JP2017218347A - Method for manufacturing free-standing substrate - Google Patents

Method for manufacturing free-standing substrate Download PDF

Info

Publication number
JP2017218347A
JP2017218347A JP2016113852A JP2016113852A JP2017218347A JP 2017218347 A JP2017218347 A JP 2017218347A JP 2016113852 A JP2016113852 A JP 2016113852A JP 2016113852 A JP2016113852 A JP 2016113852A JP 2017218347 A JP2017218347 A JP 2017218347A
Authority
JP
Japan
Prior art keywords
substrate
nitride semiconductor
group iii
iii nitride
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016113852A
Other languages
Japanese (ja)
Inventor
実 川原
Minoru Kawahara
実 川原
智弘 秋山
Tomohiro Akiyama
智弘 秋山
篠原 政幸
Masayuki Shinohara
政幸 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2016113852A priority Critical patent/JP2017218347A/en
Publication of JP2017218347A publication Critical patent/JP2017218347A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a free-standing substrate, capable of easily peeling from a base substrate by a simple process and manufacturing a group III nitride semiconductor free-standing substrate having comparatively excellent crystallinity at a low cost.SOLUTION: The method for manufacturing a free-standing substrate, capable of manufacturing the free-standing substrate consisting of a group III nitride semiconductor comprises: epitaxially growing a low-temperature buffer layer consisting of a group III nitride semiconductor layer at a growth temperature of 400-600°C with a thickness of 80-1000 nm on a substrate; epitaxially growing a group III nitride semiconductor layer at a temperature higher than the growth temperature of the low-temperature buffer layer on the grown low-temperature buffer layer; and manufacturing the free-standing substrate consisting of a group III nitride semiconductor grown at the high temperature by peeling the group III nitride semiconductor layer grown at the high temperature from the substrate.SELECTED DRAWING: Figure 1

Description

本発明は、自立基板の製造方法に関する。   The present invention relates to a method for manufacturing a free-standing substrate.

窒化物半導体材料は、禁制帯幅が充分大きく、バンド間遷移も直接遷移型であるため、短波長発光素子への適用が盛んに検討されている。また、電子の飽和ドリフト速度が大きいこと、ヘテロ接合による2次元キャリアガスの利用が可能なこと等から、電子素子への応用も期待されている。   Nitride semiconductor materials have a sufficiently large forbidden band width and a direct transition type between band transitions. Therefore, application to a short wavelength light emitting element has been actively studied. In addition, application to electronic devices is also expected due to the high saturation drift velocity of electrons and the use of two-dimensional carrier gas by heterojunction.

これらの素子を構成する窒化物半導体層は、有機金属気相成長法(MOVPE:Metal−Organic Vapor Phase Epitaxy)、分子線気相成長法(MBE:Molecular Beam Epitaxy)、ハイドライド気相成長法(HVPE:Hydride Vapor Phase Epitaxy)等の気相成長法を用いて、下地基板上にエピタキシャル成長を行うことにより得られる。   Nitride semiconductor layers constituting these elements are formed by metal-organic vapor phase epitaxy (MOVPE), molecular beam vapor phase epitaxy (MBE), hydride vapor phase epitaxy (HVPE). : Hydride Vapor Phase Epitaxy) or other vapor phase growth method is used to perform epitaxial growth on the base substrate.

ところが、この窒化物半導体層と格子定数の整合する下地基板が存在しないため、良質の成長層を得ることが困難であり、得られる窒化物半導体層中には多くの結晶欠陥が含まれていた。この結晶欠陥は、素子特性の向上を阻害する要因となることから、これまで、窒化物半導体層中の結晶欠陥を低減する検討が盛んに行われてきた。   However, since there is no underlying substrate having a lattice constant matching with this nitride semiconductor layer, it is difficult to obtain a high-quality growth layer, and the obtained nitride semiconductor layer contains many crystal defects. . Since this crystal defect becomes a factor that hinders improvement in device characteristics, so far, studies have been actively conducted to reduce the crystal defect in the nitride semiconductor layer.

結晶欠陥の比較的少ないIII族元素窒化物系結晶を得るための方法として、サファイア等の異種基板上に低温堆積緩衝層(バッファ層)を形成し、その上にエピタキシャル成長層を形成する方法が知られている。この低温堆積緩衝層を用いた結晶成長法では、まず、サファイア等の基板上にAlN又はGaNを500℃付近で堆積させ、アモルファス状の膜ないし一部多結晶を含む連続膜を形成する。これを1000℃付近に昇温することで一部を蒸発させ、また結晶化することで、密度の高い結晶核を形成する。これを成長の核として比較的結晶性のよいGaN膜が得られる。   As a method for obtaining a group III element nitride-based crystal with relatively few crystal defects, a method of forming a low temperature deposition buffer layer (buffer layer) on a dissimilar substrate such as sapphire and forming an epitaxial growth layer thereon is known. It has been. In the crystal growth method using this low-temperature deposition buffer layer, first, AlN or GaN is deposited on a substrate such as sapphire at around 500 ° C. to form an amorphous film or a continuous film partially including polycrystal. This is heated to around 1000 ° C. to partially evaporate and crystallize to form high-density crystal nuclei. Using this as a growth nucleus, a GaN film with relatively good crystallinity can be obtained.

しかしながら、低温堆積緩衝層を形成する方法を用いても、貫通転位や空孔などの結晶欠陥が存在し、現在望まれているような高性能の素子を得るには不充分であった。   However, even when a method for forming a low temperature deposition buffer layer is used, crystal defects such as threading dislocations and vacancies exist, and it is insufficient to obtain a high performance device as currently desired.

例えば、特許文献1では、ELO技術を用いて転位が少ないGaN層をサファイア基板上に形成した後、サファイア基板をエッチング等により除去し、GaN自立基板を得ることが提案されている。   For example, Patent Document 1 proposes that after forming a GaN layer with few dislocations on a sapphire substrate using ELO technology, the sapphire substrate is removed by etching or the like to obtain a GaN free-standing substrate.

また別の技術として、特許文献2には、空隙を利用してGaN自立基板を得る手法が開示されている。この手法では、サファイアC面((0001)面)基板上にGaN層を形成した後、その上にチタン膜を形成する。次いで水素ガス又は水素含有化合物ガスを含む雰囲気中で基板を熱処理してGaN層中に空隙を形成する。その後、GaN層上に新たに厚膜のGaN層を形成することによって反りの少ない良質のGaN自立基板を得ることができる。   As another technique, Patent Document 2 discloses a technique for obtaining a GaN free-standing substrate using a gap. In this method, after forming a GaN layer on a sapphire C-plane ((0001) plane) substrate, a titanium film is formed thereon. Next, the substrate is heat-treated in an atmosphere containing hydrogen gas or a hydrogen-containing compound gas to form voids in the GaN layer. Thereafter, by forming a new thick GaN layer on the GaN layer, a high-quality GaN free-standing substrate with less warpage can be obtained.

特開平11−251253号公報JP-A-11-251253 特開2003−178984号公報JP 2003-178984 A

上述したような従来技術で、結晶性のよいGaN等のIII族窒化物半導体の自立基板が得られるようになったが、サファイア等の異種基板を除去・剥離したり、金属膜やパターン形成等の複雑な工程が必要となり、製造コストが高くなるという問題があった。このため、現状では、III族窒化物半導体の自立基板、例えばGaNの自立基板はGaN系半導体レーザーダイオード等に用いられ、特に付加価値が高いデバイスにしか採用されていない。   With the prior art as described above, a free-standing substrate of a group III nitride semiconductor such as GaN having good crystallinity has been obtained. However, a dissimilar substrate such as sapphire can be removed and peeled off, a metal film or a pattern can be formed Therefore, there is a problem in that the manufacturing process becomes high. Therefore, at present, a free-standing substrate of a group III nitride semiconductor, for example, a free-standing substrate of GaN, is used for a GaN-based semiconductor laser diode or the like, and is used only for a device with particularly high added value.

本発明は、上記問題点に鑑みてなされたものであって、簡便なプロセスにより下地基板からの剥離を容易にでき、比較的結晶性のよいIII族窒化物半導体自立基板を低コストで製造することができる自立基板の製造方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and can be easily peeled off from a base substrate by a simple process, and a group III nitride semiconductor free-standing substrate having relatively good crystallinity is manufactured at low cost. An object of the present invention is to provide a method for manufacturing a free-standing substrate.

上記目的を達成するために、本発明は、III族窒化物半導体からなる自立基板を製造する自立基板の製造方法であって、基板上に400〜600℃の成長温度でIII族窒化物半導体層からなる低温バッファ層を80〜1000nmの厚さでエピタキシャル成長させた後、成長させた前記低温バッファ層の上に前記低温バッファ層の成長温度よりも高温でIII族窒化物半導体層をエピタキシャル成長させて、該高温で成長させたIII族窒化物半導体層を前記基板から剥離させることにより、高温で成長させたIII族窒化物半導体からなる自立基板を製造することを特徴とする自立基板の製造方法を提供する。   In order to achieve the above object, the present invention provides a self-supporting substrate manufacturing method for manufacturing a self-supporting substrate made of a group III nitride semiconductor, and a group III nitride semiconductor layer at a growth temperature of 400 to 600 ° C. on the substrate. And epitaxially growing a group III nitride semiconductor layer on the grown low-temperature buffer layer at a temperature higher than the growth temperature of the low-temperature buffer layer, after epitaxially growing the low-temperature buffer layer comprising 80 to 1000 nm in thickness, Providing a self-standing substrate manufacturing method characterized by manufacturing a self-standing substrate made of a group III nitride semiconductor grown at a high temperature by peeling the group III nitride semiconductor layer grown at the high temperature from the substrate. To do.

このように低温バッファ層を80nm以上の厚さでエピタキシャル成長することで、その上に高温で成長させるIII族窒化物半導体層を基板から容易に剥離させることができる。また、低温バッファ層を1000nm以下の厚さでエピタキシャル成長することで、低温バッファ層の成長時間が必要以上に長くなることを防止できる。これらにより、簡便なプロセスにより下地基板からの剥離を容易にでき、比較的結晶性のよいIII族窒化物半導体自立基板を低コストで製造することができる。   Thus, by epitaxially growing the low-temperature buffer layer with a thickness of 80 nm or more, the group III nitride semiconductor layer grown at a high temperature can be easily peeled off from the substrate. Further, the epitaxial growth of the low temperature buffer layer with a thickness of 1000 nm or less can prevent the growth time of the low temperature buffer layer from becoming longer than necessary. As a result, peeling from the base substrate can be facilitated by a simple process, and a group III nitride semiconductor free-standing substrate having relatively good crystallinity can be manufactured at low cost.

このとき、前記低温バッファ層および前記高温で成長させたIII族窒化物半導体層を、HVPE法で成長させることが好ましい。   At this time, it is preferable that the low-temperature buffer layer and the group III nitride semiconductor layer grown at the high temperature are grown by the HVPE method.

このように上記の2つの層をHVPE法で成長させることで、成長装置を変えることなく全ての成長を高速で行うことができるため、生産性を向上できコストをより低減させることができる。   Thus, by growing the above two layers by the HVPE method, all growth can be performed at high speed without changing the growth apparatus, so that productivity can be improved and cost can be further reduced.

このとき、前記低温バッファ層および前記高温で成長させたIII族窒化物半導体層を、GaNからなる層とすることが好ましい。   At this time, it is preferable that the low-temperature buffer layer and the group III nitride semiconductor layer grown at the high temperature are layers made of GaN.

このように上記の2つの層としてGaNを好適に用いることができる。   Thus, GaN can be suitably used as the above two layers.

以上のように、本発明の自立基板の製造方法によれば、低温バッファ層を80nm〜1000nmの厚さで形成することで、高温で成長させたIII族窒化物半導体層を基板から容易に剥離させることができる。これにより、簡便なプロセスにより下地基板からの剥離が容易にでき、比較的結晶性のよいIII族窒化物半導体自立基板を低コストで製造することができる。   As described above, according to the method for manufacturing a self-supporting substrate of the present invention, the group III nitride semiconductor layer grown at a high temperature can be easily peeled off from the substrate by forming the low temperature buffer layer with a thickness of 80 nm to 1000 nm. Can be made. As a result, peeling from the base substrate can be facilitated by a simple process, and a group III nitride semiconductor free-standing substrate having relatively good crystallinity can be manufactured at low cost.

本発明の自立基板の製造方法の実施形態の一例を示す工程断面図である。It is process sectional drawing which shows an example of embodiment of the manufacturing method of the self-supporting board | substrate of this invention. 高温で成長させたIII族窒化物半導体層を下地基板から剥離する際に発生する多数の割れ、クラックを示す図である。It is a figure which shows many cracks and cracks which generate | occur | produce when peeling the group III nitride semiconductor layer grown at high temperature from a base substrate.

以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in detail as an example of an embodiment with reference to the drawings, but the present invention is not limited thereto.

前述したように、窒化物半導体材料は電子素子への応用が期待されており、これらの素子を構成する窒化物半導体層は下地基板上にエピタキシャル成長を行うことにより得られる。しかしながら、この窒化物半導体層と格子定数の整合する下地基板が存在しないため、得られる窒化物半導体層中には多くの結晶欠陥が含まれており、これまで、窒化物半導体層中の結晶欠陥を低減する検討が盛んに行われてきた。前述のように、サファイア基板をエッチングしてGaN自立基板を得ることが提案されている。また、空隙を利用して反りの少ない良質のGaN自立基板を得る手法が開示されている。   As described above, nitride semiconductor materials are expected to be applied to electronic devices, and nitride semiconductor layers constituting these devices can be obtained by epitaxial growth on a base substrate. However, since there is no underlying substrate whose lattice constant matches that of the nitride semiconductor layer, the resulting nitride semiconductor layer contains many crystal defects. Until now, the crystal defects in the nitride semiconductor layer have been included. There have been many studies to reduce this. As described above, it has been proposed to obtain a GaN free-standing substrate by etching a sapphire substrate. In addition, a technique for obtaining a high-quality GaN free-standing substrate with little warpage by utilizing voids is disclosed.

上述したような従来技術で、結晶性のよいGaN等のIII族窒化物半導体の自立基板が得られるようになったが、サファイア等の異種基板を除去・剥離したり、金属膜やパターン形成等の複雑な工程が必要となり、製造コストが高くなるという問題があった。   With the prior art as described above, a free-standing substrate of a group III nitride semiconductor such as GaN having good crystallinity has been obtained. However, a dissimilar substrate such as sapphire can be removed and peeled off, a metal film or a pattern can be formed Therefore, there is a problem in that the manufacturing process becomes high.

本発明者らは、簡便なプロセスにより下地基板からの剥離が容易にでき、比較的結晶性のよいIII族窒化物半導体自立基板を低コストで製造することができる自立基板の製造方法について鋭意検討した。その結果、高温で成長させるIII族窒化物半導体層を形成する前に形成する低温バッファ層を80nm〜1000nmの厚さで形成することで、その後に高温で成長させたIII族窒化物半導体層を基板から容易に剥離させることができることに想到した。これによって、簡便なプロセスにより下地基板からの剥離が容易にでき、比較的結晶性のよいIII族窒化物半導体自立基板を低コストで製造することができることを見出し、本発明を完成させた。   The present inventors diligently studied a manufacturing method of a free-standing substrate that can be easily peeled off from a base substrate by a simple process and can manufacture a group III nitride semiconductor free-standing substrate having relatively good crystallinity at a low cost. did. As a result, by forming a low-temperature buffer layer having a thickness of 80 nm to 1000 nm before forming a group III nitride semiconductor layer grown at a high temperature, a group III nitride semiconductor layer grown at a high temperature thereafter is formed. It was conceived that it can be easily peeled off from the substrate. As a result, it has been found that a group III nitride semiconductor self-supporting substrate having relatively good crystallinity can be easily peeled off from the base substrate by a simple process, and the present invention has been completed.

まず、本発明の自立基板の製造方法について、図1を参照しながら説明する。   First, the manufacturing method of the self-supporting substrate of the present invention will be described with reference to FIG.

図1(a)に示すように、まず、基材となる基板1を準備する。準備する基板1としては、低温バッファ層が成長可能であれば、特に限定されず、例えばサファイア基板1を準備することができる。   As shown to Fig.1 (a), the board | substrate 1 used as a base material is prepared first. The substrate 1 to be prepared is not particularly limited as long as a low temperature buffer layer can be grown. For example, a sapphire substrate 1 can be prepared.

次に、図1(b)に示すように、準備した基板1上に低温バッファ層2を成長させる。この低温バッファ層2としては、例えばGaNやAlN等をHVPE法等で成長させることができる。低温バッファ層2の成長条件としては、成長温度は400〜600℃、厚さは80〜1000nmとする。なお、低温バッファ層2の厚さは300nm以上とすることが好ましく、500nm以上とすることが更に好ましいが、1000nm近傍では結晶性及び剥離性が若干悪化するため厚くし過ぎるのは好ましくない。
このように、低温バッファ層2を80nm以上の厚さで形成することで、その上に形成する高温で成長させたIII族窒化物半導体層を基板1から容易に剥離させることができる。また、低温バッファ層2を1000nm以下の厚さで形成することにで、低温バッファ層2の成長時間を必要以上に長くすることを防止できる。
従来、このような低温バッファ層は、せいぜい50nm以下の厚さしか成長させなかった。これはコストの問題のみならず、バッファ層である以上薄い方が歪み等が発生せず、好ましいと考えられていたからである。
Next, as shown in FIG. 1B, a low-temperature buffer layer 2 is grown on the prepared substrate 1. As this low-temperature buffer layer 2, for example, GaN, AlN or the like can be grown by the HVPE method or the like. The growth conditions for the low temperature buffer layer 2 are a growth temperature of 400 to 600 ° C. and a thickness of 80 to 1000 nm. Note that the thickness of the low-temperature buffer layer 2 is preferably 300 nm or more, and more preferably 500 nm or more. However, it is not preferable to make it too thick near 1000 nm because crystallinity and peelability are slightly deteriorated.
Thus, by forming the low-temperature buffer layer 2 with a thickness of 80 nm or more, the group III nitride semiconductor layer grown thereon at a high temperature can be easily separated from the substrate 1. Further, by forming the low temperature buffer layer 2 with a thickness of 1000 nm or less, it is possible to prevent the growth time of the low temperature buffer layer 2 from being unnecessarily prolonged.
Conventionally, such a low-temperature buffer layer has been grown only to a thickness of 50 nm or less. This is because not only the problem of cost but also that the thinner buffer layer is considered preferable because it does not cause distortion or the like.

このとき、低温バッファ層2を、GaNからなる層とすることが好ましい。低温バッファ層2としてGaNを好適に用いることができる。   At this time, the low-temperature buffer layer 2 is preferably a layer made of GaN. GaN can be suitably used as the low temperature buffer layer 2.

また、従来は低温バッファ層2の成長を行う前に1000℃程度の温度で水素を流しながら高温クリーニングを行っていたが、本発明ではこれに限定されず、この高温クリーニングは行わないことが好ましい。このような条件とすることで自然剥離がより起こり易くなる。   Conventionally, high-temperature cleaning is performed while flowing hydrogen at a temperature of about 1000 ° C. before the growth of the low-temperature buffer layer 2, but the present invention is not limited to this, and it is preferable not to perform this high-temperature cleaning. . By setting it as such conditions, natural peeling becomes easy to occur.

次に、図1(c)に示すように、成長させた低温バッファ層2上に、低温バッファ層2の成長温度より高温でIII族窒化物半導体層3をエピタキシャル成長させる。この高温成長の温度としては、600℃〜1100℃が好ましく、特には800℃〜1050℃がより好適である。   Next, as shown in FIG. 1C, the group III nitride semiconductor layer 3 is epitaxially grown on the grown low temperature buffer layer 2 at a temperature higher than the growth temperature of the low temperature buffer layer 2. The temperature for this high temperature growth is preferably 600 ° C. to 1100 ° C., more preferably 800 ° C. to 1050 ° C.

このとき、高温で成長させるIII族窒化物半導体層3としては、特には限定されず、AlGaNやAlN等からなる層とすることができるが、GaNからなる層とすることが好ましい。本発明の自立基板の製造方法であれば、製造が困難で、付加価値の高い、結晶性が比較的良質なGaNの自立基板を低コストで製造することができるため、GaNからなる層とすることが好適である。   At this time, the group III nitride semiconductor layer 3 grown at a high temperature is not particularly limited and can be a layer made of AlGaN, AlN or the like, but is preferably a layer made of GaN. According to the method for manufacturing a self-supporting substrate of the present invention, a GaN self-supporting substrate that is difficult to manufacture, has high added value, and has relatively high crystallinity can be manufactured at low cost. Is preferred.

このとき、高温で成長させるIII族窒化物半導体層3を成長させる方法としては、特に限定されないが、HVPE法で成長させることが好ましい。HVPE法であれば、厚膜のIII族窒化物半導体層を効率的に成長させることができるため、剥離して自立基板を製造するのに好適である。   At this time, the method for growing the group III nitride semiconductor layer 3 grown at a high temperature is not particularly limited, but it is preferably grown by the HVPE method. If the HVPE method is used, a thick group III nitride semiconductor layer can be efficiently grown.

また、低温バッファ層2および高温で成長させたIII族窒化物半導体層3をともに、HVPE法で成長させることが好ましい。このように上記の2つの層をHVPE法で成長させることで、成長装置を変えることなく全ての成長を高速で行うことができるため、生産性を向上できコストをより低減させることができる。   Moreover, it is preferable that both the low temperature buffer layer 2 and the group III nitride semiconductor layer 3 grown at a high temperature are grown by the HVPE method. Thus, by growing the above two layers by the HVPE method, all growth can be performed at high speed without changing the growth apparatus, so that productivity can be improved and cost can be further reduced.

次に、図1(d)に示すように、高温で成長させたIII族窒化物半導体層3を基板1から剥離させることにより、III族窒化物半導体からなる自立基板4を製造する。このとき、高温のIII族窒化物半導体層成長後の降温時に基板1から自然剥離するか、又は降温時に基板1から自然剥離しなかった場合でも、降温後でも容易に基板1から剥離させることができる。なお、図1(d)においては、剥離後の自立基板4の底面に低温バッファ層2の一部が残っていない場合を示したが、剥離後の自立基板4の底面に低温バッファ層2の一部が残っている場合もあることは言うまでもない。低温バッファ層が自立基板に一部残ったとしても、その後、エッチングや研削等の処理で容易に除去することができる。   Next, as shown in FIG. 1 (d), the group III nitride semiconductor layer 3 grown at a high temperature is peeled off from the substrate 1, thereby manufacturing a free-standing substrate 4 made of a group III nitride semiconductor. At this time, the substrate 1 may be naturally separated from the substrate 1 when the temperature is lowered after the growth of the high-temperature group III nitride semiconductor layer, or may be easily separated from the substrate 1 even after the temperature is lowered even if the substrate 1 is not naturally separated from the substrate 1 when the temperature is lowered. it can. FIG. 1D shows the case where a part of the low-temperature buffer layer 2 does not remain on the bottom surface of the free-standing substrate 4 after peeling, but the low-temperature buffer layer 2 on the bottom surface of the free-standing substrate 4 after peeling. Needless to say, some may remain. Even if a part of the low-temperature buffer layer remains on the free-standing substrate, it can be easily removed by a process such as etching or grinding.

このように、本発明の自立基板の製造方法においては、低温バッファ層2を80〜1000nmと比較的厚く成長させることで、III族窒化物半導体からなる低温バッファ層2が剥離層として機能するため、従来のような金属膜の形成やパターン形成等の複雑な工程が不要であり、上記のように単結晶上に比較的結晶性良く成長した高温成長のIII族窒化物半導体層を容易に剥離させることができるため、高品質のIII族窒化物半導体の自立基板を簡便な方法で効率的に得ることができる。   Thus, in the method for manufacturing a self-supporting substrate according to the present invention, the low temperature buffer layer 2 made of a group III nitride semiconductor functions as a release layer by growing the low temperature buffer layer 2 to a relatively large thickness of 80 to 1000 nm. This eliminates the need for complicated processes such as metal film formation and pattern formation as in the past, and easily removes the high-temperature-grown Group III nitride semiconductor layer grown on the single crystal with relatively good crystallinity as described above. Therefore, a high-quality group III nitride semiconductor free-standing substrate can be efficiently obtained by a simple method.

以上のような本発明の自立基板の製造方法により製造されたIII族窒化物半導体自立基板であれば、安価で比較的結晶性の良いIII族窒化物半導体自立基板となる。   A group III nitride semiconductor self-supporting substrate manufactured by the method for manufacturing a self-supporting substrate of the present invention as described above is a group III nitride semiconductor self-supporting substrate that is inexpensive and has relatively good crystallinity.

以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to these.

(実施例1)
まず基板1としてサファイア基板を準備し、HVPE装置に装着した。温度を1000℃に上げて水素を流しながら高温クリーニングを行った。次に温度を500℃としてGaNからなる低温バッファ層2を80nmの厚さで成長させた。ここで、HVPE装置中ではIII族元素のハロゲン化物であるGaClと、V族元素としてのNHとを原料ガスとし、V/III比を10とした。
次に、1050℃に温度を上げて自立基板となるGaN層を400μmの膜厚で成長させた。温度を下げて高温でGaN層を成長させたウェーハをHVPE装置から取り出した。ウェーハの外周部に剥離しない部分も一部あったが、ウェーハのほぼ全面についてサファイア基板1と厚膜GaN層3を自然剥離することができた。
Example 1
First, a sapphire substrate was prepared as the substrate 1 and mounted on an HVPE apparatus. High temperature cleaning was performed while raising the temperature to 1000 ° C. and flowing hydrogen. Next, the temperature was set to 500 ° C., and the low temperature buffer layer 2 made of GaN was grown to a thickness of 80 nm. Here, in the HVPE apparatus, GaCl which is a halide of a group III element and NH 3 as a group V element are used as a raw material gas, and the V / III ratio is set to 10.
Next, the temperature was raised to 1050 ° C., and a GaN layer serving as a self-supporting substrate was grown to a thickness of 400 μm. The wafer on which the GaN layer was grown at a high temperature by lowering the temperature was taken out from the HVPE apparatus. Although there were some portions that did not peel off on the outer periphery of the wafer, the sapphire substrate 1 and the thick GaN layer 3 could be naturally peeled over almost the entire surface of the wafer.

(実施例2)
高温クリーニングを行わなかったことを除き、実施例1と同じ方法でGaN自立基板を製造したところ、ウェーハ全面についてサファイア基板1と厚膜GaN層3を自然剥離することができた。
(Example 2)
A GaN free-standing substrate was manufactured by the same method as in Example 1 except that high-temperature cleaning was not performed. As a result, the sapphire substrate 1 and the thick GaN layer 3 could be naturally peeled over the entire surface of the wafer.

(実施例3)
低温バッファ層2を500nmの厚さとしたことを除き、実施例1と同じ条件でGaN自立基板を製造したところ、ウェーハ全面についてサファイア基板1と厚膜GaN層3を自然剥離することができた。
(Example 3)
A GaN free-standing substrate was manufactured under the same conditions as in Example 1 except that the low-temperature buffer layer 2 was 500 nm thick. As a result, the sapphire substrate 1 and the thick GaN layer 3 could be naturally peeled over the entire surface of the wafer.

(実施例4)
低温バッファ層2を1000nmの厚さとしたことを除き、実施例1と同じ条件でGaN自立基板を製造したところ、ウェーハの外周部に剥離しない部分も一部あり、結晶欠陥(転位)も若干多かったが、ウェーハのほぼ全面についてサファイア基板1と厚膜GaN層3を自然剥離することができた。
Example 4
A GaN free-standing substrate was manufactured under the same conditions as in Example 1 except that the low-temperature buffer layer 2 had a thickness of 1000 nm. As a result, some portions of the outer periphery of the wafer were not peeled off and there were a few crystal defects (dislocations). However, the sapphire substrate 1 and the thick GaN layer 3 were able to be naturally peeled over almost the entire surface of the wafer.

(比較例)
低温バッファ層2を50nmの厚さとしたことを除き、実施例1と同じ条件でGaN自立基板を製造したところ、サファイア基板1と厚膜GaN層3とを剥離する際に、図2に示すようにサファイア基板ともども面内多数の割れ、クラックが発生した。
(Comparative example)
A GaN free-standing substrate was manufactured under the same conditions as in Example 1 except that the low-temperature buffer layer 2 was 50 nm thick. When the sapphire substrate 1 and the thick GaN layer 3 were peeled, as shown in FIG. In addition, many cracks and cracks occurred in the surface with the sapphire substrate.

実施例1〜4、比較例におけるGaN自立基板4の結晶性、および厚膜GaN層3のサファイア基板1からの剥離の容易さを表1に示す。   Table 1 shows the crystallinity of the GaN free-standing substrate 4 in Examples 1 to 4 and the comparative example, and the ease of peeling of the thick GaN layer 3 from the sapphire substrate 1.

表1からわかるように、低温バッファ層2の膜厚を80nm〜1000nmとした実施例1〜4では、低温バッファ層2の膜厚を50nmとした比較例に対して、厚膜GaN層3のサファイア基板1からの剥離が容易になっている。   As can be seen from Table 1, in Examples 1 to 4 in which the film thickness of the low temperature buffer layer 2 is 80 nm to 1000 nm, the thick film GaN layer 3 is different from the comparative example in which the film thickness of the low temperature buffer layer 2 is 50 nm. Peeling from the sapphire substrate 1 is easy.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

1…基板(サファイア基板)、 2…低温バッファ層、
3…高温で成長させるIII族窒化物半導体層(厚膜GaN層)、 4…自立基板。
1 ... Substrate (sapphire substrate), 2 ... Low temperature buffer layer,
3 ... Group III nitride semiconductor layer (thick GaN layer) grown at high temperature, 4 ... Free-standing substrate.

Claims (3)

III族窒化物半導体からなる自立基板を製造する自立基板の製造方法であって、
基板上に400〜600℃の成長温度でIII族窒化物半導体層からなる低温バッファ層を80〜1000nmの厚さでエピタキシャル成長させた後、成長させた前記低温バッファ層の上に前記低温バッファ層の成長温度よりも高温でIII族窒化物半導体層をエピタキシャル成長させて、該高温で成長させたIII族窒化物半導体層を前記基板から剥離させることにより、高温で成長させたIII族窒化物半導体からなる自立基板を製造することを特徴とする自立基板の製造方法。
A self-supporting substrate manufacturing method for manufacturing a self-supporting substrate made of a group III nitride semiconductor,
A low temperature buffer layer made of a group III nitride semiconductor layer is epitaxially grown to a thickness of 80 to 1000 nm on a substrate at a growth temperature of 400 to 600 ° C., and then the low temperature buffer layer is formed on the grown low temperature buffer layer. A group III nitride semiconductor layer is epitaxially grown at a temperature higher than the growth temperature, and the group III nitride semiconductor layer grown at the high temperature is peeled off from the substrate, thereby forming a group III nitride semiconductor grown at a high temperature. A self-standing substrate manufacturing method, characterized by manufacturing a self-standing substrate.
前記低温バッファ層および前記高温で成長させたIII族窒化物半導体層を、HVPE法で成長させることを特徴とする請求項1に記載の自立基板の製造方法。   2. The method for manufacturing a self-supporting substrate according to claim 1, wherein the low-temperature buffer layer and the group III nitride semiconductor layer grown at the high temperature are grown by HVPE. 前記低温バッファ層および前記高温で成長させたIII族窒化物半導体層を、GaNからなる層とすることを特徴とする請求項1または請求項2に記載の自立基板の製造方法。   3. The method for manufacturing a self-supporting substrate according to claim 1, wherein the low-temperature buffer layer and the group III nitride semiconductor layer grown at the high temperature are layers made of GaN.
JP2016113852A 2016-06-07 2016-06-07 Method for manufacturing free-standing substrate Pending JP2017218347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016113852A JP2017218347A (en) 2016-06-07 2016-06-07 Method for manufacturing free-standing substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016113852A JP2017218347A (en) 2016-06-07 2016-06-07 Method for manufacturing free-standing substrate

Publications (1)

Publication Number Publication Date
JP2017218347A true JP2017218347A (en) 2017-12-14

Family

ID=60657297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016113852A Pending JP2017218347A (en) 2016-06-07 2016-06-07 Method for manufacturing free-standing substrate

Country Status (1)

Country Link
JP (1) JP2017218347A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007241A (en) * 2007-05-25 2009-01-15 Tohoku Univ METHOD FOR MANUFACTURING GaN-BASED NITRIDE SEMICONDUCTOR SELF-SUPPORTING SUBSTRATE
JP2010030877A (en) * 2008-07-03 2010-02-12 Furukawa Co Ltd Group iii nitride semiconductor substrate and method for producing the same
JP2012131662A (en) * 2010-12-21 2012-07-12 Aetech Corp METHOD AND APPARATUS FOR MANUFACTURING GALLIUM NITRIDE (GaN) SELF-SUPPORTING SUBSTRATE
JP2013151388A (en) * 2012-01-25 2013-08-08 Nichia Corp Method for manufacturing nitride semiconductor substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007241A (en) * 2007-05-25 2009-01-15 Tohoku Univ METHOD FOR MANUFACTURING GaN-BASED NITRIDE SEMICONDUCTOR SELF-SUPPORTING SUBSTRATE
JP2010030877A (en) * 2008-07-03 2010-02-12 Furukawa Co Ltd Group iii nitride semiconductor substrate and method for producing the same
JP2012131662A (en) * 2010-12-21 2012-07-12 Aetech Corp METHOD AND APPARATUS FOR MANUFACTURING GALLIUM NITRIDE (GaN) SELF-SUPPORTING SUBSTRATE
JP2013151388A (en) * 2012-01-25 2013-08-08 Nichia Corp Method for manufacturing nitride semiconductor substrate

Similar Documents

Publication Publication Date Title
JP4581490B2 (en) III-V group nitride semiconductor free-standing substrate manufacturing method and III-V group nitride semiconductor manufacturing method
JP4735949B2 (en) Method for producing group III-V nitride semiconductor crystal and method for producing group III-V nitride semiconductor substrate
JP4335187B2 (en) Nitride semiconductor device manufacturing method
JP4529846B2 (en) III-V nitride semiconductor substrate and method for manufacturing the same
JP3821232B2 (en) Porous substrate for epitaxial growth, method for producing the same, and method for producing group III nitride semiconductor substrate
TWI437637B (en) Method for manufacturing gallium nitride single crystalline substrate using self-split
TWI426162B (en) Method for preparing substrate for growing gallium nitride and method for preparing gallium nitride substrate
JP2007506635A (en) Realization of III-nitride free-standing substrate by heteroepitaxy on sacrificial layer
JP6872724B2 (en) Nitride semiconductor self-supporting substrate manufacturing method
JP5056299B2 (en) Nitride semiconductor base substrate, nitride semiconductor multilayer substrate, and method of manufacturing nitride semiconductor base substrate
JP2011051849A (en) Nitride semiconductor self-supporting substrate and method for manufacturing the same
JP2009208991A (en) Method for producing nitride semiconductor substrate
JP5233894B2 (en) Manufacturing method of nitride semiconductor free-standing substrate
JP2017226584A (en) Production method of self-standing substrate
JP2009018975A (en) Manufacturing method of nonpolar plane group iii nitride single crystal
JP2005340747A (en) Iii-v group nitride series semiconductor substrate and manufacturing method of the same, iii-v group nitride series semiconductor device, iii-v group nitride series semiconductor substrate lot
JP2006279025A (en) Method of growing non-polar a-plane gallium nitride
JP2009152305A (en) Method for manufacturing nitride semiconductor single-crystal substrate, and nitride semiconductor single-crystal substrate and substrate for manufacturing the same
JP2005203418A (en) Nitride compound semiconductor substrate and its manufacturing method
JP2007197240A (en) Method for manufacturing gallium nitride single crystal substrate and gallium nitride single crystal substrate
JP2017218347A (en) Method for manufacturing free-standing substrate
JP5614314B2 (en) GaN free-standing substrate manufacturing method
JP2012020934A (en) Method for producing nitride semiconductor substrate
WO2010116596A1 (en) Method for manufacturing free-standing iii nitride semiconductor substrate, and substrate for growing iii nitride semiconductor layer
JP4137633B2 (en) Method for producing group 3-5 compound semiconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191105