Figure 2017219098
Figure 2017219098

手法[2]について図11を参照しながら具体的に説明する。x軸及びy軸の変位信号に対して回転同期位相θによる2相dq変換を行い、d軸変位信号(回転体2の磁束方向の変位の信号)とq軸変位信号(当該磁束方向と直交する方向の変位の信号)を算出する。回転に振れ回りがない場合、変位信号は回転に同期した成分であるd軸変位信号のみになるので、d軸変位信号に直角な成分であるq軸変位信号は0となる。これを利用し、q軸変位信号にローパスフィルタ(LPF)により直流成分のみを取り出し、これが0となるようにフィードバック制御を行う。q軸変位信号の直流成分をPI制御により回転速度vと一致するように調整し、この回転速度vを積分することにより、変位信号の回転同期位相θを算出する。このようにロータリーエンコーダやレゾルバを用いずに回転体の振れ回りの変位信号から回転同期位相を算出できる。   The method [2] will be specifically described with reference to FIG. Two-phase dq conversion is performed on the x-axis and y-axis displacement signals by the rotation synchronization phase θ, and the d-axis displacement signal (the displacement signal in the magnetic flux direction of the rotating body 2) and the q-axis displacement signal (in orthogonal to the magnetic flux direction). The displacement signal in the direction to be calculated) is calculated. When there is no runout in the rotation, the displacement signal is only the d-axis displacement signal that is a component synchronized with the rotation, so the q-axis displacement signal that is a component perpendicular to the d-axis displacement signal is zero. Using this, only a direct current component is extracted from the q-axis displacement signal by a low-pass filter (LPF), and feedback control is performed so that it becomes zero. The DC component of the q-axis displacement signal is adjusted by PI control so as to coincide with the rotation speed v, and the rotation synchronization phase θ of the displacement signal is calculated by integrating the rotation speed v. In this way, the rotation synchronization phase can be calculated from the displacement signal around the rotating body without using a rotary encoder or resolver.

特開平8−28562号公報JP-A-8-28562 特開2012−110166号公報JP 2012-110166 A

従来(特許文献1)の回転同期位相の検出法において、回転体の振れ回り変位抑制に適用されているクロックパルス検出は回転体に付帯されるロータリーエンコーダにより行われている。ロータリーエンコーダは高価であるので、回転同期位相の検出コストが高くなる。また、ロータリーエンコーダは回転軸に取り付けられるので高速回転に適さない。仮に、ロータリーエンコーダの代わりにレゾルバを適用しようとしても高コストとなる。   In the conventional method for detecting the rotational synchronization phase (Patent Document 1), clock pulse detection applied to suppress the rotational displacement of the rotating body is performed by a rotary encoder attached to the rotating body. Since the rotary encoder is expensive, the detection cost of the rotation synchronization phase is high. In addition, the rotary encoder is not suitable for high-speed rotation because it is attached to the rotating shaft. Even if a resolver is applied instead of the rotary encoder, the cost becomes high.

特許文献1には、ロータリーエンコーダやレゾルバを要することなく変位信号から速度を検出する手法の記載があるが、この手法は1回転当たり数回の検出しか行えず、さらに、ノイズにより検出するタイミングが変化するので、検出精度が低くなる。   Patent Document 1 describes a method for detecting a speed from a displacement signal without requiring a rotary encoder or resolver. However, this method can only detect several times per rotation, and further has a timing to detect due to noise. Since it changes, detection accuracy becomes low.

これに対して、手法[1]は、ゼロクロスする点を検出するので、検出値は回転速度の急激な変化の影響を受けにくい特徴をもつ。また、他の変位信号から速度を検出する手法として、前述の手法[2]が存在するが、この手法は変位信号をそのまま検出値に変換しているので、検出のタイミングは変位信号と同じであり高精度な検出が可能となる。   On the other hand, since the method [1] detects a zero-crossing point, the detected value has a characteristic that the detection value is hardly affected by a sudden change in the rotation speed. In addition, the method [2] described above exists as a method for detecting the velocity from other displacement signals. However, since this method converts the displacement signal into a detection value as it is, the detection timing is the same as the displacement signal. Highly accurate detection is possible.

しかしながら、上記のいずれの手法も、回転速度指令やモータ負荷などの急変により回転速度が急激に変化すると変位信号が大きく変化するので安定性に問題がある。   However, any of the above methods has a problem in stability because the displacement signal changes greatly when the rotation speed changes suddenly due to a sudden change in the rotation speed command or the motor load.

本発明は、上記の事情に鑑み、磁気軸受装置の回転体の回転同期位相を低廉且つ安定的に精度よく測定することを課題とする。   In view of the above circumstances, an object of the present invention is to inexpensively and stably measure the rotational synchronization phase of a rotating body of a magnetic bearing device with high accuracy.

そこで、本発明の回転同期位相検出装置は、磁気浮上する回転体の一方の径方向の変位と当該一方の径方向と直交する他方の径方向の変位のゼロクロス周期に基づき当該回転体の第一の回転速度を検出する第一速度検出部と、前記一方の径方向の変位と前記他方の径方向の変位とに基づく座標変換により得られた前記回転体の磁束方向と直交する方向の変位が0となるときの当該磁束方向の変位に基づき当該回転体の第二の回転速度を検出する第二速度検出部と、前記第一の回転速度と前記第二の回転速度のいずれかに基づき前記回転体の回転同期位相を算出する位相演算部とを備える。   Therefore, the rotational synchronization phase detection device of the present invention is based on the zero cross period of one radial displacement of the magnetically levitated rotating member and the other radial displacement orthogonal to the one radial direction. A displacement in a direction perpendicular to the magnetic flux direction of the rotating body obtained by coordinate conversion based on the first speed detection unit for detecting the rotation speed of the first rotation direction and the displacement in the one radial direction and the displacement in the other radial direction. A second speed detector for detecting a second rotational speed of the rotating body based on the displacement in the magnetic flux direction when 0, and the first rotational speed and the second rotational speed A phase calculator that calculates a rotation synchronization phase of the rotating body.

前記回転同期位相検出装置の一態様は、前記第一の回転速度が加速中である場合に当該第一の回転速度と最大の前記第二の回転速度との差に基づき前記位相演算部に供する回転速度として当該第一の回転速度と当該第二の回転速度のいずれかを選択する一方で、前記第一の回転速度が減速中である場合に当該第一の回転速度と最小の前記第二の回転速度との差に基づき前記位相演算部に供する回転速度として当該第一の回転速度と当該第二の回転速度のいずれかを選択する速度決定部をさらに備える。   One aspect of the rotation-synchronized phase detection device provides the phase calculation unit based on a difference between the first rotation speed and the maximum second rotation speed when the first rotation speed is accelerating. While selecting either the first rotation speed or the second rotation speed as the rotation speed, when the first rotation speed is decelerating, the first rotation speed and the minimum second And a speed determination unit that selects either the first rotation speed or the second rotation speed as the rotation speed to be provided to the phase calculation unit based on the difference between the rotation speed and the second rotation speed.

前記回転同期位相検出装置の一態様は、前記位相演算部に供される回転速度の変化率を制限する変化率制限処理部をさらに備える。   One aspect of the rotation-synchronized phase detection device further includes a change rate limiting processing unit that limits the change rate of the rotation speed provided to the phase calculation unit.

本発明の磁気軸受装置の一態様は、電磁石により磁気浮上する回転体の一方の径方向の変位と当該一方の径方向と直交する他方の径方向の変位とに基づき当該回転体の回転同期位相を検出する上記の回転同期位相検出装置と、前記一方の径方向の変位と前記他方の径方向の変位と前記検出された回転同期位相とに基づき前記電磁石に供する励磁電流を制御する電流制御部とを備える。   One aspect of the magnetic bearing device of the present invention is based on the rotational synchronization phase of the rotating body based on one radial displacement of the rotating body magnetically levitated by the electromagnet and the other radial displacement orthogonal to the one radial direction. And a current control unit that controls an excitation current provided to the electromagnet based on the one radial displacement, the other radial displacement, and the detected rotational synchronization phase. With.

以上の本発明によれば磁気軸受装置の回転体の回転同期位相を低廉且つ安定的に精度よく測定できる。   According to the present invention described above, the rotational synchronization phase of the rotating body of the magnetic bearing device can be measured inexpensively and stably with high accuracy.

本発明の実施形態における磁気軸受装置のブロック構成図。The block block diagram of the magnetic bearing apparatus in embodiment of this invention. 同実施形態における回転同期位相検出装置のブロック構成図。The block block diagram of the rotation synchronous phase detection apparatus in the embodiment. 同実施形態における回転同期位相の検出のフローチャート。The flowchart of the detection of the rotation synchronous phase in the embodiment. 手法[1]による回転速度の経時的変化。Change in rotational speed over time by method [1]. 手法[2]による回転速度の経時的変化。Change in rotational speed over time by method [2]. 回転体の加速時における実際の回転体の回転速度、手法[2]により検出した回転速度及び最大検出回転速度の経時的変化。Changes in the actual rotational speed of the rotating body during acceleration of the rotating body, the rotational speed detected by the method [2], and the maximum detected rotational speed over time. 回転体の加速時における実際の回転体の回転速度、手法[1]により検出した回転速度、手法[2]により検出した回転速度及び同実施形態により決定された回転速度の経時的変化。Changes in the rotational speed of the actual rotating body during acceleration of the rotating body, the rotational speed detected by the technique [1], the rotational speed detected by the technique [2], and the rotational speed determined by the embodiment. 本発明の他の実施形態における回転同期位相検出装置のブロック構成図。The block block diagram of the rotation synchronous phase detection apparatus in other embodiment of this invention. 従来の磁気軸受装置のブロック構成図。The block block diagram of the conventional magnetic bearing apparatus. 手法[1]に基づく回転同期位相検出方式のブロック構成図。The block block diagram of the rotation synchronous phase detection system based on the method [1]. 手法[2]に基づく回転同期位相検出方式のブロック構成図。The block block diagram of the rotation synchronous phase detection system based on method [2].

以下に図面を参照しながら本発明の実施形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

[第一実施形態]
図1に例示された磁気軸受装置10は、電磁石1x,1yと回転体2と電流制御部3と回転同期位相検出装置4を備える。電磁石1x,1yは回転体2を磁気浮上させる。電流制御部3は回転体2のx軸変位(一方の径方向の変位)とy軸変位(当該一方の径方向と直交する他方の径方向の変位)と回転同期位相θとに基づき電磁石1x,1yに供する励磁電流Ix,Iyを算出する。回転同期位相検出装置4は電流制御部3に供する回転体2の回転同期位相θを検出する。
[First embodiment]
A magnetic bearing device 10 illustrated in FIG. 1 includes electromagnets 1x and 1y, a rotating body 2, a current control unit 3, and a rotation synchronization phase detection device 4. The electromagnets 1x and 1y magnetically float the rotating body 2. The current controller 3 is based on the x-axis displacement (displacement in one radial direction), the y-axis displacement (displacement in the other radial direction orthogonal to the one radial direction) of the rotating body 2 and the rotation synchronization phase θ. , 1y, excitation currents Ix and Iy are calculated. The rotation synchronization phase detector 4 detects the rotation synchronization phase θ of the rotating body 2 provided to the current control unit 3.

電磁石1x,1yは、図1に示したように、回転体2を介して対向して一対に配置されている。回転体2のx軸変位は、この一対の電磁石1xにより磁気浮上した回転体2のx軸方向の振れ回りが図示省略された周知の変位センサにより検出されたものである。一方、回転体2のy軸変位は、この一対の電磁石1yにより磁気浮上した回転体2のy軸方向の振れ回りが図示省略された周知の変位センサにより検出されたものである。   As shown in FIG. 1, the electromagnets 1 x and 1 y are arranged in a pair so as to face each other with the rotating body 2 interposed therebetween. The x-axis displacement of the rotating body 2 is detected by a well-known displacement sensor whose illustration is omitted in the x-axis direction of the rotating body 2 magnetically levitated by the pair of electromagnets 1x. On the other hand, the y-axis displacement of the rotating body 2 is detected by a well-known displacement sensor whose illustration is omitted in the y-axis direction of the rotating body 2 magnetically levitated by the pair of electromagnets 1y.

回転同期位相検出装置4は、図2に示したように、第一速度検出部41と第二速度検出部42と速度決定部43と位相演算部44を備える。   As illustrated in FIG. 2, the rotation synchronization phase detection device 4 includes a first speed detection unit 41, a second speed detection unit 42, a speed determination unit 43, and a phase calculation unit 44.

第一速度検出部41は、回転体2のx軸変位とy軸変位のゼロクロス周期に基づき回転体2の第一の回転速度v1を検出する。   The first speed detector 41 detects the first rotational speed v1 of the rotating body 2 based on the zero cross period of the x-axis displacement and the y-axis displacement of the rotating body 2.

第二速度検出部42は、回転体2のx軸変位とy軸変位とに基づくdq座標変換により得られたq軸変位(回転体2の磁束方向と直交する方向の変位)が0となるときのd軸変位(当該磁束方向の変位)に基づき回転体2の第二の回転速度v2を検出する。   In the second speed detector 42, the q-axis displacement (displacement in the direction orthogonal to the magnetic flux direction of the rotating body 2) obtained by dq coordinate conversion based on the x-axis displacement and the y-axis displacement of the rotating body 2 becomes zero. The second rotational speed v2 of the rotating body 2 is detected based on the d-axis displacement (displacement in the magnetic flux direction).

速度決定部43は、第一の回転速度v1が加速中である場合、第一の回転速度v1と最大の第二の回転速度v2_maxとの差に基づき位相演算部44に供する回転速度vとして第一の回転速度v1と第二の回転速度v2のいずれかを選択する。一方、第一の回転速度v1が減速中である場合、第一の回転速度v1と最小の第二の回転速度v2_minとの差に基づき位相演算部44に供する回転速度vとして第一の回転速度v1と第二の回転速度v2のいずれかを選択する。   When the first rotation speed v1 is accelerating, the speed determination unit 43 sets the rotation speed v to be supplied to the phase calculation unit 44 based on the difference between the first rotation speed v1 and the maximum second rotation speed v2_max. One of the first rotation speed v1 and the second rotation speed v2 is selected. On the other hand, when the first rotational speed v1 is decelerating, the first rotational speed is used as the rotational speed v provided to the phase calculation unit 44 based on the difference between the first rotational speed v1 and the minimum second rotational speed v2_min. Either v1 or the second rotation speed v2 is selected.

位相演算部44は、速度決定部43から回転速度vとして供された第一の回転速度v1,第二の回転速度v2のいずれかを前述の式(2)に基づく演算に供して回転体2の回転同期位相θを算出する。   The phase calculation unit 44 uses either the first rotation speed v1 or the second rotation speed v2 provided as the rotation speed v from the speed determination unit 43 for the calculation based on the above-described equation (2), thereby rotating the rotating body 2. Is calculated.

図3のフローチャートを参照しながら本実施形態の回転体2の回転同期位相θが検出される過程について説明する。   A process of detecting the rotation synchronization phase θ of the rotating body 2 of the present embodiment will be described with reference to the flowchart of FIG.

S1:第一速度検出部41は、前記変位センサにより検出された回転体2のx軸変位とy軸変位のゼロクロス周期に基づき回転体2の第一の回転速度v1を検出する(以下、手法[1])。一方、前記変位センサにより検出された回転体2のx軸変位とy軸変位のdq変換により得られたd軸変位とq軸変位のうちのq軸変位が0となるときのd軸変位に基づき回転体2の第二の回転速度v2を検出する(以下、手法[2])。   S1: The first speed detection unit 41 detects the first rotation speed v1 of the rotating body 2 based on the zero cross period of the x-axis displacement and the y-axis displacement of the rotating body 2 detected by the displacement sensor (hereinafter referred to as a technique). [1]). On the other hand, the d-axis displacement when the q-axis displacement of the d-axis displacement and the q-axis displacement obtained by dq conversion of the x-axis displacement and the y-axis displacement of the rotating body 2 detected by the displacement sensor becomes zero. Based on this, the second rotational speed v2 of the rotating body 2 is detected (hereinafter referred to as method [2]).

S2:速度決定部43は、第一の回転速度v1が加速中であるか減速中であるかの判定を行う。   S2: The speed determination unit 43 determines whether the first rotation speed v1 is accelerating or decelerating.

そして、第一の回転速度v1の値が増加して回転体2が加速中であると判定した場合、速度決定部43は第一の回転速度v1と最大の第二の回転速度v2_maxとの差の絶対値が閾値以上であるか否かの判断を行う(図3のS2)。尚、最大の第二の回転速度v2_maxは、所定時間内でサンプリングされた第二の回転速度v2の最大値を意味する。   When it is determined that the value of the first rotation speed v1 is increased and the rotator 2 is accelerating, the speed determination unit 43 determines the difference between the first rotation speed v1 and the maximum second rotation speed v2_max. It is determined whether the absolute value of is greater than or equal to a threshold value (S2 in FIG. 3). The maximum second rotational speed v2_max means the maximum value of the second rotational speed v2 sampled within a predetermined time.

一方、第一の回転速度v1の値が減少して回転体2が減速中であると判定した場合、速度決定部43は第一の回転速度v1と最小の第二の回転速度v2_minとの差の絶対値が閾値以上であるか否かの判断を行う。尚、最小の第二の回転速度v2_minは、所定時間内でサンプリングされた第二の回転速度v2の最小値を意味する。   On the other hand, when the value of the first rotation speed v1 decreases and it is determined that the rotating body 2 is decelerating, the speed determination unit 43 determines the difference between the first rotation speed v1 and the minimum second rotation speed v2_min. It is determined whether the absolute value of is greater than or equal to a threshold value. The minimum second rotation speed v2_min means the minimum value of the second rotation speed v2 sampled within a predetermined time.

S3:前記絶対値が閾値以上である場合、速度決定部43は第一の回転速度v1を選択する。   S3: If the absolute value is greater than or equal to the threshold value, the speed determination unit 43 selects the first rotation speed v1.

S4:前記絶対値が閾値未満である場合、速度決定部43は第二の回転速度v2を選択する。   S4: When the absolute value is less than the threshold value, the speed determination unit 43 selects the second rotation speed v2.

S5:速度決定部43は、S3で選択した第一の回転速度v1またはS4で選択した第二の回転速度v2を位相演算部44での演算に供する回転速度vとして決定する。   S5: The speed determination unit 43 determines the first rotation speed v1 selected in S3 or the second rotation speed v2 selected in S4 as the rotation speed v used for the calculation in the phase calculation unit 44.

S6:位相演算部44は、S5で決定された回転速度vを式(2)に基づく演算に供して回転体2の回転同期位相θを算出する。この回転同期位相θは電流制御部3に供される。   S6: The phase calculation unit 44 calculates the rotation synchronization phase θ of the rotating body 2 by using the rotation speed v determined in S5 for calculation based on the equation (2). This rotation synchronization phase θ is provided to the current control unit 3.

そして、電流制御部3は回転体2のx軸変位並びにy軸変位と回転同期位相検出装置4から供された回転体2の回転同期位相θとに基づき電磁石1x,1yに供する励磁電流Ix,Iyを算出する。   Then, the current control unit 3 generates an excitation current Ix to be applied to the electromagnets 1x and 1y based on the x-axis displacement and the y-axis displacement of the rotating body 2 and the rotation synchronization phase θ of the rotation body 2 provided from the rotation synchronization phase detector 4. Iy is calculated.

以上のように本実施形態の磁気軸受装置10によれば、回転体2の第一の回転速度v1が加速中であるか減速中であるかの判断が行われる。そして、第一の回転速度v1が加速中である場合に第一の回転速度v1と最大の第二の回転速度v2_maxとの差の絶対値と閾値との比較が行われる。一方、第一の回転速度v1が減速中である場合に第一の回転速度v1と最小の第二の回転速度v2_minとの差の絶対値と閾値との比較が行われる。   As described above, according to the magnetic bearing device 10 of the present embodiment, it is determined whether the first rotational speed v1 of the rotating body 2 is accelerating or decelerating. Then, when the first rotation speed v1 is accelerating, the absolute value of the difference between the first rotation speed v1 and the maximum second rotation speed v2_max is compared with a threshold value. On the other hand, when the first rotation speed v1 is being decelerated, the absolute value of the difference between the first rotation speed v1 and the minimum second rotation speed v2_min is compared with a threshold value.

図4,5の特性図において実線は、各々、手法[1],手法[2]により検出された回転速度である一方、点線は実際の回転体2の回転速度である。したがって、実線と点線との速度差が小さいほど速度検出の誤差が小さい。図4に示されたように、回転体2の回転速度が増加している場合、手法[1]により検出される回転体2の回転速度は低精度であるが、実際の回転体2の回転速度と同様に変化する。一方、図5に示されたように、手法[2]により検出される回転体2の回転速度の値は速度が0から変化する際に回転体2の変位に応じて振動する。しかし、PI制御により前記振動は徐々に小さくなるため、手法[2]による回転速度(実線)は実際の回転速度(点線)との差は小さくなる。すなわち、手法[1]と手法[2]の回転速度の差は小さくなる。   4 and 5, the solid lines indicate the rotational speeds detected by the methods [1] and [2], respectively, while the dotted lines indicate the actual rotational speed of the rotating body 2. Therefore, the smaller the speed difference between the solid line and the dotted line, the smaller the speed detection error. As shown in FIG. 4, when the rotational speed of the rotating body 2 is increasing, the rotational speed of the rotating body 2 detected by the method [1] is low in accuracy, but the actual rotating body 2 is rotated. It varies as well as the speed. On the other hand, as shown in FIG. 5, the value of the rotational speed of the rotating body 2 detected by the method [2] vibrates according to the displacement of the rotating body 2 when the speed changes from zero. However, since the vibration is gradually reduced by the PI control, the difference between the rotational speed (solid line) by the method [2] and the actual rotational speed (dotted line) is small. That is, the difference in rotational speed between the method [1] and the method [2] becomes small.

ここで、一定の速度を検出手法の切り替えの判定値とした場合、手法[2]による回転速度の変動が図5に示したような振動した状態の場合、検出の手法が頻繁に切り替わることになり、回転速度の検出値が不安定となる。また、手法[1]と手法[2]の速度差を判定値にした場合、当該速度差が0になる毎に検出の手法が切り替わり、やはり、検出値が不安定となる。   Here, when a constant speed is used as a determination value for switching the detection method, the detection method is frequently switched when the fluctuation of the rotation speed due to the method [2] vibrates as shown in FIG. Therefore, the detected value of the rotational speed becomes unstable. Further, when the speed difference between the method [1] and the method [2] is used as a determination value, the detection method is switched every time the speed difference becomes 0, and the detection value becomes unstable.

そこで、本実施形態においては、回転体2の加速時に第二の回転速度v2の代わりに最大の第二の回転速度v2_maxが第一の回転速度v1との差の演算に供される。そして、この差の絶対値に基づき、第一の回転速度v1、第二の回転速度v2のいずれかが、位相演算部44での回転同期位相θの演算に供される回転速度vとして、選択される。これにより、頻繁な検出手法の切り替えが回避される。一方、回転体2の減速時には、回転速度が増加している場合と逆のことが起こるため、最小の第二の回転速度v2_minが選択される。   Therefore, in the present embodiment, the maximum second rotation speed v2_max is used for calculating the difference from the first rotation speed v1 instead of the second rotation speed v2 when the rotating body 2 is accelerated. Based on the absolute value of the difference, either the first rotational speed v1 or the second rotational speed v2 is selected as the rotational speed v used for the calculation of the rotational synchronization phase θ in the phase calculation unit 44. Is done. This avoids frequent switching of detection methods. On the other hand, when the rotating body 2 is decelerated, the reverse of the case where the rotational speed is increasing occurs. Therefore, the minimum second rotational speed v2_min is selected.

図6に回転体2の加速時における実際の回転体2の回転速度、手法[2]により検出した回転体2の回転速度及び最大検出回転速度の経時的変化を示した。図3のフローチャートに従って位相演算部44での演算に供される回転速度vが例えば以下の値で選択される。
0<時間<t1:v=v2
t1<時間<t2:v=v1
t2<時間:v=v2
図7に回転体2の加速時における実際の回転体2の回転速度、手法[1]により検出した回転速度、手法[2]により検出した回転速度及び本発明の速度決定部43により決定された回転速度の経時的変化を示した。全時間にわたって、実際の回転体2の回転速度と本実施形態により決定された回転速度と略同じ値となり、回転体2の回転速度vの高精度な検出が可能となっている。そして、この回転体2の回転速度vが位相演算部44に供されることにより回転体2の回転同期位相θが精度よく安定的に検出される。
FIG. 6 shows changes over time in the actual rotational speed of the rotating body 2, the rotational speed of the rotating body 2 detected by the method [2], and the maximum detected rotational speed when the rotating body 2 is accelerated. According to the flowchart of FIG. 3, the rotational speed v used for the calculation in the phase calculation unit 44 is selected by the following value, for example.
0 <time <t1: v = v2
t1 <time <t2: v = v1
t2 <time: v = v2
FIG. 7 shows the actual rotational speed of the rotating body 2 when the rotating body 2 is accelerated, the rotational speed detected by the method [1], the rotational speed detected by the method [2], and the speed determining unit 43 of the present invention. The change of the rotation speed with time was shown. Over the entire time, the actual rotation speed of the rotating body 2 and the rotation speed determined by the present embodiment are substantially the same value, and the rotation speed v of the rotating body 2 can be detected with high accuracy. Then, the rotational speed v of the rotating body 2 is provided to the phase calculation unit 44, so that the rotation synchronization phase θ of the rotating body 2 can be detected accurately and stably.

従来の回転同期位相を検出するシステム(例えば特許文献1)においてはロータリーエンコーダやレゾルバが適用されているが、このロータリーエンコーダやレゾルバは回転軸に備え付ける必要があるため、高速回転の検出手段としては最適な手段とはいえない。   In a conventional system for detecting the rotation synchronization phase (for example, Patent Document 1), a rotary encoder or resolver is applied. However, since this rotary encoder or resolver needs to be provided on a rotating shaft, as a high-speed rotation detecting means, It is not the best means.

これに対して、本実施形態の回転同期位相検出装置4は、ロータリーエンコーダやレゾルバを用いることなく、変位センサのみから、安定性の高い、すなわち、回転速度の検出値の振動的な変動が抑制された高精度な回転同期位相θを取得できる。したがって、従来よりも省スペース且つ低廉及び安定的に高精度な磁気軸受装置10が実現する。   On the other hand, the rotation synchronization phase detection device 4 of the present embodiment is highly stable, that is, suppresses vibration fluctuations in the detection value of the rotation speed from only the displacement sensor without using a rotary encoder or a resolver. The high-accuracy rotation synchronization phase θ obtained can be acquired. Therefore, the magnetic bearing device 10 which is space-saving, inexpensive and stably highly accurate than before can be realized.

[第二実施形態]
図8に示された回転同期位相検出装置4は、位相演算部44に供される第一の回転速度v1または第二の回転速度v2の変化率を制限する変化率制限処理部45を備える。
[Second Embodiment]
The rotation synchronization phase detection device 4 illustrated in FIG. 8 includes a change rate restriction processing unit 45 that restricts the change rate of the first rotation speed v1 or the second rotation speed v2 provided to the phase calculation unit 44.

本実施形態においては、図3のS5で決定された回転速度vが位相演算部44に供される前に回転速度vの変化率が制限処理される。この制限処理には周知の変化率制限法を適用すればよい。周知の変化率制限法としては、例えば、特許文献2に開示の変化率制限法が挙げられる。この制限法が適用された本実施形態の制御処理では、例えば、外乱オブザーバを優先した変化率の制限により回転速度vがトルクリミッタの規定範囲に制御される。   In the present embodiment, the rate of change of the rotational speed v is subjected to restriction processing before the rotational speed v determined in S5 of FIG. A known change rate limiting method may be applied to this limiting process. As a known change rate limiting method, for example, there is a change rate limiting method disclosed in Patent Document 2. In the control processing of this embodiment to which this restriction method is applied, for example, the rotational speed v is controlled within the specified range of the torque limiter by limiting the rate of change giving priority to the disturbance observer.

以上の第二実施形態の回転同期位相検出装置4によれば、回転体2の回転速度vが速度決定部43から位相演算部44に供される過程で変化率制限処理部45により変化率の制限処理が行われる。したがって、手法[1],手法[2]により検出された第一の回転速度v1,第二の回転速度v2が切り替わる際の回転速度vの値の変化が緩やかとなり、当該切り替わる際に瞬間的に発生する回転速度vの検出値の脈動が抑制される。よって、第一実施形態の作用効果に加えて、さらに安定度の高い回転速度vの検出が可能となり、回転体2の回転同期位相θをより精度よく安定的に検出できる。   According to the rotation-synchronized phase detection device 4 of the second embodiment described above, the rate of change is changed by the rate-of-change restriction processing unit 45 in the process in which the rotational speed v of the rotating body 2 is provided from the speed determining unit 43 to the phase calculating unit 44. Restriction processing is performed. Therefore, the change in the value of the rotation speed v when the first rotation speed v1 and the second rotation speed v2 detected by the method [1] and the method [2] are switched becomes gradual, and momentarily when the switching is performed. The pulsation of the detected value of the rotational speed v is suppressed. Therefore, in addition to the effects of the first embodiment, it is possible to detect the rotational speed v with higher stability, and to detect the rotational synchronization phase θ of the rotating body 2 more accurately and stably.

1x,1y…電磁石
2…回転体
3…電流制御部
4…回転同期位相検出装置
41…第一速度検出部、42…第二速度検出部、43…速度決定部、44…位相演算部
45…変化率制限処理部
10…磁気軸受装置
DESCRIPTION OF SYMBOLS 1x, 1y ... Electromagnet 2 ... Rotor 3 ... Current control part 4 ... Rotation synchronous phase detection apparatus 41 ... First speed detection part 42 ... Second speed detection part 43 ... Speed determination part 44 ... Phase calculation part 45 ... Change rate limiting processing unit 10 ... magnetic bearing device

Claims (4)

磁気浮上する回転体の一方の径方向の変位と当該一方の径方向と直交する他方の径方向の変位のゼロクロス周期に基づき当該回転体の第一の回転速度を検出する第一速度検出部と、
前記一方の径方向の変位と前記他方の径方向の変位とに基づく座標変換により得られた前記回転体の磁束方向と直交する方向の変位が0となるときの当該磁束方向の変位に基づき当該回転体の第二の回転速度を検出する第二速度検出部と、
前記第一の回転速度と前記第二の回転速度のいずれかに基づき前記回転体の回転同期位相を算出する位相演算部と
を備えた回転同期位相検出装置。
A first speed detector for detecting a first rotational speed of the rotating body based on a zero cross period of one radial displacement of the rotating body that floats magnetically and the other radial displacement orthogonal to the one radial direction; ,
Based on the displacement in the magnetic flux direction when the displacement in the direction orthogonal to the magnetic flux direction of the rotating body obtained by coordinate conversion based on the displacement in the one radial direction and the displacement in the other radial direction is 0 A second speed detector for detecting a second rotational speed of the rotating body;
A rotation synchronization phase detection apparatus comprising: a phase calculation unit that calculates a rotation synchronization phase of the rotating body based on either the first rotation speed or the second rotation speed.
前記第一の回転速度が加速中である場合に当該第一の回転速度と最大の前記第二の回転速度との差に基づき前記位相演算部に供する回転速度として当該第一の回転速度と当該第二の回転速度のいずれかを選択する一方で、前記第一の回転速度が減速中である場合に当該第一の回転速度と最小の前記第二の回転速度との差に基づき前記位相演算部に供する回転速度として当該第一の回転速度と当該第二の回転速度のいずれかを選択する速度決定部
をさらに備えた請求項1に記載の回転同期位相検出装置。
When the first rotation speed is accelerating, the first rotation speed and the rotation speed to be provided to the phase calculation unit based on the difference between the first rotation speed and the maximum second rotation speed While selecting one of the second rotation speeds, when the first rotation speed is decelerating, the phase calculation is performed based on the difference between the first rotation speed and the minimum second rotation speed. The rotation synchronization phase detection device according to claim 1, further comprising a speed determination unit that selects one of the first rotation speed and the second rotation speed as a rotation speed to be provided to the unit.
前記位相演算部に供される回転速度の変化率を制限する変化率制限処理部
をさらに備えた請求項1または2に記載の回転同期位相検出装置。
The rotation synchronization phase detection apparatus according to claim 1, further comprising a change rate limiting processing unit that limits a change rate of a rotation speed provided to the phase calculation unit.
電磁石により磁気浮上する回転体の一方の径方向の変位と当該一方の径方向と直交する他方の径方向の変位とに基づき当該回転体の回転同期位相を検出する請求項1から3のいずれか1項に記載の回転同期位相検出装置と、
前記一方の径方向の変位と前記他方の径方向の変位と前記検出された回転同期位相とに基づき前記電磁石に供する励磁電流を制御する電流制御部と
を備えた磁気軸受装置。
The rotation synchronization phase of the rotating body is detected based on one radial displacement of the rotating body magnetically levitated by the electromagnet and the other radial displacement orthogonal to the one radial direction. The rotation-synchronized phase detection device according to item 1,
A magnetic bearing device comprising: a current control unit that controls an excitation current provided to the electromagnet based on the one radial displacement, the other radial displacement, and the detected rotation synchronization phase.
JP2016113134A 2016-06-07 2016-06-07 Rotational synchronous phase detector and magnetic bearing device Active JP6911284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016113134A JP6911284B2 (en) 2016-06-07 2016-06-07 Rotational synchronous phase detector and magnetic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016113134A JP6911284B2 (en) 2016-06-07 2016-06-07 Rotational synchronous phase detector and magnetic bearing device

Publications (2)

Publication Number Publication Date
JP2017219098A true JP2017219098A (en) 2017-12-14
JP6911284B2 JP6911284B2 (en) 2021-07-28

Family

ID=60658802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016113134A Active JP6911284B2 (en) 2016-06-07 2016-06-07 Rotational synchronous phase detector and magnetic bearing device

Country Status (1)

Country Link
JP (1) JP6911284B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109655676A (en) * 2018-11-29 2019-04-19 国网山东省电力公司日照供电公司 A kind of method of electric power nuclear phase
CN114962450A (en) * 2022-03-21 2022-08-30 华中科技大学 Synchronous vibration suppression method and system for magnetic suspension rotor system, storage medium and terminal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109655676A (en) * 2018-11-29 2019-04-19 国网山东省电力公司日照供电公司 A kind of method of electric power nuclear phase
CN114962450A (en) * 2022-03-21 2022-08-30 华中科技大学 Synchronous vibration suppression method and system for magnetic suspension rotor system, storage medium and terminal
CN114962450B (en) * 2022-03-21 2023-06-16 华中科技大学 Synchronous vibration suppression method and system for magnetic suspension rotor system, storage medium and terminal

Also Published As

Publication number Publication date
JP6911284B2 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
JPH0242125B2 (en)
Bunte et al. High-performance speed measurement by suppression of systematic resolver and encoder errors
CN106953568B (en) Method for estimating parameters of an induction machine
JP4496410B2 (en) Motor control device
US20170353130A1 (en) Device for correcting hall sensor installation position error of bldc motor having linear hall sensor, and method thereof
US10408262B2 (en) Magnet bearing device and rotor rotary-drive apparatus
CN108716471A (en) A kind of rotor of magnetic suspension molecular pump infinitesimal displacement Active Control Method
CN105048919B (en) Anglec of rotation estimated component for PMSM ensorless control
DK3134964T3 (en) Method and Apparatus for Reducing the Torque Voltage of a DC Motor
CN111464107B (en) Motor, motor data analysis method, device and system
JPS6372916A (en) Control device for electromagnetic bearing
US9331618B2 (en) Magnetic pole position detector for synchronous motor
JP6911284B2 (en) Rotational synchronous phase detector and magnetic bearing device
US10693398B2 (en) Method for adjusting an amplitude of a voltage injection of a rotating, multi-phase electric machine, which electric machine is fed by means of a PWM-controlled inverter
KR101749522B1 (en) A device of Hall sensors installation position error correction for BLDC motors having linear Hall sensors and a method thereof
JP5396741B2 (en) Control device for permanent magnet type synchronous motor
Zhou et al. Analysis and suppression of the suspended rotor displacement fluctuation influence for motor system
JP5743344B2 (en) Control device for synchronous motor
JP2018143085A (en) System and method for controlling motor
JP2001268981A (en) Disc type bearingless rotating machine
JP6695554B2 (en) Magnetic bearing device and vacuum pump
Rotilli Filho et al. Low-speed sensorless control of a surface mounted permanent magnet motor in an e-bike application
JP2018128321A (en) Rotation angle detection device and rotation angle detection method
US9705434B2 (en) Method for ascertaining a commutation angle
JP2013251978A (en) Permanent magnet synchronous motor control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210621

R150 Certificate of patent or registration of utility model

Ref document number: 6911284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150