JP2023001059A - Multilayer laminate merging device - Google Patents

Multilayer laminate merging device Download PDF

Info

Publication number
JP2023001059A
JP2023001059A JP2022093480A JP2022093480A JP2023001059A JP 2023001059 A JP2023001059 A JP 2023001059A JP 2022093480 A JP2022093480 A JP 2022093480A JP 2022093480 A JP2022093480 A JP 2022093480A JP 2023001059 A JP2023001059 A JP 2023001059A
Authority
JP
Japan
Prior art keywords
partition plate
wall
molten resin
partition
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022093480A
Other languages
Japanese (ja)
Inventor
敦紀 小原
Atsunori Obara
崇正 岩見
Takamasa Iwami
彼方 宮地
Kanata Miyaji
元希 相崎
Motoki Aizaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JP2023001059A publication Critical patent/JP2023001059A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

To provide a multilayer laminate merging device that overcomes a problem of causing collapse of a laminated structure during transportation of a resin laminate body laminated by a multi-layer lamination device to an inlet and a die; reduces a risk of partition wall deformation due to thermal expansion; and achieves recovery from deformation by a minimum parts replacement even if deformation is caused.SOLUTION: There is provided a multilayer laminate merging device that comprises two or more flow paths in which a molten resin laminate body obtained by alternately laminating 10 or more layers of thermoplastic resin compositions with different compositions are pass through, and a partition wall forming the flow path disappears before reaching an inlet to merge the flow paths into one. The device satisfies the following items (I) and (II). Item (I) is configured in that: when viewed from a longitudinal direction, a rectangular outer wall and a detachable partition plate that divides the outer wall in parallel with a width direction are provided. Item (II) is configured in that: at least one pair of grooves capable of inserting the partition plate into an inner surface of the outer wall in parallel with the width direction are provided.SELECTED DRAWING: Figure 5

Description

本発明は、昇温や加熱による変形、それに伴う溶融樹脂積層物の厚み構成の変化を抑制することができる多層積層合流装置に関する。 TECHNICAL FIELD The present invention relates to a multi-layer lamination confluence device capable of suppressing temperature rise and deformation due to heating, and accompanying changes in the thickness structure of a molten resin laminate.

多層積層フィルムは、複数の樹脂を積層することによって、1種類の樹脂では得ることのできない性能を持たせることができ、2層~数千層の積層数、数十nm~数十μmの層厚みといった様々な層構成をとる。例えば、特許文献1や特許文献2に報告されているような方法により、上記のような層構成の溶融樹脂積層物を形成することが可能である。このように溶融樹脂積層物を形成し、多層積層合流装置を用いて、その積層構成を維持して製膜することにより、選択的に波長を透過/反射させることが可能な積層フィルム、例えば、熱線反射フィルムなどを製造することができる(特許文献3)。 By laminating multiple resins, multi-layer laminated films can be given performance that cannot be obtained with one type of resin, and the number of laminated layers from 2 to several thousand layers, and the layers from several tens of nanometers to several tens of μm. It has various layer configurations such as thickness. For example, it is possible to form a molten resin laminate having the layer structure as described above by the methods reported in Patent Document 1 and Patent Document 2. A laminated film capable of selectively transmitting/reflecting wavelengths by forming a molten resin laminate in this manner and forming a film while maintaining the laminated structure using a multi-layer lamination/confluence apparatus, such as A heat ray reflective film or the like can be produced (Patent Document 3).

特開2008-68521号公報JP-A-2008-68521 特開2007-307893号公報JP 2007-307893 A 特開2012-30563号公報JP 2012-30563 A

しかしながら、特許文献1および2の方法では、樹脂組成物を積層して溶融樹脂積層物を形成することができるものの、過度に積層された状態になるため、その後ダイや口金まで搬送される途中で積層構造が崩れるという課題がある。 However, in the methods of Patent Documents 1 and 2, although it is possible to form a molten resin laminate by laminating the resin composition, the molten resin laminate is excessively laminated. There is a problem that the laminated structure collapses.

また、多層積層装置からダイや口金まで送り込まれる過程においては、精密に積層された溶融樹脂積層体であっても少しの流路変形でその積層構造が崩れやすい。そのため、最終的に得られる多層積層シートでは狙いとする積層構造を実現できないことがある。積層構造の崩れを軽減する手段として、特許文献3には多層積層合流装置を用いる方法が開示されているが、このような多層積層合流装置内は溶融樹脂積層体が通過するため、樹脂の融点以上の温度に加熱・昇温する必要があり、その際の熱膨張等で流路変形が生じて積層構造の崩れに繋がる。そのため、特許文献3に記載の多層積層合流装置を用いた場合、積層構造の崩れにより、最終的に得られるフィルムの層厚みが狙いの設計と異なる場合がある。また、流路変形した場合、多層積層合流装置を取り替える必要があり、そのためのコスト、時間共に大きなロスとなる。 Further, in the process of feeding from a multi-layer lamination apparatus to a die or a die, even a precisely laminated molten resin laminate is likely to lose its lamination structure due to a slight deformation of the flow path. Therefore, the multilayer laminated sheet finally obtained may not achieve the desired laminated structure. As a means for reducing the collapse of the laminated structure, Patent Document 3 discloses a method using a multilayer lamination confluence device. It is necessary to heat and raise the temperature to the above temperature, and the flow path deformation occurs due to thermal expansion etc. at that time, which leads to the collapse of the laminated structure. Therefore, in the case of using the multi-layer lamination merging device described in Patent Document 3, the layer thickness of the finally obtained film may differ from the intended design due to collapse of the lamination structure. Further, when the flow path is deformed, it is necessary to replace the multi-layer lamination confluence device, resulting in a large loss of both cost and time.

本発明は、上記従来技術の課題を克服し、積層構造の崩れによる品質低下の軽減、及び製造コストや時間の低減を可能とする多層積層合流装置を提供することをその課題とする。 SUMMARY OF THE INVENTION An object of the present invention is to overcome the above-mentioned problems of the prior art, and to provide a multi-layered confluence device capable of reducing quality deterioration due to collapse of the laminated structure and reducing manufacturing costs and time.

上記課題を解決するため、本発明の多層積層合流装置は以下の構成からなる。すなわち、組成の異なる熱可塑性樹脂組成物が交互に10層以上積層した溶融樹脂積層体が通る流路を2個以上有し、口金に到達する前に前記流路を形成する隔壁が消失して、前記流路が一つに合流する多層積層合流装置であって、以下の(I)及び(II)を共に満たすことを特徴とする、多層積層合流装置である。(I)長手方向から観察したときに、長方形の外壁部と前記外壁部を幅方向と平行に分割する着脱可能な隔壁板を備える。(II)外壁部の内面に、幅方向と平行に前記隔壁板を差し込むことができる溝部を少なくとも一対有する。 In order to solve the above problems, the multi-layer lamination joining device of the present invention has the following configuration. That is, there are two or more channels through which the molten resin laminate in which ten or more layers of thermoplastic resin compositions having different compositions are alternately laminated, and the partition walls forming the channels disappear before reaching the die. 1. A multi-layered confluence device in which the flow paths merge into one, characterized in that the following (I) and (II) are both satisfied. (I) When viewed from the longitudinal direction, it is provided with a rectangular outer wall and a detachable partition plate that divides the outer wall in parallel with the width direction. (II) At least one pair of grooves into which the partition plate can be inserted is provided on the inner surface of the outer wall in parallel with the width direction.

本発明により、熱膨張による隔壁部分変形リスクを低減し、かつ、万一変形した場合も最小限の部品交換によって復旧が可能な多層積層合流装置を提供することができる。 According to the present invention, it is possible to provide a multi-layered confluence device that reduces the risk of partial deformation of partition walls due to thermal expansion, and that can be restored with minimal replacement of parts in the event of deformation.

本発明の一実施態様に係る多層積層合流装置の隔壁部を差し込んでいない状態を長手方向から観察したときの概略図である。FIG. 4 is a schematic view of the multi-layered confluence device according to one embodiment of the present invention when observed from the longitudinal direction in a state in which the partition wall portion is not inserted; 本発明の一実施態様に係る多層積層合流装置に隔壁部を差し込む状態を厚み方向から観察したときの概略図である。FIG. 4 is a schematic view of a state in which a partition wall is inserted into a multi-layered confluence device according to an embodiment of the present invention, as observed from the thickness direction; 本発明の一実施態様に係る多層積層合流装置の隔壁部を差し込んだ状態を長手方向から観察したときと、溝部分を拡大した概略図である。FIG. 10 is a schematic diagram showing a state in which the partition walls are inserted in the multi-layer lamination merging device according to one embodiment of the present invention when observed from the longitudinal direction, and an enlarged schematic view of the groove portion. 本発明の一実施態様に係る多層積層合流装置の溶融樹脂積層物の入り口部分(A)と、溶融樹脂多層積層物の出口部分(B)をそれぞれ長手方向から観察したときの概略図である。FIG. 3 is a schematic view of the inlet portion (A) of the molten resin laminate and the outlet portion (B) of the molten resin multilayer laminate of the multi-layer lamination confluence device according to one embodiment of the present invention when observed from the longitudinal direction. 本発明の一実施態様に係る多層積層合流装置を組み立てた場合の全体像の斜視図である。1 is a perspective view of an overall image when assembling a multi-layer lamination joining device according to an embodiment of the present invention; FIG.

以下、本発明の多層積層合流装置について詳細に説明する。本発明の多層積層合流装置は、組成の異なる熱可塑性樹脂組成物が交互に10層以上積層した溶融樹脂積層体が通る流路を2個以上有し、口金に到達する前に前記流路を形成する隔壁が消失して、前記流路が一つに合流する多層積層合流装置であって、以下の(I)及び(II)を共に満たすことを特徴とする。(I)長手方向から観察したときに、長方形の外壁部と前記外壁部を幅方向と平行に分割する着脱可能な隔壁板を備える。(II)外壁部の内面に、幅方向と平行に前記隔壁板を差し込むことができる溝部を少なくとも一対有する。 Hereinafter, the multi-layer lamination joining device of the present invention will be described in detail. The multi-layer laminating and joining apparatus of the present invention has two or more flow paths through which molten resin laminates in which 10 or more layers of thermoplastic resin compositions having different compositions are alternately laminated are passed, and the flow paths are passed before reaching the die. A multi-layered confluence device in which partition walls to be formed disappear and the flow paths merge into one, characterized by satisfying both the following (I) and (II). (I) When viewed from the longitudinal direction, it is provided with a rectangular outer wall and a detachable partition plate that divides the outer wall in parallel with the width direction. (II) At least one pair of grooves into which the partition plate can be inserted is provided on the inner surface of the outer wall in parallel with the width direction.

本発明の多層積層合流装置は、組成の異なる熱可塑性樹脂組成物が交互に10層以上積層した溶融樹脂積層体が通る流路を2個以上有する。ここで「多層積層合流装置」とは、溶融状態にある熱可塑性樹脂組成物が交互に積層した状態で複数の流路を通すことにより流れを整え、出口でこれらを合流させる装置をいう。「組成の異なる」とは、2種類以上の溶融した熱可塑性樹脂組成物について、原料やその混率がそれぞれ異なることをいう。「組成の異なる熱可塑性樹脂組成物が交互に10層以上積層した溶融樹脂積層体」とは、組成の異なる2種類の熱可塑性樹脂組成物(例えば熱可塑性樹脂組成物A,Bとする)が交互に10層以上積層した構成を少なくとも一つ有する溶融樹脂積層体をいう。なお、上記要件を満たす限り、当該積層構成の数や、交互に積層した熱可塑性樹脂組成物のいずれとも異なる熱可塑性樹脂組成物(例えば、熱可塑性樹脂組成物Cとする。)の有無は問わない。「流路を2個以上有する」とは、隔壁により溶融樹脂積層体が通る流路が複数存在することをいう。このような態様とすることで、口金に至るまでの工程での積層数を抑え、口金から吐出されるまでに積層構造が崩れることを軽減できる。なお、組成の異なる樹脂組成物を交互に10層以上に積層する方法(すなわち、溶融樹脂積層物の形成方法)は特には限定されないが、例えば、特許文献1に記載の方法などを用いることができる。また、熱可塑性樹脂組成物はそれぞれ単一成分であっても、複数成分であってもよい。 The multi-layer lamination confluence device of the present invention has two or more flow paths through which molten resin laminates, in which ten or more layers of thermoplastic resin compositions having different compositions are alternately laminated, pass. Here, the term "multilayer lamination confluence device" refers to a device in which molten thermoplastic resin compositions are alternately laminated and flowed through a plurality of flow paths to align the flows and merge at an outlet. "Different in composition" means that two or more types of molten thermoplastic resin compositions differ in raw materials and their mixing ratios. "A molten resin laminate in which 10 or more layers of thermoplastic resin compositions with different compositions are alternately laminated" means that two types of thermoplastic resin compositions with different compositions (for example, thermoplastic resin compositions A and B) are A molten resin laminate having at least one structure in which 10 or more layers are alternately laminated. As long as the above requirements are satisfied, the number of the laminated structures and the presence or absence of a thermoplastic resin composition (for example, thermoplastic resin composition C) that is different from any of the alternately laminated thermoplastic resin compositions does not matter. No. The expression "having two or more flow paths" means that there are a plurality of flow paths through which the molten resin laminate passes due to partition walls. By adopting such a mode, it is possible to suppress the number of layers to be laminated in the process up to the die, and to reduce the collapse of the layered structure until the liquid is discharged from the die. The method of alternately laminating 10 or more layers of resin compositions having different compositions (that is, the method of forming a molten resin laminate) is not particularly limited, but for example, the method described in Patent Document 1 can be used. can. Further, each thermoplastic resin composition may be composed of a single component or multiple components.

本発明の多層積層合流装置は、口金に到達する前に流路を形成する隔壁が消失して、流路が一つに合流する多層積層合流装置である。多層積層合流装置を通過した溶融樹脂積層体は、その後口金でさらに薄いシート状に成形されてキャストドラムに吐出され、ここで冷却固化されて未延伸シートとなる。そのため、ここで「口金に到達する前」とは多層積層装置の出口よりも上流を意味する。口金に到達する前に流路が一つに合流することで、これまで複数の流路に分けて流れを整えることで積層精度を高めた溶融樹脂積層体を一つに合流させることができる。その結果、積層精度を落とさずに溶融樹脂積層体の積層数を増やすことができる。 The multi-layered merging device of the present invention is a multi-layered merging device in which the partition walls forming the flow paths disappear before reaching the mouthpiece and the flow paths merge into one. The molten resin laminate that has passed through the multi-layer laminating and joining device is then formed into a thinner sheet with a spinneret and discharged to a cast drum where it is cooled and solidified to become an unstretched sheet. Therefore, "before reaching the spinneret" means upstream of the outlet of the multilayer lamination apparatus. By merging the flow paths into one before reaching the die, the molten resin layered product, which has been divided into a plurality of flow paths and adjusted to improve the lamination accuracy, can be merged into one. As a result, the number of layers of the molten resin layered body can be increased without lowering the layering accuracy.

本発明の多層積層合流装置は、長手方向から観察したときに、長方形の外壁部と外壁部を幅方向と平行に分割する着脱可能な隔壁板を備える。長手方向から観察したときに、長方形の外壁部と外壁部を幅方向と平行に分割する隔壁板を備えることで、厚み方向の長さを一定にしたまま溶融樹脂積層体を口金まで搬送することができるため、積層精度が向上する。ここで「着脱可能」とは、多層積層合流装置を破壊することなく隔壁板を取り替えることができることをいう。 The multi-layer lamination confluence device of the present invention includes a detachable partition plate that divides the rectangular outer wall portion and the outer wall portion in parallel with the width direction when viewed from the longitudinal direction. When observed from the longitudinal direction, the molten resin laminate is conveyed to the die while keeping the length in the thickness direction constant by providing a rectangular outer wall and a partition plate that divides the outer wall in parallel with the width direction. Therefore, lamination accuracy is improved. Here, the term "detachable" means that the partition plate can be replaced without destroying the multi-layered confluence device.

また、融点近傍/以上の温度に加熱された溶融樹脂積層体が外壁と隔壁が形成する流路を通過するため、溶融樹脂積層体を途中で固まらせないように多層積層合流装置を昇温する必要がある。一般的に外壁や隔壁は金属製であるため、これらを昇温させると熱膨張により主に隔壁に弾性ひずみや塑性ひずみが生じ、1回または複数回使用することで座屈・塑性変形する場合がある。隔壁に座屈や塑性変形が生じると、溶融樹脂積層体の流路形状が厚み方向に変化し、変形箇所を通過する際に溶融樹脂積層体の積層構造が崩れる結果、最終的に得られる多層積層フィルムの品質にムラが生じることがある。 In addition, since the molten resin laminate heated to a temperature near or above the melting point passes through the flow path formed by the outer wall and the partition wall, the temperature of the multi-layer lamination joining device is raised so as not to solidify the molten resin laminate in the middle. There is a need. In general, the outer walls and partition walls are made of metal, so when these are heated, elastic strain and plastic strain occur mainly in the partition walls due to thermal expansion, and buckling and plastic deformation occur when used once or multiple times. There is When buckling or plastic deformation occurs in the partition wall, the flow path shape of the molten resin laminate changes in the thickness direction, and the laminated structure of the molten resin laminate collapses when passing through the deformed location. The quality of the laminated film may be uneven.

このような事態に至った場合、外壁と隔壁が一体不可分であると、多層積層合流装置全体を新品に交換する必要があり、製造コストが増加する上、製造効率も悪くなる。また、隔壁の座屈や塑性変形を軽減するために、隔壁の厚みを厚くし、耐座屈設計にする方法も考えられるが、このような態様とすると積層された溶融樹脂積層物が合流する際に、隔壁がなくなる部分(すなわち、各流路を通った溶融樹脂積層体の合流部分)で、溶融樹脂積層体の流路屈折量が大きくなって積層構造が崩れる可能性がある。さらに、隔壁を厚くすれば多層積層合流装置が必要以上に大きくなるため、装置の内部/外部で温度斑が生じ、溶融樹脂積層体に粘度差が生じて積層構造が崩れる可能性もある。隔壁を着脱可能な態様とすることによって、座屈・塑性変形が生じても多層積層合流装置全体ではなく隔壁のみ交換すればよくなり、安価にメンテナンスが可能となる。 In such a situation, if the outer wall and the partition wall are inseparable, the entire multi-layered confluence device must be replaced with a new one, which increases the manufacturing cost and reduces the manufacturing efficiency. In order to reduce the buckling and plastic deformation of the partition walls, it is conceivable to increase the thickness of the partition walls and design them to resist buckling. In this case, there is a possibility that the flow channel refraction amount of the molten resin layered body becomes large and the layered structure collapses at the part where the partition wall disappears (that is, the confluence part of the molten resin layered body which has passed through each flow path). Furthermore, if the partition wall is thickened, the multi-layer lamination confluence device becomes larger than necessary, which may cause temperature variations inside and outside the device, causing a viscosity difference in the molten resin laminate and collapsing the lamination structure. By making the partition wall detachable, even if buckling or plastic deformation occurs, it is sufficient to replace only the partition wall instead of the entire multi-layer lamination joining device, and maintenance can be performed at low cost.

本発明の多層積層合流装置は、外壁部の内面に、幅方向と平行に前記隔壁板を差し込むことができる溝部を少なくとも一対有する。このような態様とすることにより、幅方向と平行な隔壁を形成することが容易となり、さらに多層積層合流装置の使用中に隔壁が所定の位置からずれないようにすることができる。 The multi-layer lamination joining device of the present invention has at least one pair of grooves into which the partition plate can be inserted parallel to the width direction on the inner surface of the outer wall. By adopting such a mode, it becomes easy to form partition walls parallel to the width direction, and furthermore, it is possible to prevent the partition walls from shifting from predetermined positions during use of the multi-layer lamination joining device.

本発明の多層積層合流装置は、隔壁板の厚みが2mm以上10mm以下であることが好ましい。隔壁板の厚みが2mm以上であることにより、座屈による塑性変形の発生を軽減し、隔壁板の頻繁な交換を避けることができる。一方で、隔壁板の厚みが10mm以下であることにより、合流部での流路の屈折量が小さくなり、溶融樹脂積層体の積層構造の乱れを軽減することができる。これらの観点から、隔壁板の厚みは3mm以上8mm以下が好ましい。 In the multi-layered joining device of the present invention, the thickness of the partition plate is preferably 2 mm or more and 10 mm or less. When the thickness of the partition plate is 2 mm or more, the occurrence of plastic deformation due to buckling can be reduced, and frequent replacement of the partition plate can be avoided. On the other hand, when the thickness of the partition plate is 10 mm or less, the amount of refraction of the flow path at the confluence portion is reduced, and disturbance of the laminated structure of the molten resin laminate can be reduced. From these points of view, the thickness of the partition plate is preferably 3 mm or more and 8 mm or less.

本発明の多層積層合流装置は、溝部の幅が、隔壁板の厚み+0.2mm以上、隔壁板の厚み+1.0mm以下であり、溝部の底部から対となる溝部の底部までの長さが、隔壁板の幅方向長さ+0.2mm以上、隔壁板の幅方向長さ+1.0mm以下であることが好ましい。溝部の幅が、隔壁板の厚み+0.2mm以上であることにより、加熱・昇温時の熱膨張によって外壁の溝が隔壁を厚み方向に挟み込み、さらに隔壁が幅方向に膨張することによる変形が軽減される。同様に、溝部の底部から対となる溝部の底部までの長さが、隔壁部の幅方向長さ+0.2mm以上であることにより、隔壁が幅方向に膨張することで、各溝の底部から対となる各溝の底部以上の長さになることによって生じる変形が軽減される。一方で、溝部の幅が、隔壁板の厚み+1.0mm以下であることにより、隔壁板が膨張しきった後に各溝と隔壁板の間の隙間が小さくなって隔壁の位置が安定し、溶融樹脂積層体の圧力による隔壁板の位置ズレが軽減されるため、積層構造が安定する。同様に、溝部の底部から対となる溝部の底部までの長さが、隔壁板の幅方向長さ+1.0mm以下であることにより、溶融樹脂積層体の圧力による隔壁板の位置ズレが軽減されるため、積層構造が安定する。これらの観点から、前記外壁に形成された溝部の幅が、隔壁部の厚み+0.3mm以上、隔壁部の厚み+0.8mm以下であり、各溝の底部から、対となる各溝の底部までの長さが、隔壁部の幅長さ+0.3mm以上、隔壁部の幅長さ+0.8mm以下であることが好ましい。 In the multi-layer lamination joining device of the present invention, the width of the groove is equal to or more than the thickness of the partition plate + 0.2 mm and the thickness of the partition plate + 1.0 mm or less, and the length from the bottom of the groove to the bottom of the paired groove is It is preferable that the width direction length of the partition plate is +0.2 mm or more and the width direction length of the partition plate +1.0 mm or less. Since the width of the groove is equal to or greater than the thickness of the partition plate plus 0.2 mm, the partition wall is sandwiched between the grooves in the outer wall due to thermal expansion during heating and temperature rise, and deformation due to expansion of the partition wall in the width direction is prevented. mitigated. Similarly, when the length from the bottom of the groove to the bottom of the paired groove is equal to or greater than the length of the partition in the width direction + 0.2 mm, the partition expands in the width direction, so that the bottom of each groove The deformation caused by the length exceeding the bottom of each pair of grooves is reduced. On the other hand, since the width of the groove portion is equal to or less than the thickness of the partition plate + 1.0 mm, the gap between each groove and the partition plate becomes smaller after the partition plate is fully expanded, and the position of the partition wall is stabilized, and the molten resin laminate is formed. Since the positional displacement of the partition plate due to the pressure is reduced, the laminated structure is stabilized. Similarly, since the length from the bottom of the groove to the bottom of the paired groove is equal to or less than the length of the partition plate in the width direction + 1.0 mm, displacement of the partition plate due to the pressure of the molten resin laminate is reduced. Therefore, the laminated structure is stabilized. From these viewpoints, the width of the groove formed in the outer wall is the thickness of the partition +0.3 mm or more and the thickness of the partition +0.8 mm or less, and from the bottom of each groove to the bottom of each pair of grooves The length of is preferably equal to or more than the width of the partition plus 0.3 mm and less than or equal to the width of the partition plus 0.8 mm.

本発明の多層積層合流装置は、外壁部および隔壁板において、溶融樹脂積層体と接触する面の平均面粗さRaが0.5以上2.0以下であることが好ましい。当該面の平均面粗さRaが0.5以上であることにより、外壁部や隔壁板と溶融樹脂積層体間の表面張力が下がるため、流路を流れる溶融樹脂積層体の流れが適度にスムースになり、多層積層合流装置内で溶融樹脂積層体の多層積層構造が崩れにくくなる。一方で、当該面の平均面粗さRaが2.0以下であることにより、外壁や隔壁板の表面における凹凸が抑えられるため、多層積層合流装置内で溶融樹脂積層体の多層積層構造が崩れにくくなる。これらの観点から、当該面の平均面粗さRaが1.0以上1.5以下であることがより好ましい。溶融樹脂積層体と接触する面の平均面粗さRaは、外壁部および隔壁板における、溶融樹脂積層体と接する全ての面の中心点における面粗さの平均値として算出することができる。面粗さの測定方法については実施例に示す。 In the multi-layer lamination confluence device of the present invention, it is preferable that the surfaces of the outer walls and the partition plate that come into contact with the molten resin laminate have an average surface roughness Ra of 0.5 or more and 2.0 or less. When the average surface roughness Ra of the surface is 0.5 or more, the surface tension between the outer wall portion or the partition plate and the molten resin laminate is lowered, so that the flow of the molten resin laminate flowing through the flow path is moderately smooth. As a result, the multi-layered structure of the molten resin layered body is less likely to collapse in the multi-layered merging device. On the other hand, since the average surface roughness Ra of the surface is 2.0 or less, unevenness on the surface of the outer wall and the partition plate is suppressed, so that the multilayer structure of the molten resin laminate collapses in the multilayer joining device. become difficult. From these viewpoints, it is more preferable that the average surface roughness Ra of the surface is 1.0 or more and 1.5 or less. The average surface roughness Ra of the surfaces in contact with the molten resin laminate can be calculated as the average value of the surface roughnesses at the center points of all the surfaces of the outer wall and the partition plate that are in contact with the molten resin laminate. A method for measuring the surface roughness will be described in Examples.

本発明の多層積層合流装置は、隔壁板が厚み方向に平坦であることが好ましい。ここで「厚み方向」とは、多層積層合流装置を通過する溶融樹脂積層体面に垂直な方向をいい、「隔壁板が厚み方向に平坦である」とは、隔壁板の表面をベースラインとしたときにベースラインからの高さ又は深さ(厚み方向長さ)が1mm以上の凹凸や屈曲がないことをいう。フィルムのような多層積層シートを製造する際には、高い位置から順に多層積層装置、多層積層合流装置、口金が存在し、通常、上から下に向けて溶融樹脂組成物(その後、溶融樹脂積層体となる)を押し出す。このとき、前記のように隔壁を着脱可能にし、溝に差し込む様態とする場合、多層積層合流装置の組み立て時や使用時、および解体時に隔壁が移動若しくは落下する。隔壁の移動や落下を防止する構造として、隔壁に引っかけ部を持つ構造が考えられるが、厚み方向に隆起した引っかけ部がある場合、隔壁同士の距離が短いと引っかけ部同士が干渉しない程度に隔壁間の距離を取る必要があり、溶融樹脂積層体の厚みに制限がかかることがある。このような観点から、引っかけ部は隔壁板の面と平行な方向(幅方向)に突出した形状とし、隔壁を厚み方向に平坦とすることが好ましい。 It is preferable that the partition plates of the multi-layered confluence device of the present invention are flat in the thickness direction. Here, the "thickness direction" refers to the direction perpendicular to the surface of the molten resin laminate passing through the multi-layer lamination and confluence device, and "the partition plate is flat in the thickness direction" means that the surface of the partition plate is the base line. Sometimes it means that there are no irregularities or bends with a height or depth (thickness direction length) from the baseline of 1 mm or more. When manufacturing a multi-layer laminated sheet such as a film, there are a multi-layer lamination device, a multi-layer lamination confluence device, and a die in order from the highest position, and usually, from top to bottom, the molten resin composition (then, the molten resin lamination body) is extruded. At this time, if the partition wall is detachable and inserted into the groove as described above, the partition wall moves or falls during assembly, use, and dismantling of the multi-layer lamination joining device. As a structure to prevent the partition from moving or falling, a structure with a hook on the partition is conceivable. It is necessary to take a distance between them, and the thickness of the molten resin laminate may be restricted. From this point of view, it is preferable that the hooks protrude in the direction (width direction) parallel to the surface of the partition plate and that the partition walls are flat in the thickness direction.

上記のような様態の多層積層合流装置を用いてフィルムを製造すると、積層構造が幅方向に均一になるため、多層積層フィルムの品質向上が可能であり、かつ、装置メンテナンスのための部品交換等の簡便化が可能である。 When a film is produced using the multi-layer lamination confluence device of the above-described mode, the lamination structure becomes uniform in the width direction, so the quality of the multi-layer laminated film can be improved, and parts can be replaced for maintenance of the device. can be simplified.

以下、本発明の多層積層合流装置を構成する各手段について、図面を参照しながら具体的に説明する。本発明の一実施様態に係る多層積層合流装置について、図1は外壁を溶融樹脂積層物の進行方向から観察したときの概略図である。また、図2は外壁に隔壁板を差し込む際の様子を厚み方向から観察したときの概略図であり、図3は外壁に隔壁板を差し込んだ後、および差し込み部を一部拡大した図であり、図5は外壁に隔壁板を差し込んだ状態の斜視図である。なお、溶融樹脂積層物の積層方向を厚み方向、溶融樹脂積層物の進行方向を長手方向、厚み方向にも長手方向にも直交した方向を幅方向とする。なお、溝部の幅8や、溝部2の底部から、対となる溝部2の底部までの長さと、隔壁板4の幅長さの差9等は、説明記載のために実際寸法比よりも大きめに記載している。また、隔壁板は外壁に取り付けることにより隔壁となるため、以下、図面を用いた説明において隔壁板4、隔壁4の両方の記載を使用する。 Hereinafter, each means constituting the multi-layer lamination joining device of the present invention will be specifically described with reference to the drawings. FIG. 1 is a schematic view of a multi-layer lamination merging device according to an embodiment of the present invention, when the outer wall is observed from the traveling direction of the molten resin laminate. FIG. 2 is a schematic view of the state when the partition plate is inserted into the outer wall when observed from the thickness direction, and FIG. 3 is a partially enlarged view of the inserted portion after the partition plate is inserted into the outer wall. FIG. 5 is a perspective view of a state in which the partition plate is inserted into the outer wall. The lamination direction of the molten resin laminate is defined as the thickness direction, the advancing direction of the molten resin laminate is defined as the longitudinal direction, and the direction orthogonal to both the thickness direction and the longitudinal direction is defined as the width direction. Note that the width 8 of the groove, the length from the bottom of the groove 2 to the bottom of the groove 2 paired with the groove 2, and the difference 9 between the width and length of the partition plate 4 are larger than the actual size ratios for the sake of explanation. described in Moreover, since the partition plate becomes a partition by attaching it to the outer wall, the description of both the partition plate 4 and the partition 4 will be used hereinafter in the description using the drawings.

図1に示す様態の多層積層合流装置の外壁1において、後述する隔壁板4を差し込むための溝部2を幅方向に対をなすように有する(本図では、対となる溝部2は1組であるが積層数に応じて複数組設けてもよい。)。図2に示すように外壁1に形成された対となる溝部2に隔壁板4を差し込むことで隔壁4を形成する。図2のとおり、隔壁板4の上部には引っかけ部5を有しており、図1および図2の窪み部3で固定されるようになっている。このような態様とすることにより、使用時等における隔壁4の落下を抑えられる。 The outer wall 1 of the multi-layered confluence device of the mode shown in FIG. However, a plurality of sets may be provided according to the number of laminations.). As shown in FIG. 2, partition walls 4 are formed by inserting partition plates 4 into paired grooves 2 formed in the outer wall 1 . As shown in FIG. 2, the upper part of the partition plate 4 has a hook portion 5, which is fixed by the recess portion 3 shown in FIGS. By adopting such a mode, it is possible to prevent the partition wall 4 from falling during use or the like.

前述のとおりに隔壁板4を差し込んだ状態を図3の上側に、図3の溝部2の近傍の拡大図(符号6)を図3の下側に、斜視図を図5に示す。隔壁4の厚み7は2mm以上10mm以下であることが好ましい。このような厚みとすることで、昇温時や溶融樹脂積層体の通過時の圧力によって、隔壁4が厚み方向に座屈・変形することを抑制し、かつ各流路を通る溶融樹脂積層体(本図では2つ)が合流する際に積層構造が崩れることを軽減することができる。また、前記外壁の溝部の幅8は隔壁板の厚み(符号7)+0.2mm以上、隔壁板の厚み+1.0mm以下であることが好ましい。例えば、隔壁板の厚み7が3.0mmの場合、溝部の幅8は3.2mm以上4.0mm以下とすることが好ましい。このような態様とすることで、多層積層合流装置の昇温時に、隔壁4が厚み方向に熱膨張することで溝部2に挟み込まれ、さらに隔壁4が幅方向に膨張することで座屈・変形が抑制される。また、溶融樹脂積層体の通過時の圧力によって、隔壁4の位置がずれることも軽減することができる。 The state in which the partition plate 4 is inserted as described above is shown in the upper side of FIG. 3, the enlarged view (reference numeral 6) of the vicinity of the groove portion 2 in FIG. 3 is shown in the lower side of FIG. 3, and the perspective view is shown in FIG. The thickness 7 of the partition wall 4 is preferably 2 mm or more and 10 mm or less. With such a thickness, the partition wall 4 is prevented from buckling and deforming in the thickness direction due to the pressure when the temperature rises or when the molten resin laminate passes through, and the molten resin laminate passing through each flow path is suppressed. It is possible to reduce the collapse of the laminated structure when (two in this figure) merge. Further, it is preferable that the width 8 of the groove portion of the outer wall is equal to or larger than the thickness of the partition plate (reference numeral 7) +0.2 mm and equal to or smaller than the thickness of the partition plate +1.0 mm. For example, when the thickness 7 of the partition plate is 3.0 mm, the width 8 of the groove is preferably 3.2 mm or more and 4.0 mm or less. By adopting such a mode, when the temperature of the multi-layer lamination joining device is increased, the partition walls 4 are thermally expanded in the thickness direction and sandwiched between the grooves 2, and the partition walls 4 expand in the width direction to buckle and deform. is suppressed. Further, it is possible to reduce the displacement of the partition wall 4 due to the pressure when the molten resin laminate passes through.

図4は上記のような様態の多層積層合流装置に溶融樹脂積層物が流通している状態である。入口から隔壁4がなくなるまでの区間では、隔壁4によって流路が隔てられており、熱可塑性樹脂組成物10と11(両者を区別するため便宜上熱可塑性樹脂A10、熱可塑性樹脂B11ということがある。)が交互に積層された溶融樹脂積層物が、外壁1、隔壁4で形成される各流路を通過する。その後流路下流部で隔壁4がなくなることによって互いの溶融樹脂積層体が合流し、やがて出口に至る。図4では、溶融樹脂積層体が熱可塑性樹脂A10と熱可塑性樹脂B11の2種類の熱可塑性樹脂組成物からなる態様を示しているが、熱可塑性樹脂組成物は3種類以上であってもよい。 FIG. 4 shows a state in which the molten resin laminate is flowing through the multi-layer lamination confluence device of the above-described mode. In the section from the inlet until the partition wall 4 disappears, the flow path is separated by the partition wall 4, and the thermoplastic resin compositions 10 and 11 (to distinguish between the two, may be referred to as thermoplastic resin A10 and thermoplastic resin B11 for convenience. ) are alternately laminated pass through each channel formed by the outer wall 1 and the partition wall 4 . After that, the partition wall 4 disappears at the downstream part of the flow path, so that the molten resin laminates join each other and eventually reach the outlet. FIG. 4 shows an embodiment in which the molten resin laminate is composed of two types of thermoplastic resin compositions, thermoplastic resin A10 and thermoplastic resin B11, but the number of thermoplastic resin compositions may be three or more. .

以下、本発明の多層積層フィルムの製造方法について説明する。本発明の多層積層フィルムの製造方法は、本発明の多層積層合流装置を用いて積層構造を形成させることを特徴とする。前述の通り、本発明の多層積層合流装置は溶融樹脂積層体の積層乱れを軽減できるため、本発明の多層積層フィルムの製造方法を用いることにより、得られる多層積層フィルムの品質がより均一となる。 The method for producing the multilayer laminate film of the present invention will be described below. The method for producing a multilayer laminated film of the present invention is characterized by forming a laminated structure using the multilayer lamination joining device of the present invention. As described above, the multi-layer lamination merging device of the present invention can reduce the lamination disorder of the molten resin laminate, and therefore, by using the method for producing a multi-layer laminated film of the present invention, the quality of the obtained multi-layer laminated film becomes more uniform. .

以下、本発明の多層積層フィルムの製造方法について具体的に説明する。但し、以下の例は本発明の多層積層フィルムの製造方法の一態様の例示であり、本発明の多層積層フィルムの製造方法はこれに限定されない。なお、交互の積層構成を形成する各樹脂層を得るための熱可塑性樹脂をそれぞれ熱可塑性樹脂A、熱可塑性樹脂Bとし、熱可塑性樹脂Aおよび熱可塑性樹脂Bはそれぞれ1種類の樹脂でも、複数樹脂の混合物でもよい。 The method for producing the multilayer laminated film of the present invention will be specifically described below. However, the following example is an illustration of one aspect of the method for producing a multilayer laminated film of the present invention, and the method for producing a multilayer laminated film of the present invention is not limited thereto. The thermoplastic resins for obtaining the resin layers forming the alternate laminated structure are the thermoplastic resin A and the thermoplastic resin B, respectively. It may be a mixture of resins.

先ず、熱可塑性樹脂A及び熱可塑性樹脂Bをペレットの形態で用意し、各ペレットを必要に応じて熱風中あるいは真空下で乾燥した後、各々2台の押出機に供給し、各押出機内において融点以上の温度で加熱、溶融する。次いで、溶融した各熱可塑性樹脂をギヤポンプ等で押出量を均一化して押し出し、フィルター等を介して異物や変性した熱可塑性樹脂を取り除く。その後、異物等を除去した溶融状態の熱可塑性樹脂Aと熱可塑性樹脂Bを、別々の流路から多層積層装置に送り込む。多層積層装置としては、多数の微細スリットを有する部材を、少なくとも別個に2個以上含むフィードブロックを用いる。このようなフィードブロックを用いると、装置が極端に大型化することがないため、熱劣化による異物が少なく、積層数が極端に多い場合でも、高精度に積層が可能となる。また、幅方向の積層精度も従来技術に比較して格段に向上する。また、任意の層厚み構成を形成することも容易となる。 First, thermoplastic resin A and thermoplastic resin B are prepared in the form of pellets, each pellet is dried in hot air or under vacuum as necessary, and then supplied to each of two extruders. Heats and melts at a temperature above the melting point. Next, each melted thermoplastic resin is extruded with a gear pump or the like to make the extrusion rate uniform, and foreign matter and denatured thermoplastic resin are removed through a filter or the like. After that, the thermoplastic resin A and the thermoplastic resin B in a molten state, from which foreign matter has been removed, are fed into the multi-layer stacking apparatus through separate channels. As the multi-layer lamination device, a feed block containing at least two separate members having a large number of fine slits is used. When such a feed block is used, the apparatus does not become extremely large, so foreign matter due to thermal deterioration is small, and even when the number of layers to be stacked is extremely large, stacking can be performed with high accuracy. In addition, lamination accuracy in the width direction is remarkably improved as compared with the conventional technology. In addition, it becomes easy to form an arbitrary layer thickness configuration.

フィードブロックにより得られた溶融樹脂積層体は、多層積層合流装置に送られ、外壁と隔壁によって形成される流路内を直列に流れ、その後隔壁がなくなることで合流して1つの大きな溶融樹脂積層体となる。隔壁の厚みは2~10mmの範囲とすると、溶融樹脂積層体が合流する際の積層の歪みを抑制することができ、好ましい。 The molten resin laminate obtained by the feed block is sent to the multi-layer lamination confluence device, flows in series in the channel formed by the outer wall and the partition wall, and then merges when the partition disappears to form one large molten resin laminate. become a body. When the thickness of the partition wall is in the range of 2 to 10 mm, it is possible to suppress the distortion of the lamination when the molten resin laminates join together, which is preferable.

本多層積層合流装置は溶融樹脂積層体がその内部を通過するため、各熱可塑性樹脂の溶融温度以上に加熱する必要があるが、この際、熱膨張によって隔壁部分が変形することを抑制するために、隔壁板を着脱可能とし、着脱のための差し込む溝部を設ける。また、隔壁の熱膨張により溝部に圧着・固定されて変形することを抑制するために、溝部の幅が、隔壁板の厚み+0.2mm以上、前記隔壁板の厚み+1.0mm以下であり、前記溝部の底部から対となる前記溝部の底部までの長さが、隔壁板の幅方向長さ+0.2mm以上、隔壁板の幅方向長さ+1.0mm以下であることが好ましい。 Since the molten resin laminate passes through the inside of this multi-layer lamination confluence device, it is necessary to heat it above the melting temperature of each thermoplastic resin. , the partition plate is detachable and provided with a groove into which it is inserted for attachment and detachment. In addition, in order to suppress the deformation of the partition wall due to the thermal expansion of the partition wall when it is crimped and fixed to the groove, the width of the groove is equal to or more than +0.2 mm of the thickness of the partition plate and +1.0 mm or less of the thickness of the partition plate. It is preferable that the length from the bottom of the groove to the bottom of the pair of grooves is the width direction length of the partition plate +0.2 mm or more and the width direction length of the partition plate +1.0 mm or less.

本発明の多層積層合流装置は、その内部を通過する溶融樹脂積層体の積層構造の乱れを抑制するために、外壁部および隔壁板において、溶融樹脂積層体と接触する面の平均面粗さRaが0.5以上2.0以下であることが好ましい。 In order to suppress disturbance of the lamination structure of the molten resin laminate passing through the multi-layer lamination confluence device of the present invention, in the outer wall and the partition plate, the average surface roughness Ra of the surface in contact with the molten resin laminate is is preferably 0.5 or more and 2.0 or less.

多層積層合流装置により所望の層構成に形成された溶融樹脂積層体は、次にダイにてシート状に成型された後、吐出される。そして、ダイから吐出された溶融シート状物は、キャスティングドラム等の回転冷却体上に押し出されて冷却固化され、キャスティングフィルム(無延伸フィルム)となる。この際、ワイヤー状、テープ状、針金状あるいはナイフ状等の電極を用いて、静電気力によりキャスティングドラム等の回転冷却体に密着させ急冷固化させることが好ましい。また、スリット状、スポット状、面状の装置からエアーを吹き出してキャスティングドラム等の回転冷却体に密着させ急冷固化、又は、ニップロールにて回転冷却体に密着させて急冷固化させる方法も好ましい。 The molten resin laminate formed into a desired layer structure by the multi-layer lamination/confluence device is then formed into a sheet by a die and then discharged. Then, the molten sheet material discharged from the die is extruded onto a rotating cooling body such as a casting drum, cooled and solidified to form a cast film (unstretched film). At this time, it is preferable to use a wire-shaped, tape-shaped, wire-shaped, or knife-shaped electrode and bring it into close contact with a rotating cooling body such as a casting drum by means of electrostatic force for rapid cooling and solidification. Also preferred is a method in which air is blown out from a slit-shaped, spot-shaped, or planar device and brought into close contact with a rotating cooling body such as a casting drum for rapid cooling and solidification, or a nip roll is brought into close contact with the rotating cooling body to rapidly cool and solidify.

このようにして得られたキャスティングフィルムは、必要に応じて二軸延伸することが好ましい。二軸延伸とは、長手方向及び幅方向に延伸することをいう。延伸は、逐次に二方向に延伸しても良いし、同時に二方向に延伸してもよい。また、さらに長手方向及び/又は幅方向に再延伸しても良い。特に本発明においては面内の配向差を抑制できる点や、表面傷を抑制する観点から、同時二軸延伸を用いることが好ましい。 The cast film thus obtained is preferably biaxially stretched as necessary. Biaxial stretching means stretching in the longitudinal direction and the width direction. The stretching may be performed in two directions sequentially or in two directions at the same time. Further, it may be re-stretched in the longitudinal direction and/or the width direction. In particular, in the present invention, it is preferable to use simultaneous biaxial stretching from the viewpoint of suppressing in-plane orientation difference and suppressing surface scratches.

先ず、逐次二軸延伸の場合について説明する。ここで長手方向の延伸とは、キャスティングフィルムに長手方向に分子配向を与えるための延伸をいい、通常は、ロールの周速差により施される。この延伸は1段階で行っても、また、複数本のロール対を用いて多段階で行ってもよい。延伸の倍率としては熱可塑性樹脂A,Bの種類により異なるが、通常、2~15倍が好ましく、熱可塑性樹脂AやBにポリエチレンテレフタレートを用いた場合には、2~7倍が特に好ましく用いられる。また、延伸温度としては熱可塑性樹脂A,Bのうち相対的に結晶性の高い樹脂(高結晶性樹脂)のガラス転移温度~ガラス転移温度+100℃が好ましい。 First, the case of sequential biaxial stretching will be described. Here, stretching in the longitudinal direction means stretching for imparting molecular orientation to the casting film in the longitudinal direction, and is usually carried out by a difference in peripheral speed of rolls. This stretching may be performed in one stage or in multiple stages using a plurality of pairs of rolls. The stretching ratio varies depending on the type of thermoplastic resins A and B, but is usually preferably 2 to 15 times, and particularly preferably 2 to 7 times when polyethylene terephthalate is used for thermoplastic resins A and B. be done. Further, the stretching temperature is preferably between the glass transition temperature of the resin having relatively high crystallinity (highly crystalline resin) among the thermoplastic resins A and B and +100°C.

多層積層フィルムに易接着層を設ける場合には、塗剤をコーティングして積層する方法が好ましい。塗剤をコーティングする方法としては、本発明における熱可塑性樹脂フィルムの製造工程とは別工程でコーティングを行う方法、いわゆるオフラインコーティング方法と、本発明における熱可塑性樹脂フィルムの製造工程中にコーティングを行うことで易接着層を一度に積層させる、いわゆるインラインコーティング方法がある。コストの面や塗布厚みの均一化の面からインラインコーティング方法を採用することが好ましく、その場合に用いられる塗液の溶媒は、環境汚染や防爆性の観点から水系であることが好ましく、水を用いることが最も好ましい態様である。 When providing an easy-adhesion layer to a multilayer laminated film, the method of coating and laminating|stacking with a coating material is preferable. As a method of coating the coating agent, there is a method of coating in a process separate from the manufacturing process of the thermoplastic resin film in the present invention, a so-called offline coating method, and a method of coating during the manufacturing process of the thermoplastic resin film in the present invention. There is a so-called in-line coating method in which an easy-adhesion layer is laminated at once. It is preferable to adopt an in-line coating method from the viewpoint of cost and uniformity of coating thickness, and the solvent of the coating liquid used in that case is preferably a water-based solvent from the viewpoint of environmental pollution and explosion prevention. It is the most preferable mode to use.

インラインコーティングで易接着層を形成する場合には、一軸延伸された熱可塑性樹脂フィルム(一軸配向フィルム)に連続的に易接着層を構成する塗剤を塗布することが好ましい。溶媒として水を用いた塗剤(水系塗剤)の塗布方法としては、例えば、リバースコート法、スプレーコート法、バーコート法、グラビアコート法、ロッドコート法及びダイコート法などを用いることができる。また、水系塗剤を塗布する前に、表面にコロナ放電処理等を施すことも好ましい。これは、熱可塑性樹脂フィルムと塗剤との接着性が向上し、塗布性も良好となるためである。 When forming the easy-adhesion layer by in-line coating, it is preferable to continuously apply a coating agent that constitutes the easy-adhesion layer to a uniaxially stretched thermoplastic resin film (uniaxially oriented film). Examples of methods for applying a coating agent using water as a solvent (aqueous coating agent) include reverse coating, spray coating, bar coating, gravure coating, rod coating, and die coating. It is also preferable to subject the surface to corona discharge treatment or the like before applying the water-based coating agent. This is because the adhesion between the thermoplastic resin film and the coating agent is improved, and the coatability is also improved.

易接着層には、発明の効果を損なわない範囲であれば、架橋剤、酸化防止剤、耐熱安定剤、耐侯安定剤、紫外線吸収剤、有機の易滑材、顔料、染料、有機又は無機の粒子、充填材、界面活性剤等を配合してもよい。 The easy-adhesion layer contains cross-linking agents, antioxidants, heat stabilizers, weather stabilizers, ultraviolet absorbers, organic lubricants, pigments, dyes, organic or inorganic materials, as long as they do not impair the effects of the invention. Particles, fillers, surfactants and the like may be blended.

続いて行う幅方向の延伸とは、熱可塑性樹脂フィルムの幅方向に分子配向を与えるための延伸をいう。この延伸は通常、テンターを用いて一軸配向フィルムの両端をクリップで把持しながら搬送して、一軸配向フィルムに熱を加えて予熱した後、幅方向に延伸することにより行う。テンターの直前で塗布された水系塗剤はこの予熱時に乾燥される。延伸の倍率としては熱可塑性樹脂A,Bの種類により異なるが、通常、2~15倍が好ましく、熱可塑性樹脂A,Bのいずれかにポリエチレンテレフタレートを用いた場合には、2~7倍が特に好ましい。また、延伸温度は高結晶性樹脂のガラス転移温度~高結晶性樹脂のガラス転移温度+120℃が好ましい。二軸延伸された熱可塑性樹脂フィルムは、平面性、寸法安定性を付与するために、テンター内で延伸温度以上、熱可塑性樹脂A,Bを構成する樹脂のうち最も含有率の多い樹脂の融点以下の熱処理を行うことが好ましい。このようにして熱処理された熱可塑性樹脂フィルムは、均一に徐冷後、室温まで冷却してワインダーにて巻き取られる。また、必要に応じて、熱処理から徐冷の際に弛緩処理などを併用してもよい。 The subsequent stretching in the width direction refers to stretching for giving molecular orientation in the width direction of the thermoplastic resin film. This stretching is usually performed by conveying the uniaxially oriented film while gripping both ends with clips using a tenter, heating the uniaxially oriented film to preheat it, and then stretching it in the width direction. A water-based coating applied just before the tenter is dried during this preheating. The stretching ratio varies depending on the type of thermoplastic resins A and B, but is usually preferably 2 to 15 times. Especially preferred. The stretching temperature is preferably between the glass transition temperature of the highly crystalline resin and the glass transition temperature of the highly crystalline resin plus 120°C. In order to impart flatness and dimensional stability to the biaxially stretched thermoplastic resin film, the melting point of the resin with the highest content among the resins constituting the thermoplastic resins A and B is kept above the stretching temperature in the tenter. It is preferable to perform the following heat treatment. The thermoplastic resin film heat-treated in this manner is uniformly and gradually cooled, cooled to room temperature, and wound up by a winder. In addition, if necessary, relaxation treatment or the like may be used in combination with the heat treatment and slow cooling.

次いで、同時二軸延伸の場合について説明する。同時二軸延伸の場合には、得られたキャスティングフィルムに、連続的に易接着層を構成する塗剤を塗布する。溶媒として水を用いた塗剤(水系塗剤)の塗布方法としては、例えば、リバースコート法、スプレーコート法、バーコート法、グラビアコート法、ロッドコート法及びダイコート法などを用いることができる。また、水系塗材を塗布する前に、キャスティングフィルムの表面にコロナ放電処理などを施すことが好ましい。これは、キャスティングフィルムと塗剤との接着性が向上し、塗布性も良好となるためである。 Next, the case of simultaneous biaxial stretching will be described. In the case of simultaneous biaxial stretching, the casting film thus obtained is continuously coated with a coating agent that constitutes an easy-adhesion layer. Examples of methods for applying a coating agent using water as a solvent (aqueous coating agent) include reverse coating, spray coating, bar coating, gravure coating, rod coating, and die coating. In addition, it is preferable to subject the surface of the casting film to corona discharge treatment or the like before applying the water-based coating material. This is because the adhesiveness between the casting film and the coating agent is improved, and the coatability is also improved.

次に、塗剤を塗布したキャスティングフィルムを同時二軸テンターへ導き、その両端をクリップで把持しながら搬送して、長手方向と幅方向に同時及び/又は段階的に延伸する。同時二軸延伸機としては、パンタグラフ方式、スクリュー方式、駆動モーター方式、リニアモーター方式があるが、任意に延伸倍率を変更可能で、かつ任意の場所で弛緩処理を行うことができる駆動モーター方式もしくはリニアモーター方式が好ましい。延伸の倍率としては熱可塑性樹脂A,Bの種類により異なるが、通常、面積倍率として6~50倍が好ましく、8~30倍がより好ましい。特に同時二軸延伸の場合には、面内の配向差を抑制するために、長手方向と幅方向の延伸倍率差を小さく(より好ましくは等しく)すると共に、延伸速度もほぼ等しくなるようにすることが好ましい。また、延伸温度としては高結晶性樹脂のガラス転移温度~高結晶性樹脂ガラス転移温度+120℃が好ましい。二軸延伸された多層積層フィルムは、平面性、寸法安定性を付与するために、引き続きテンター内で延伸温度以上かつ高結晶性樹脂の融点以下の熱処理を行うことが好ましい。この熱処理の際に、幅方向での主配向軸の分布を抑制するため、熱処理ゾーンに入る直前及び/又は直後に瞬時に長手方向に弛緩処理することが好ましい。このようにして熱処理された多層積層フィルムは、均一に徐冷後、室温まで冷却されてワインダーにて巻き取られる。また、必要に応じて、熱処理から徐冷の際に長手方向及び/又は幅方向に弛緩処理を行ってもよい。また、熱処理ゾーンに入る直前及び/又は直後に瞬時に長手方向に弛緩処理することも好ましい。 Next, the casting film coated with the coating agent is guided to a simultaneous biaxial tenter, and conveyed while holding both ends thereof with clips, and stretched simultaneously and/or stepwise in the longitudinal direction and the width direction. As the simultaneous biaxial stretching machine, there are the pantograph system, the screw system, the drive motor system, and the linear motor system. A linear motor system is preferred. Although the stretching ratio varies depending on the type of thermoplastic resins A and B, the area ratio is usually preferably 6 to 50 times, more preferably 8 to 30 times. Particularly in the case of simultaneous biaxial stretching, in order to suppress in-plane orientation difference, the difference in stretching ratio between the longitudinal direction and the width direction should be small (more preferably equal), and the stretching speed should be approximately the same. is preferred. The stretching temperature is preferably between the glass transition temperature of the highly crystalline resin and the glass transition temperature of the highly crystalline resin plus 120°C. In order to impart flatness and dimensional stability to the biaxially stretched multilayer laminated film, it is preferable to subsequently heat-treat the film in a tenter at a temperature higher than the stretching temperature and lower than the melting point of the highly crystalline resin. In order to suppress the distribution of the main orientation axis in the width direction during this heat treatment, it is preferable to instantly relax the film in the longitudinal direction immediately before and/or after entering the heat treatment zone. The multi-layer laminate film heat-treated in this manner is uniformly and slowly cooled, cooled to room temperature, and wound up by a winder. In addition, if necessary, relaxation treatment may be performed in the longitudinal direction and/or the width direction during slow cooling after the heat treatment. It is also preferred to apply a momentary longitudinal relaxation treatment immediately before and/or after entering the heat treatment zone.

こうして得られた多層積層フィルムは、その後の搬送工程で冷却され、一旦広幅の巻き取り機で中間ロールとして巻き取られた後、スリッターにより、必要な幅と長さに裁断されて最終製品となる。 The multi-layer laminated film thus obtained is cooled in the subsequent transportation process, once wound up as an intermediate roll by a wide winding machine, and then cut into the required width and length by a slitter to be the final product. .

以下、実施例に基づき本発明をより詳細に説明するが、本発明は、以下の実施例に限定されるものではない。各実施例及び各比較例において使用した多層積層装置や隔壁板、および各項目の評価方法等は以下の通りである。なお、繰り返し使用することによる多層積層合流装置の熱膨張による座屈・変形を評価することを目的として、最終的に得られるフィルムの評価は、以下に示す多層積層フィルムの製造を計6回実施して行う。 EXAMPLES The present invention will be described in more detail below based on examples, but the present invention is not limited to the following examples. The multi-layer lamination apparatus and partition plate used in each example and each comparative example, and evaluation methods for each item are as follows. In addition, for the purpose of evaluating buckling and deformation due to thermal expansion of the multi-layer lamination confluence device due to repeated use, the evaluation of the finally obtained film was performed six times in total. and do.

<多層積層フィルムの製造>
[樹脂押し出し・多層積層装置(多層積層合流装置より前の工程)]
熱可塑性樹脂A及び熱可塑性樹脂Bを、各々別のベント付き二軸押出機で280℃の溶融状態とした後、ギヤポンプ及びフィルターを介して、10個のスリットを有する部材を別個に2個有する多層積層装置(フィードブロック)にて溶融樹脂積層体を2個積層させる。なお、熱可塑性樹脂Aと熱可塑性樹脂Bが交互に積層され、かつ熱可塑性樹脂Aからなる層の総厚みを熱可塑性樹脂Bからなる層の総厚みで割った積層比は1.00となるようにする。
<Production of multilayer laminated film>
[Resin extrusion/multilayer lamination device (process before multilayer lamination confluence device)]
Thermoplastic resin A and thermoplastic resin B are melted at 280° C. in separate vented twin-screw extruders, and then passed through a gear pump and a filter to form two separate members having 10 slits. Two molten resin laminates are laminated in a multi-layer lamination device (feed block). The thermoplastic resin A and the thermoplastic resin B are alternately laminated, and the lamination ratio obtained by dividing the total thickness of the layers made of the thermoplastic resin A by the total thickness of the layers made of the thermoplastic resin B is 1.00. make it

[多層積層合流装置]
多層積層合流装置は、口金の直前まで、外壁と1枚の隔壁にて形成される2つの流路を有するものを使用する。前述の多層積層装置(フィードブロック)にて積層させた2つの溶融樹脂積層体を、別々の流路を通して口金に向かって搬送し、口金に到達する直前で2つの溶融樹脂積層体を合流させる。なお、本多層積層合流装置は、各熱可塑性樹脂を押し出す前に280℃まで昇温しておき、多層積層フィルムの製造終了後に常温まで降温する。
[Multilayer stacking confluence device]
The multi-layer lamination confluence device used has two flow paths formed by an outer wall and one partition wall up to just before the mouthpiece. The two molten resin laminates laminated in the multilayer lamination apparatus (feed block) described above are conveyed through separate channels toward the die, and the two molten resin laminates are merged just before reaching the die. The temperature of this multi-layer lamination merging apparatus is raised to 280° C. before extruding each thermoplastic resin, and the temperature is lowered to normal temperature after the completion of the production of the multi-layer laminated film.

[口金~巻き取り(多層積層合流装置より後工程)]
口金から吐出させた溶融樹脂多層積層体を、表面温度25℃に保たれたキャスティングドラムに静電印加で密着させて急冷固化し、キャストフィルムを得る。得られたキャストフィルムを80℃に設定したロール群で加熱した後、100mmの延伸区間でキャストフィルムを両面からラジエーションヒーターで急速加熱しながら、縦方向に3.3倍延伸し、その後一旦冷却して一軸延伸フィルムを得る。次いで、該一軸延伸フィルムの両面に空気中でコロナ放電処理を施して両面の塗れ張力を55mN/mとし、#4のメタバーで易接着層の組成物-Iを両面に塗布する。その後、得られた一軸延伸フィルムをテンターに導き、100℃の熱風で予熱後、120℃の温度で横方向に3.5倍延伸する。延伸したフィルムは、そのままテンター内で240℃の熱風にて熱処理を行い、次いで同温度にて幅方向に7%の弛緩処理を施し、その後、室温まで冷却してワインダーにて巻き取り、厚み110μm、幅3600mm、長さ20m、層数19層の多層積層フィルムを得る。
[Piece-to-winding (post-process from multi-layer lamination confluence device)]
The molten resin multilayer laminate ejected from the die is adhered to a casting drum maintained at a surface temperature of 25° C. by applying static electricity and rapidly solidified to obtain a cast film. After heating the obtained cast film with a roll group set at 80° C., the cast film was stretched 3.3 times in the longitudinal direction while being rapidly heated from both sides by a radiation heater in a stretching section of 100 mm, and then cooled once. to obtain a uniaxially stretched film. Next, both sides of the uniaxially stretched film are subjected to corona discharge treatment in the air to set the coating tension on both sides to 55 mN/m, and the easily adhesive layer Composition-I is applied to both sides with a #4 meta bar. Thereafter, the obtained uniaxially stretched film is introduced into a tenter, preheated with hot air at 100°C, and stretched 3.5 times in the transverse direction at a temperature of 120°C. The stretched film was directly heat-treated in a tenter with hot air at 240°C, then subjected to a relaxation treatment of 7% in the width direction at the same temperature, then cooled to room temperature and wound with a winder to a thickness of 110 µm. , a multilayer laminated film having a width of 3600 mm, a length of 20 m, and 19 layers.

<各項目の評価>
[隔壁の歪み]
1~6回目に積層フィルムを製造したのち、多層積層合流装置の隔壁部分の歪みを確認する。隔壁が歪んだ場合、円弧状となるため、その頂点部分から元の位置までの距離をLとして歪み量を測定する。
○:L=0(歪み無し)
△:0<L<2(mm)
×:2≦L(mm)。
<Evaluation of each item>
[Distortion of partition wall]
After manufacturing the laminated film for the 1st to 6th times, the distortion of the partition wall portion of the multi-layered lamination/confluence device is checked. When the partition wall is distorted, it becomes arcuate, so the distance from the vertex to the original position is L, and the amount of distortion is measured.
○: L = 0 (no distortion)
△: 0<L<2 (mm)
×: 2≦L (mm).

[積層構造の評価]
6回目に製造した積層フィルムより、幅方向と平行に5つの測定点(中心部分、±600mm部分、±1200mm部分 なお、ここで±600mm部分とは、中心部分からの距離が600mmである2つの点をいう。±1200mm部分も同様に解釈することができる。)を定め、各測定点における厚み方向断面を透過電子顕微鏡(TEM)で観察し、画像解析ソフト「Image-Pro Plus(伯東株式会社製)」を用いて画像処理により層厚み分布を求める。任意に選択した一方の最表層から順に1層目~20層目とし、順に1層目の各測定点における厚みの平均値からのばらつき~20層目の各測定点における厚みの平均値からのばらつきを確認する。得られた各層の厚みのばらつきより、下記基準で評価する。なお、ばらつきに用いた計算式は、n層目の厚みをdnとして、下記の通りである。
ばらつき=|dn/(Σdn/5)|*100
(ただし、Σdnは中心部分、±600部分、±1200部分の5点dn合計値)
◎:全ての層でばらつき8%未満である。
○:1層以上でばらつきが8%以上10%未満である。
△;1層以上でばらつきが10%以上15%未満である。
×:1層以上でばらつき15%以上である。
[Evaluation of laminated structure]
Five measurement points in parallel with the width direction from the laminated film produced for the sixth time (central portion, ±600 mm portion, ±1200 mm portion). A point.The ±1200 mm part can be interpreted in the same way.), Observe the thickness direction cross section at each measurement point with a transmission electron microscope (TEM), and use the image analysis software "Image-Pro Plus (Hakuto Co., Ltd.) The layer thickness distribution is obtained by image processing using "Made in Japan". From the arbitrarily selected one of the outermost layers, the 1st to 20th layers are selected in order, and the variation from the average thickness at each measurement point of the 1st layer to the average thickness at each measurement point of the 20th layer. Check for variability. Based on the variation in the thickness of each layer obtained, evaluation is made according to the following criteria. The calculation formula used for the variation is as follows, where dn is the thickness of the n-th layer.
Variation=|dn/(Σdn/5)|*100
(However, Σdn is the 5-point dn total value of the central part, ±600 part, and ±1200 part)
A: Variation is less than 8% for all layers.
◯: Variation is 8% or more and less than 10% for one or more layers.
Δ: Variation is 10% or more and less than 15% for one or more layers.
x: Variation of 15% or more in one or more layers.

[交換回数の評価]
1~6回の評価中、隔壁に変形が生じた際は変形前と同等の設備を新作し、その交換回数を下記の通り評価する。すなわち、隔壁の歪みで×が付いた回数が交換回数となっている。
○:0回
△:1回
×:2回以上。
[Evaluation of exchange frequency]
During the 1st to 6th evaluations, if the partition wall is deformed, a new facility equivalent to that before the deformation is installed, and the number of replacements is evaluated as follows. That is, the number of times marked with an x for strain of the partition wall is the number of replacement times.
○: 0 times △: 1 time ×: 2 times or more.

[交換コストの評価]
隔壁に変形が生じた際、変形前と同等の設備に戻すためにかかるコストについて、下記の通り評価する。
○:隔壁部のみ交換(平坦のため、安価)
△:隔壁部のみ交換(立体のため、やや高価)
×:多層積層合流装置全体の交換(装置全体のため、非常に高価)。
[Evaluation of replacement cost]
When the partition wall is deformed, the cost to restore the equipment to the same condition as before the deformation is evaluated as follows.
○: Replace only the bulkhead (low cost due to flatness)
△: Only the partition part is replaced (because it is three-dimensional, it is somewhat expensive)
×: Replacement of the entire multi-layered merging device (the entire device is very expensive).

[総合評価]
積層構造が◎、○若しくは△であることを合格(すなわち、下記A~D)、×であることを不合格(すなわち、下記E)とする。さらに積層構造、交換回数、交換コストの各項目において、それぞれ◎を3点、○を2点、△を1点、×を0点として計算し、その総合点を下記の基準で評価する。
A:各項目の合計が7である。
B:積層構造が◎であり、かつ各項目の合計が7より小さい。
C:積層構造が○であり、かつ各項目の合計が6である。
D:積層構造が○又は△であり、かつ各項目の合計が6より小さい。
E:積層構造が×である。
[Comprehensive evaluation]
If the laminated structure is ⊚, ◯, or Δ, it is accepted (that is, A to D below), and if it is ×, it is rejected (that is, E below). Furthermore, for each item of laminate structure, number of exchanges, and exchange cost, ⊚ is calculated as 3 points, ○ as 2 points, Δ as 1 point, and × as 0 points.
A: The sum of each item is 7.
B: The laminate structure is ⊚, and the total of each item is less than 7.
C: Laminated structure is ◯, and the total of each item is 6.
D: The laminate structure is ◯ or Δ, and the total of each item is less than 6.
E: Laminated structure is x.

(実施例1)
前記[多層積層合流装置]について、表1の実施例1に記載の設備条件を用いて2個の溶融樹脂積層体を合流させ、溶融樹脂多層積層体を6回にわたり作製する。その評価を表1に示す。なお、2個の溶融樹脂積層体を合流させるまで互いを分け隔てる隔壁部分は個別に差し込める形とし、隔壁寸法と、溝部の幅および溝部の底部から対となる溝部の底部までの長さ(表1中では、「溝底部間の距離(mm)」と記載)、外壁部及び隔壁板の溶融樹脂積層体と接触する面の平均面粗さRaはそれぞれ表1に記載した値とする。Raは表面粗さ測定機「SURFTEST SJ210 0.75mNタイプ(Mitsutoyo社製)」を用いて、以下の手順で測定する。各流路の溶融樹脂積層体と接触する面の幅方向と長手方向の中心位置1点(合計8点)を取り、長手方向と平行に表面粗さ測定機を設置してRaを測定し、得られた値の平均値を当該のRaとする。また、多層積層合流装置の出口で得られる溶融樹脂多層積層体の流路方向に垂直な任意の断面のシート幅方向寸法Wは190mm、シート厚み方向寸法Tは32mm、前記口金の吐出口のシート幅方向寸法Wdは1000mmとなる。
(Example 1)
With regard to the [Multilayer Lamination Merging Apparatus], two molten resin laminates are merged using the equipment conditions described in Example 1 in Table 1 to produce a molten resin multilayer laminate six times. The evaluation is shown in Table 1. The partition walls that separate the two molten resin laminates until they merge are made to be individually insertable. In Table 1, "distance between groove bottoms (mm)") and the average surface roughness Ra of the surfaces of the outer walls and partition plates that come into contact with the molten resin laminate are the values shown in Table 1, respectively. Ra is measured by the following procedure using a surface roughness tester "SURFTEST SJ210 0.75 mN type (manufactured by Mitsutoyo)". 1 point (total of 8 points) in the width direction and the longitudinal direction of the surface in contact with the molten resin laminate of each flow path is taken, and a surface roughness measuring machine is installed in parallel with the longitudinal direction to measure Ra, Let the average value of the obtained values be the Ra concerned. In addition, the sheet width direction dimension W of an arbitrary cross section perpendicular to the flow path direction of the molten resin multilayer laminate obtained at the outlet of the multilayer lamination joining device is 190 mm, the sheet thickness direction dimension T is 32 mm, and the sheet at the discharge port of the die The width dimension Wd is 1000 mm.

(実施例2~9)
隔壁板や溝部の寸法およびRaを表1に記載した値とした以外は実施例1と同様に、溶融樹脂多層積層体を6回にわたり作製して各項目を評価する。その評価を表1に示す。
(Examples 2 to 9)
A molten resin multilayer laminate is produced six times in the same manner as in Example 1, except that the dimensions and Ra of the partition plates and grooves are set to the values shown in Table 1, and each item is evaluated. The evaluation is shown in Table 1.

(実施例10)
隔壁板の引っかけ部を厚み方向に隆起した形状とする以外は実施例1と同様に、溶融樹脂多層積層体を6回にわたり作製して各項目を評価する。その評価を表1に示す。
(Example 10)
Six molten resin multilayer laminates are produced in the same manner as in Example 1, except that the hooks of the partition plates are formed to protrude in the thickness direction, and each item is evaluated. The evaluation is shown in Table 1.

(比較例1)
実施例1に記載の2個の溶融樹脂積層体を合流させるまで互いを分け隔てる1つの隔壁部分と外壁とを一体型とし、表1に記載した寸法、Raとする以外は実施例1と同様に、溶融樹脂多層積層体を6回にわたり作製して各項目を評価する。その評価を表1に示す。なお、一体型のため、溝部は存在しない。
(Comparative example 1)
The same as in Example 1, except that one partition portion separating the two molten resin laminates described in Example 1 from each other until they merge and the outer wall are integrated, and the dimensions, Ra, are set as shown in Table 1. Then, a molten resin multilayer laminate is produced six times, and each item is evaluated. The evaluation is shown in Table 1. In addition, since it is an integral type, there is no groove.

Figure 2023001059000002
Figure 2023001059000002

表中の隔壁板の平坦は、隔壁板の引っかけ部を厚み方向に隆起した形状とした場合を「×」、隆起形状のない場合を「○」とする。 The flatness of the partition plate in the table is indicated by "X" when the hook portion of the partition plate is raised in the thickness direction, and by "○" when there is no raised shape.

積層構造の崩れによる品質低下の軽減、及び製造コストや時間の低減を可能とする多層積層合流装置を提供することができる。本発明の多層積層合流装置を用いることにより、選択的に波長を透過/反射させることが可能な高品質の積層フィルムを製造することができる。 It is possible to provide a multi-layer lamination confluence device capable of reducing quality deterioration due to collapse of the lamination structure and reducing manufacturing cost and time. A high-quality laminated film capable of selectively transmitting/reflecting wavelengths can be produced by using the multi-layer lamination/confluence apparatus of the present invention.

1 外壁
2 溝部
3 窪み部
4 隔壁板
5 引っかけ部
6 溝部2近傍の拡大図
7 隔壁板の厚み
8 溝部の幅
9 各溝の底部までの長さと、隔壁板の幅長さの差
10 熱可塑性樹脂組成物(熱可塑性樹脂A)
11 熱可塑性樹脂組成物(熱可塑性樹脂B)
1 Outer wall 2 Groove 3 Hollow 4 Partition plate 5 Hook 6 Enlarged view near groove 2 7 Thickness of partition plate 8 Width of groove 9 Difference between length to bottom of each groove and width of partition plate 10 Thermoplastic Resin composition (thermoplastic resin A)
11 Thermoplastic resin composition (thermoplastic resin B)

Claims (6)

組成の異なる熱可塑性樹脂組成物が交互に10層以上積層した溶融樹脂積層体が通る流路を2個以上有し、
口金に到達する前に前記流路を形成する隔壁が消失して、前記流路が一つに合流する多層積層合流装置であって、以下の(I)及び(II)を共に満たすことを特徴とする、多層積層合流装置。
(I)長手方向から観察したときに、長方形の外壁部と前記外壁部を幅方向と平行に分割する着脱可能な隔壁板を備える。
(II)外壁部の内面に、幅方向と平行に前記隔壁板を差し込むことができる溝部を少なくとも一対有する。
Having two or more flow paths through which molten resin laminates in which ten or more layers of thermoplastic resin compositions having different compositions pass alternately,
A multi-layered confluence device in which the partition walls forming the flow paths disappear before reaching the mouthpiece and the flow paths merge into one, characterized by satisfying both the following (I) and (II). and a multi-layer lamination merging device.
(I) When viewed from the longitudinal direction, it is provided with a rectangular outer wall and a detachable partition plate that divides the outer wall in parallel with the width direction.
(II) At least one pair of grooves into which the partition plate can be inserted is provided on the inner surface of the outer wall in parallel with the width direction.
前記隔壁板の厚みが2mm以上10mm以下である、請求項1に記載の多層積層合流装置。 2. The multi-layer lamination joining device according to claim 1, wherein the thickness of said partition plate is 2 mm or more and 10 mm or less. 前記溝部の幅が、前記隔壁板の厚み+0.2mm以上、前記隔壁板の厚み+1.0mm以下であり、前記溝部の底部から対となる前記溝部の底部までの長さが、前記隔壁板の幅方向長さ+0.2mm以上、前記隔壁板の幅方向長さ+1.0mm以下である、請求項1または2に記載の多層積層合流装置。 The width of the groove is the thickness of the partition plate + 0.2 mm or more and the thickness of the partition plate + 1.0 mm or less, and the length from the bottom of the groove to the bottom of the paired groove is the thickness of the partition plate. 3. The multi-layer confluence device according to claim 1, wherein the length in the width direction is +0.2 mm or more and the length in the width direction of the partition plate is +1.0 mm or less. 前記外壁部および前記隔壁板において、溶融樹脂積層体と接触する面の平均面粗さRaが0.5以上2.0以下である、請求項1~3のいずれかに記載の多層積層合流装置。 4. The multi-layer lamination joining device according to any one of claims 1 to 3, wherein the outer wall portion and the partition plate have an average surface roughness Ra of 0.5 or more and 2.0 or less of the surfaces that come into contact with the molten resin laminate. . 前記隔壁板が厚み方向に平坦であることを特徴とする、請求項1~4のいずれかに記載の多層積層合流装置。 5. The multi-layer lamination joining device according to claim 1, wherein said partition plate is flat in the thickness direction. 請求項1~5のいずれかに記載の多層積層合流装置を用いて積層構造を形成させることを特徴とする、多層積層フィルムの製造方法。
A method for producing a multilayer laminated film, wherein a laminated structure is formed by using the multilayer lamination joining apparatus according to any one of claims 1 to 5.
JP2022093480A 2021-06-17 2022-06-09 Multilayer laminate merging device Pending JP2023001059A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021100915 2021-06-17
JP2021100915 2021-06-17

Publications (1)

Publication Number Publication Date
JP2023001059A true JP2023001059A (en) 2023-01-04

Family

ID=84687335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022093480A Pending JP2023001059A (en) 2021-06-17 2022-06-09 Multilayer laminate merging device

Country Status (1)

Country Link
JP (1) JP2023001059A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116929257A (en) * 2023-07-25 2023-10-24 昆山市建设工程质量检测中心 Prefabricated superimposed shear wall surface roughness acquisition method based on measurement type endoscope

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116929257A (en) * 2023-07-25 2023-10-24 昆山市建设工程质量检测中心 Prefabricated superimposed shear wall surface roughness acquisition method based on measurement type endoscope
CN116929257B (en) * 2023-07-25 2024-01-26 昆山市建设工程质量检测中心 Prefabricated superimposed shear wall surface roughness acquisition method based on measurement type endoscope

Similar Documents

Publication Publication Date Title
JP5130495B2 (en) Polypropylene-based laminated film and package using the same
US20130011506A1 (en) Feedblock for making multilayered films
WO2006035670A1 (en) Apparatus and method for manufacturing laminated sheet
JP4650019B2 (en) Polypropylene-based laminated film and package using the same
JP2023001059A (en) Multilayer laminate merging device
JP2006123541A (en) Apparatus and method for producing laminated sheet
JP5009768B2 (en) Polypropylene-based laminated film and package using the same
JP4857700B2 (en) Laminate sheet manufacturing apparatus and method
KR101406857B1 (en) Apparatus and process for producing laminated sheet
JP4600066B2 (en) Laminate film manufacturing apparatus and method
JP4882331B2 (en) Laminate sheet manufacturing apparatus and method
WO2014144205A2 (en) Apparatus for manufacturing and processing pre-stretch films having strips of increased thickness
JP2009029104A (en) Feed block, molding device for stacked resin film or sheet, and method for producing the same
JP7180784B2 (en) Multilayer film, manufacturing method thereof, and wound body
JP5343549B2 (en) Laminate sheet manufacturing apparatus and method
JP4967486B2 (en) Stretched film and its molded product
JP5135730B2 (en) Laminate sheet manufacturing apparatus and method
JP5321725B2 (en) Laminate sheet manufacturing apparatus and method
JP4893069B2 (en) Laminate sheet manufacturing apparatus and method
JP2020082584A (en) Manufacturing apparatus and manufacturing method of multilayer body, and manufacturing method of multilayer film
JP3070823B2 (en) Method for producing thermoplastic resin film
JP2005349681A (en) Method and apparatus for producing sheet
JP2017043083A (en) Laminate polyester film
JP2008068521A (en) Laminated film and feed block
JP2022150240A (en) Method and apparatus for manufacturing plate-shaped resin molded body, and plate-shaped resin molded body