JP2009018975A - Manufacturing method of nonpolar plane group iii nitride single crystal - Google Patents

Manufacturing method of nonpolar plane group iii nitride single crystal Download PDF

Info

Publication number
JP2009018975A
JP2009018975A JP2007184556A JP2007184556A JP2009018975A JP 2009018975 A JP2009018975 A JP 2009018975A JP 2007184556 A JP2007184556 A JP 2007184556A JP 2007184556 A JP2007184556 A JP 2007184556A JP 2009018975 A JP2009018975 A JP 2009018975A
Authority
JP
Japan
Prior art keywords
film
substrate
single crystal
group iii
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007184556A
Other languages
Japanese (ja)
Other versions
JP4825747B2 (en
Inventor
Yoshitaka Kuraoka
義孝 倉岡
Shigeaki Sumiya
茂明 角谷
Makoto Miyoshi
実人 三好
Minoru Imaeda
美能留 今枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2007184556A priority Critical patent/JP4825747B2/en
Publication of JP2009018975A publication Critical patent/JP2009018975A/en
Application granted granted Critical
Publication of JP4825747B2 publication Critical patent/JP4825747B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for preparing a self-standing substrate composed of a nonpolar plane group III nitride single crystal having a good quality with high productivity. <P>SOLUTION: The method comprises forming a ground film 2 composed of a nonpolar plane group III nitride on a substrate 1 by a vapor phase deposition method, forming a metal film on the ground film 2, providing a metal nitride film 4 having voids by nitriding the metal film, forming a seed crystal film 5 on the metal nitride film 4 by a vapor phase deposition method, and growing a nonpolar plane group III nitride single crystal 6 on the seed crystal film 5 by a flux process. The single crystal 6 can easily be peeled from the substrate 1 along the metal nitride film 4. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、非極性面III族窒化物単結晶の育成方法に関するものである。   The present invention relates to a method for growing a nonpolar plane group III nitride single crystal.

従来の技術Conventional technology

窒化ガリウム(GaN)薄膜結晶は、優れた青色発光素子として注目を集めており、発光ダイオードにおいて実用化され、光ピックアップ用の青紫色半導体レーザー素子としても期待されている。特に非極性面GaN基板を応用すると、高In組成比のInGaNを用いる緑色LEDの製造において欠陥増加を抑えられ、ピエゾ電界の発生がないため高効率化を達成できる。また、高効率のLDの実現が可能となるものと期待されている。   Gallium nitride (GaN) thin film crystals are attracting attention as excellent blue light emitting devices, put into practical use in light emitting diodes, and expected as blue-violet semiconductor laser devices for optical pickups. In particular, when a nonpolar plane GaN substrate is applied, an increase in defects can be suppressed in manufacturing a green LED using InGaN having a high In composition ratio, and high efficiency can be achieved because there is no generation of a piezoelectric field. In addition, it is expected that a highly efficient LD can be realized.

GaN やAlN の種結晶膜をサファイアなどの単結晶基板上に堆積させてテンプレート基板を得、テンプレート基板上にGaN 単結晶を育成する方法が報告されている(特許文献1)。
特開2000−327495号公報
A method has been reported in which a seed substrate of GaN or AlN is deposited on a single crystal substrate such as sapphire to obtain a template substrate, and a GaN single crystal is grown on the template substrate (Patent Document 1).
JP 2000-327495 A

特許文献2は、いわゆるボイド形成剥離(Void−Assisted Separation;VAS)法を開示している。すなわち、GaNエピタキシャル成長後のサファイア基板上に、GaN分解触媒作用のあるチタンやニッケルを堆積し、アンモニアガスなどの雰囲気下で熱処理を行い、空隙のある窒化チタン、窒化ニッケルを形成する。その空隙のある窒化物層上にGaNを成長させると、空隙を埋めながらGaNが成長し、結晶性が向上する。そして、GaN単結晶を成長させた後には、空隙層にてサファイア基板とGaN単結晶が剥離するので、GaN単結晶の自立基板が得られる。
特開2002−343728
Patent Document 2 discloses a so-called void-separated separation (VAS) method. That is, titanium or nickel having a GaN decomposition catalytic action is deposited on a sapphire substrate after GaN epitaxial growth, and heat treatment is performed in an atmosphere such as ammonia gas to form titanium nitride and nickel nitride having voids. When GaN is grown on the nitride layer having voids, GaN grows while filling the voids, and crystallinity is improved. Then, after the GaN single crystal is grown, the sapphire substrate and the GaN single crystal are separated from each other in the gap layer, so that a GaN single crystal free-standing substrate is obtained.
JP 2002-343728 A

特許文献1記載の方法では、例えばGaN単結晶膜を下地のテンプレート基板から剥離させることは困難であり、GaN単結晶の自立基板を作製することは難しい。   In the method described in Patent Document 1, for example, it is difficult to peel a GaN single crystal film from an underlying template substrate, and it is difficult to produce a GaN single crystal free-standing substrate.

特許文献2記載のVAS法では、サファイア基板上に極性面(c面)GaN膜をMOCVD法により成膜する。そして、チタン膜を蒸着した後、チタン膜を加熱窒化処理し、この上にHVPE法によってc面GaN単結晶を育成している。ところが、本発明者は、この方法によって、非極性面(a面・m面)GaN単結晶を窒化チタン膜上に形成することを試みた。しかし、この方法では、GaN単結晶の成長速度が極端に遅く、得られたGaN単結晶の欠陥密度も高いために、工業的に利用不可能な方法であることが判明した。   In the VAS method described in Patent Document 2, a polar surface (c-plane) GaN film is formed on a sapphire substrate by MOCVD. Then, after depositing a titanium film, the titanium film is heat-nitrided, and a c-plane GaN single crystal is grown on the titanium film by HVPE. However, the present inventors tried to form a nonpolar plane (a-plane / m-plane) GaN single crystal on the titanium nitride film by this method. However, it has been found that this method cannot be used industrially because the growth rate of the GaN single crystal is extremely slow and the defect density of the obtained GaN single crystal is high.

本発明の課題は、品質の良い非極性面III族窒化物の単結晶からなる自立基板を高い生産性で得る方法を提供することである。   An object of the present invention is to provide a method for obtaining a high-quality free-standing substrate made of a single crystal of a nonpolar plane group III nitride having a good quality.

本発明に係る方法は、
非極性面III族窒化物からなる下地膜を基板上に気相成長法により形成する下地膜形成工程;
下地膜上に金属膜を形成する金属膜形成工程;
この金属膜を窒化することによって、空隙を有する金属窒化物膜を設ける窒化工程;
前記金属窒化物膜上に非極性面III族窒化物からなる種結晶膜を形成する工程;および
非極性面III族窒化物の単結晶を種結晶膜上にフラックス法によって育成する結晶育成工程
を備えていることを特徴とする。
The method according to the present invention comprises:
A base film forming step of forming a base film made of a non-polar group III-nitride on the substrate by vapor deposition;
A metal film forming step of forming a metal film on the base film;
A nitriding step of nitriding the metal film to provide a metal nitride film having voids;
A step of forming a seed crystal film made of a nonpolar group III nitride on the metal nitride film; and a crystal growth step of growing a single crystal of the nonpolar group III nitride on the seed crystal film by a flux method It is characterized by having.

本発明者は、特許文献2記載の方法を非極性面III族窒化物単結晶へ適用することを研究した。この方法では、サファイア基板上にGaN膜を気相成長法により成膜し、次いで金属膜を蒸着後、窒化したものを種基板とする。この種基板にHVPE法によってGaN単結晶を育成してみた。まず、c面GaN単結晶の場合には、成長レート100μm/h,欠陥密度10cm−2が得られ、成長速度、結晶性ともに比較的良好であった。ところが、a面GaN単結晶、m面GaN単結晶の場合には、成長レートは3μm/hと極めて低く、欠陥密度も10cm−2と高く、実用に堪えないことが判明した。 The inventor studied the application of the method described in Patent Document 2 to a nonpolar plane group III nitride single crystal. In this method, a GaN film is formed on a sapphire substrate by vapor deposition, and then a metal film is deposited and then nitrided is used as a seed substrate. A GaN single crystal was grown on this seed substrate by the HVPE method. First, in the case of a c-plane GaN single crystal, a growth rate of 100 μm / h and a defect density of 10 7 cm −2 were obtained, and both the growth rate and crystallinity were relatively good. However, in the case of the a-plane GaN single crystal and the m-plane GaN single crystal, the growth rate was as extremely low as 3 μm / h and the defect density was as high as 10 8 cm −2 , which proved unpractical.

このため、本発明者は、サファイア基板上に非極性面(a面・m面)GaN膜を気相成長法により成膜し、次いで金属膜を蒸着後、窒化し、再び非極性面GaN膜を気相成長法により成膜したものを種基板とし、この上にフラックス法によって非極性面III族窒化物単結晶を形成することを試みた。この結果、例えば、GaN単結晶を形成した場合、c面、a面、m面にて成長レート10μm/h,欠陥密度10cm−2が得られた。すなわち、非極性面III族窒化物の場合にも、c面III族窒化物と同等以上の成長速度と結晶性とが得られることを見いだし、本発明に到達した。 For this reason, the present inventor formed a nonpolar plane (a-plane / m-plane) GaN film on a sapphire substrate by vapor deposition, then deposited a metal film, nitrided, and again a nonpolar plane GaN film An attempt was made to form a nonpolar plane group III nitride single crystal on the substrate by a flux method. As a result, for example, when a GaN single crystal was formed, a growth rate of 10 μm / h and a defect density of 10 6 cm −2 were obtained on the c-plane, a-plane, and m-plane. That is, the present inventors have found that a growth rate and crystallinity equivalent to or higher than those of c-plane group III nitrides can be obtained even in the case of nonpolar plane group III nitrides.

しかも、フラックス法による結晶成長終了後の降温時に、サファイア基板と非極性面III族窒化物単結晶の熱膨張係数差により、密着性の弱い金属窒化膜による空隙層にて基板とこの単結晶とが自然に剥離し、単結晶が自立することを見いだした。この剥離により、反りによる応力がなくなるため、結晶成長後の降温時にクラックが発生しにくい。しかも、自然剥離するため、パルスレーザーや基板の研磨といった剥離工程を必要とせず、自立基板への熱的・機械的ダメージがない。   Moreover, when the temperature is lowered after the completion of crystal growth by the flux method, due to the difference in thermal expansion coefficient between the sapphire substrate and the nonpolar plane group III nitride single crystal, the substrate and the single crystal Has been found to peel off spontaneously and single crystals become self-supporting. Since this peeling eliminates stress due to warping, cracks are unlikely to occur during temperature drop after crystal growth. Moreover, since it peels naturally, it does not require a peeling process such as pulse laser or substrate polishing, and there is no thermal or mechanical damage to the self-supporting substrate.

以下、適宜図面を参照しつつ、本発明を詳細に説明する。
図1(a)に示すように、基板1の表面1 aに、非極性面III族窒化物からなる下地膜2を形成する。次いで、図1(b)に示すように、下地膜2上に金属膜3をスパッタ法、蒸着法等の気相法で形成する。次いで、この金属膜3を窒化し、金属窒化物膜4を形成する(図1(c))。この窒化の際に、金属窒化物膜4内には微細な空隙が多数生成する。また、下地膜2にも微細な空隙ないし凹部が多数生成する傾向がある。次いで、図1(d)に示すように、金属窒化物膜4上に、非極性面III族窒化物からなる種結晶膜5を形成する。
Hereinafter, the present invention will be described in detail with appropriate reference to the drawings.
As shown in FIG. 1A, a base film 2 made of a nonpolar plane III-nitride is formed on a surface 1a of a substrate 1. Next, as shown in FIG. 1B, a metal film 3 is formed on the base film 2 by a vapor phase method such as sputtering or vapor deposition. Next, the metal film 3 is nitrided to form a metal nitride film 4 (FIG. 1C). During this nitridation, many fine voids are generated in the metal nitride film 4. Also, the base film 2 tends to generate many fine voids or recesses. Next, as shown in FIG. 1D, a seed crystal film 5 made of a nonpolar plane group III nitride is formed on the metal nitride film 4.

次いで、図2(a)に示すように、フラックス法によって非極性面III族窒化物の単結晶6をエピタキシャル成長させる。この状態で、非極性面III族窒化物単結晶6が厚くなると、これが基板1から金属窒化物膜4に沿って剥離しやすくなる。従って、図2(b)に示すように、単結晶6を基板1から金属窒化物膜4に沿って容易に剥離させ、自立基板を得ることができた。   Next, as shown in FIG. 2A, a single crystal 6 of non-polar plane group III nitride is epitaxially grown by a flux method. In this state, when the nonpolar plane group III nitride single crystal 6 becomes thick, it becomes easy to peel off from the substrate 1 along the metal nitride film 4. Therefore, as shown in FIG. 2B, the single crystal 6 was easily peeled from the substrate 1 along the metal nitride film 4 to obtain a self-supporting substrate.

本発明において、基板は、非極性面III族窒化物の成長が可能であるかぎり、特に限定されない。サファイア、シリコン単結晶、α−SiC単結晶、γ−LiAlO2、LiGaO2等を例示できる。 In the present invention, the substrate is not particularly limited as long as non-polar plane group III nitride can be grown. Examples thereof include sapphire, silicon single crystal, α-SiC single crystal, γ-LiAlO 2 and LiGaO 2 .

本発明では、下地膜、種結晶膜を非極性面III族窒化物によって形成し、また非極性面III族窒化物単結晶をフラックス法で成長させる。これらの非極性面III族窒化物は、互いに同じ組成であることが好ましいが、エピタキシャル成長が可能であれば、互いに異なっていても良い。   In the present invention, the base film and the seed crystal film are formed of nonpolar plane group III nitride, and the nonpolar plane group III nitride single crystal is grown by a flux method. These nonpolar group III nitrides preferably have the same composition, but may be different from each other as long as epitaxial growth is possible.

各III族窒化物のウルツ鉱構造は、c面、a面およびm面を有する。これらの各結晶面は結晶学的に定義されるものである。非極性面III族窒化物とは、基板表面がa面またはm面のIII族窒化物である膜または単結晶基板を意味している。下地膜、種結晶膜、およびフラックス法によって育成される非極性面III族窒化物単結晶の育成方向は、a 面の法線方向であってよく、またm面の法線方向であってもよい。   Each III-nitride wurtzite structure has a c-plane, a-plane and m-plane. Each of these crystal planes is defined crystallographically. The nonpolar plane group III nitride means a film or a single crystal substrate in which the substrate surface is a group-III nitride having an a-plane or m-plane. The growth direction of the base film, the seed crystal film, and the nonpolar plane group III nitride single crystal grown by the flux method may be the normal direction of the a plane or the normal direction of the m plane. Good.

これらの各非極性面III族窒化物は、Ga、Al、Inから選ばれた一種以上の金属の窒化物であることが好ましく、GaN、AlN、GaAlN,GaAlInNなどが特に好ましい。さらに、これらの窒化物には意図しない不純物元素を含んでいても良い。また導電性を制御するために、意図的に添加したSi,Ge,Be,Mg,Zn,Cdなどのドーパントを含んでいても良い。   Each of these nonpolar plane group III nitrides is preferably a nitride of one or more metals selected from Ga, Al, and In, and GaN, AlN, GaAlN, GaAlInN, and the like are particularly preferable. Further, these nitrides may contain an unintended impurity element. Moreover, in order to control electroconductivity, you may include dopants, such as Si, Ge, Be, Mg, Zn, Cd added intentionally.

下地膜の形成方法は気相成長法であるが、有機金属化学気相成長(MOCVD:Metal Organic Chemical Vapor Deposition)法、ハイドライド気相成長(HVPE)法、MBE法、昇華法を例示できる。   The formation method of the base film is a vapor phase growth method, and examples thereof include a metal organic chemical vapor deposition (MOCVD) method, a hydride vapor phase growth (HVPE) method, an MBE method, and a sublimation method.

本発明において、金属膜は、金属窒化物の分解を促進する触媒作用を有する金属であれば、特に限定されない。この金属は、チタン、チタン合金、ニッケルまたはニッケル合金からなることが望ましいが、Fe,Zr,Hf,W,Ptも利用できる。   In the present invention, the metal film is not particularly limited as long as the metal film has a catalytic action for promoting the decomposition of the metal nitride. The metal is preferably made of titanium, titanium alloy, nickel or nickel alloy, but Fe, Zr, Hf, W, and Pt can also be used.

金属膜の厚さは500nm以下であることが望ましい。窒化された後の金属膜は、窒化前の金属膜よりも厚くなることがあるが、ここでは、窒化前の金属膜の厚さを言うものとする。これは、金属膜の厚さが500nmよりも厚くなると、金属膜が窒化された際に、微細な穴が形成されにくくなり、下地GaN層の埋め込み成長が難しくなるためである。金属膜の厚さの下限は特にないが,本発明の観点から50nm以上であることが好ましい。   The thickness of the metal film is desirably 500 nm or less. The metal film after nitriding may be thicker than the metal film before nitriding, but here, the thickness of the metal film before nitriding shall be said. This is because if the thickness of the metal film is greater than 500 nm, when the metal film is nitrided, it becomes difficult to form fine holes and it becomes difficult to bury and grow the underlying GaN layer. The lower limit of the thickness of the metal film is not particularly limited, but is preferably 50 nm or more from the viewpoint of the present invention.

金属膜を窒化し、下地膜に空隙を形成するための熱処理温度は限定されないが、分解促進という観点からは、700℃以上が好ましい。また、下地膜や基板の劣化を抑制するという観点からは、1200℃以下が好ましい。   The heat treatment temperature for nitriding the metal film and forming voids in the base film is not limited, but 700 ° C. or higher is preferable from the viewpoint of promoting decomposition. Moreover, 1200 degreeC or less is preferable from a viewpoint of suppressing deterioration of a base film or a board | substrate.

金属膜を窒化する際の雰囲気は、窒素原子含有気体を含んでいればよく、具体的には窒素、アンモニアなどを含んでいれば良い。雰囲気中の窒素含有気体以外のガスは限定されないが、水素ガス、アルゴン、ヘリウムが特に好ましい。   The atmosphere for nitriding the metal film only needs to contain a nitrogen atom-containing gas, specifically nitrogen, ammonia, or the like. Gases other than the nitrogen-containing gas in the atmosphere are not limited, but hydrogen gas, argon, and helium are particularly preferable.

空隙を有する金属窒化膜の気孔率は、10%以上であることが好ましく、30%以上であることが更に好ましい。これによって、非極性面III族窒化物の転位密度の低減効果が向上する。また、非極性面III族窒化物の生成促進という観点からは、この気孔率は、90%以下が好ましく、70%以下が更に好ましい。   The porosity of the metal nitride film having voids is preferably 10% or more, and more preferably 30% or more. This improves the effect of reducing the dislocation density of the nonpolar group III nitride. Further, from the viewpoint of promoting the formation of nonpolar group III nitride, the porosity is preferably 90% or less, and more preferably 70% or less.

上記金属膜窒化工程は、次の工程である種結晶膜生成まで同一炉内にて続けて行うのが好ましい。   The metal film nitriding step is preferably performed continuously in the same furnace until the next step, which is the seed crystal film generation.

種結晶膜は、下地層について記述した前記材料で形成でき、また前記方法によって形成できる。ただし、種結晶膜と下地膜とは、同一組成のIII族窒化物からなっていてよく、あるいは組成の異なるIII族窒化物からなっていてよい。また、種結晶膜の成膜方法は、下地層の成膜方法と同一であってよく、異なってもいても良い。 The seed crystal film can be formed of the materials described for the underlayer and can be formed by the method described above. However, the seed crystal film and the base film may be made of group III nitrides having the same composition, or may be made of group III nitrides having different compositions. The seed crystal film formation method may be the same as or different from the underlayer film formation method.

本発明において、非極性面III族窒化物をフラックス法によって育成する。この際、フラックスの種類は、III族窒化物単結晶を生成可能である限り、特に限定されない。好適な実施形態においては、アルカリ金属とアルカリ土類金属の少なくとも一方を含むフラックスを使用し、ナトリウム金属を含むフラックスが特に好ましい。   In the present invention, the nonpolar group III nitride is grown by the flux method. At this time, the type of flux is not particularly limited as long as a group III nitride single crystal can be generated. In a preferred embodiment, a flux containing at least one of an alkali metal and an alkaline earth metal is used, and a flux containing sodium metal is particularly preferred.

フラックスには、目的とするIII族窒化物単結晶の原料を混合し、使用する。フラックスを構成する原料は、目的とするIII族窒化物単結晶に合わせて選択する。   In the flux, the raw material of the target group III nitride single crystal is mixed and used. The raw materials constituting the flux are selected according to the target group III nitride single crystal.

例えば、ガリウム原料物質としては、ガリウム単体金属、ガリウム合金、ガリウム化合物を適用できるが、ガリウム単体金属が取扱いの上からも好適である。アルミニウム原料物質としては、アルミニウム単体金属、アルミニウム合金、アルミニウム化合物を適用できるが、アルミニウム単体金属が取扱いの上からも好適である。インジウム原料物質としては、インジウム単体金属、インジウム合金、インジウム化合物を適用できるが、インジウム単体金属が取扱いの上からも好適である。   For example, as a gallium source material, a gallium simple metal, a gallium alloy, or a gallium compound can be applied, but a gallium simple metal is also preferable in terms of handling. As the aluminum raw material, an aluminum simple metal, an aluminum alloy, and an aluminum compound can be applied, but an aluminum simple metal is also preferable in terms of handling. As the indium raw material, indium simple metal, indium alloy, and indium compound can be applied, but indium simple metal is preferable from the viewpoint of handling.

フラックス法におけるIII族窒化物単結晶の育成温度や育成時の保持時間は特に限定されず、目的とする単結晶の種類やフラックスの組成に応じて適宜変更する。一例では、ナトリウムまたはリチウム含有フラックスを用いてGaN単結晶を育成する場合には、育成温度を800〜1000℃とすることができる。   The growth temperature of the group III nitride single crystal and the holding time at the time of growth in the flux method are not particularly limited, and are appropriately changed according to the type of target single crystal and the composition of the flux. In one example, when growing a GaN single crystal using a sodium or lithium-containing flux, the growth temperature can be set to 800 to 1000 ° C.

フラックス法では、窒素原子を含む気体を含む雰囲気下で単結晶を育成する。このガスは窒素ガスが好ましいが、アンモニアでもよい。雰囲気の全圧は特に限定されないが、フラックスの蒸発を防止する観点からは、10気圧以上が好ましく、30気圧以上が更に好ましい。ただし、圧力が高いと装置が大がかりとなるので、雰囲気の全圧は、2000気圧以下が好ましく、500気圧以下が更に好ましい。雰囲気中の窒素以外のガスは限定されないが、不活性ガスが好ましく、アルゴン、ヘリウム、ネオンが特に好ましい。   In the flux method, a single crystal is grown in an atmosphere containing a gas containing nitrogen atoms. This gas is preferably nitrogen gas, but may be ammonia. The total pressure of the atmosphere is not particularly limited, but is preferably 10 atm or more, and more preferably 30 atm or more from the viewpoint of preventing evaporation of the flux. However, since the apparatus becomes large when the pressure is high, the total pressure of the atmosphere is preferably 2000 atmospheres or less, and more preferably 500 atmospheres or less. A gas other than nitrogen in the atmosphere is not limited, but an inert gas is preferable, and argon, helium, and neon are particularly preferable.

(実施例1)
図1、図2を参照しつつ説明した前記方法に従い、非極性a面GaN単結晶を育成した。
(1) 下地膜の生成
直径2インチのr面サファイア基板1をMOCVD炉(有機金属化学気相成長炉)内に入れ、水素雰囲気中で1150℃にて10分加熱し、表面のクリーニングを行なった。次いで、基板温度を500℃まで下げ、TMG(トリメチルガリウム)、アンモニアを原料としてGaN膜を0.03μmの厚さに成長させた。次いで、基板温度を1100℃まで下げ、TMG(トリメチルガリウム)とアンモニアとを原料としてGaN膜2を0.5μmの厚さに成長させた(図1(a))。
Example 1
A nonpolar a-plane GaN single crystal was grown in accordance with the method described with reference to FIGS.
(1) Formation of base film The r-plane sapphire substrate 1 having a diameter of 2 inches is placed in a MOCVD furnace (metal organic chemical vapor deposition furnace) and heated at 1150 ° C. for 10 minutes in a hydrogen atmosphere to clean the surface. It was. Next, the substrate temperature was lowered to 500 ° C., and a GaN film was grown to a thickness of 0.03 μm using TMG (trimethylgallium) and ammonia as raw materials. Next, the substrate temperature was lowered to 1100 ° C., and a GaN film 2 was grown to a thickness of 0.5 μm using TMG (trimethylgallium) and ammonia as raw materials (FIG. 1A).

(2) 金属蒸着・窒化処理
この基板上に、チタン膜3を0.2μmの厚さに蒸着した(図1(b))。次いで、水素ガスおよびアンモニアガス雰囲気中にて1100℃で60分加熱したところ、チタン層に微細な穴が全面に発生したことが確認された。X線回折測定を行ったところ、TiNの回折ピークが観察され、窒化チタン4が生成したことが確認された(図1(c))。
(2) Metal deposition / nitriding treatment A titanium film 3 was deposited on the substrate to a thickness of 0.2 μm (FIG. 1B). Subsequently, when heated at 1100 ° C. for 60 minutes in an atmosphere of hydrogen gas and ammonia gas, it was confirmed that fine holes were generated in the entire surface of the titanium layer. When X-ray diffraction measurement was performed, a TiN diffraction peak was observed, confirming the formation of titanium nitride 4 (FIG. 1C).

(3) 種結晶膜の生成
この基板をMOCVD炉内に再び入れ、基板温度を1100℃にて、TMG(トリメチルガリウム)とアンモニアとを原料としてGaN膜5を2μmの厚さに成長させた(図1(d))。このGaN膜5の欠陥密度を測定したところ、10個/cmであった。
(3) Formation of Seed Crystal Film This substrate was put back into the MOCVD furnace, and the GaN film 5 was grown to a thickness of 2 μm using TMG (trimethylgallium) and ammonia as raw materials at a substrate temperature of 1100 ° C. ( FIG. 1 (d)). When the defect density of the GaN film 5 was measured, it was 10 9 pieces / cm 2 .

(4) フラックス法
この基板を種基板として、Naフラックス法にてGaN結晶6を育成した。成長に用いた原料は、金属ガリウム、金属ナトリウムおよび金属リチウムである。アルミナるつぼに金属ガリウム45g、金属ナトリウム66g、金属リチウム45mgをそれぞれ充填して、炉内温度900℃・圧力50気圧にてGaN単結晶を約100時間育成した。るつぼから取り出したところ、透明な単結晶が成長しており、基板表面にGaNが約1mmの厚さで堆積していた。
(4) Flux method The GaN crystal 6 was grown by the Na flux method using this substrate as a seed substrate. The raw materials used for the growth are metallic gallium, metallic sodium and metallic lithium. An alumina crucible was filled with 45 g of metallic gallium, 66 g of metallic sodium, and 45 mg of metallic lithium, respectively, and a GaN single crystal was grown at a furnace temperature of 900 ° C. and a pressure of 50 atm for about 100 hours. When taken out from the crucible, a transparent single crystal was grown, and GaN was deposited on the substrate surface to a thickness of about 1 mm.

サファイア基板は冷却中に自然に剥離しており、クラックの発生もみられなかった。チタン膜の窒化の際に形成された空隙にて、サファイアとGaNの熱膨張差により剥離していた。同じ工程を10回繰り返し行ったところ、10回とも同様の結果であった。   The sapphire substrate peeled off naturally during cooling, and no cracks were observed. Peeling occurred due to the difference in thermal expansion between sapphire and GaN in the voids formed during nitriding of the titanium film. When the same process was repeated 10 times, the results were the same for all 10 times.

このようにして得られたGaN自立基板を、ダイヤモンド砥粒を用いて研磨することにより平坦化し、直径2インチのGaN単結晶の自立基板を得た。このGaN単結晶基板の欠陥密度を測定したところ、10個/cm以下であり、種結晶膜よりも大幅に減少していた。XRDによる(11−20)ωスキャンの半値幅は50秒が得られた。 The GaN free-standing substrate thus obtained was flattened by polishing with diamond abrasive grains, and a GaN single-crystal free-standing substrate having a diameter of 2 inches was obtained. When the defect density of the GaN single crystal substrate was measured, it was 10 6 pieces / cm 2 or less, which was significantly smaller than that of the seed crystal film. The half width of the (11-20) ω scan by XRD was 50 seconds.

(実施例2)
図1、図2を参照しつつ説明した前記方法に従い、非極性m面GaN単結晶を育成した。
(1) 下地膜の生成
直径2インチのm面サファイア基板1をMOCVD炉(有機金属化学気相成長炉)内に入れ、水素雰囲気中で1150℃にて10分加熱し、表面のクリーニングを行なった。次いで、基板温度を500℃まで下げ、TMG(トリメチルガリウム)、アンモニアを原料としてGaN膜を0.03μmの厚さに成長させた。次いで、基板温度を1100℃まで下げ、TMG(トリメチルガリウム)とアンモニアとを原料としてGaN膜2を0.5μmの厚さに成長させた。
(Example 2)
A nonpolar m-plane GaN single crystal was grown according to the method described with reference to FIGS.
(1) Formation of base film A 2 inch diameter m-plane sapphire substrate 1 is placed in a MOCVD furnace (metal organic chemical vapor deposition furnace) and heated in a hydrogen atmosphere at 1150 ° C. for 10 minutes to clean the surface. It was. Next, the substrate temperature was lowered to 500 ° C., and a GaN film was grown to a thickness of 0.03 μm using TMG (trimethylgallium) and ammonia as raw materials. Next, the substrate temperature was lowered to 1100 ° C., and the GaN film 2 was grown to a thickness of 0.5 μm using TMG (trimethylgallium) and ammonia as raw materials.

(2) 金属蒸着・窒化処理・種結晶膜の生成
この基板上に、チタン膜3を0.2μmの厚さに蒸着し、MOCVD炉内に再び入れ、水素ガスおよびアンモニアガス雰囲気中にて1100℃で60分加熱し、基板表面の金属層3をアニール処理し、窒化処理を行った。得られた窒化層には、微細な穴が全面に発生したことが確認された。X線回折測定を行ったところ、TiNの回折ピークが観察され、窒化チタン4が生成したことが確認された。次いで、基板温度を1100℃にて、TMG(トリメチルガリウム)とアンモニアとを原料としてGaN膜5を2μmの厚さに成長させた(図1(d))。このGaN膜5の欠陥密度を測定したところ、10個/cmであった。
(2) Metal vapor deposition / nitridation treatment / generation of seed crystal film Titanium film 3 was vapor-deposited to a thickness of 0.2 μm on this substrate, placed again in the MOCVD furnace, and then in a hydrogen gas and ammonia gas atmosphere 1100 The substrate was heated at 60 ° C. for 60 minutes, the metal layer 3 on the substrate surface was annealed, and nitriding was performed. It was confirmed that fine holes were generated on the entire surface of the obtained nitride layer. When X-ray diffraction measurement was performed, a TiN diffraction peak was observed, confirming the formation of titanium nitride 4. Next, the GaN film 5 was grown to a thickness of 2 μm using TMG (trimethylgallium) and ammonia as raw materials at a substrate temperature of 1100 ° C. (FIG. 1D). When the defect density of the GaN film 5 was measured, it was 10 9 pieces / cm 2 .

(3) フラックス法
この基板を種基板としてNaフラックス法にてGaN結晶6を育成した。成長に用いた原料は、金属ガリウム、金属ナトリウムおよび金属リチウムである。アルミナるつぼに金属ガリウム45g、金属ナトリウム66g、金属リチウム45mgをそれぞれ充填して、炉内温度900℃・圧力50気圧にてGaN単結晶を約100時間育成した。るつぼから取り出したところ、透明な単結晶が成長しており、基板表面にm面GaN単結晶膜5が約1mmの厚さで堆積していた。
(3) Flux method The GaN crystal 6 was grown by the Na flux method using this substrate as a seed substrate. The raw materials used for the growth are metallic gallium, metallic sodium and metallic lithium. An alumina crucible was filled with 45 g of metallic gallium, 66 g of metallic sodium, and 45 mg of metallic lithium, respectively, and a GaN single crystal was grown at a furnace temperature of 900 ° C. and a pressure of 50 atm for about 100 hours. When taken out from the crucible, a transparent single crystal was growing, and an m-plane GaN single crystal film 5 was deposited on the substrate surface with a thickness of about 1 mm.

サファイア基板は冷却中に自然に剥離しており、クラックの発生もみられなかった。チタン膜の窒化の際に形成された空隙にて、サファイアとGaNの熱膨張差により剥離していた。同じ工程を10回繰り返し行ったところ、10回とも同様の結果であった。   The sapphire substrate peeled off naturally during cooling, and no cracks were observed. Peeling occurred due to the difference in thermal expansion between sapphire and GaN in the voids formed during nitriding of the titanium film. When the same process was repeated 10 times, the results were the same for all 10 times.

このようにして得られたGaN自立基板を、ダイヤモンド砥粒を用いて研磨することにより平坦化し、直径2インチのGaN単結晶の自立基板を得た。このGaN単結晶基板の欠陥密度を測定したところ、10個/cm以下であり、種結晶膜よりも大幅に減少していた。XRDによる(1−100)ωスキャンの半値幅は50秒が得られた。 The GaN free-standing substrate thus obtained was flattened by polishing with diamond abrasive grains, and a GaN single-crystal free-standing substrate having a diameter of 2 inches was obtained. When the defect density of the GaN single crystal substrate was measured, it was 10 6 pieces / cm 2 or less, which was significantly smaller than that of the seed crystal film. The half width of the (1-100) ω scan by XRD was 50 seconds.

(比較例1)
(MOCVD法)
直径2インチのr面サファイア基板1をMOCVD炉(有機金属化学気相成長炉)内に入れ、水素雰囲気中で1150℃にて10分加熱し、表面のクリーニングを行なった。次いで、基板温度を500℃まで下げ、TMG(トリメチルガリウム)、アンモニアを原料としてGaN膜を0.03μmの厚さに成長させた。次いで、基板温度を1100℃まで下げ、TMG(トリメチルガリウム)とアンモニアとを原料としてGaN膜2を0.5μmの厚さに成長させた。このときの成長レートは、c面サファイア基板を成長したときとほぼ同じであった。
(Comparative Example 1)
(MOCVD method)
The r-plane sapphire substrate 1 having a diameter of 2 inches was placed in a MOCVD furnace (metal organic chemical vapor deposition furnace) and heated at 1150 ° C. for 10 minutes in a hydrogen atmosphere to clean the surface. Next, the substrate temperature was lowered to 500 ° C., and a GaN film was grown to a thickness of 0.03 μm using TMG (trimethylgallium) and ammonia as raw materials. Next, the substrate temperature was lowered to 1100 ° C., and the GaN film 2 was grown to a thickness of 0.5 μm using TMG (trimethylgallium) and ammonia as raw materials. The growth rate at this time was almost the same as when the c-plane sapphire substrate was grown.

(金属蒸着・窒化処理・種結晶膜の生成)
この基板上に、チタン膜3を0.2μmの厚さに蒸着し、MOCVD炉内に再び入れ、水素ガスおよびアンモニアガス雰囲気中にて1100℃で60分加熱し、基板表面の金属層3をアニール処理し、窒化処理を行った。得られた窒化層には、微細な穴が全面に発生したことが確認された。X線回折測定を行ったところ、TiNの回折ピークが観察され、窒化チタン4が生成したことが確認された。次いで、基板温度を1100℃にて、TMG(トリメチルガリウム)とアンモニアとを原料としてGaN膜5を2μmの厚さに成長させた(図1(d))。このGaN膜5の欠陥密度を測定したところ、10個/cmであった。
(Metal vapor deposition, nitriding, seed crystal film generation)
A titanium film 3 is deposited to a thickness of 0.2 μm on this substrate, and is again put in the MOCVD furnace, and heated in a hydrogen gas and ammonia gas atmosphere at 1100 ° C. for 60 minutes to form the metal layer 3 on the substrate surface. Annealing treatment and nitriding treatment were performed. It was confirmed that fine holes were generated on the entire surface of the obtained nitride layer. When X-ray diffraction measurement was performed, a TiN diffraction peak was observed, confirming the formation of titanium nitride 4. Next, the GaN film 5 was grown to a thickness of 2 μm using TMG (trimethylgallium) and ammonia as raw materials at a substrate temperature of 1100 ° C. (FIG. 1D). When the defect density of the GaN film 5 was measured, it was 10 9 pieces / cm 2 .

(HVPE法)
これに続き、基板をHVPE炉に入れ、塩化水素(HCl
)と金属ガリウム(Ga)を反応させた塩化ガリウム(GaCl)とアンモニアおよび水素を原料とし、基板を1050℃の温度に昇温する。アンモニアガスと水素ガス流量は、それぞれ1slm、5slmとした。温度が安定した後、HCl を0.05slmの流速にて金属Ga上に流して反応させ、GaClを発生させた。このような手法にて基板上にa面GaNを100時間成長させたところ、膜厚は300μmであり、成長速度が非常に遅かった。GaN単結晶にはクラックが多数発生し、サファイア基板は剥離していなかった。同じ工程を10回繰り返し行ったところ、10回とも同様の結果であった。
(HVPE method)
Following this, the substrate was placed in an HVPE furnace and hydrogen chloride (HCl
) And metal gallium (Ga), gallium chloride (GaCl), ammonia and hydrogen as raw materials, and the substrate is heated to a temperature of 1050 ° C. The ammonia gas and hydrogen gas flow rates were 1 slm and 5 slm, respectively. After the temperature became stable, HCl was allowed to flow over metal Ga at a flow rate of 0.05 slm to generate GaCl. When a-plane GaN was grown on the substrate for 100 hours by such a method, the film thickness was 300 μm, and the growth rate was very slow. Many cracks were generated in the GaN single crystal, and the sapphire substrate was not peeled off. When the same process was repeated 10 times, the results were the same for all 10 times.

このa面GaN単結晶から、ダイヤモンド砥粒を用いて研磨することによりサファイア基板を除去することを試みたが、GaN単結晶は割れが発生し分割された。分割された一部の欠陥密度を測定したところ、10個/cm以上であった。これはNaフラックス法により得たa面GaN単結晶基板よりも多く、窒化チタン膜による転位低減効果が少なかった。 An attempt was made to remove the sapphire substrate from this a-plane GaN single crystal by polishing with diamond abrasive grains. However, the GaN single crystal was cracked and divided. When the defect density of some of the divided portions was measured, it was 10 8 pieces / cm 2 or more. This was more than the a-plane GaN single crystal substrate obtained by the Na flux method, and the dislocation reduction effect by the titanium nitride film was small.

(比較例2)
(MOCVD法)
直径2インチのm面サファイア基板1をMOCVD炉(有機金属化学気相成長炉)内に入れ、水素雰囲気中で1150℃にて10分加熱し、表面のクリーニングを行なった。次いで、基板温度を500℃まで下げ、TMG(トリメチルガリウム)、アンモニアを原料としてGaN膜を0.03μmの厚さに成長させた。次いで、基板温度を1100℃まで下げ、TMG(トリメチルガリウム)とアンモニアとを原料としてGaN膜2を0.5μmの厚さに成長させた。このときの成長レートは、c面サファイア基板を成長したときとほぼ同じであった。
(Comparative Example 2)
(MOCVD method)
The m-plane sapphire substrate 1 having a diameter of 2 inches was placed in a MOCVD furnace (metal organic chemical vapor deposition furnace) and heated at 1150 ° C. for 10 minutes in a hydrogen atmosphere to clean the surface. Next, the substrate temperature was lowered to 500 ° C., and a GaN film was grown to a thickness of 0.03 μm using TMG (trimethylgallium) and ammonia as raw materials. Next, the substrate temperature was lowered to 1100 ° C., and the GaN film 2 was grown to a thickness of 0.5 μm using TMG (trimethylgallium) and ammonia as raw materials. The growth rate at this time was almost the same as when the c-plane sapphire substrate was grown.

(金属蒸着・窒化処理・種結晶膜の生成)
この基板上に、チタン膜3を0.2μmの厚さに蒸着し、MOCVD炉内に再び入れ、水素ガスおよびアンモニアガス雰囲気中にて1100℃で60分加熱し、基板表面の金属層をアニール処理し、窒化処理を行った。得られた窒化層には、微細な穴が全面に発生したことが確認された。X線回折測定を行ったところ、TiNの回折ピークが観察され、窒化チタン4が生成したことが確認された。次いで、基板温度を1100℃にて、TMG(トリメチルガリウム)とアンモニアとを原料としてGaN膜5を2μmの厚さに成長させた(図1(d))。このGaN膜5の欠陥密度を測定したところ、10個/cmであった。
(Metal vapor deposition, nitriding, seed crystal film generation)
On this substrate, a titanium film 3 is deposited to a thickness of 0.2 μm, and is again put in the MOCVD furnace, and heated in a hydrogen gas and ammonia gas atmosphere at 1100 ° C. for 60 minutes to anneal the metal layer on the substrate surface. And nitriding was performed. It was confirmed that fine holes were generated on the entire surface of the obtained nitride layer. When X-ray diffraction measurement was performed, a TiN diffraction peak was observed, confirming the formation of titanium nitride 4. Next, the GaN film 5 was grown to a thickness of 2 μm using TMG (trimethylgallium) and ammonia as raw materials at a substrate temperature of 1100 ° C. (FIG. 1D). When the defect density of the GaN film 5 was measured, it was 10 9 pieces / cm 2 .

(HVPE法)
これに続き、基板をHVPE炉に入れ、塩化水素(HCl
)と金属ガリウム(Ga)を反応させた塩化ガリウム(GaCl)とアンモニアおよび水素を原料とし、基板を1050℃の温度に昇温する。アンモニアガスと水素ガス流量は、それぞれ1slm、5slmとした。温度が安定した後、HCl を0.05slmの流速にて金属Ga上に流して反応させ、GaClを発生させた。このような手法にて基板上にGaN単結晶を100時間成長させたところ、膜厚は300μmであり、成長速度が非常に遅かった。GaN単結晶にはクラックが多数発生し、サファイア基板は剥離していなかった。同じ工程を10回繰り返し行ったところ、10回とも同様の結果であった。
(HVPE method)
Following this, the substrate was placed in an HVPE furnace and hydrogen chloride (HCl
) And metal gallium (Ga), gallium chloride (GaCl), ammonia and hydrogen as raw materials, and the substrate is heated to a temperature of 1050 ° C. The ammonia gas and hydrogen gas flow rates were 1 slm and 5 slm, respectively. After the temperature became stable, HCl was allowed to flow over metal Ga at a flow rate of 0.05 slm to generate GaCl. When a GaN single crystal was grown on the substrate for 100 hours by such a method, the film thickness was 300 μm, and the growth rate was very slow. Many cracks were generated in the GaN single crystal, and the sapphire substrate was not peeled off. When the same process was repeated 10 times, the results were the same for all 10 times.

このm面GaN単結晶から、ダイヤモンド砥粒を用いて研磨することによりサファイア基板を除去することを試みたが、GaN単結晶は割れが発生し分割された。分割された一部の欠陥密度を測定したところ、10個/cm以上であった。これはNaフラックス法により得たm面GaN単結晶基板よりも多く、窒化チタン膜による転位低減効果が少なかった。 Attempts were made to remove the sapphire substrate from this m-plane GaN single crystal by polishing with diamond abrasive grains. However, the GaN single crystal was cracked and divided. When the defect density of some of the divided portions was measured, it was 10 8 pieces / cm 2 or more. This was more than the m-plane GaN single crystal substrate obtained by the Na flux method, and the dislocation reduction effect by the titanium nitride film was small.

以上述べたように、本発明によれば、転位密度・積層欠陥密度の低い、高品質な非極性面GaN単結晶基板の製造が、容易に従来の設備で行えるようになる。   As described above, according to the present invention, a high-quality nonpolar plane GaN single crystal substrate having a low dislocation density and stacking fault density can be easily manufactured using conventional equipment.

(a)は、基板1上に下地膜2を形成した状態を示す断面図であり、(b)は、下地膜2上に金属膜3を形成した状態を示す断面図であり、(c)は、金属膜3を窒化した状態4を示す断面図であり、(d)は、金属窒化膜4上に種結晶膜5を形成した状態を示す断面図である。(A) is sectional drawing which shows the state which formed the base film 2 on the board | substrate 1, (b) is sectional drawing which shows the state which formed the metal film 3 on the base film 2, (c) These are sectional drawings which show the state 4 which nitrided the metal film 3, (d) is sectional drawing which shows the state which formed the seed crystal film 5 on the metal nitride film 4. FIG. (a)は、種結晶膜5上に非極性面III族窒化物の単結晶6を形成した状態を示す断面図であり、(b)は、単結晶6を基板から剥離させた状態を示す断面図である。(A) is sectional drawing which shows the state which formed the single crystal 6 of the nonpolar surface group III nitride on the seed crystal film 5, (b) shows the state which peeled the single crystal 6 from the board | substrate. It is sectional drawing.

符号の説明Explanation of symbols

1 基板 2 下地膜 3 金属膜 4 金属窒化物膜 5 種結晶膜 6 非極性面III族窒化物の単結晶   DESCRIPTION OF SYMBOLS 1 Substrate 2 Base film 3 Metal film 4 Metal nitride film 5 Seed crystal film 6 Nonpolar plane group III nitride single crystal

Claims (4)

非極性面III族窒化物からなる下地膜を基板上に気相成長法により形成する下地膜形成工程;
前記下地膜上に金属膜を形成する金属膜形成工程;
この金属膜を窒化することによって、空隙を有する金属窒化物膜を設ける窒化工程;
前記金属窒化物膜上に非極性面III族窒化物からなる種結晶膜を気相成長法により形成する工程;および
非極性面III族窒化物の単結晶を前記種結晶膜上にフラックス法によって育成する結晶育成工程
を備えていることを特徴とする、非極性面III族窒化物単結晶の製造方法。
A base film forming step of forming a base film made of a non-polar group III-nitride on the substrate by vapor deposition;
A metal film forming step of forming a metal film on the base film;
A nitriding step of nitriding the metal film to provide a metal nitride film having voids;
Forming a seed crystal film made of a nonpolar group III nitride on the metal nitride film by a vapor deposition method; and forming a single crystal of the nonpolar group III nitride on the seed crystal film by a flux method. A method for producing a nonpolar plane group III nitride single crystal, comprising a crystal growth step for growing.
前記金属膜が、チタン、ニッケルおよびこれらの合金からなる群より選ばれた一種以上の金属からなることを特徴とする、請求項1記載の方法。   The method according to claim 1, wherein the metal film is made of one or more metals selected from the group consisting of titanium, nickel, and alloys thereof. 前記非極性面III族窒化物が、ガリウム、アルミニウムおよびインジウムからなる群より選ばれた一種以上のIII族元素の窒化物からなることを特徴とする、請求項1または2のいずれか一つの請求項に記載の方法。   3. The claim 1, wherein the nonpolar group III nitride is made of a nitride of at least one group III element selected from the group consisting of gallium, aluminum and indium. The method according to item. 前記結晶育成工程において育成された前記非極性面III族窒化物を前記基板から剥離させることによって自立基板を得ることを特徴とする、請求項1〜3のいずれか一つの請求項に記載の方法。   The method according to any one of claims 1 to 3, wherein a self-supporting substrate is obtained by peeling off the nonpolar group III nitride grown in the crystal growth step from the substrate. .
JP2007184556A 2007-07-13 2007-07-13 Method for producing nonpolar plane group III nitride single crystal Active JP4825747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007184556A JP4825747B2 (en) 2007-07-13 2007-07-13 Method for producing nonpolar plane group III nitride single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007184556A JP4825747B2 (en) 2007-07-13 2007-07-13 Method for producing nonpolar plane group III nitride single crystal

Publications (2)

Publication Number Publication Date
JP2009018975A true JP2009018975A (en) 2009-01-29
JP4825747B2 JP4825747B2 (en) 2011-11-30

Family

ID=40358946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007184556A Active JP4825747B2 (en) 2007-07-13 2007-07-13 Method for producing nonpolar plane group III nitride single crystal

Country Status (1)

Country Link
JP (1) JP4825747B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184847A (en) * 2008-02-04 2009-08-20 Ngk Insulators Ltd Method for manufacturing group iii nitride single crystal
WO2010100689A1 (en) * 2009-03-03 2010-09-10 パナソニック株式会社 Method for manufacturing gallium nitride compound semiconductor, and semiconductor light emitting element
JP2013203617A (en) * 2012-03-29 2013-10-07 Ngk Insulators Ltd Method for manufacturing group 13 element nitride crystal, and laminate
US10032958B2 (en) 2012-12-20 2018-07-24 Ngk Insulators, Ltd. Seed crystal substrates, composite substrates and functional devices
US11006817B2 (en) 2015-10-08 2021-05-18 Olympus Corporation Endoscope system for endoscope image processing and image transmission
WO2021131966A1 (en) * 2019-12-23 2021-07-01 日本碍子株式会社 Aln laminate board
WO2021131965A1 (en) * 2019-12-23 2021-07-01 日本碍子株式会社 Aln single crystal plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343728A (en) * 2001-05-21 2002-11-29 Nec Corp Gallium nitride crystalline substrate and method for manufacturing the same
JP2004300024A (en) * 2003-03-20 2004-10-28 Matsushita Electric Ind Co Ltd Method for manufacturing nitride crystal of group iii element, nitride crystal of group iii element obtained by the same, and semiconductor device obtained by using the same
JP2005522889A (en) * 2002-04-15 2005-07-28 ザ リージェント オブ ザ ユニバーシティ オブ カリフォルニア Nonpolar a-plane gallium nitride thin films grown by metal / organic chemical vapor deposition
JP2006514780A (en) * 2002-12-16 2006-05-11 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Growth of flat nonpolar a-plane gallium nitride by hydride vapor deposition
JP2006279025A (en) * 2005-03-25 2006-10-12 Univ Of Tokushima Method of growing non-polar a-plane gallium nitride

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343728A (en) * 2001-05-21 2002-11-29 Nec Corp Gallium nitride crystalline substrate and method for manufacturing the same
JP2005522889A (en) * 2002-04-15 2005-07-28 ザ リージェント オブ ザ ユニバーシティ オブ カリフォルニア Nonpolar a-plane gallium nitride thin films grown by metal / organic chemical vapor deposition
JP2006514780A (en) * 2002-12-16 2006-05-11 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Growth of flat nonpolar a-plane gallium nitride by hydride vapor deposition
JP2004300024A (en) * 2003-03-20 2004-10-28 Matsushita Electric Ind Co Ltd Method for manufacturing nitride crystal of group iii element, nitride crystal of group iii element obtained by the same, and semiconductor device obtained by using the same
JP2006279025A (en) * 2005-03-25 2006-10-12 Univ Of Tokushima Method of growing non-polar a-plane gallium nitride

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184847A (en) * 2008-02-04 2009-08-20 Ngk Insulators Ltd Method for manufacturing group iii nitride single crystal
WO2010100689A1 (en) * 2009-03-03 2010-09-10 パナソニック株式会社 Method for manufacturing gallium nitride compound semiconductor, and semiconductor light emitting element
JP4658233B2 (en) * 2009-03-03 2011-03-23 パナソニック株式会社 Method for manufacturing gallium nitride compound semiconductor and method for manufacturing semiconductor light emitting device
CN102318039A (en) * 2009-03-03 2012-01-11 松下电器产业株式会社 Method for manufacturing gallium nitride compound semiconductor, and semiconductor light emitting element
JP2013203617A (en) * 2012-03-29 2013-10-07 Ngk Insulators Ltd Method for manufacturing group 13 element nitride crystal, and laminate
US10032958B2 (en) 2012-12-20 2018-07-24 Ngk Insulators, Ltd. Seed crystal substrates, composite substrates and functional devices
US11006817B2 (en) 2015-10-08 2021-05-18 Olympus Corporation Endoscope system for endoscope image processing and image transmission
WO2021131966A1 (en) * 2019-12-23 2021-07-01 日本碍子株式会社 Aln laminate board
WO2021131965A1 (en) * 2019-12-23 2021-07-01 日本碍子株式会社 Aln single crystal plate
CN114761630A (en) * 2019-12-23 2022-07-15 日本碍子株式会社 AlN single crystal plate

Also Published As

Publication number Publication date
JP4825747B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
JP5256198B2 (en) Method for producing group III nitride single crystal
JP4886711B2 (en) Method for producing group III nitride single crystal
JP3631724B2 (en) Group III nitride semiconductor substrate and manufacturing method thereof
JP4581490B2 (en) III-V group nitride semiconductor free-standing substrate manufacturing method and III-V group nitride semiconductor manufacturing method
JP4825747B2 (en) Method for producing nonpolar plane group III nitride single crystal
JP2004039810A (en) Group iii nitride semiconductor substrate and its manufacturing method
JP4825745B2 (en) Method for producing nonpolar group III nitride
JP5100919B2 (en) Method for producing gallium nitride layer and seed crystal substrate used therefor
KR20090023198A (en) Group iii nitride semiconductor and a manufacturing method thereof
JP4825746B2 (en) Method for producing nonpolar group III nitride
JP2004137142A (en) Single crystal aluminum nitride membrane and forming method thereof, underlying substrate for group iii nitride membrane, luminescent element, as well as surface elastic wave device
JP5056299B2 (en) Nitride semiconductor base substrate, nitride semiconductor multilayer substrate, and method of manufacturing nitride semiconductor base substrate
JP2011042542A (en) Method for producing group iii nitride substrate, and group iii nitride substrate
JP2008074671A (en) Manufacturing method of free-standing nitride substrate
US20050257733A1 (en) III nitride crystal and method for producing same
JP2011051849A (en) Nitride semiconductor self-supporting substrate and method for manufacturing the same
JP4340866B2 (en) Nitride semiconductor substrate and manufacturing method thereof
JP5499839B2 (en) Method for manufacturing gallium nitride based semiconductor substrate
JPWO2012128378A1 (en) Group 13 metal nitride manufacturing method and seed crystal substrate used therefor
JP4600146B2 (en) Manufacturing method of nitride semiconductor substrate
JP2009120425A (en) METHOD FOR MANUFACTURING GaN SEMICONDUCTOR SUBSTRATE AND GaN SEMICONDUCTOR SUBSTRATE
JP2006024897A (en) Nitride semiconductor substrate and manufacturing method therefor
JP4507810B2 (en) Nitride semiconductor substrate manufacturing method and nitride semiconductor substrate
JP2010278470A (en) Substrate for growing group-iii nitride semiconductor, epitaxial substrate for group-iii nitride semiconductor, group-iii nitride semiconductor element, stand-alone substrate for group-iii nitride semiconductor, and methods for manufacturing the same
JP2006185962A (en) Substrate for semiconductor growth and manufacturing method for semiconductor film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

R150 Certificate of patent or registration of utility model

Ref document number: 4825747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3