JP2013251978A - Permanent magnet synchronous motor control device - Google Patents

Permanent magnet synchronous motor control device Download PDF

Info

Publication number
JP2013251978A
JP2013251978A JP2012124642A JP2012124642A JP2013251978A JP 2013251978 A JP2013251978 A JP 2013251978A JP 2012124642 A JP2012124642 A JP 2012124642A JP 2012124642 A JP2012124642 A JP 2012124642A JP 2013251978 A JP2013251978 A JP 2013251978A
Authority
JP
Japan
Prior art keywords
command
axis current
speed
axis
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012124642A
Other languages
Japanese (ja)
Inventor
Shoji Adachi
章二 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012124642A priority Critical patent/JP2013251978A/en
Priority to CN201210530255.XA priority patent/CN103457524B/en
Publication of JP2013251978A publication Critical patent/JP2013251978A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a permanent magnet synchronous motor control device capable of preventing fine vibration of an electric motor shaft when a permanent magnet synchronous motor having salience is placed in a servo-lock operation under position-sensor-less control.SOLUTION: A permanent magnet synchronous motor control device includes a speed command comparator 3 which compares a speed command 23 with a predetermined command switching determination value 24, and further a d-axis current command switch 11 which selects one of a set stronger excitation command 37 and a generated d-axis current command 28 according to a comparison result of the speed command comparator 3, and outputs the selected stronger excitation command or d-axis current command as a d-axis current command 38 that a d-axis current deviation for finding a deviation by a d-axis current deviation computing element 12. When a target value 20 becomes a stop position command through a servo-lock operation and the speed command 23 becomes a 0-speed command, the d-axis current command switch 11 selects the stronger excitation command 37.

Description

本発明は、突極性を有する永久磁石同期電動機を位置センサレス制御で駆動する永久磁石同期電動機制御装置に関するものである。   The present invention relates to a permanent magnet synchronous motor control device that drives a permanent magnet synchronous motor having saliency by position sensorless control.

突極性を有する永久磁石同期電動機を位置センサレスで制御する方法として、電圧指令に位置推定用信号を重畳し、その時に流れる電動機電流から回転子位置および回転速度を推定し、フィードバック制御を行う方法が知られている(例えば、特許文献1参照)。   As a method of controlling a permanent magnet synchronous motor having saliency without a position sensor, there is a method of superimposing a position estimation signal on a voltage command, estimating a rotor position and a rotation speed from a motor current flowing at that time, and performing feedback control. It is known (see, for example, Patent Document 1).

国際公開第2009/040965号International Publication No. 2009/040965

しかし、突極性を有する永久磁石同期電動機を位置センサレスで制御する方法には、永久磁石同期電動機の電磁気的特性に起因して回転子位置の推定精度が実際の回転子位置によってバラつくという性質がある。   However, the method of controlling a permanent magnet synchronous motor having saliency without a position sensor has the property that the estimation accuracy of the rotor position varies depending on the actual rotor position due to the electromagnetic characteristics of the permanent magnet synchronous motor. is there.

このため、位置センサレスで制御する方法を用いて、永久磁石同期電動機の回転速度を0に保ってサーボロック動作をさせる場合、位置推定精度のバラつきにより、フィードバックループで演算される指令値が振動し、その結果、電動機軸が微振動することがある。   For this reason, when the servo lock operation is performed while maintaining the rotational speed of the permanent magnet synchronous motor at 0 using the method of controlling without the position sensor, the command value calculated in the feedback loop vibrates due to variations in position estimation accuracy. As a result, the motor shaft may slightly vibrate.

本発明は、上記に鑑みてなされたものであり、突極性を有する永久磁石同期電動機を位置センサレス制御によりサーボロック動作させる場合の電動機軸の微振動を防止することができる永久磁石同期電動機制御装置を得ることを目的とする。   The present invention has been made in view of the above, and a permanent magnet synchronous motor control device capable of preventing fine vibrations of a motor shaft when a permanent magnet synchronous motor having saliency is servo-locked by position sensorless control. The purpose is to obtain.

上述した課題を解決し、目的を達成するために、本発明は、目標値と永久磁石同期電動機の電動機電流から推定した回転子位置との偏差を小さくする操作量である速度指令を演算する位置制御器と、前記速度指令と前記電動機電流から推定した回転子速度との偏差を小さくする操作量であるq軸電流指令を演算する速度制御器と、前記q軸電流指令と前記電動機電流から検出したq軸電流との偏差を求めるq軸電流偏差演算器と、前記q軸電流偏差演算器が求めた偏差を小さくする操作量であるq軸電圧指令を演算するq軸電流制御器と、運転時に生成されたd軸電流指令と前記電動機電流から検出したd軸電流との偏差を求めるd軸電流偏差演算器と、前記d軸電流偏差演算器が求めた偏差を小さくする操作量であるd軸電圧指令を演算するd軸電流制御器とを備えた永久磁石同期電動機制御装置において、予め決められた指令切換判定値と前記速度指令とを比較する速度指令比較器と、前記速度指令比較器の比較結果に応じ、設定された強め励磁指令と前記生成されたd軸電流指令との何れか一方を選択して、該選択した強め励磁指令またはd軸電流指令を前記d軸電流偏差演算器が偏差を求める前記d軸電流指令として出力するd軸電流指令切換器とをさらに備えたことを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention provides a position for calculating a speed command that is an operation amount for reducing a deviation between a target value and a rotor position estimated from a motor current of a permanent magnet synchronous motor. A controller, a speed controller for calculating a q-axis current command that is an operation amount for reducing a deviation between the speed command and the rotor speed estimated from the motor current, and detected from the q-axis current command and the motor current A q-axis current deviation calculator for calculating a deviation from the q-axis current, a q-axis current controller for calculating a q-axis voltage command which is an operation amount for reducing the deviation obtained by the q-axis current deviation calculator, A d-axis current deviation calculator for obtaining a deviation between a d-axis current command generated sometimes and a d-axis current detected from the motor current, and an operation amount d for reducing the deviation obtained by the d-axis current deviation calculator. Calculate shaft voltage command In a permanent magnet synchronous motor control device including a d-axis current controller, according to a comparison result of a speed command comparator that compares a predetermined command switching determination value with the speed command, and a comparison result of the speed command comparator, The d-axis current deviation calculator calculates a deviation of the selected strong excitation command or d-axis current command by selecting one of the set strong excitation command and the generated d-axis current command. A d-axis current command switching unit that outputs the shaft current command is further provided.

本発明によれば、目標値を停止位置指令とするサーボロック動作時には、d軸電流指令を強め励磁指令に切り換えて、永久磁石同期電動機の回転子が作る回転磁界と引き付け合う磁界を電動機電流により発生させるので、フィードバックループの振動を抑制し、電動機軸の微振動を防止することができるという効果を奏する。   According to the present invention, during the servo lock operation using the target value as the stop position command, the d-axis current command is strengthened and switched to the excitation command, and the magnetic field attracting the rotating magnetic field created by the rotor of the permanent magnet synchronous motor is generated by the motor current. As a result, the vibration of the feedback loop can be suppressed and the fine vibration of the motor shaft can be prevented.

図1は、本発明の一実施の形態による永久磁石同期電動機制御装置の要部構成を示すブロック図である。FIG. 1 is a block diagram showing a main configuration of a permanent magnet synchronous motor control device according to an embodiment of the present invention.

以下に、本発明にかかる永久磁石同期電動機制御装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of a permanent magnet synchronous motor control device according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

図1は、本発明の一実施の形態による永久磁石同期電動機制御装置の要部構成を示すブロック図である。図1では、サーボモータである突極性を有する永久磁石同期電動機(図示せず)の制御装置において、永久磁石同期電動機を位置センサレス制御によりサーボロック動作を行わせる場合に生ずる電動機軸の微振動を防止する部分の構成が抜き出して示されている。   FIG. 1 is a block diagram showing a main configuration of a permanent magnet synchronous motor control device according to an embodiment of the present invention. In FIG. 1, in a control device for a permanent magnet synchronous motor (not shown) having a saliency, which is a servo motor, a slight vibration of the motor shaft that occurs when the permanent magnet synchronous motor is servo-locked by position sensorless control. The structure of the part to be prevented is shown extracted.

なお、永久磁石同期電動機のベクトル制御で用いるd軸は永久磁石同期電動機の回転子に埋め込まれている永久磁石が作る磁界と平行な方向に設定され、q軸は永久磁石同期電動機の回転子に埋め込まれている永久磁石が作る磁界と垂直な方向に設定されている。   The d-axis used for vector control of the permanent magnet synchronous motor is set in a direction parallel to the magnetic field created by the permanent magnet embedded in the rotor of the permanent magnet synchronous motor, and the q axis is set to the rotor of the permanent magnet synchronous motor. The direction is set perpendicular to the magnetic field created by the embedded permanent magnet.

図1において、位置偏差演算器1は、上位装置から目標値(サーボロック動作時には停止位置指令)20が入力され、位置制御へのフィードバック信号として図示しない位置推定器が電動機電流から推定した回転子位置(現在位置推定値)21が入力される。位置偏差演算器1は、目標値(停止位置指令)20と回転子位置(現在位置推定値)21との位置偏差22を演算し、それを位置制御器2に出力する。   In FIG. 1, a position deviation calculator 1 receives a target value 20 (stop position command during servo lock operation) 20 from a host device, and a rotor estimated by a position estimator (not shown) from a motor current as a feedback signal to position control. A position (current position estimated value) 21 is input. The position deviation calculator 1 calculates a position deviation 22 between the target value (stop position command) 20 and the rotor position (current position estimated value) 21 and outputs it to the position controller 2.

位置制御器2は、永久磁石同期電動機の回転子位置21を上位装置から与えられた目標値(サーボロック動作時には停止位置指令)20に追従させる操作量、つまり位置偏差演算器1から入力される位置偏差22を小さくする操作量である速度指令23を、位置偏差22に比例ゲインを用いた比例演算(公知のP制御)を適用して求める。位置制御器2にて求められた速度指令23は、速度指令比較器3と速度偏差演算器4とに並列に出力される。   The position controller 2 is input from an operation amount that causes the rotor position 21 of the permanent magnet synchronous motor to follow the target value (stop position command at the time of servo lock operation) 20 given from the host device, that is, the position deviation calculator 1. A speed command 23 which is an operation amount for reducing the position deviation 22 is obtained by applying a proportional calculation (known P control) using a proportional gain to the position deviation 22. The speed command 23 obtained by the position controller 2 is output in parallel to the speed command comparator 3 and the speed deviation calculator 4.

速度指令比較器3は、位置制御器2からの速度指令23の他、上位装置から通常運転とサーボロック運転との境界を与える電流・電圧指令切換判定値24が入力される。速度指令比較器3は、速度指令23と電流・電圧指令切換判定値24とを比較し、両者間の大小関係を示す2値のレベル信号である切換制御信号25を出力する。切換制御信号25は、q軸電流指令切換器6、q軸電圧指令切換器9およびd軸電流指令切換器11の各制御ポートに入力される。   In addition to the speed command 23 from the position controller 2, the speed command comparator 3 receives a current / voltage command switching determination value 24 that gives a boundary between normal operation and servo lock operation from the host device. The speed command comparator 3 compares the speed command 23 with the current / voltage command switching determination value 24 and outputs a switching control signal 25 which is a binary level signal indicating the magnitude relationship between the two. The switching control signal 25 is input to each control port of the q-axis current command switching device 6, the q-axis voltage command switching device 9, and the d-axis current command switching device 11.

速度偏差演算器4は、位置制御器2からの速度指令23の他に、速度制御へのフィードバック信号として図示しない速度推定器が電動機電流から推定した電動機の回転速度(回転速度推定値)26が入力される。速度偏差演算器4は、速度指令23と電動機の回転速度(回転速度推定値)26との速度偏差27を演算し、それを速度制御器5に出力する。   In addition to the speed command 23 from the position controller 2, the speed deviation calculator 4 has a rotational speed (estimated rotational speed value) 26 of a motor estimated by a speed estimator (not shown) from a motor current as a feedback signal to the speed control. Entered. The speed deviation calculator 4 calculates a speed deviation 27 between the speed command 23 and the rotation speed (rotation speed estimated value) 26 of the electric motor, and outputs it to the speed controller 5.

ここで、トルクに寄与するq軸側は、速度制御器5、q軸電流指令切換器6、q軸電流偏差演算器7、q軸電流制御器8およびq軸電圧指令切換器9により構成される。   Here, the q-axis side contributing to the torque is constituted by a speed controller 5, a q-axis current command switch 6, a q-axis current deviation calculator 7, a q-axis current controller 8, and a q-axis voltage command switch 9. The

速度制御器5は、永久磁石同期電動機の回転速度26を位置制御器2により求められた速度指令23に追従させる操作量、つまり速度偏差演算器4から入力される速度偏差27を小さくする操作量であるq軸電流指令(ここでは通常運転時に用いるので「q軸電流通常指令」という)28を、速度偏差27に比例積分制御(公知のPI制御)を適用して求め、それをq軸電流指令切換器6の一方の切換入力端に出力する。   The speed controller 5 is an operation amount for causing the rotational speed 26 of the permanent magnet synchronous motor to follow the speed command 23 obtained by the position controller 2, that is, an operation amount for reducing the speed deviation 27 input from the speed deviation calculator 4. Q-axis current command (here, referred to as “q-axis current normal command” because it is used during normal operation) 28 is obtained by applying proportional integral control (known PI control) to the speed deviation 27, and is obtained as q-axis current Output to one switching input terminal of the command switching device 6.

q軸電流指令切換器6は、他方の切換入力端にサーボロック時に用いる0指令(ここでは区別するため「q軸電流0指令」という)29が入力され、速度指令比較器3が出力する切換制御信号25の信号レベルに応じて、q軸電流通常指令28とq軸電流0指令29とのいずれか一方を選択し、それをq軸電流指令30として切換基端からq軸電流偏差演算器7に出力する。   The q-axis current command switching unit 6 receives a 0 command (herein referred to as “q-axis current 0 command” 29) used at the time of servo lock at the other switching input terminal, and the switching that the speed command comparator 3 outputs. According to the signal level of the control signal 25, either the q-axis current normal command 28 or the q-axis current 0 command 29 is selected, and this is used as the q-axis current command 30 from the switching base end to the q-axis current deviation calculator. 7 is output.

q軸電流偏差演算器7は、q軸電流指令切換器6からのq軸電流指令30の他に、トルク制御に対するフィードバック信号として図示しない電流検出器により電動機電流から検出されたq軸電流検出値31が入力される。q軸電流偏差演算器7は、q軸電流指令30とq軸電流検出値31とのq軸電流偏差32を演算し、それをq軸電流制御器8に出力する。   The q-axis current deviation calculator 7 is a q-axis current detection value detected from the motor current by a current detector (not shown) as a feedback signal for torque control in addition to the q-axis current command 30 from the q-axis current command switch 6. 31 is input. The q-axis current deviation calculator 7 calculates a q-axis current deviation 32 between the q-axis current command 30 and the q-axis current detection value 31 and outputs it to the q-axis current controller 8.

q軸電流制御器8は、永久磁石同期電動機のq軸電流検出値31をq軸電流指令30に追従させる操作量、つまりq軸電流偏差演算器7からのq軸電流偏差32を小さくする操作量であるq軸電圧指令(ここでは通常運転時に用いるので「q軸電圧通常指令」という)33を、q軸電流偏差32に比例積分制御(公知のPI制御)を適用して求め、それをq軸電圧指令切換器9の一方の切換入力端に出力する。   The q-axis current controller 8 is an operation for reducing the operation amount for causing the q-axis current detection value 31 of the permanent magnet synchronous motor to follow the q-axis current command 30, that is, the q-axis current deviation 32 from the q-axis current deviation calculator 7. A q-axis voltage command (here, referred to as “q-axis voltage normal command” because it is used during normal operation) 33 is obtained by applying proportional integral control (known PI control) to the q-axis current deviation 32, Output to one switching input terminal of the q-axis voltage command switching unit 9.

q軸電圧指令切換器9は、他方の切換入力端にサーボロック時に用いる0指令(ここでは区別するため「q軸電圧0指令」という)34が入力され、速度指令比較器3が出力する切換制御信号25の信号レベルに応じて、q軸電圧通常指令33とq軸電圧0指令34とのいずれか一方を選択し、それをq軸電圧指令35として切換基端から図示しない座標変換器へ出力する。   The q-axis voltage command switching unit 9 receives a 0 command (herein referred to as “q-axis voltage 0 command” for distinction) 34 used at the time of servo lock at the other switching input terminal, and the switching that the speed command comparator 3 outputs. Depending on the signal level of the control signal 25, one of the q-axis voltage normal command 33 and the q-axis voltage 0 command 34 is selected and used as a q-axis voltage command 35 from the switching base end to a coordinate converter (not shown). Output.

次に、励磁電流に寄与するd軸側の構成「d軸電流指令発生器10、d軸電流指令切換器11、d軸電流偏差演算器12およびd軸電流制御器13」について説明する。   Next, the d-axis side configuration “d-axis current command generator 10, d-axis current command switching unit 11, d-axis current deviation calculator 12 and d-axis current controller 13” contributing to the excitation current will be described.

d軸電流指令発生器10は、通常の運転時に用いるd軸電流指令(ここでは区別するため「d軸電流通常指令」という)36を公知のPI制御により発生する他に、サーボロック時に用いる強め励磁指令37も発生する構成になっている。d軸電流指令発生器10が発生するd軸電流通常指令36および強め励磁指令37は、d軸電流指令切換器11の対応する切換入力端に入力される。   The d-axis current command generator 10 generates a d-axis current command 36 (referred to herein as a “d-axis current normal command” for distinction) 36 that is used during normal operation by well-known PI control, and is used for servo locking. An excitation command 37 is also generated. The d-axis current normal command 36 and the strong excitation command 37 generated by the d-axis current command generator 10 are input to the corresponding switching input terminals of the d-axis current command switch 11.

d軸電流指令切換器11は、速度指令比較器3が出力する切換制御信号25の信号レベルに応じて、d軸電流通常指令36と強め励磁指令37とのいずれか一方を選択し、それをd軸電流指令38として切換基端からd軸電流偏差演算器12に出力する。   The d-axis current command switching unit 11 selects either the d-axis current normal command 36 or the strong excitation command 37 in accordance with the signal level of the switching control signal 25 output from the speed command comparator 3 and selects it. The d-axis current command 38 is output from the switching base end to the d-axis current deviation calculator 12.

d軸電流偏差演算器12は、d軸電流指令切換器11からのd軸電流指令38の他に、励磁電流制御に対するフィードバック信号として図示しない電流検出器により電動機電流から検出されたd軸電流検出値39が入力される。d軸電流偏差演算器11は、d軸電流指令38とd軸電流検出値39とのd軸電流偏差40を演算し、それをd軸電流制御器13に出力する。   The d-axis current deviation calculator 12 detects the d-axis current detected from the motor current by a current detector (not shown) as a feedback signal for excitation current control in addition to the d-axis current command 38 from the d-axis current command switch 11. The value 39 is entered. The d-axis current deviation calculator 11 calculates a d-axis current deviation 40 between the d-axis current command 38 and the d-axis current detection value 39 and outputs it to the d-axis current controller 13.

d軸電流制御器13は、永久磁石同期電動機のd軸電流検出値39をd軸電流指令切換器11から出力されるd軸電流指令38に追従させる操作量、つまりd軸電流偏差演算器11からのd軸電流偏差40を小さくする操作量であるd軸電圧指令41を、d軸電流偏差40に比例積分制御(公知のPI制御)を適用して求め、それを図示しない座標変換器へ出力する。   The d-axis current controller 13 is an operation amount for causing the d-axis current detection value 39 of the permanent magnet synchronous motor to follow the d-axis current command 38 output from the d-axis current command switch 11, that is, the d-axis current deviation calculator 11. A d-axis voltage command 41, which is an operation amount for reducing the d-axis current deviation 40 from the input, is obtained by applying proportional integral control (known PI control) to the d-axis current deviation 40, and this is obtained to a coordinate converter (not shown). Output.

次に、この実施の形態に関わるサーボロック時の動作について説明する。突極性を有する永久磁石同期電動機を位置センサレス制御により駆動する場合、回転子位置の推定精度は、永久磁石同期電動機の電磁気的特性に起因してバラツクという性質がある。   Next, the operation at the time of servo lock related to this embodiment will be described. When a permanent magnet synchronous motor having saliency is driven by position sensorless control, the estimation accuracy of the rotor position has a property of variation due to the electromagnetic characteristics of the permanent magnet synchronous motor.

そのため、この実施の形態により追加した部分「速度指令比較器3、q軸電流指令切換器6、q軸電圧指令切換器9およびd軸電流指令切換器11」が無く、d軸電流指令発生器10がd軸電流通常指令36のみ(したがってd軸電流指令36)を発生する場合においては、目標位置20を停止位置指令に設定し、永久磁石同期電動機の回転速度を0に保ってサーボロック動作を行わせる場合、現在位置推定値21の推定精度が停止位置によってバラツクことにより、フィードバックループで演算された速度指令23が振動し、従って、q軸電流指令28つまりq軸電流指令30が振動し、その結果、電動機軸が微振動することがある。   Therefore, there is no portion “speed command comparator 3, q-axis current command switching device 6, q-axis voltage command switching device 9 and d-axis current command switching device 11” added by this embodiment, and a d-axis current command generator. 10 generates only the d-axis current normal command 36 (and hence the d-axis current command 36), the target position 20 is set as the stop position command, and the rotation speed of the permanent magnet synchronous motor is maintained at 0 to perform the servo lock operation. , When the estimated accuracy of the current position estimated value 21 varies depending on the stop position, the speed command 23 calculated in the feedback loop vibrates, and accordingly, the q-axis current command 28, that is, the q-axis current command 30 vibrates. As a result, the motor shaft may slightly vibrate.

そこで、この実施の形態では、図1において、目標位置20がサーボロック動作による停止位置指令以外の通常運転時指令である場合においては、速度指令比較器3の比較結果を示す切換制御信号25の信号レベルが、「速度指令23」>「電流・電圧指令切換判定値」を示すようになっている。   Therefore, in this embodiment, in FIG. 1, when the target position 20 is a normal operation time command other than the stop position command by the servo lock operation, the switching control signal 25 indicating the comparison result of the speed command comparator 3 is shown. The signal level indicates “speed command 23”> “current / voltage command switching determination value”.

この場合は、q軸電流指令切換器6はq軸電流通常指令28を選択しそれをq軸電流指令30とし、q軸電圧指令切換器9はq軸電圧通常指令33を選択しそれをq軸電圧指令35とし、d軸電流指令切換器11はd軸電流通常指令36を選択しそれをd軸電流指令38とする。このように、サーボロック動作以外の通常運転時においては従前の通りの動作が行われる。   In this case, the q-axis current command switching unit 6 selects the q-axis current normal command 28 and sets it as the q-axis current command 30, and the q-axis voltage command switching unit 9 selects the q-axis voltage normal command 33 and converts it to q The d-axis current command switch 11 selects the d-axis current normal command 36 and sets it as the d-axis current command 38. In this way, the conventional operation is performed during the normal operation other than the servo lock operation.

一方、目標位置20を停止位置指令に設定し、永久磁石同期電動機の回転速度を0に保ってサーボロック動作を行わせる場合は、速度指令比較器3の比較結果を示す切換制御信号25の信号レベルが、「速度指令23」<「電流・電圧指令切換判定値」を示すようになっている。   On the other hand, when the target position 20 is set as a stop position command and the servo lock operation is performed while maintaining the rotation speed of the permanent magnet synchronous motor at 0, the signal of the switching control signal 25 indicating the comparison result of the speed command comparator 3 The level indicates “speed command 23” <“current / voltage command switching determination value”.

この場合は、まず、d軸電流指令切換器11が強め励磁指令37を選択しそれをd軸電流指令38とする。これによっても、電動機軸の微振動を防止する目的は達成できるが、この実施の形態では。その後に、q軸電流指令切換器6がq軸電流0指令29を選択しそれをq軸電流指令30とし、q軸電圧指令切換器9がq軸電圧0指令34を選択しそれをq軸電圧指令35とする。そうすれば、一層確実に電動機軸の微振動を防止できる。   In this case, first, the d-axis current command switching unit 11 selects the strong excitation command 37 and sets it as the d-axis current command 38. This also achieves the purpose of preventing slight vibration of the motor shaft, but in this embodiment. After that, the q-axis current command switching unit 6 selects the q-axis current 0 command 29 and sets it as the q-axis current command 30, and the q-axis voltage command switching unit 9 selects the q-axis voltage 0 command 34 and converts it to the q-axis. The voltage command 35 is assumed. By doing so, it is possible to more surely prevent fine vibration of the motor shaft.

具体的には、q軸電流指令切換器6がq軸電流0指令29を選択し、q軸電圧指令切換器9がq軸電圧0指令34を選択するタイミングは、d軸電流指令切換器11が強め励磁指令37を選択した後において速度指令23がほぼ0速度指令となるタイミングである。つまり、速度指令比較器3が出力する切換制御信号25は、q軸電流指令切換器6とq軸電圧指令切換器9とd軸電流指令切換器11とに共通の1本の制御信号ではなく、q軸電流指令切換器6およびq軸電圧指令切換器9に対するものと、d軸電流指令切換器11に対するものとの2本の制御信号で構成されている。   Specifically, the timing at which the q-axis current command switch 6 selects the q-axis current 0 command 29 and the q-axis voltage command switch 9 selects the q-axis voltage 0 command 34 is the same as the d-axis current command switch 11. Is the timing at which the speed command 23 becomes the almost zero speed command after the strong excitation command 37 is selected. That is, the switching control signal 25 output from the speed command comparator 3 is not a single control signal common to the q-axis current command switch 6, the q-axis voltage command switch 9 and the d-axis current command switch 11. The control signal is composed of two control signals, one for the q-axis current command switching unit 6 and the q-axis voltage command switching unit 9 and one for the d-axis current command switching unit 11.

このように、この実施の形態においては、速度指令23がほぼ0となるサーボロック動作時には、永久磁石同期電動機のd軸方向に強め励磁電流を流し、電動機電流が作る磁界と永久磁石同期電動機の回転子に埋め込まれた永久磁石が作る回転子磁界とが互いに引き付け合うようにした。   As described above, in this embodiment, during the servo lock operation in which the speed command 23 is almost zero, a strong excitation current is supplied in the d-axis direction of the permanent magnet synchronous motor, and the magnetic field generated by the motor current and the permanent magnet synchronous motor The rotor magnetic field created by the permanent magnet embedded in the rotor is attracted to each other.

ここで、永久磁石同期電動機制御において、一般的に、d軸方向に強め励磁電流を流すことと、電動機電流が作る磁界と永久磁石同期電動機の回転子に埋め込まれた永久磁石が作る回転子磁界とが互いに引き付け合うことは同義である。言い換えれば、回転子磁界と引き付け合う磁界を発生させるような電流を強め励磁電流という。引き付け合う原理は、磁石の異極(S−N、N−S)同士が引き付け合うことと同じである。フレミングの右手の法則より、そうなるようにd軸の方向を決めている。   Here, in the permanent magnet synchronous motor control, generally, a stronger excitation current flows in the d-axis direction, a magnetic field generated by the motor current, and a rotor magnetic field generated by a permanent magnet embedded in the rotor of the permanent magnet synchronous motor. To attract each other is synonymous. In other words, a current that generates a magnetic field that attracts the rotor magnetic field is called a strengthening excitation current. The principle of attracting is the same as attracting magnets having different polarities (SN, NS). According to Fleming's right hand rule, the direction of the d-axis is determined so as to do so.

その回転子磁界が強め励磁電流による磁界に引き付けられるということは、回転子(および、回転子と一体となっている電動機軸)も同時に引き付けられることになる。引き付け合う力がある場合の方が、引き付け合う力がない場合よりも、より振動を抑制できる。そのため、d軸強め励磁電流による引き付けトルクがない場合に比べて、サーボロックによる停止時の電動機軸の振動を抑制することができる。   When the rotor magnetic field is strengthened and attracted to the magnetic field generated by the excitation current, the rotor (and the motor shaft integrated with the rotor) is also attracted at the same time. Vibration can be suppressed more when there is an attractive force than when there is no attractive force. Therefore, it is possible to suppress the vibration of the motor shaft at the time of stopping due to the servo lock as compared with the case where there is no attracting torque due to the d-axis strong excitation current.

また、サーボロックによる停止時において、回転子位置の推定精度が停止位置によってバラついて、電動機軸に振動が発生するような場合でも、q軸電流指令切換器およびq軸電圧指令切換器において0指令が選択され、位置推定や速度推定の誤差に起因して発生する操作量(速度指令やq軸電流指令)が電動機へ伝達されなくなるため、電動機軸の振動の発生を確実に防止することができる。   In addition, when the servo lock is stopped, the estimated accuracy of the rotor position varies depending on the stop position, and even if the motor shaft vibrates, the q-axis current command switcher and the q-axis voltage command switcher have zero command. Is selected, and the amount of operation (speed command or q-axis current command) generated due to errors in position estimation or speed estimation is not transmitted to the motor, so that generation of vibration of the motor shaft can be reliably prevented. .

以上のように、本発明にかかる永久磁石同期電動機制御装置は、突極性を有する永久磁石同期電動機を位置センサレス制御によりサーボロック動作させる場合の電動機軸の微振動を防止することができる永久磁石同期電動機制御装置として有用である。   As described above, the permanent magnet synchronous motor control device according to the present invention is capable of preventing fine vibration of the motor shaft when the servo lock operation of the permanent magnet synchronous motor having saliency is performed by position sensorless control. It is useful as an electric motor control device.

1 位置偏差演算器
2 位置制御器
3 速度指令比較器
4 速度偏差演算器
5 速度制御器
6 q軸電流指令切換器
7 q軸電流偏差演算器
8 q軸電流制御器
9 q軸電圧指令切換器
10 d軸電流指令発生器
11 d軸電流指令切換器
12 d軸電流偏差演算器
13 d軸電流制御器
DESCRIPTION OF SYMBOLS 1 Position deviation calculator 2 Position controller 3 Speed command comparator 4 Speed deviation calculator 5 Speed controller 6 q-axis current command switching device 7 q-axis current deviation computing device 8 q-axis current controller 9 q-axis voltage command switching device 10 d-axis current command generator 11 d-axis current command switcher 12 d-axis current deviation calculator 13 d-axis current controller

Claims (5)

目標値と永久磁石同期電動機の電動機電流から推定した回転子位置との偏差を小さくする操作量である速度指令を演算する位置制御器と、
前記速度指令と前記電動機電流から推定した回転子速度との偏差を小さくする操作量であるq軸電流指令を演算する速度制御器と、
前記q軸電流指令と前記電動機電流から検出したq軸電流との偏差を求めるq軸電流偏差演算器と、
前記q軸電流偏差演算器が求めた偏差を小さくする操作量であるq軸電圧指令を演算するq軸電流制御器と、
運転時に生成されたd軸電流指令と前記電動機電流から検出したd軸電流との偏差を求めるd軸電流偏差演算器と、
前記d軸電流偏差演算器が求めた偏差を小さくする操作量であるd軸電圧指令を演算するd軸電流制御器と、
を備えた永久磁石同期電動機制御装置において、
予め決められた指令切換判定値と前記速度指令とを比較する速度指令比較器と、
前記速度指令比較器の比較結果に応じ、設定された強め励磁指令と前記生成されたd軸電流指令との何れか一方を選択して、該選択した強め励磁指令またはd軸電流指令を前記d軸電流偏差演算器が偏差を求める前記d軸電流指令として出力するd軸電流指令切換器と
をさらに備えたことを特徴とする永久磁石同期電動機制御装置。
A position controller that calculates a speed command that is an operation amount for reducing a deviation between the target value and the rotor position estimated from the motor current of the permanent magnet synchronous motor;
A speed controller that calculates a q-axis current command that is an operation amount for reducing a deviation between the speed command and the rotor speed estimated from the motor current;
A q-axis current deviation calculator for obtaining a deviation between the q-axis current command and the q-axis current detected from the motor current;
A q-axis current controller for calculating a q-axis voltage command which is an operation amount for reducing the deviation obtained by the q-axis current deviation calculator;
A d-axis current deviation calculator for obtaining a deviation between the d-axis current command generated during operation and the d-axis current detected from the motor current;
A d-axis current controller for calculating a d-axis voltage command which is an operation amount for reducing the deviation obtained by the d-axis current deviation calculator;
In a permanent magnet synchronous motor control device comprising:
A speed command comparator for comparing a predetermined command switching determination value with the speed command;
According to the comparison result of the speed command comparator, one of the set strong excitation command and the generated d-axis current command is selected, and the selected strong excitation command or d-axis current command is selected as the d command. A permanent magnet synchronous motor control device, further comprising: a d-axis current command switching unit that outputs the d-axis current command as a d-axis current command for obtaining a deviation by a shaft current deviation calculator.
前記速度指令比較器の比較結果に応じ、設定された0指令と前記速度制御器が出力するq軸電流指令との何れか一方を選択し、該選択した0指令またはq軸電流指令を前記q軸電流偏差演算器が偏差を求める前記q軸電流指令として出力するq軸電流指令切換器と、
前記速度指令比較器の比較結果に応じ、設定された0指令と前記q軸電流制御器が出力するq軸電圧指令との何れか一方を選択し、該選択した0指令またはq軸電圧指令を前記q軸電流制御器の出力である前記q軸電圧指令とするq軸電圧指令切換器と
をさらに備えたことを特徴とする請求項1に記載の永久磁石同期電動機制御装置。
According to the comparison result of the speed command comparator, one of the set 0 command and the q-axis current command output by the speed controller is selected, and the selected 0 command or q-axis current command is selected as the q command. A q-axis current command switching unit that outputs the q-axis current command as a q-axis current command by which a shaft current deviation calculator obtains a deviation;
According to the comparison result of the speed command comparator, either the set 0 command or the q-axis voltage command output from the q-axis current controller is selected, and the selected 0 command or q-axis voltage command is selected. The permanent magnet synchronous motor control device according to claim 1, further comprising: a q-axis voltage command switching unit configured to output the q-axis voltage command, which is an output of the q-axis current controller.
前記目標値がサーボロック動作による停止位置指令となり、前記速度指令比較器の比較結果、前記指令切換判定値が前記速度指令よりも大きい場合に、
前記d軸電流指令切換器は、前記強め励磁指令を選択する
ことを特徴とする請求項1に記載の永久磁石同期電動機制御装置。
When the target value is a stop position command by a servo lock operation and the comparison result of the speed command comparator, the command switching determination value is larger than the speed command
The permanent magnet synchronous motor control device according to claim 1, wherein the d-axis current command switching unit selects the strong excitation command.
前記目標値がサーボロック動作による停止位置指令であり、前記速度指令比較器の比較結果、前記指令切換判定値が前記速度指令よりも大きい場合に、
前記d軸電流指令切換器は、前記強め励磁指令を選択し、
前記q軸電流指令切換器および前記q軸電圧指令切換器は、それぞれ対応する前記0指令を選択する
ことを特徴とする請求項2に記載の永久磁石同期電動機制御装置。
When the target value is a stop position command by a servo lock operation, and the comparison result of the speed command comparator, the command switching determination value is larger than the speed command,
The d-axis current command switching unit selects the strong excitation command,
The permanent magnet synchronous motor control device according to claim 2, wherein the q-axis current command switching unit and the q-axis voltage command switching unit select the corresponding 0 command.
前記q軸電流指令切換器および前記q軸電圧指令切換器が前記0指令を選択するタイミングは、それぞれ、前記d軸電流指令切換器が前記強め励磁指令を選択して出力している場合において前記速度指令がほぼ0速度指令となるタイミングであることを特徴とする請求項4に記載の永久磁石同期電動機制御装置。   The timing at which the q-axis current command switching unit and the q-axis voltage command switching unit select the 0 command is the same as that when the d-axis current command switching unit selects and outputs the strong excitation command, respectively. The permanent magnet synchronous motor control device according to claim 4, wherein the speed command is a timing at which the speed command becomes substantially zero.
JP2012124642A 2012-05-31 2012-05-31 Permanent magnet synchronous motor control device Pending JP2013251978A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012124642A JP2013251978A (en) 2012-05-31 2012-05-31 Permanent magnet synchronous motor control device
CN201210530255.XA CN103457524B (en) 2012-05-31 2012-12-10 Permanent-magnet synchronous electric motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012124642A JP2013251978A (en) 2012-05-31 2012-05-31 Permanent magnet synchronous motor control device

Publications (1)

Publication Number Publication Date
JP2013251978A true JP2013251978A (en) 2013-12-12

Family

ID=49739576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012124642A Pending JP2013251978A (en) 2012-05-31 2012-05-31 Permanent magnet synchronous motor control device

Country Status (2)

Country Link
JP (1) JP2013251978A (en)
CN (1) CN103457524B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183187A1 (en) * 2016-04-22 2017-10-26 三菱電機株式会社 Motor control device
CN110535376B (en) * 2019-09-25 2020-11-27 国家电网有限公司 Method for controlling rotating speed of static frequency converter in pulse commutation stage

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10323098A (en) * 1997-05-20 1998-12-04 Yaskawa Electric Corp Initial excitating method of synchronous motor
CN100424985C (en) * 2005-09-23 2008-10-08 山洋电气株式会社 Coutrol apparatus of synchronous motor and control method therefor
MX2010003444A (en) * 2007-09-27 2010-04-21 Mitsubishi Electric Corp Controller of rotary electric machine.
CN101650390B (en) * 2009-08-31 2011-11-23 苏州经贸职业技术学院 Method of measuring inductance parameters of stator of surface AC permanent magnet synchronous motor on line

Also Published As

Publication number Publication date
CN103457524B (en) 2016-03-30
CN103457524A (en) 2013-12-18

Similar Documents

Publication Publication Date Title
Tauchi et al. Audible noise reduction method in IPMSM position sensorless control based on high-frequency current injection
JP2013021843A (en) Initial magnetic pole position adjustment device for permanent magnet synchronous motor
JP2014513911A (en) Method and apparatus for controlling electrical equipment
JP5509167B2 (en) Synchronous motor control system
JP2012222959A (en) Synchronous machine controller
JP2014110708A (en) Magnetic pole position detection device for synchronous motor
JP5743344B2 (en) Control device for synchronous motor
JP2013251978A (en) Permanent magnet synchronous motor control device
JP2018143085A (en) System and method for controlling motor
JP2009290962A (en) Controller of permanent magnet type synchronous motor
Leppanen et al. Speed-sensorless induction machine control for zero speed and frequency
JP6440355B2 (en) Method and apparatus for synchronizing rotor speed with stator rotating magnetic field
JP2018007533A (en) Motor control device, motor drive device, motor drive system, image formation device, and transport device
JP2007282319A (en) Synchronous motor control device
Iepure et al. Novel motion sensorless control of single phase brushless DC PM motor drive, with experiments
Wang et al. Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection
JP7206679B2 (en) Drives for electric motors and electric pump devices
JP6707050B2 (en) Synchronous motor controller
CN110114969B (en) Power generating device
JP2018023208A (en) Inverter device
JP5798513B2 (en) Method and apparatus for detecting initial magnetic pole position of permanent magnet synchronous motor, and control apparatus for permanent magnet synchronous motor
JP2010252489A (en) Current detector in variable current path and method of controlling variable magnetic flux motor
JP2009112081A (en) Controller for permanent magnet type synchronous motor
JP2007082380A (en) Synchronous motor control device
JP5282443B2 (en) Control device for permanent magnet type synchronous motor