JP2017217800A - Lamination apparatus - Google Patents

Lamination apparatus Download PDF

Info

Publication number
JP2017217800A
JP2017217800A JP2016113212A JP2016113212A JP2017217800A JP 2017217800 A JP2017217800 A JP 2017217800A JP 2016113212 A JP2016113212 A JP 2016113212A JP 2016113212 A JP2016113212 A JP 2016113212A JP 2017217800 A JP2017217800 A JP 2017217800A
Authority
JP
Japan
Prior art keywords
interface
merging
sheet
wall surface
laminating apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016113212A
Other languages
Japanese (ja)
Inventor
健 井ノ本
Takeshi Inomoto
健 井ノ本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2016113212A priority Critical patent/JP2017217800A/en
Publication of JP2017217800A publication Critical patent/JP2017217800A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lamination apparatus capable of suppressing an interface unstable phenomenon by suppressing shearing stress or extension stress applied onto the interface of a laminate at a joining time.SOLUTION: In a lamination apparatus, a high quality lamination sheet can be produced stably by removing an interface unstable phenomenon by specifying surface roughness on a joining wall surface.SELECTED DRAWING: Figure 1

Description

本発明は、積層装置に関する。   The present invention relates to a laminating apparatus.

フィルムの低コスト化や高機能化の方法として近年著しく発展している技術が、複数種類のシート材料を積層した積層フィルムである。この積層フィルムは物性の異なるシート材料を積層することで、各々のシート材料単体にはなかった新たな機能を付加することなどが可能である。   A technique that has been remarkably developed in recent years as a method for reducing the cost and increasing the function of a film is a laminated film in which a plurality of types of sheet materials are laminated. By laminating sheet materials having different physical properties, this laminated film can add a new function that was not found in each single sheet material.

一般的には、複数種類(とくに2種類)のシート材料(典型的には溶融樹脂など)を下流方向へと導きお互いに合流する複数の流路と、その流路が合流する位置において複数種類のシート材料が積層された積層体を形成する合流部とを有する積層装置が知られている。そして、積層体は、そのまま、あるいは、口金を経て吐出され、そのまま、あるいは、延伸等の後処理が施され、積層フィルムとなる。   Generally, a plurality of types (especially two types) of sheet materials (typically, molten resin, etc.) are guided in the downstream direction and merged with each other, and a plurality of types at the position where the channels merge. There is known a laminating apparatus including a joining portion that forms a laminated body in which the sheet materials are laminated. And a laminated body is discharged as it is or through a nozzle | cap | die, and post-processes, such as extending | stretching, are given as it is, and it becomes a laminated film.

ここで、物性の異なるシート材料を積層するために、積層フィルムでは単層では見られなかった不良現象が発生することがある。その代表的な不良現象の一つに、界面不安定現象(Interfacial Instability)がある。この現象は、積層されたシート材料の界面に波状の凹凸が発生し、外観不良と厚み斑を生じるというものである。この現象の形態は様々で、フィルム全体に発生するものから一部にしか発生しないものまであり、またその強弱によって、フィルムに厚み斑を引き起こすものから引き起こさないものまである。ここで、この現象を不良と判断する範囲は各フィルムの要求機能に応じて異なるため、どの程度の外観、厚み斑ならば不良であると一概に言うことは出来ない。この現象の主な原因として、合流時に積層体の界面にかかるせん断応力や伸長応力が知られている。   Here, in order to laminate | stack the sheet | seat material from which a physical property differs, in the laminated | multilayer film, the defect phenomenon which was not seen by the single layer may generate | occur | produce. One typical failure phenomenon is interfacial instability. This phenomenon is that wavy irregularities occur at the interface of the laminated sheet materials, resulting in poor appearance and uneven thickness. There are various forms of this phenomenon, ranging from those occurring on the entire film to those occurring only on a part thereof, and those that cause unevenness in thickness depending on the strength. Here, since the range in which this phenomenon is judged as defective differs depending on the required function of each film, it cannot be generally said that the appearance and thickness unevenness is defective. As a main cause of this phenomenon, shear stress and elongation stress applied to the interface of the laminated body at the time of merging are known.

これまでにも、この界面不安定現象を抑制する方法がいくつか提案されている。たとえば、特許文献1には、合流点に向かってスリットを拡幅し、界面不安定現象を抑制する方法が開示されている。図6は、特許文献1のフィードブロックにおける合流点付近の断面図である。特許文献1のフィードブロックの基本構成は、図6に示すように、樹脂材料A、Bが流れるスリット11、12、スリット11を合流点13に向かって徐々に拡幅する拡幅部91、スリット11、12が合流する合流点13からなる。定常状態、つまり合流点よりも十分に下流での積層体の界面位置は主に各樹脂材料の流量、粘度によって決まる。そのため、この定常状態での積層体の界面位置と合流点の位置が異なると、合流後に一方の樹脂材料がもう一方の樹脂材料を押しながら界面位置を移動することになる。特許文献1では、この押す力が積層体の界面にかかることによって、界面不安定現象が発生するとしている。ゆえに、特許文献1の技術は、各樹脂材料の流量、粘度に応じて合流点13でのスリット11を拡幅部91で拡幅し、界面位置が定常状態と同じになるように合流することで、積層体の界面にかかる押す力が減り、界面不安定現象が抑制できるというものである。   Until now, several methods for suppressing this interface instability phenomenon have been proposed. For example, Patent Document 1 discloses a method of widening a slit toward a confluence to suppress an interface instability phenomenon. FIG. 6 is a cross-sectional view of the vicinity of the merging point in the feed block of Patent Document 1. As shown in FIG. 6, the basic configuration of the feed block of Patent Document 1 is slits 11 and 12 through which resin materials A and B flow, a widening portion 91 that gradually widens the slit 11 toward the junction 13, the slit 11, It consists of a merge point 13 where 12 merge. In the steady state, that is, the interface position of the laminated body sufficiently downstream from the merging point is mainly determined by the flow rate and viscosity of each resin material. For this reason, if the interface position of the laminate in the steady state and the position of the merging point are different, one resin material moves the interface position while pressing the other resin material after merging. In Patent Document 1, it is assumed that an interface instability phenomenon occurs when this pressing force is applied to the interface of the laminate. Therefore, the technique of Patent Document 1 widens the slit 11 at the confluence 13 at the widening portion 91 according to the flow rate and viscosity of each resin material, and merges so that the interface position is the same as the steady state. The pressing force applied to the interface of the laminate is reduced, and the interface instability phenomenon can be suppressed.

特開2006−142714号公報JP 2006-142714 A

しかしながら、特許文献1の技術では、合流時に積層体の界面にかかるせん断応力や伸長応力が考慮されていないため、このせん断応力や伸長応力による界面不安定現象が抑制できない場合がある。   However, since the technique of Patent Document 1 does not consider the shear stress and the extension stress applied to the interface of the laminated body at the time of joining, the interface instability phenomenon due to the shear stress and the extension stress may not be suppressed.

本発明の目的は、合流時に積層体の界面にかかるせん断応力や伸長応力を抑制することにより、界面不安定現象を抑制する積層装置を提供することにある。   The objective of this invention is providing the lamination apparatus which suppresses an interface instability phenomenon by suppressing the shear stress and elongation stress which are applied to the interface of a laminated body at the time of merge.

上記目的を達成する積層装置は、複数種類のシート材料を下流方向へと導きお互いに合流する複数の流路と、前記流路が合流する位置において複数種類のシート材料が積層された積層体を形成する合流部と、を有し、
前記複数の流路のそれぞれの内壁面のうち、鋭角をなして合流する内壁面を合流壁面としたとき、この合流点の近傍における前記合流壁面の表面粗さRaが2um以上10um以下を満たす構成である。
A laminating apparatus that achieves the above object includes a plurality of flow paths that guide a plurality of types of sheet materials in the downstream direction and merge with each other, and a laminate in which a plurality of types of sheet materials are stacked at a position where the flow paths merge. A joining portion to be formed,
A configuration in which a surface roughness Ra of the merging wall surface in the vicinity of the merging point satisfies 2 um or more and 10 um or less when an inner wall surface that merges at an acute angle among the inner wall surfaces of the plurality of flow paths is a merging wall surface. It is.

次に、本発明における各用語の意味を説明する。   Next, the meaning of each term in the present invention will be described.

「シート材料」とは、積層体を構成する材料をいう。シート材料としては、たとえば、ポリエチレン・ポリプロピレン・ポリスチレン・ポリメチルペンテンなどのポリオレフィン樹脂、脂環族ポリオレフィン樹脂、ナイロン6・ナイロン66などのポリアミド樹脂、アラミド樹脂、ポリエチレンテレフタレート・ポリブチレンテレフタレート・ポリプロピレンテレフタレート・ポリブチルサクシネート・ポリエチレン−2,6−ナフタレートなどのポリエステル樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリアセタール樹脂、ポリフェニレンサルファイド樹脂、4フッ化エチレン樹脂・3フッ化エチレン樹脂・3フッ化塩化エチレン樹脂・4フッ化エチレン−6フッ化プロピレン共重合体・フッ化ビニリデン樹脂などのフッ素樹脂、アクリル樹脂、メタクリル樹脂、ポリアセタール樹脂、ポリグリコール酸樹脂、ポリ乳酸樹脂、などを溶媒に溶かすか溶融するなどして流動化したものを用いることができる。またこれらの熱可塑性樹脂としてはホモ樹脂であってもよく、共重合または2種類以上のブレンドであってもよい。また、各熱可塑性樹脂中には、各種添加剤、例えば、酸化防止剤、帯電防止剤、結晶核剤、無機粒子、有機粒子、減粘剤、熱安定剤、滑剤、赤外線吸収剤、紫外線吸収剤、屈折率調整のためのドープ剤などが添加されていてもよい。また、積層体を構成するシート材料としては、上記のうちから2〜10種類を選んで用いるのが好ましい。   “Sheet material” refers to a material constituting the laminate. Examples of sheet materials include polyolefin resins such as polyethylene, polypropylene, polystyrene, and polymethylpentene, alicyclic polyolefin resins, polyamide resins such as nylon 6 and nylon 66, aramid resins, polyethylene terephthalate, polybutylene terephthalate, polypropylene terephthalate, Polybutyl succinate, polyester resin such as polyethylene-2,6-naphthalate, polycarbonate resin, polyarylate resin, polyacetal resin, polyphenylene sulfide resin, tetrafluoroethylene resin, trifluorinated ethylene resin, trifluorinated ethylene chloride resin, Fluoropolymers such as tetrafluoroethylene-6fluoropropylene copolymer / vinylidene fluoride resin, acrylic resin, methacrylic resin, polyacetal resin , Polyglycolic acid resins, polylactic acid resins, and the like can be used as the fluidized, such as by melt or dissolved in a solvent. Further, these thermoplastic resins may be homo resins, copolymerized or blends of two or more. Also, in each thermoplastic resin, various additives such as antioxidants, antistatic agents, crystal nucleating agents, inorganic particles, organic particles, thickeners, thermal stabilizers, lubricants, infrared absorbers, ultraviolet absorbers. An agent, a dopant for adjusting the refractive index, and the like may be added. Moreover, as a sheet material which comprises a laminated body, it is preferable to select and use 2-10 types from the above.

「積層体」とは、押出機から押し出されてから、吐出されるまでの間で、複数種類のシート材料を複数の層として積層した多層構造のシート材料をいう。   “Laminate” refers to a sheet material having a multilayer structure in which a plurality of types of sheet materials are laminated as a plurality of layers from when extruded from an extruder until it is discharged.

「積層装置」とは、複数種類のシート材料を積層して、積層体を形成する装置をいう。   “Laminating apparatus” refers to an apparatus for laminating a plurality of types of sheet materials to form a laminated body.

「複数の流路」とは、積層装置において、複数種類のシート材料を下流方向へと導きお互いに合流する複数の流路をいう。   “Multiple channels” refers to a plurality of channels that guide a plurality of types of sheet materials in the downstream direction and merge with each other in the laminating apparatus.

「合流点」とは、積層装置において、複数の流路が合流する点をいう。合流点の近傍とは、合流点から上流10mm位置までの範囲である。   “Merging point” refers to a point where a plurality of flow paths merge in the stacking apparatus. The vicinity of the merging point is a range from the merging point to the upstream 10 mm position.

「合流部」とは、積層装置において、合流点の下流で積層体を形成する部分をいう。   “Merging part” refers to a part of the laminating apparatus that forms a laminated body downstream of the merging point.

「合流壁面」とは、積層装置において、複数の流路のそれぞれの内壁面のうち、鋭角をなして合流する内壁面をいう。例えば、5層の場合、5個の流路の8個の合流壁面によって4個の合流点が形成される。   The “merging wall surface” refers to an inner wall surface that merges at an acute angle among the inner wall surfaces of the plurality of flow paths in the laminating apparatus. For example, in the case of five layers, four merging points are formed by eight merging wall surfaces of five flow paths.

「表面粗さRa」とは、JIS B0601:2013に従って、合流点から上流5mm位置をシート幅方向に10mm間隔で測定した合流壁面の算術平均粗さを平均したものをいう。   “Surface roughness Ra” means the average of the arithmetic average roughness of the merging wall surface measured at 10 mm intervals in the sheet width direction at a position 5 mm upstream from the merging point in accordance with JIS B0601: 2013.

「加熱機構」とは、積層装置において、合流壁面を加熱する機構をいう。加熱方式としては、ヒーター、熱媒加熱などでもよい。   The “heating mechanism” refers to a mechanism that heats the merged wall surface in the laminating apparatus. As a heating method, a heater, heating medium heating, or the like may be used.

「接触角」とは、温度22℃、湿度35%環境下にて、協和界面科学株式会社製DM−501を用い、液滴法によって、合流点から上流5mm位置をシート幅方向に10mm間隔で測定した合流壁面の水に対する接触角を平均したものをいう。   “Contact angle” means DM-501 manufactured by Kyowa Interface Science Co., Ltd. under a temperature of 22 ° C. and a humidity of 35%. Using the droplet method, the position 5 mm upstream from the merging point is 10 mm apart in the sheet width direction. It means the average contact angle of the measured confluence wall with water.

本発明の積層装置では、界面不安定現象がなく、高品質な積層シートを安定して製造することが出来る。   In the laminating apparatus of the present invention, there is no interface instability phenomenon, and a high-quality laminated sheet can be manufactured stably.

本発明の積層装置において、シート幅方向に垂直な断面で合流点付近におけるシート材料の流れを示す模式図。The schematic diagram which shows the flow of the sheet | seat material in the vicinity of a confluence | merging point in the cross section perpendicular | vertical to a sheet | seat width direction in the lamination apparatus of this invention. 積層装置のシート材料等が通り得る内部空間のみを表示した斜視図。The perspective view which displayed only the internal space which the sheet | seat material etc. of a lamination | stacking apparatus can pass. 従来の積層装置において、シート幅方向に垂直な断面で合流点付近におけるシート材料の流れを示す模式図。In the conventional lamination apparatus, the schematic diagram which shows the flow of the sheet | seat material in the vicinity of a confluence | merging point in the cross section perpendicular | vertical to a sheet | seat width direction. 加熱機構を有する本発明の積層装置を説明する合流点付近のシート幅方向に垂直な断面図。Sectional drawing perpendicular | vertical to the sheet | seat width direction of the vicinity of a confluence | merging point explaining the lamination apparatus of this invention which has a heating mechanism. 本発明の積層装置において、2つの合流壁面がなす角度を説明する合流点付近のシート幅方向に垂直な断面図。Sectional drawing perpendicular | vertical to the sheet | seat width direction of the vicinity of a merge point explaining the angle which two merge wall surfaces make in the lamination apparatus of this invention. 特許文献1のフィードブロックにおける、合流点付近のシート幅方向に垂直な断面図。Sectional drawing perpendicular | vertical to the sheet | seat width direction of the vicinity of a confluence | merging point in the feed block of patent document 1. FIG.

以下に本発明について詳細に述べるが、本発明は以下の実施例を含む実施形態に限定されるものではない。   The present invention will be described in detail below, but the present invention is not limited to the embodiments including the following examples.

図1〜図5はいずれも積層装置の図である。図1,4,5は本発明の積層装置、図3は従来の積層装置、図2は本発明と従来の積層装置を示す。なお、本発明の積層装置と従来の積層装置とで同じ用途および機能を有している部材については、同じ符号を有している場合がある。   1 to 5 are all diagrams of a laminating apparatus. 1, 4 and 5 show the laminating apparatus of the present invention, FIG. 3 shows the conventional laminating apparatus, and FIG. 2 shows the present invention and the conventional laminating apparatus. Note that members having the same application and function in the laminating apparatus of the present invention and the conventional laminating apparatus may have the same reference numerals.

まず、従来の積層装置を説明する。図2は積層装置の概略斜視図、図3は従来の積層装置の、合流点13付近のシート幅方向に垂直な概略断面図であり、矢印線はシート材料の流速ベクトルを表す。図2に示すように、積層装置では、流路11、12にてシート材料A、Bを下流方向へと導き、合流点13で合流させ、合流部14で積層体を形成する。図3に示すように、一般的な滑らかな流路壁面にシート材料は付着するため、流路11、12では、シート材料A、Bの壁面での流速はゼロとなる。この壁面との流速差で引き起こされるせん断応力が合流時に積層体の界面にかかる。また、合流点13でゼロであった流速が急激に加速することで引き起こされる伸長応力も積層体の界面にかかる。これらのせん断応力や伸長応力が界面不安定現象を引き起こす。   First, a conventional laminating apparatus will be described. FIG. 2 is a schematic perspective view of the laminating apparatus, FIG. 3 is a schematic cross-sectional view of the conventional laminating apparatus perpendicular to the sheet width direction in the vicinity of the junction 13, and the arrow line represents the flow velocity vector of the sheet material. As shown in FIG. 2, in the laminating apparatus, the sheet materials A and B are guided in the downstream direction through the flow paths 11 and 12, merged at the merge point 13, and the laminated body is formed at the merge portion 14. As shown in FIG. 3, since the sheet material adheres to a general smooth flow path wall surface, the flow rates on the wall surfaces of the sheet materials A and B are zero in the flow paths 11 and 12. Shear stress caused by the difference in flow velocity from the wall surface is applied to the interface of the laminate at the time of merging. Further, the elongation stress caused by the rapid acceleration of the flow velocity that was zero at the junction 13 is also applied to the interface of the laminate. These shear stress and elongation stress cause interface instability.

次に、本発明の積層装置を説明する。図1は本発明の積層装置の、合流点13付近のシート幅方向に垂直な概略断面図であり、矢印線はシート材料の流速ベクトルを表す。図1に示すように、本発明の積層装置では、流路11、12のそれぞれの内壁面のうち、鋭角をなして合流する内壁面である合流壁面21、22の表面粗さを合流点13の近傍で粗くすることで、シート材料A、Bは滑りが生じ、流速がゼロではなくなる。そのため、流速差が低減し、せん断応力も小さくなる。また、合流点13からの流速の加速も低減して、伸長応力も小さくなる。ゆえに、これらのせん断応力や伸長応力によって引き起こされる界面不安定現象を抑制することができる。本発明者らが鋭意検討を重ねた結果、合流点13の近傍における合流壁面21、22の表面粗さRaを2um以上10um以下とすることにより、界面不安定現象を抑制し、高品質な積層シートを安定して得られることを見出した。表面粗さRaが2um未満の場合、壁面での滑りがあまり生じず、せん断応力や伸長応力が小さくならないため、界面不安定現象を抑制することができない。表面粗さRaの下限は4μm以上が好ましい。また、表面粗さRaが10umより大きい場合、壁面の凹凸にシート材料が引っかかり、流速ムラが生じることで、界面不安定現象を引き起こしてしまう。表面粗さRaの上限は8μm以下が好ましい。なお、本発明において「合流点の近傍」とは、合流点から上流10mm位置までの範囲のことである。表面粗さRaを2um以上10um以下にすべき最低限の範囲は、積層装置の大きさなどによって変わってくるが、合流点から上流10mm位置までの範囲が表面粗さRaを2um以上10um以
本発明の積層装置は、合流壁面21、22を加熱する加熱機構31を有することが好ましい。図4は、加熱機構を有する本発明の積層装置である。図4に示すように、加熱機構31によって合流壁面21、22を加熱すると、合流壁面21、22の温度が上昇し、シート材料の壁面での滑りがより発生しやすくて好ましい。
Next, the laminating apparatus of the present invention will be described. FIG. 1 is a schematic cross-sectional view perpendicular to the sheet width direction in the vicinity of the merge point 13 of the laminating apparatus of the present invention. As shown in FIG. 1, in the laminating apparatus of the present invention, the surface roughness of the merging wall surfaces 21 and 22, which are the inner wall surfaces that merge at an acute angle, of the inner wall surfaces of the flow paths 11 and 12 is determined at the merging point 13. By roughening in the vicinity of the sheet material, the sheet materials A and B slip, and the flow velocity is not zero. Therefore, the flow rate difference is reduced and the shear stress is also reduced. Moreover, the acceleration of the flow velocity from the junction 13 is also reduced, and the elongation stress is also reduced. Therefore, the interface instability phenomenon caused by these shear stress and elongation stress can be suppressed. As a result of extensive studies by the present inventors, the surface roughness Ra of the merging wall surfaces 21 and 22 in the vicinity of the merging point 13 is set to 2 μm or more and 10 μm or less, so that the interface instability phenomenon is suppressed and high quality lamination is performed. It was found that the sheet can be obtained stably. When the surface roughness Ra is less than 2 um, slippage on the wall surface does not occur so much and shear stress and elongation stress do not become small, so that the interface instability phenomenon cannot be suppressed. The lower limit of the surface roughness Ra is preferably 4 μm or more. Further, when the surface roughness Ra is larger than 10 μm, the sheet material is caught on the unevenness of the wall surface, and the flow velocity unevenness is generated, thereby causing an interface instability phenomenon. The upper limit of the surface roughness Ra is preferably 8 μm or less. In the present invention, “near the merging point” refers to a range from the merging point to the upstream 10 mm position. The minimum range in which the surface roughness Ra should be 2 μm or more and 10 μm or less varies depending on the size of the laminating apparatus, but the range from the junction to the upstream 10 mm position is that the surface roughness Ra is 2 μm or more and 10 μm or less. The laminating apparatus of the invention preferably has a heating mechanism 31 that heats the merging wall surfaces 21 and 22. FIG. 4 shows a laminating apparatus of the present invention having a heating mechanism. As shown in FIG. 4, it is preferable to heat the merging wall surfaces 21 and 22 by the heating mechanism 31 because the temperature of the merging wall surfaces 21 and 22 rises and slippage on the wall surface of the sheet material is more likely to occur.

本発明の積層装置は、合流壁面21、22がなす角度41(鋭角)が60度以下であることが好ましい。図5は、本発明の積層装置である。角度41が60度以下であると、合流点13でシート材料は平行に近い状態で衝突するため、界面にかかる応力は法線応力よりもせん断応力や伸長応力の割合が大きくなり、本発明による界面不安定現象を抑制する効果が十分に発揮されて好ましい。   In the laminating apparatus of the present invention, the angle 41 (acute angle) formed by the merging wall surfaces 21 and 22 is preferably 60 degrees or less. FIG. 5 shows a laminating apparatus of the present invention. When the angle 41 is 60 degrees or less, the sheet material collides at the junction 13 in a state of being nearly parallel, so that the stress applied to the interface is larger in the ratio of shear stress and elongation stress than the normal stress. The effect of suppressing the interface instability phenomenon is sufficiently exhibited, which is preferable.

本発明の積層装置は、合流壁面21、22の接触角が80度以下であることが好ましい。接触角が80度以下であると、シート材料が合流壁面21、22で滑りやすくなり、本発明による界面不安定現象を抑制する効果が十分に発揮されて好ましい。   In the laminating apparatus of the present invention, the contact angle between the merging wall surfaces 21 and 22 is preferably 80 degrees or less. When the contact angle is 80 degrees or less, it is preferable that the sheet material easily slips at the merged wall surfaces 21 and 22, and the effect of suppressing the interface instability phenomenon according to the present invention is sufficiently exhibited.

本発明の積層装置は、合流壁面21、22に表面処理を施していることが好ましい。表面処理を施すと、シート材料が合流壁面21、22で滑りやすくなり、本発明による界面不安定現象を抑制する効果が十分に発揮されて好ましい。表面処理としては、電気めっき、無電解めっき、化成処理、陽極酸化処理、溶融めっき、溶射、蒸着であるが、これらに限らない。   In the laminating apparatus according to the present invention, it is preferable that the merging wall surfaces 21 and 22 are subjected to surface treatment. When the surface treatment is performed, the sheet material is easily slipped on the merged wall surfaces 21 and 22, and the effect of suppressing the interface instability phenomenon according to the present invention is sufficiently exhibited, which is preferable. Examples of the surface treatment include, but are not limited to, electroplating, electroless plating, chemical conversion treatment, anodizing treatment, hot dipping, thermal spraying, and vapor deposition.

本発明の積層装置によって製造されたフィルムの用途の代表的なものは、光学用全般、工業用全般、粘着テープ、ディスプレイ、バックライト反射板、タッチパネル、窓貼り、コンデンサー、バッテリーセパレータ、太陽電池、離型用、リボンであるが、これらに限らない。   Typical applications of the film produced by the laminating apparatus of the present invention are general optical, general industrial, adhesive tape, display, backlight reflector, touch panel, window pasting, capacitor, battery separator, solar cell, Although it is for mold release and a ribbon, it is not restricted to these.

[実施例1]
本発明の積層装置を用いて、実際に積層フィルムを製造して評価した結果を説明する。具体的な製造方法は以下の通りである。
(1)シート材料:シート材料A;ポリエチレンテレフタレート(PET)樹脂(東レ(株)製熱可塑性樹脂F20S)、シート材料B;シクロヘキサンジメタノール共重合PET(イーストマン社製熱可塑性樹脂PETG6763)
(2)仕込み:各シート材料を乾燥後、押出機に供給した。
(3)押出:押出機は280℃に設定し、ギヤポンプ、フィルターを介した後、各シート材料を積層装置に供給した。シート材料Aの流量を100kg/h、シート材料Bの流量を20kg/hとした。
(4)積層装置:合流点より上流側の2つの流路は、いずれもシート幅方向寸法100mm、シート厚み方向寸法20mmとした。合流壁面は表面粗さRa=2.4um、接触角85度、2つの合流壁面のなす角度は70度とした。合流点より下流側の流路は、シート幅方向寸法100mm、シート厚み方向寸法40mmとした。
(5)吐出:積層装置で形成した積層体をTダイ(500mm幅)に供給しシート状に押出した後、静電印加(直流電圧8kV)にて表面温度25℃に保たれたキャスティングドラム上で急冷固化し、成形した。
(6)外観評価:得られた積層フィルムの外観を目視で確認し、界面不安定現象の有無を調べた。
(7)厚み斑評価:界面不安定現象が顕著な場合、その影響でフィルムに厚み斑が生じる。そこで、フィルムの幅方向にほぼ等分に10区分する点におけるフィルム厚みの最大値から最小値を引いて平均値で割った値を厚み斑とし、界面不安定現象の評価基準とした。
その結果、界面不安定現象は目視で確認できず、厚み斑は12%であった。
[Example 1]
The result of actually manufacturing and evaluating a laminated film using the laminating apparatus of the present invention will be described. A specific manufacturing method is as follows.
(1) Sheet material: Sheet material A; polyethylene terephthalate (PET) resin (thermoplastic resin F20S manufactured by Toray Industries, Inc.), sheet material B: cyclohexanedimethanol copolymerized PET (thermoplastic resin PETG6763 manufactured by Eastman)
(2) Preparation: Each sheet material was dried and then supplied to an extruder.
(3) Extrusion: The extruder was set at 280 ° C., and after passing through a gear pump and a filter, each sheet material was supplied to the laminating apparatus. The flow rate of the sheet material A was 100 kg / h, and the flow rate of the sheet material B was 20 kg / h.
(4) Laminating apparatus: The two flow paths upstream from the merging point both have a sheet width direction dimension of 100 mm and a sheet thickness direction dimension of 20 mm. The merging wall surface has a surface roughness Ra = 2.4 μm, a contact angle of 85 degrees, and the angle formed by the two merging wall surfaces is 70 degrees. The flow path downstream from the merging point has a sheet width direction dimension of 100 mm and a sheet thickness direction dimension of 40 mm.
(5) Discharge: On a casting drum on which a laminated body formed by a laminating apparatus is supplied to a T die (500 mm width) and extruded into a sheet shape, and then the surface temperature is maintained at 25 ° C. by applying electrostatic force (DC voltage 8 kV) Then, it was quickly cooled and solidified.
(6) Appearance evaluation: The appearance of the obtained laminated film was visually confirmed, and the presence or absence of an interface instability phenomenon was examined.
(7) Thickness unevenness evaluation: When the interface instability phenomenon is remarkable, the thickness unevenness occurs in the film. Therefore, the value obtained by subtracting the minimum value from the maximum value of the film thickness at the points divided into 10 approximately equally in the width direction of the film and dividing by the average value was used as the evaluation standard of the interface instability phenomenon.
As a result, the interface instability phenomenon could not be visually confirmed, and the thickness unevenness was 12%.

[実施例2]
合流壁面の表面粗さをRa=9.5umに変更した以外は、実施例1と同様にして多層フィルムを製造した。その結果、界面不安定現象は目視で確認できず、厚み斑は13%であった。
[Example 2]
A multilayer film was produced in the same manner as in Example 1 except that the surface roughness of the merged wall surface was changed to Ra = 9.5 um. As a result, the interface instability phenomenon could not be visually confirmed, and the thickness unevenness was 13%.

[実施例3]
合流壁面の表面粗さをRa=4.3umに変更した以外は、実施例1と同様にして多層フィルムを製造した。その結果、界面不安定現象は目視で確認できず、厚み斑は8%であった。
[Example 3]
A multilayer film was produced in the same manner as in Example 1 except that the surface roughness of the merged wall surface was changed to Ra = 4.3 μm. As a result, the interface instability phenomenon could not be visually confirmed, and the thickness unevenness was 8%.

[実施例4]
合流壁面の表面粗さをRa=7.8umに変更した以外は、実施例1と同様にして多層フィルムを製造した。その結果、界面不安定現象は目視で確認できず、厚み斑は9%であった。
[Example 4]
A multilayer film was produced in the same manner as in Example 1 except that the surface roughness of the merged wall surface was changed to Ra = 7.8 um. As a result, the interface instability phenomenon was not visually confirmed, and the thickness unevenness was 9%.

[実施例5]
合流壁面の内部に加熱機構としてカートリッジヒーター(φ6、150W)を設置し、温度を290℃になるよう調整した以外は、実施例1と同様にして積層フィルムを製造した。その結果、界面不安定現象は目視で確認できず、厚み斑は5%であった。
[Example 5]
A laminated film was produced in the same manner as in Example 1 except that a cartridge heater (φ6, 150 W) was installed as a heating mechanism inside the confluence wall surface and the temperature was adjusted to 290 ° C. As a result, the interface instability phenomenon could not be visually confirmed, and the thickness unevenness was 5%.

[実施例6]
合流壁面同士の角度を50度に変更した以外は、実施例1と同様にして積層フィルムを製造した。その結果、界面不安定現象は目視で確認できず、厚み斑は6%であった。
[Example 6]
A laminated film was produced in the same manner as in Example 1 except that the angle between the joining wall surfaces was changed to 50 degrees. As a result, the interface instability phenomenon could not be visually confirmed, and the thickness unevenness was 6%.

[実施例7]
合流壁面の接触角を75度に変更した以外は、実施例1と同様にして積層フィルムを製造した。その結果、界面不安定現象は目視で確認できず、厚み斑は4%であった。
[Example 7]
A laminated film was produced in the same manner as in Example 1 except that the contact angle of the merging wall surface was changed to 75 degrees. As a result, the interface instability phenomenon could not be visually confirmed, and the thickness unevenness was 4%.

[比較例1]
合流壁面の表面粗さをRa=1.3umに変更した以外は、実施例1と同様にして多層フィルムを製造した。その結果、界面不安定現象は目視で明確に確認でき、厚み斑は19%であった。
[Comparative Example 1]
A multilayer film was produced in the same manner as in Example 1 except that the surface roughness of the merged wall surface was changed to Ra = 1.3 um. As a result, the interface instability phenomenon could be clearly confirmed visually and the thickness unevenness was 19%.

[比較例2]
合流壁面の表面粗さをRa=12.6umに変更した以外は、実施例1と同様にして多層フィルムを製造した。その結果、界面不安定現象は目視で明確に確認でき、厚み斑は23%であった。
[Comparative Example 2]
A multilayer film was produced in the same manner as in Example 1 except that the surface roughness of the merged wall surface was changed to Ra = 12.6 um. As a result, the interface instability phenomenon could be clearly confirmed visually, and the thickness unevenness was 23%.

[評価結果]
合流壁面の表面粗さRaが2um以上10um以下を満足する実施例1〜4では、界面不安定現象は確認できず、厚み斑も13%以下と小さくなった。合流壁面の表面粗さを粗くすることでせん断応力および伸長応力が小さくし、界面不安定現象を抑制、高品質な積層シートを安定して得ることができた。特に、合流壁面の表面粗さRaが好ましい範囲である4um以上8um以下を満たす実施例3、4は、それぞれ厚み斑が8%、9%であり非常に良好な結果となった。
[Evaluation results]
In Examples 1 to 4 where the surface roughness Ra of the merging wall surface satisfies 2 μm or more and 10 μm or less, the interface instability phenomenon could not be confirmed, and the thickness variation was as small as 13% or less. By increasing the surface roughness of the confluence wall surface, the shear stress and the elongation stress were reduced, the interface instability phenomenon was suppressed, and a high-quality laminated sheet could be stably obtained. In particular, Examples 3 and 4 satisfying 4 μm or more and 8 μm or less where the surface roughness Ra of the merged wall surface is a preferable range were very good results with thickness spots of 8% and 9%, respectively.

合流壁面の内部に加熱機構を設置した実施例5は厚み斑が5%であり、実施例1〜4に比べてさらに小さくなった。   In Example 5 in which the heating mechanism was installed inside the merged wall surface, the thickness unevenness was 5%, which was further reduced as compared with Examples 1 to 4.

合流壁面同士の角度を60度以下にした実施例6は厚み斑が6%であり、実施例1〜4に比べてさらに小さくなった。   In Example 6 in which the angle between the joining wall surfaces was 60 degrees or less, the thickness unevenness was 6%, which was further reduced as compared with Examples 1 to 4.

合流壁面の接触角を80度以下にした実施例7は厚み斑が4%であり、実施例1〜4に比べてさらに小さくなった。   In Example 7, in which the contact angle of the merged wall surface was 80 degrees or less, the thickness unevenness was 4%, which was further reduced as compared with Examples 1-4.

合流壁面の表面粗さRaが2um未満の比較例1は、界面不安定現象が目視で明確に確認でき、厚み斑は19%と大きかった。壁面での滑りがあまり生じず、せん断応力や伸長応力が小さくならないため、界面不安定現象が生じたと考える。   In Comparative Example 1 where the surface roughness Ra of the merging wall surface was less than 2 μm, the interface instability phenomenon could be clearly confirmed visually, and the thickness unevenness was as large as 19%. It is considered that the instability phenomenon of the interface occurred because the slip on the wall surface does not occur so much and the shear stress and elongation stress do not become small.

合流壁面の表面粗さRaが10umよりも大きい比較例2も、界面不安定現象が目視で明確に確認でき、厚み斑は23%と大きかった。壁面の凹凸にシート材料が引っかかり、流速ムラが生じることで、界面不安定現象が生じたと考える。   In Comparative Example 2 in which the surface roughness Ra of the merged wall surface was larger than 10 μm, the interface instability phenomenon could be clearly confirmed visually, and the thickness unevenness was as large as 23%. It is considered that the instability phenomenon of the interface occurred due to the sheet material caught on the irregularities of the wall surface and uneven flow velocity.

本発明によれば、合流壁面の表面粗さを規定することで、界面不安定現象がなく、高品質な積層シートを安定して製造することが出来る。   According to the present invention, by defining the surface roughness of the merging wall surface, there is no interface instability phenomenon, and a high-quality laminated sheet can be manufactured stably.

11:シート材料Aが流れる流路
12:シート材料Bが流れる流路
13:シート材料A、Bが合流する合流点
14:積層体を形成する合流部
21:流路11の合流点を形成する合流壁面
22:流路12の合流点を形成する合流壁面
31:加熱機構
41:合流壁面21と22の角度
91:拡幅部
11: A flow path through which the sheet material A flows 12: A flow path through which the sheet material B flows 13: A merge point where the sheet materials A and B merge 14: A merge part which forms a laminate 21: A merge point of the flow path 11 is formed Junction wall surface 22: Junction wall surface 31 forming the junction of the flow path 12: Heating mechanism 41: Angle 91 of the junction wall surfaces 21 and 22 91: Widened portion

Claims (4)

複数種類のシート材料を下流方向へと導きお互いに合流する複数の流路と、前記流路が合流する位置において複数種類のシート材料が積層された積層体を形成する合流部と、を有し、
前記複数の流路のそれぞれの内壁面のうち、鋭角をなして合流する内壁面を合流壁面としたとき、この合流点の近傍における前記合流壁面の表面粗さRaが2um以上10um以下である積層装置。
A plurality of flow paths that guide a plurality of types of sheet materials in the downstream direction and merge with each other; and a merge portion that forms a laminate in which a plurality of types of sheet materials are stacked at the position where the flow paths merge. ,
Lamination having a surface roughness Ra of 2 μm or more and 10 μm or less in the vicinity of the junction when an inner wall that merges at an acute angle among the inner walls of each of the plurality of flow paths is defined as a merge wall. apparatus.
前記合流壁面を加熱する加熱機構を有する、請求項1の積層装置。   The laminating apparatus according to claim 1, further comprising a heating mechanism that heats the merging wall surface. 前記合流壁面がなす角度(鋭角)が60度以下である、請求項1または2の積層装置。   The lamination apparatus according to claim 1 or 2, wherein an angle (acute angle) formed by the merging wall surfaces is 60 degrees or less. 前記合流壁面の接触角が80度以下である、請求項1〜3のいずれかの積層装置。   The lamination apparatus according to any one of claims 1 to 3, wherein a contact angle of the merging wall surface is 80 degrees or less.
JP2016113212A 2016-06-07 2016-06-07 Lamination apparatus Pending JP2017217800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016113212A JP2017217800A (en) 2016-06-07 2016-06-07 Lamination apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016113212A JP2017217800A (en) 2016-06-07 2016-06-07 Lamination apparatus

Publications (1)

Publication Number Publication Date
JP2017217800A true JP2017217800A (en) 2017-12-14

Family

ID=60657449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016113212A Pending JP2017217800A (en) 2016-06-07 2016-06-07 Lamination apparatus

Country Status (1)

Country Link
JP (1) JP2017217800A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006001030A (en) * 2004-06-15 2006-01-05 Fujimori Kogyo Co Ltd Die, and film manufacturing method
JP2007098223A (en) * 2005-09-30 2007-04-19 Fujifilm Corp Fluid operation method of chemical device
JP2012139831A (en) * 2010-12-28 2012-07-26 Toray Ind Inc Apparatus and method for manufacturing laminate sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006001030A (en) * 2004-06-15 2006-01-05 Fujimori Kogyo Co Ltd Die, and film manufacturing method
JP2007098223A (en) * 2005-09-30 2007-04-19 Fujifilm Corp Fluid operation method of chemical device
JP2012139831A (en) * 2010-12-28 2012-07-26 Toray Ind Inc Apparatus and method for manufacturing laminate sheet

Similar Documents

Publication Publication Date Title
US8388331B2 (en) Liquid flow converging device and method of manufacturing multi-layer film
US20040154734A1 (en) Apparatus and method for producing a thermoplastic resin continuous laminated sheet
US9108349B2 (en) Profiled extrusion replication
JP2005534542A (en) Method for producing low-orientation thermoplastic film, produced film and use thereof
KR102174324B1 (en) Laminated steel plate, preparation method thereof, and sheet used therefor
JP5434002B2 (en) Laminate sheet manufacturing apparatus and method
JP2017217800A (en) Lamination apparatus
JP2017500229A5 (en)
JP5545205B2 (en) Laminate sheet manufacturing apparatus and method
JP2023001059A (en) Multilayer laminate merging device
WO2014142034A1 (en) Die and method for producing laminate film
JP2008030258A (en) Method and apparatus for manufacturing laminated sheet
JP5321725B2 (en) Laminate sheet manufacturing apparatus and method
KR102357539B1 (en) Sheet manufacturing apparatus and sheet manufacturing method
JP5343549B2 (en) Laminate sheet manufacturing apparatus and method
JP5135834B2 (en) Method and apparatus for branching and joining fluid flows
JP2010083060A (en) Melt extrusion molding method of low density polyethylene
JP2017144654A (en) Method of manufacturing resin film for film capacitor
JP2007045020A (en) Flat die and manufacturing method of laminated resin film or sheet
JP5166767B2 (en) Feed block, laminated resin film or sheet molding apparatus and manufacturing method
JP6515730B2 (en) Sheet manufacturing method and sheet manufacturing apparatus
JP2015134453A (en) Production method of stretched film
WO2023047223A1 (en) Polymeric film and method of making same
JP2008068521A (en) Laminated film and feed block
JP2018122437A (en) A manufacturing apparatus for a laminated sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201006