JP2017214967A - Valve device and welding method of valve shaft and valve body of valve device - Google Patents

Valve device and welding method of valve shaft and valve body of valve device Download PDF

Info

Publication number
JP2017214967A
JP2017214967A JP2016108298A JP2016108298A JP2017214967A JP 2017214967 A JP2017214967 A JP 2017214967A JP 2016108298 A JP2016108298 A JP 2016108298A JP 2016108298 A JP2016108298 A JP 2016108298A JP 2017214967 A JP2017214967 A JP 2017214967A
Authority
JP
Japan
Prior art keywords
valve
valve body
shaft
welding
valve shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016108298A
Other languages
Japanese (ja)
Inventor
羽田野 真
Makoto Hatano
真 羽田野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP2016108298A priority Critical patent/JP2017214967A/en
Priority to CN201710390854.9A priority patent/CN107448627B/en
Publication of JP2017214967A publication Critical patent/JP2017214967A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/48Attaching valve members to screw-spindles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/0026Arc welding or cutting specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/167Arc welding or cutting making use of shielding gas and of a non-consumable electrode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K25/00Details relating to contact between valve members and seats
    • F16K25/005Particular materials for seats or closure elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Lift Valve (AREA)
  • Arc Welding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the residual stress of a valve shaft and a valve body after welding, and to suppress the occurrence of a welding crack at a welding part.SOLUTION: An EGR valve body 10 comprises: a valve body 12 having a flow passage 20; a valve shaft 14 which is supported to the valve body 12 so as to be reciprocally and linearly movable; an actuator 16 for reciprocally and linearly moving the valve shaft 14; and a valve body 18 which is fixed to a tip of the valve shaft 14 in a state of being fit thereto, and opens and closes the flow passage 20. A material of the valve shaft 14 is a SUS304-equivalent steel material. A material of the valve body 18 is a SUS316L-equivalent steel material. The valve shaft 14 and the valve body 18 are welded to each other at a tip side of the valve shaft 14. A melting rate of the material of the valve shaft 14 is increased so that a point which is defined on the basis of a CR-equivalent and an Ni-equivalent of a welding part 30 belongs to a safety zone which is defined on the basis of a Scheffler state diagram.SELECTED DRAWING: Figure 1

Description

本発明は、バルブ装置とそのバルブ装置における弁軸と弁体との溶接方法に関する。   The present invention relates to a valve device and a method for welding a valve shaft and a valve body in the valve device.

従来、例えば、バルブ装置としては、例えば、特許文献1に記載されたEGRバルブがある。特許文献1において、EGRバルブは、流路を有するバルブボディと、バルブボディに往復直線運動可能に支持された弁軸と、弁軸を往復直線運動させるアクチュエータと、弁軸の先端部に嵌合した状態で固定されかつ前記流路を開閉する弁体と、を備えている。弁軸の先端側において、弁軸と弁体の内周部との間には、両者の溶融によって相互に固着すなわち溶接した溶接部が形成されている。特許文献1において、弁体の材料はSUS316L相当の鋼材である。また、弁軸の材料は、記載されていないが、通常、SUS304相当の鋼材である。また、特許文献1には、弁軸の材料の溶融率が記載されていない。   Conventionally, for example, as a valve device, for example, there is an EGR valve described in Patent Document 1. In Patent Document 1, an EGR valve is fitted to a valve body having a flow path, a valve shaft supported by the valve body so as to be capable of reciprocating linear motion, an actuator for reciprocating linear motion of the valve shaft, and a tip portion of the valve shaft. And a valve body that is fixed in a closed state and that opens and closes the flow path. On the distal end side of the valve shaft, a welded portion is formed between the valve shaft and the inner peripheral portion of the valve body. In Patent Document 1, the material of the valve body is a steel material equivalent to SUS316L. Further, although the material of the valve shaft is not described, it is usually a steel material equivalent to SUS304. Further, Patent Document 1 does not describe the melting rate of the material for the valve stem.

特開2015−224754号公報JP2015-224754A

SUS304相当の鋼材からなる弁軸とSUS316L相当の鋼材からなる弁体とを溶接した場合の一例(これを「従来例」という)について述べる。図11は従来例にかかる弁軸と弁体との溶接部を示す断面図である。図11に示すように、溶接部の溶接高さaは弁軸の軸径bの約12%、溶接部のビード径cは軸径bの約1.95倍、溶接部の溶け込み量(深さ)dは軸径bの10%(管理値)以上、弁体を嵌合した際の弁軸の突出量eは弁軸の軸径bの5%である。   An example in which a valve shaft made of a steel material equivalent to SUS304 and a valve body made of a steel material equivalent to SUS316L are welded (this is referred to as a “conventional example”) will be described. FIG. 11 is a cross-sectional view showing a welded portion between a valve shaft and a valve body according to a conventional example. As shown in FIG. 11, the weld height a of the welded portion is about 12% of the shaft diameter b of the valve shaft, the bead diameter c of the welded portion is about 1.95 times the shaft diameter b, and the weld penetration (depth) D) 10% (control value) or more of the shaft diameter b, and the protruding amount e of the valve shaft when the valve body is fitted is 5% of the shaft diameter b of the valve shaft.

例えば、弁軸の軸径bは4mm、溶接高さaは約0.5mm、ビード径は約7.8mm、溶け込み量dは約0.5mm、突出量eは0.2mmである。また、溶接はTIG溶接で、溶接電流は205Aで溶接時間は600msである(図7の特性線Lb参照)。この場合、弁体の材料(SUS316L相当の鋼材)の溶融量が多く、弁軸の材料(SUS304相当の鋼材)の溶融率は、例えば、約30%である(図10中、点x1参照)。また、溶接部のNi当量は12.4(質量%)である(図10中、点y1参照)。このように、弁軸の材料の溶融率が低いと、溶接後に発生する収縮引張応力すなわち残留応力により高温割れいわゆる溶接割れが発生するという問題があった。ちなみに、従来例による溶接割れの発生率は、約8%であった。   For example, the shaft diameter b of the valve shaft is 4 mm, the welding height a is about 0.5 mm, the bead diameter is about 7.8 mm, the penetration amount d is about 0.5 mm, and the protrusion amount e is 0.2 mm. Further, the welding is TIG welding, the welding current is 205 A, and the welding time is 600 ms (see the characteristic line Lb in FIG. 7). In this case, the melting amount of the valve body material (SUS316 equivalent steel) is large, and the melting rate of the valve stem material (SUS304 equivalent steel) is, for example, about 30% (see point x1 in FIG. 10). . Further, the Ni equivalent of the welded portion is 12.4 (mass%) (see point y1 in FIG. 10). Thus, when the melting rate of the material of the valve stem is low, there has been a problem that high temperature cracks, so-called weld cracks, occur due to shrinkage tensile stress generated after welding, that is, residual stress. Incidentally, the incidence of weld cracking in the conventional example was about 8%.

本発明が解決しようとする課題は、弁軸と弁体との溶接後の残留応力を低減し、溶接部における溶接割れの発生を抑制することのできるバルブ装置とそのバルブ装置における弁軸と弁体との溶接方法を提供することにある。   A problem to be solved by the present invention is a valve device capable of reducing residual stress after welding between a valve shaft and a valve body and suppressing the occurrence of weld cracks in a welded portion, and the valve shaft and valve in the valve device. It is to provide a method for welding with a body.

発明者は、従来例における弁軸と弁体との溶接部における溶接割れの発生原因について鋭意研究したところ、次のような結論に至った。すなわち、溶接割れが発生する推定メカニズムは、溶接部の凝固開始により、リン、硫黄が結晶粒界に偏析し、結晶粒界の結合強度が弱くなり、結合強度が残留応力より弱くなることによって、リンが偏析したところに溶接割れが発生する。リン、硫黄が結晶粒界に偏析する要因は、リン、硫黄を固溶するフェライト組織が少ないためである。すなわち、弁体の材料が溶接割れに不利なSUS316L相当の鋼材であり、弁軸の材料(SUS304相当の鋼材)の溶融率が約30%(図10中、点x1参照)と少ないために、溶接部におけるCr当量及びNi当量に基づいて定まる点が、シェフラーの状態図に基づいて定められた安全域から外れる。すなわち、Ni当量(図10中、点y1参照)が、安全域におけるNi当量の上限値である12(質量%)を超える。このため、溶接割れが発生する。したがって、溶接部におけるCr当量及びNi当量に基づいて定まる点がシェフラーの状態図に基づいて定められた安全域に属するように、弁軸の材料(SUS304相当の鋼材)の溶融率を増加することによって、溶接割れの発生を抑制できることを見出した。   The inventor diligently studied the cause of the occurrence of weld cracks in the welded portion between the valve stem and the valve body in the conventional example, and came to the following conclusion. That is, the presumed mechanism that weld cracks occur is that phosphorus and sulfur are segregated at the grain boundary due to the start of solidification of the weld, the bond strength of the crystal boundary becomes weak, and the bond strength becomes weaker than the residual stress, A weld crack occurs where phosphorus segregates. The reason why phosphorus and sulfur are segregated at the grain boundaries is because there are few ferrite structures that dissolve phosphorus and sulfur in solid solution. That is, because the material of the valve body is a steel material equivalent to SUS316L, which is disadvantageous to weld cracking, and the melting rate of the material of the valve shaft (steel material equivalent to SUS304) is as low as about 30% (see point x1 in FIG. 10), The point determined based on the Cr equivalent and the Ni equivalent in the weld zone deviates from the safety range determined based on the Schaeffler state diagram. That is, the Ni equivalent (see point y1 in FIG. 10) exceeds 12 (mass%) which is the upper limit of the Ni equivalent in the safe range. For this reason, a weld crack occurs. Therefore, increasing the melting rate of the valve stem material (SUS304 equivalent steel) so that the points determined based on the Cr equivalent and Ni equivalent in the weld belong to the safety range determined based on the Schaeffler phase diagram. Thus, it has been found that the occurrence of weld cracks can be suppressed.

前記課題は、本発明のバルブ装置とそのバルブ装置における弁軸と弁体との溶接方法により解決することができる。第1の発明は、流路を有するバルブボディと、前記バルブボディに往復直線運動可能に支持された弁軸と、前記弁軸を往復直線運動させるアクチュエータと、前記弁軸の先端部に嵌合した状態で固定されかつ前記流路を開閉する弁体と、を備える、バルブ装置であって、前記弁軸の材料は、ステンレス鋼材であり、前記弁体の材料は、耐食性の高いステンレス鋼材相当の高Ni含有鋼材であり、前記弁軸の先端側において、該弁軸と前記弁体の内周部との間には、両者の溶融によって相互に固着した溶接部が形成されており、前記溶接部におけるCr当量及びNi当量に基づいて定まる点がシェフラーの状態図に基づいて定められた安全域に属するように、前記弁軸の材料の溶融率が増加されている、バルブ装置である。この構成によると、溶接部におけるCr当量及びNi当量に基づいて定まる点がシェフラーの状態図に基づいて定められた安全域に属するように、弁軸の材料の溶融率が増加されている。これにより、弁軸と弁体との溶接後の残留応力を低減し、溶接部における溶接割れの発生を抑制することができる。   The said subject can be solved by the valve apparatus of this invention, and the welding method of the valve shaft and valve body in the valve apparatus. The first invention is fitted to a valve body having a flow path, a valve shaft supported by the valve body so as to be capable of reciprocating linear motion, an actuator for reciprocating linear motion of the valve shaft, and a tip of the valve shaft. And a valve body that opens and closes the flow path, wherein the valve stem material is stainless steel, and the valve body material is equivalent to a stainless steel material having high corrosion resistance. A high Ni-containing steel material, and on the tip side of the valve shaft, between the valve shaft and the inner peripheral portion of the valve body, a welded portion fixed to each other by melting is formed. In the valve device, the melting rate of the material of the valve shaft is increased so that a point determined based on the Cr equivalent and Ni equivalent in the weld belongs to a safety range determined based on the Schaeffler state diagram. According to this configuration, the melting rate of the material of the valve stem is increased so that the points determined based on the Cr equivalent and Ni equivalent in the weld belong to the safety range determined based on the Schaeffler state diagram. Thereby, the residual stress after welding with a valve stem and a valve body can be reduced, and generation | occurrence | production of the weld crack in a welding part can be suppressed.

第2の発明は、第1の発明において、前記溶接部の溶接高さは、前記弁軸の軸径の20%以上であり、前記溶接部のビード径は、前記弁軸の軸径の2倍以下である、バルブ装置である。この構成によると、溶接部における弁軸の材料の溶融量に対する弁体の材料の溶融量の増加を抑制することができ、弁軸の材料の溶融率を増加することができる。   In a second aspect based on the first aspect, the weld height of the welded portion is 20% or more of the shaft diameter of the valve shaft, and the bead diameter of the welded portion is 2 of the shaft diameter of the valve shaft. It is a valve device that is less than double. According to this configuration, it is possible to suppress an increase in the melt amount of the valve body material with respect to the melt amount of the valve shaft material in the welded portion, and to increase the melting rate of the valve shaft material.

第3の発明は、第1又は2の発明において、前記弁軸の材料は、SUS304相当の鋼材であり、前記弁体の材料は、SUS316L相当の鋼材であり、前記溶接部のNi当量が12(質量%)以下である、バルブ装置である。この構成によると、溶接部のNi当量を、シェフラーの状態図に基づいて定められた安全域に属させることができる。   According to a third invention, in the first or second invention, the material of the valve shaft is a steel material equivalent to SUS304, the material of the valve body is a steel material equivalent to SUS316L, and the Ni equivalent of the welded portion is 12 It is a valve device which is (mass%) or less. According to this configuration, the Ni equivalent of the welded portion can belong to a safety range determined based on the Schaeffler state diagram.

第4の発明は、流路を有するバルブボディと、前記バルブボディに往復直線運動可能に支持された弁軸と、前記弁軸を往復直線運動させるアクチュエータと、前記弁軸の先端部に嵌合した状態で固定されかつ前記流路を開閉する弁体と、を備える、バルブ装置における弁軸と弁体との溶接方法であって、前記弁軸の材料は、ステンレス鋼材であり、前記弁体の材料は、耐食性の高いステンレス鋼材相当の高Ni含有鋼材であり、前記弁軸の先端側において、該弁軸と前記弁体の内周部との間には、両者の溶融によって相互に固着した溶接部が形成されており、前記溶接部におけるCr当量及びNi当量に基づいて定まる点がシェフラーの状態図に基づいて定められた安全域に属するように、前記弁軸と溶前記弁体との溶接を行う、バルブ装置における弁軸と弁体との溶接方法である。この構成によると、溶接部におけるCr当量及びNi当量に基づいて定まる点がシェフラーの状態図に基づいて定められた安全域に属するように、弁軸と弁体との溶接を行う。これにより、弁軸と弁体との溶接後の残留応力を低減し、溶接部における溶接割れの発生を抑制することができる。   According to a fourth aspect of the present invention, there is provided a valve body having a flow path, a valve shaft supported by the valve body so as to be capable of reciprocating linear motion, an actuator for reciprocating linear motion of the valve shaft, and a tip of the valve shaft. A valve body that is fixed in a closed state and that opens and closes the flow path, wherein the valve shaft is made of stainless steel, and the valve body The material is a high Ni-containing steel material equivalent to a stainless steel material having high corrosion resistance, and the valve shaft and the inner peripheral portion of the valve body are fixed to each other by melting both at the tip side of the valve shaft. The valve stem and the melted valve body so that the point determined based on the Cr equivalent and Ni equivalent in the weld belongs to a safety range determined based on the Schaeffler state diagram. Valve device for welding A welding method with definitive valve shaft and the valve body. According to this configuration, the valve shaft and the valve body are welded so that the points determined based on the Cr equivalent and the Ni equivalent in the weld belong to the safety range determined based on the Schaeffler state diagram. Thereby, the residual stress after welding with a valve stem and a valve body can be reduced, and generation | occurrence | production of the weld crack in a welding part can be suppressed.

第5の発明は、第4の発明において、請求項4に記載のバルブ装置における弁軸と弁体との溶接方法であって、前記弁体を嵌合した際の前記弁軸の突出量を前記弁軸の軸径の30%以上とした状態で前記溶接を行う、バルブ装置における弁軸と弁体との溶接方法である。この構成によると、弁軸の材料の溶融率を増加することができる。   5th invention is the welding method of the valve stem and valve body in the valve apparatus of Claim 4 in 4th invention, Comprising: The protrusion amount of the said valve shaft at the time of fitting the said valve body is set. It is the welding method of the valve shaft and valve body in a valve apparatus which performs the said welding in the state made into 30% or more of the shaft diameter of the said valve shaft. According to this configuration, the melting rate of the valve shaft material can be increased.

第6の発明は、第4又は5の発明において、前記溶接は、TIG溶接である、バルブ装置における弁軸と弁体との溶接方法である。この構成によると、TIG溶接を行うことにより、弁軸と弁体との溶接の作業性を向上することができる。   6th invention is the welding method of the valve axis | shaft and valve body in a valve apparatus in which the said welding is TIG welding in 4th or 5th invention. According to this structure, the workability | operativity of welding with a valve stem and a valve body can be improved by performing TIG welding.

実施形態1にかかるEGRバルブを示す断面図である。It is sectional drawing which shows the EGR valve | bulb concerning Embodiment 1. FIG. 弁軸と弁体との溶接部を示す断面図である。It is sectional drawing which shows the welding part of a valve stem and a valve body. 弁軸と弁体との溶接部を示す平面図である。It is a top view which shows the welding part of a valve stem and a valve body. 弁軸に弁体を嵌合した状態を示す断面図である。It is sectional drawing which shows the state which fitted the valve body to the valve stem. 弁軸と弁体との溶接状態を示す断面図である。It is sectional drawing which shows the welding state of a valve stem and a valve body. 溶接部の溶融成分の説明にかかるシェフラーの状態図である。It is a state figure of Schaeffler concerning explanation of a fusion ingredient of a welding part. 溶接時間と溶接電流の関係を示すグラフである。It is a graph which shows the relationship between welding time and welding current. 弁軸の突出量を0.2mmとした場合の溶接時間とビード径との関係を示すグラフである。It is a graph which shows the relationship between the welding time when the protrusion amount of a valve shaft is 0.2 mm, and a bead diameter. 弁軸の突出量を1.6mmとした場合の溶接時間とビード径との関係を示すグラフである。It is a graph which shows the relationship between the welding time when the protrusion amount of a valve shaft is 1.6 mm, and a bead diameter. 弁軸の突出量と弁軸の材料の溶融率とNi当量との関係を示すグラフである。It is a graph which shows the relationship between the protrusion amount of a valve stem, the melting rate of the material of a valve stem, and Ni equivalent. 従来例にかかる弁軸と弁体との溶接部を示す断面図である。It is sectional drawing which shows the welding part of the valve stem concerning a prior art example, and a valve body.

以下、本発明を実施するための一実施形態について図面を用いて説明する。本実施形態では、バルブ装置として、ポペット弁式のEGRバルブを例示する。EGRバルブは、内燃機関であるエンジンの排気ガスの一部をEGRガスとして吸気通路へ戻す排気ガス再循環装置(EGR装置)に用いられ、EGRガス流量を調節するものである。図1はEGRバルブを示す断面図である。なお、図1を基にEGRバルブの上下左右の方位を定めるが、EGRバルブの配置形態を特定するものではない。   Hereinafter, an embodiment for carrying out the present invention will be described with reference to the drawings. In the present embodiment, a poppet valve type EGR valve is exemplified as the valve device. The EGR valve is used in an exhaust gas recirculation device (EGR device) that returns a part of the exhaust gas of an engine, which is an internal combustion engine, to the intake passage as EGR gas, and adjusts the EGR gas flow rate. FIG. 1 is a sectional view showing an EGR valve. Although the vertical and horizontal orientations of the EGR valve are determined based on FIG. 1, it does not specify the arrangement form of the EGR valve.

図1に示すように、EGRバルブ10は、バルブボディ12と弁軸14とアクチュエータ16と弁体18とを備えている。バルブボディ12は、金属製で、EGRガスの流路20を有している。流路20は、L字状に形成されている。流路20の上方開口部はEGRガスが導入される入口20aとされており、その側方開口部はEGRガスが導出される出口20bとされている。バルブボディ12には、上下方向に貫通する中空円筒状の軸支孔12aが入口20aと同心状に形成されている。流路20の途中すなわち入口20aの下部内には、弁孔22aを有する円環状の弁座22が取付けられている。弁座22は、金属製で、入口20aと同心状をなすように配置されている。   As shown in FIG. 1, the EGR valve 10 includes a valve body 12, a valve shaft 14, an actuator 16, and a valve body 18. The valve body 12 is made of metal and has an EGR gas flow path 20. The flow path 20 is formed in an L shape. The upper opening of the flow path 20 is an inlet 20a through which EGR gas is introduced, and the side opening is an outlet 20b through which EGR gas is led out. In the valve body 12, a hollow cylindrical shaft support hole 12a penetrating in the vertical direction is formed concentrically with the inlet 20a. An annular valve seat 22 having a valve hole 22a is attached in the middle of the flow path 20, that is, in the lower part of the inlet 20a. The valve seat 22 is made of metal and is arranged so as to be concentric with the inlet 20a.

弁軸14は、ステンレス製で、丸軸状に形成されている。弁軸14は、バルブボディ12の軸支孔12aに対して上下2個のスラスト軸受24,25を介して上下方向に往復直線運動可能に支持されている。弁軸14は、弁座22と同心状をなすように配置されている。バルブボディ12の軸支孔12aと弁軸14との間には、両者間を弾性的にシールするシール部材26、及び、両者間をデポジットからガードするデポガードプラグ27が設けられている。デポガードプラグ27は、軸支孔12aの上端開口部に配置されている。シール部材26は、上側のスラスト軸受24とデポガードプラグ27との間に配置されている。   The valve shaft 14 is made of stainless steel and has a round shaft shape. The valve shaft 14 is supported so as to be capable of reciprocating linearly in the vertical direction through two upper and lower thrust bearings 24 and 25 with respect to the shaft support hole 12a of the valve body 12. The valve shaft 14 is disposed so as to be concentric with the valve seat 22. Between the shaft support hole 12a of the valve body 12 and the valve shaft 14, a seal member 26 that elastically seals between the two and a deposit guard plug 27 that guards the two from deposits are provided. The deposit guard plug 27 is disposed in the upper end opening of the shaft support hole 12a. The seal member 26 is disposed between the upper thrust bearing 24 and the deposit guard plug 27.

アクチュエータ16は、バルブボディ12の下面側に締結等により設置されている。アクチュエータ16は、例えば、ステップモータであり、弁軸14を駆動すなわち往復直線運動させる駆動源である。アクチュエータ16の通電により正逆回転されるロータ28の回転運動は、ねじ機構29を介して、弁軸14の直線往復運動(ストローク運動)に変換される。本実施形態では、アクチュエータ16の出力軸は弁軸14を兼用しているが、出力軸に別体の弁軸を連結してもよい。なお、ステップモータは、周知のものであるから、詳しい説明は省略する。また、アクチュエータ16は、図示しない制御装置(ECU)によって開閉制御される。   The actuator 16 is installed on the lower surface side of the valve body 12 by fastening or the like. The actuator 16 is, for example, a step motor, and is a drive source that drives the valve shaft 14, that is, reciprocates linearly. The rotational motion of the rotor 28 rotated forward and backward by energization of the actuator 16 is converted into a linear reciprocating motion (stroke motion) of the valve shaft 14 via the screw mechanism 29. In the present embodiment, the output shaft of the actuator 16 also serves as the valve shaft 14, but a separate valve shaft may be connected to the output shaft. Since the step motor is a well-known one, detailed description is omitted. The actuator 16 is controlled to open and close by a control device (ECU) (not shown).

弁体18は、ポペット形状すなわち逆円錐形状に形成されている。弁体18には、軸方向に貫通する丸穴状の軸孔18aが形成されている。弁体18は、軸線に直交する平面からなる上端面18bを有している(後出の図4参照)。弁体18は、弁軸14の先端部(上端部)に嵌合された状態で溶接(溶接部に符号、30を付す)によって固定されている。弁体18は、弁軸14と一体で上下方向に移動することにより流路20を開閉可能すなわち弁座22に対して離座及び着座可能である。弁座22と弁体18とによりEGRガスの計量部が構成されている。なお、弁軸14と弁体18との溶接構造については後で説明する。   The valve body 18 is formed in a poppet shape, that is, an inverted conical shape. The valve body 18 is formed with a round hole-shaped shaft hole 18a penetrating in the axial direction. The valve body 18 has an upper end surface 18b formed of a plane orthogonal to the axis (see FIG. 4 described later). The valve body 18 is fixed by welding (reference numeral 30 is attached to the welded portion) in a state of being fitted to the distal end portion (upper end portion) of the valve shaft 14. The valve body 18 can open and close the flow path 20 by moving up and down integrally with the valve shaft 14, that is, can be separated from and seated on the valve seat 22. The valve seat 22 and the valve body 18 constitute an EGR gas metering unit. The welded structure between the valve shaft 14 and the valve body 18 will be described later.

ここで、弁軸14の材料は、SUS304相当の鋼材(以下、「SUS304」という)である。弁軸14は、鍛造により形成されている。また、弁体18の材料は、粗悪燃料に対応するため、耐食性の高いステンレス鋼材相当の高Ni含有鋼材に相当するSUS316L相当の鋼材(以下、「SUS316L」という)である。弁体18は、削り出しにより形成されている。なお、弁軸14は、削り出しにより形成されてもよい。また、弁体18は、外形が鍛造により形成され、軸孔18aが削り出しにより形成されてもよい。   Here, the material of the valve shaft 14 is a steel material equivalent to SUS304 (hereinafter referred to as “SUS304”). The valve shaft 14 is formed by forging. The material of the valve body 18 is a steel material equivalent to SUS316L (hereinafter referred to as “SUS316L”) corresponding to a high Ni-containing steel material equivalent to a stainless steel material having high corrosion resistance in order to cope with poor fuel. The valve body 18 is formed by cutting. The valve shaft 14 may be formed by cutting. The outer shape of the valve body 18 may be formed by forging, and the shaft hole 18a may be formed by cutting.

表1は、弁軸14の材料であるSUS304、及び、弁体18の材料であるSUS316Lの化学成分(質量%)を示す化学成分表の一例である。なお、表1の値は、各鋼材の10ロット分の平均値である。表1から、SUS316Lは、SUS304に比べてNi含有量が多く、耐食性が高いことがわかる。   Table 1 is an example of a chemical composition table showing chemical composition (mass%) of SUS304 which is a material of the valve shaft 14 and SUS316L which is a material of the valve body 18. In addition, the value of Table 1 is an average value for 10 lots of each steel material. From Table 1, it can be seen that SUS316L has a higher Ni content and higher corrosion resistance than SUS304.

Figure 2017214967
Figure 2017214967

なお、EGRバルブ10は、例えば、図示しないエンジンのエンジンヘッドに対して締結等により設置される。EGRバルブ10の流路20は、エンジンの排気ガス(EGRガス)を吸気通路へ戻すEGR通路の途中に介装される。また、EGRバルブ10は、ECUの開閉制御による弁体18の開度の調節によって、EGRガスの流量を制御する。   The EGR valve 10 is installed, for example, by fastening with respect to an engine head of an engine (not shown). The flow path 20 of the EGR valve 10 is interposed in the middle of the EGR passage for returning engine exhaust gas (EGR gas) to the intake passage. The EGR valve 10 controls the flow rate of EGR gas by adjusting the opening degree of the valve body 18 by opening / closing control of the ECU.

次に、EGRバルブ10における弁軸14と弁体18との溶接方法について説明する。図4は弁軸に弁体を嵌合した状態を示す断面図、図5は弁軸と弁体との溶接状態を示す断面図である。なお、弁軸14と弁体18との溶接に先立って、バルブボディ12には弁体18以外の部品が組み付けられている。アクチュエータ16の制御によって弁軸14が制御上の基準位置となる初期位置に位置される。   Next, a method for welding the valve shaft 14 and the valve body 18 in the EGR valve 10 will be described. 4 is a cross-sectional view showing a state in which the valve body is fitted to the valve shaft, and FIG. 5 is a cross-sectional view showing a welded state between the valve shaft and the valve body. Prior to welding the valve shaft 14 and the valve body 18, parts other than the valve body 18 are assembled to the valve body 12. Under the control of the actuator 16, the valve shaft 14 is positioned at an initial position which is a control reference position.

図4に示すように、弁体18が弁軸14に嵌合されかつ弁座22に着座される。このとき、弁軸14の先端部は、弁体18の上端面18bから突出量Eをもって突出される。この状態で、弁軸14と弁体18とをTIG(Tungsten InertGas)溶接機を用いてTIG溶接する(図5参照)。   As shown in FIG. 4, the valve body 18 is fitted to the valve shaft 14 and seated on the valve seat 22. At this time, the tip end portion of the valve shaft 14 protrudes from the upper end surface 18 b of the valve body 18 with a protrusion amount E. In this state, the valve shaft 14 and the valve body 18 are TIG welded using a TIG (Tungsten Inert Gas) welder (see FIG. 5).

すなわち、図5に示すように、弁体18上に、円筒状のアース電極34が同心状に配置される。アース電極34内に円筒状の溶接トーチ36が二重環状をなすように配置される。溶接トーチ36からは、TIG溶接を行うためのシールドガス(図5中、矢印G参照)が噴出される。シールドガスは、例えば、ヘリウムガスやアルゴンガス等の不活性ガスである。溶接トーチ36内の中心部には、タングステン電極である溶接電極棒38が配置されている。溶接電極棒38は、真下に位置する弁軸14の先端部の近傍に向けて突出されている。溶接電極棒38及びアース電極34は、溶接電源(不図示)に接続されている。   That is, as shown in FIG. 5, a cylindrical ground electrode 34 is concentrically disposed on the valve body 18. A cylindrical welding torch 36 is disposed in the ground electrode 34 so as to form a double ring shape. From the welding torch 36, a shielding gas (see arrow G in FIG. 5) for performing TIG welding is ejected. The shield gas is, for example, an inert gas such as helium gas or argon gas. A welding electrode rod 38, which is a tungsten electrode, is disposed in the center of the welding torch 36. The welding electrode rod 38 protrudes toward the vicinity of the tip of the valve shaft 14 located directly below. The welding electrode rod 38 and the ground electrode 34 are connected to a welding power source (not shown).

この状態で、溶接電極棒38の周囲に溶接トーチ36からシールドガスが噴出されながら、溶接電源から溶接電極棒38に溶接電流が供給されることでTiG溶接が行われる。すると、溶接電極棒38の直下に発生するアークによって、弁軸14の先端側(上端側)において、弁軸14と弁体18の内周部との間には、両者の溶融(溶接)によって相互に固着した溶接部30が形成される(図2及び図3参照)。   In this state, TiG welding is performed by supplying a welding current from the welding power source to the welding electrode rod 38 while the shielding gas is ejected from the welding torch 36 around the welding electrode rod 38. Then, due to an arc generated immediately below the welding electrode rod 38, the valve shaft 14 and the inner peripheral portion of the valve body 18 are melted (welded) between the valve shaft 14 and the inner peripheral portion of the valve body 18 on the distal end side (upper end side) of the valve shaft 14. The welded portions 30 fixed to each other are formed (see FIGS. 2 and 3).

図2は弁軸と弁体との溶接部を示す断面図、図3は同じく平面図である。図3に示すように、溶接部30は、平面視で弁軸14と同心状をなす円形状に形成されている。また、溶接部30(図2参照)において、符号、Aは溶接高さ、Cはビード径、Dは溶け込み量(深さ)が示されている。また、Bは弁軸の軸径が示されている。   FIG. 2 is a sectional view showing a welded portion between the valve shaft and the valve body, and FIG. 3 is a plan view of the same. As shown in FIG. 3, the welded portion 30 is formed in a circular shape that is concentric with the valve shaft 14 in plan view. Further, in the welded portion 30 (see FIG. 2), reference numeral A denotes a welding height, C denotes a bead diameter, and D denotes a penetration amount (depth). B indicates the shaft diameter of the valve shaft.

以下、各種の実験、検討を行った結果について述べる。弁軸14の突出量E(図4参照)についてCAEの検討を行った。その結果によると、突出量Eの増加にともない、溶接高さA(図2参照)が高くなるにしたがって、溶接後の残留応力の減少が認められた。よって、溶接割れ(高温割れ)の抑制に有利となると判断できる。また、突出量Eを増加させることで、弁軸の材料(SUS304)の溶融率が上がり、フェライト組織が得られるため、溶接割れの抑制に有利となることも認められた。なお、溶接部における弁軸の材料の溶融率は、
弁軸の材料の溶融率(%)=弁軸の材料の溶融量×100/(弁軸の材料の溶融量+弁体の材料の溶融量)
で算出される。
The results of various experiments and studies are described below. CAE was examined for the protrusion amount E (see FIG. 4) of the valve shaft 14. According to the result, as the protruding amount E increases, the residual stress after welding decreases as the welding height A (see FIG. 2) increases. Therefore, it can be determined that it is advantageous for suppressing weld cracking (hot cracking). It was also recognized that increasing the protrusion amount E increases the melting rate of the valve stem material (SUS304) and provides a ferrite structure, which is advantageous for suppressing weld cracking. In addition, the melting rate of the material of the valve stem in the weld is
Melting rate of valve shaft material (%) = melting amount of valve shaft material × 100 / (melting amount of valve shaft material + melting amount of valve body material)
Is calculated by

前出の表1より、SUS304は、Cr当量が18.04(質量%)で、Ni当量が10.02(質量%)である。また、SUS316Lは、Cr当量が16.5(質量%)で、Ni当量が12.05(質量%)である。このため、溶接部の溶融成分の説明にかかるシェフラーの状態図を示した図6において、SUS304は点Z1に位置し、SUS316Lは点Z2に位置する。つまり、SUS304は安全域内に属するものの、SUS316Lは安全域から外れるため溶接性が悪いといえる。したがって、SUS304の溶融量を増やすことにより、Cr当量及びNi当量に基づいて定まる点を安全域(図6において下方)へシフトさせることができる。この場合、溶接割れの対策目標値であるNi当量の上限値を12(質量%)以下とすることにより、溶接割れを抑制することができる。   From Table 1 above, SUS304 has a Cr equivalent of 18.04 (mass%) and a Ni equivalent of 10.02 (mass%). SUS316L has a Cr equivalent of 16.5 (mass%) and a Ni equivalent of 12.05 (mass%). For this reason, in FIG. 6 which showed the Schaeffler state diagram concerning description of the fusion | melting component of a welding part, SUS304 is located in the point Z1 and SUS316L is located in the point Z2. That is, although SUS304 belongs to the safety range, SUS316L is out of the safety range, so that it can be said that the weldability is poor. Therefore, by increasing the melting amount of SUS304, the point determined based on the Cr equivalent and Ni equivalent can be shifted to the safe range (downward in FIG. 6). In this case, welding cracks can be suppressed by setting the upper limit of the Ni equivalent, which is a target value for preventing weld cracks, to 12 (mass%) or less.

次に、SUS316LとSUS304との溶融比率を改善するための溶接条件を検討した。図7は溶接時間と溶接電流の関係を示すグラフである。従来例の場合、図7に特性線Lbで示すように、溶接電流は205Aで溶接時間は600msであった。この場合、溶接電流が大きいため、弁軸と弁体の接合部に加わるエネルギーが大きいため、広範囲に熱がかかる。したがって、弁体の材料(SUS316L)の溶融量が増加されることにより、ビード径c(図11参照)は大きくなる。   Next, welding conditions for improving the melting ratio of SUS316L and SUS304 were examined. FIG. 7 is a graph showing the relationship between welding time and welding current. In the case of the conventional example, as indicated by the characteristic line Lb in FIG. 7, the welding current was 205 A and the welding time was 600 ms. In this case, since the welding current is large, the energy applied to the joint between the valve shaft and the valve body is large, so that heat is applied over a wide range. Therefore, the bead diameter c (see FIG. 11) is increased by increasing the melting amount of the valve body material (SUS316L).

そこで、溶接電流を低くし、溶接時間を長くすることによって、弁軸と弁体の接合部に加わるエネルギーが小さくなるため、弁軸の先端部から溶融し、伝熱で弁体が溶融する。したがって、弁軸の材料(SUS304)の溶融量が増加されつつ、弁体の材料(SUS316L)の溶融量が低減される。これにより、ビード径C(図2参照)が小さくなることで、弁軸の材料(SUS304)の溶融率が増加されるものと推定される。なお、図7中、特性線Laは、本実施形態において、溶接電流が150Aで溶接時間が1000msである場合のもので、良品域確認結果(後述する)に基づいて量産に好適と考えらるものである。   Therefore, by lowering the welding current and increasing the welding time, the energy applied to the joint between the valve shaft and the valve body is reduced, so that the valve body melts from the tip of the valve shaft and heat transfer. Therefore, the melting amount of the valve body material (SUS316L) is reduced while the melting amount of the valve shaft material (SUS304) is increased. Thereby, it is estimated that the bead diameter C (refer to FIG. 2) is reduced, so that the melting rate of the valve shaft material (SUS304) is increased. In FIG. 7, the characteristic line La in this embodiment is a case where the welding current is 150 A and the welding time is 1000 ms, and is considered suitable for mass production based on the non-defective area confirmation result (described later). Is.

次に、ショートショットによる溶接状態の確認を行った。弁軸14の突出量E(図4参照)を0.2mmとした場合の結果が図8に示されている。図8において、特性線Lcは溶接電流が150Aの特性が示されており、特性線Ldは溶接電流が200Aの特性が示されている。いずれも、溶接時間が100ms、300msで溶接を行った場合の結果である。   Next, the welding state was confirmed by a short shot. FIG. 8 shows the result when the protrusion E (see FIG. 4) of the valve shaft 14 is 0.2 mm. In FIG. 8, the characteristic line Lc shows the characteristic with a welding current of 150 A, and the characteristic line Ld shows the characteristic with a welding current of 200 A. Both are the results when welding was performed with a welding time of 100 ms and 300 ms.

また、弁軸14の突出量E(図4参照)を1.6mmとした場合の結果が図8に示されている。図9において、特性線Leは溶接電流が150Aの特性が示されており、特性線Lfは溶接電流が200Aの特性が示されている。いずれも、溶接時間が100ms、300msで溶接を行った場合の結果である。   Further, FIG. 8 shows the result when the protruding amount E (see FIG. 4) of the valve shaft 14 is 1.6 mm. In FIG. 9, the characteristic line Le shows the characteristic with a welding current of 150 A, and the characteristic line Lf shows the characteristic with a welding current of 200 A. Both are the results when welding was performed with a welding time of 100 ms and 300 ms.

図8及び図9から、溶接電流が低く、また、溶接時間が短い方が、弁軸からの伝熱で弁体の溶融が進み、ビード径の小さい溶接が可能であり、SUS304の溶融率が増加されることがわかる。   8 and 9, when the welding current is lower and the welding time is shorter, the valve body is melted by heat transfer from the valve shaft, and welding with a small bead diameter is possible. The melting rate of SUS304 is It can be seen that it is increased.

次に、溶接条件変更の良品域の確認を行った。ここでは、溶接電流が100A、125A、150A、175A、200Aで、溶接時間が500ms、1000ms、1500ms、2000msでそれぞれ溶接を行った。   Next, the good quality area of the welding condition change was confirmed. Here, welding was performed at welding currents of 100 A, 125 A, 150 A, 175 A, and 200 A and welding times of 500 ms, 1000 ms, 1500 ms, and 2000 ms, respectively.

(1)溶接電流が100Aでは、溶接時間が500ms又は1000msでビード径Cが過小で溶け込み量Dが不足したが、溶接時間が1500msで良品が得られた。
(2)溶接電流が125Aでは、いずれの溶接時間では良品が得られた。
(3)溶接電流が150Aでは、溶接時間が2000msで一部にテンパーカラーが出現し、焼き付きが発生したが、それ以外の溶接時間では良品が得られた。
(4)溶接電流が175Aでは、溶接時間が2000msで一部にテンパーカラーが出現し、焼き付きが発生したが、それ以外の溶接時間では良品が得られた。
(5)溶接電流が200Aでは、溶接時間が500msで良品が得られたが、溶接時間が1000msでビード径Cが過大となり、また、溶接時間が1500msでビード径Cが過大で一部にテンパーカラーが出現し、焼き付きが発生した。また、溶接時間が2000msではビード径Cが過大でテンパーカラーが出現し、焼き付きが発生した。
(1) When the welding current was 100 A, the welding time was 500 ms or 1000 ms, the bead diameter C was too small and the penetration amount D was insufficient, but a good product was obtained when the welding time was 1500 ms.
(2) When the welding current was 125 A, a good product was obtained at any welding time.
(3) At a welding current of 150 A, a temper color appeared in part with a welding time of 2000 ms and seizure occurred, but a good product was obtained at other welding times.
(4) At a welding current of 175 A, a temper color appeared in part at a welding time of 2000 ms and seizure occurred, but a good product was obtained at other welding times.
(5) At a welding current of 200 A, a good product was obtained with a welding time of 500 ms. However, the welding time was 1000 ms and the bead diameter C was excessive, and the welding time was 1500 ms and the bead diameter C was excessive and partly tempered. Color appeared and burn-in occurred. In addition, when the welding time was 2000 ms, the bead diameter C was excessive and the temper color appeared, and seizure occurred.

したがって、前記(1)〜(5)から、溶接条件としては、溶接電流を150Aで溶接時間を1000msとすることにより、不良品発生率が少なく、量産に好適であると考えられる(図7中、特性線La参照)。この場合、ビード径C(図2参照)は、従来例のビード径c(図11参照)の約7.8mmから6.7mmに小さくなる。また、溶け込み量D(図2参照)は、所定の溶接強度が得られる管理値としての0.4mm以上を確保することができる。   Therefore, from the above (1) to (5), it is considered that the welding condition is that the welding current is set to 150 A and the welding time is set to 1000 ms, so that the defective product generation rate is small and suitable for mass production (in FIG. 7). , See characteristic line La). In this case, the bead diameter C (see FIG. 2) is reduced from about 7.8 mm of the conventional bead diameter c (see FIG. 11) to 6.7 mm. Further, the penetration amount D (see FIG. 2) can ensure 0.4 mm or more as a management value for obtaining a predetermined welding strength.

次に、溶接条件を変更した際の効果を検討した。弁軸14の突出量E(図4参照)を、従来例のものと同じ0.2mmとして、溶接条件の溶接電流を150Aで溶接時間を1000msとして溶接を行った。この場合、弁軸の材料(SUS304)の溶融率は、47%であった(図10中、点x2参照)。したがって、溶接条件の溶接電流の低下、及び、溶接時間の延長によって、弁軸の材料(SUS304)が、弁体の材料(SUS316L)と比べて、優位に溶融することで、ビード径Cが小さくなり、弁体の材料(SUS316L)の溶融量が低減される。よって、弁体の材料(SUS316L)の溶融率を30%(図10中、点x1参照)から47%(図10中、点x2参照)に増加することができ、溶接割れの抑制に有利になるとがわかる。また、溶接部のNi当量は12.02(質量%)である(図10中、点y2参照)。   Next, the effect at the time of changing welding conditions was examined. Welding was performed by setting the protrusion E of the valve shaft 14 (see FIG. 4) to 0.2 mm, which is the same as that of the conventional example, the welding current under welding conditions was 150 A, and the welding time was 1000 ms. In this case, the melting rate of the valve shaft material (SUS304) was 47% (see point x2 in FIG. 10). Therefore, the bead diameter C is reduced because the valve shaft material (SUS304) is melted more preferentially than the valve body material (SUS316L) by reducing the welding current under welding conditions and extending the welding time. Thus, the melting amount of the valve body material (SUS316L) is reduced. Therefore, the melting rate of the valve body material (SUS316L) can be increased from 30% (see point x1 in FIG. 10) to 47% (see point x2 in FIG. 10), which is advantageous in suppressing weld cracking. I understand. Further, the Ni equivalent of the welded portion is 12.02 (mass%) (see point y2 in FIG. 10).

次に、効果の検証を行った。図10は弁軸の突出量と弁軸の材料の溶融率とNi当量との関係を示すグラフである。図10に示すように、弁軸14の突出量E(図4参照)を1.2mmに増加するとともに溶接条件の溶接電流及び溶接時間の変更の効果により、弁軸の材料(SUS304)の溶融率が大輻に増加することが確認された。すなわち、従来例の弁軸の材料(SUS304)の溶融率が30%(図中、点x1参照)であったものを、溶融率が66%に増加する(図中、点X1参照)。これにともない、溶接部のNi当量が11.6(質量%)に低下する(図中、点Y1参照)。また、突出量Eを1.6mmに増加した場合、溶融率が73%に増加する(図中、点X2参照)。これにともない、溶接部のNi当量が11.5(質量%)に低下する(図中、点Y2参照)。したがって、突出量Eが1.2mmでも1.6mmでも、Ni当量が、シェフラーの状態図に基づいて定められた安全域におけるNi当量の上限値である12(質量%)以下となることが確認された。よって、溶接割れを抑制可能と判断できる。   Next, the effect was verified. FIG. 10 is a graph showing the relationship between the protruding amount of the valve shaft, the melting rate of the material of the valve shaft, and the Ni equivalent. As shown in FIG. 10, the amount of protrusion E (see FIG. 4) of the valve shaft 14 is increased to 1.2 mm and the effect of changing the welding current and welding time of the welding conditions causes the valve shaft material (SUS304) to melt. It was confirmed that the rate increased greatly. That is, the melting rate of the conventional valve stem material (SUS304), which was 30% (see point x1 in the figure), is increased to 66% (see point X1 in the figure). Along with this, the Ni equivalent of the weld decreases to 11.6 (mass%) (see point Y1 in the figure). Further, when the protrusion amount E is increased to 1.6 mm, the melting rate increases to 73% (see the point X2 in the figure). Along with this, the Ni equivalent of the weld decreases to 11.5 (mass%) (see point Y2 in the figure). Therefore, it is confirmed that the Ni equivalent is 12 (mass%) or less, which is the upper limit value of the Ni equivalent in the safety range determined based on the Schaeffler phase diagram, regardless of whether the protrusion E is 1.2 mm or 1.6 mm. It was done. Therefore, it can be determined that welding cracks can be suppressed.

次に、効果の確認を行った。弁軸14の突出量E(図4参照)が1.2mm、1.6mmで、溶接電流が150Aで溶接時間が1000msで、弁軸と弁体との溶接を行ったところ、いずれの場合も溶接割れの抑制効果のあることが確認された。また、実施形態において、溶接部30の溶け込み量D(図2参照)が0.4mm以上で、溶接強度256N以上を確保することが確認された。ちなみに、溶け込み量Dは、0.4〜1.04mmで設定するとよい。また、弁軸14の突出量E(図4参照)が1.2〜1.6mmで、溶接部の残留応力が−243〜−324MPaに低減可能であることが確認された。なお、従来例の溶接部の残留応力は−196MPaであった。   Next, the effect was confirmed. When the protruding amount E of the valve shaft 14 (see FIG. 4) is 1.2 mm and 1.6 mm, the welding current is 150 A, the welding time is 1000 ms, and the valve shaft and the valve body are welded, in either case, It was confirmed that there was an effect of suppressing weld cracking. Moreover, in embodiment, it was confirmed that the penetration amount D (refer FIG. 2) of the welding part 30 is 0.4 mm or more, and weld strength 256N or more is ensured. Incidentally, the penetration amount D is preferably set to 0.4 to 1.04 mm. Further, it was confirmed that the protruding amount E (see FIG. 4) of the valve shaft 14 is 1.2 to 1.6 mm, and the residual stress of the welded portion can be reduced to −243 to −324 MPa. In addition, the residual stress of the welding part of the prior art example was -196 MPa.

前記検討結果に基づいて、溶接部30(図2参照)の溶接高さAは、弁軸14の軸径Bの20%以上とする。また、溶接部30のビード径Cは、弁軸14の軸径Bの2倍以下とする。また、溶接部30の溶け込み量Dは、弁軸14の軸径Bの10%(管理値)以上とする。また、弁軸14の突出量E(図4参照)は、弁軸14の軸径Bの30%以上とする。例えば、弁軸14の軸径Bが4mmの場合で、溶接高さAは0.8mm以上、ビード径Cは8mm以下、溶け込み量Dは4mm以上、突出量Eは1.2mm以上とする。   Based on the examination result, the welding height A of the welded portion 30 (see FIG. 2) is set to 20% or more of the shaft diameter B of the valve shaft 14. In addition, the bead diameter C of the welded portion 30 is not more than twice the shaft diameter B of the valve shaft 14. Further, the penetration amount D of the welded portion 30 is set to 10% (control value) or more of the shaft diameter B of the valve shaft 14. Further, the protruding amount E (see FIG. 4) of the valve shaft 14 is 30% or more of the shaft diameter B of the valve shaft 14. For example, when the shaft diameter B of the valve shaft 14 is 4 mm, the welding height A is 0.8 mm or more, the bead diameter C is 8 mm or less, the penetration amount D is 4 mm or more, and the protrusion amount E is 1.2 mm or more.

前記したEGRバルブ10によると、溶接部30におけるCr当量及びNi当量に基づいて定まる点がシェフラーの状態図に基づいて定められた安全域に属するように、弁軸14の材料の溶融率が増加されている。これにより、弁軸14と弁体18との溶接後の残留応力を低減し、溶接部30における溶接割れの発生を抑制することができる。   According to the EGR valve 10 described above, the melting rate of the material of the valve shaft 14 is increased so that the points determined based on the Cr equivalent and Ni equivalent in the welded portion 30 belong to the safety range determined based on the Schaeffler state diagram. Has been. Thereby, the residual stress after welding with the valve stem 14 and the valve body 18 can be reduced, and generation | occurrence | production of the weld crack in the welding part 30 can be suppressed.

また、溶接部30の溶接高さAは、弁軸14の軸径Bの20%以上であり、溶接部30のビード径Cは、弁軸14の軸径Bの2倍以下である。したがって、溶接部30における弁軸14の材料の溶融量に対する弁体18の材料の溶融量の増加を抑制することができ、弁軸14の材料の溶融率を増加することができる。   Further, the welding height A of the welded portion 30 is 20% or more of the shaft diameter B of the valve shaft 14, and the bead diameter C of the welded portion 30 is not more than twice the shaft diameter B of the valve shaft 14. Therefore, an increase in the melting amount of the material of the valve body 18 with respect to the melting amount of the material of the valve shaft 14 in the welded portion 30 can be suppressed, and the melting rate of the material of the valve shaft 14 can be increased.

また、弁軸14は、SUS304により形成されており、弁体18は、SUS316Lにより形成されており、溶接部30のNi当量が12(質量%)以下である。したがって、溶接部30のNi当量を、シェフラーの状態図に基づいて定められた安全域に属させることができる。   The valve shaft 14 is made of SUS304, the valve body 18 is made of SUS316L, and the Ni equivalent of the welded portion 30 is 12 (mass%) or less. Therefore, the Ni equivalent of the welded portion 30 can belong to a safety range determined based on the Schaeffler state diagram.

また、前記したEGRバルブ10における弁軸14と弁体18との溶接方法によると、溶接部30におけるCr当量及びNi当量に基づいて定まる点がシェフラーの状態図に基づいて定められた安全域に属するように、弁軸14と弁体18との溶接を行う。これにより、弁軸14と弁体18との溶接後の残留応力を低減し、溶接部30における溶接割れの発生を抑制することができる。   Moreover, according to the welding method of the valve shaft 14 and the valve body 18 in the EGR valve 10 described above, the point determined based on the Cr equivalent and Ni equivalent in the welded portion 30 is within the safety range determined based on the Schaeffler state diagram. The valve shaft 14 and the valve body 18 are welded so as to belong. Thereby, the residual stress after welding with the valve stem 14 and the valve body 18 can be reduced, and generation | occurrence | production of the weld crack in the welding part 30 can be suppressed.

また、弁体18を嵌合した際の弁軸14の突出量Eを弁軸14の軸径Bの30%以上とした状態で溶接を行う。したがって、弁軸14の材料の溶融率を増加することができる。   Further, welding is performed in a state where the protruding amount E of the valve shaft 14 when the valve body 18 is fitted is 30% or more of the shaft diameter B of the valve shaft 14. Therefore, the melting rate of the material of the valve shaft 14 can be increased.

また、TIG溶接を行うことにより、弁軸14と弁体18との溶接の作業性を向上することができる。   Moreover, the workability | operativity of welding with the valve stem 14 and the valve body 18 can be improved by performing TIG welding.

[他の実施形態]本発明は実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における変更が可能である。例えば、本発明のバルブ装置は、EGRバルブ10に限定されるものではなく、その他の用途のバルブ装置にも適用可能である。また、アクチュエータ16として、ステップモータに代え、直流モータを用いてもよい。また、弁軸14と弁体18との溶接は、TIG溶接以外の溶接、例えばレーザ溶接でもよい。また、弁体18の材料は、SUS316L以外の耐食性の高いステンレス鋼材相当の高Ni含有鋼材であってもよい。 [Other Embodiments] The present invention is not limited to the embodiments and can be modified without departing from the gist of the present invention. For example, the valve device of the present invention is not limited to the EGR valve 10 and can be applied to valve devices for other uses. Further, as the actuator 16, a DC motor may be used instead of the step motor. The valve shaft 14 and the valve body 18 may be welded by welding other than TIG welding, for example, laser welding. Further, the material of the valve body 18 may be a high Ni content steel material equivalent to a stainless steel material having high corrosion resistance other than SUS316L.

10…EGRバルブ(バルブ装置)
14…弁軸
16…アクチュエータ
18…弁体
20…流路
30…溶接部
A…溶接高さ
B…軸径
C…ビード径
E…突出量
10 ... EGR valve (valve device)
DESCRIPTION OF SYMBOLS 14 ... Valve shaft 16 ... Actuator 18 ... Valve body 20 ... Flow path 30 ... Welding part A ... Welding height B ... Shaft diameter C ... Bead diameter E ... Projection amount

Claims (6)

流路を有するバルブボディと、
前記バルブボディに往復直線運動可能に支持された弁軸と、
前記弁軸を往復直線運動させるアクチュエータと、
前記弁軸の先端部に嵌合した状態で固定されかつ前記流路を開閉する弁体と、
を備える、バルブ装置であって、
前記弁軸の材料は、ステンレス鋼材であり、
前記弁体の材料は、耐食性の高いステンレス鋼材相当の高Ni含有鋼材であり、
前記弁軸の先端側において、該弁軸と前記弁体の内周部との間には、両者の溶融によって相互に固着した溶接部が形成されており、
前記溶接部におけるCr当量及びNi当量に基づいて定まる点がシェフラーの状態図に基づいて定められた安全域に属するように、前記弁軸の材料の溶融率が増加されている、バルブ装置。
A valve body having a flow path;
A valve shaft supported by the valve body so as to be capable of reciprocating linear movement;
An actuator for reciprocating linear movement of the valve shaft;
A valve body that is fixed in a state of being fitted to a distal end portion of the valve shaft and opens and closes the flow path;
A valve device comprising:
The valve stem material is stainless steel,
The material of the valve body is a high Ni content steel material equivalent to a stainless steel material having high corrosion resistance,
On the tip side of the valve shaft, a welded portion is formed between the valve shaft and the inner peripheral portion of the valve body.
The valve device in which the melting rate of the material of the valve shaft is increased so that a point determined based on Cr equivalent and Ni equivalent in the weld belongs to a safety range determined based on a Schaeffler state diagram.
請求項1に記載のバルブ装置であって、
前記溶接部の溶接高さは、前記弁軸の軸径の20%以上であり、
前記溶接部のビード径は、前記弁軸の軸径の2倍以下である、バルブ装置。
The valve device according to claim 1,
The weld height of the weld is 20% or more of the shaft diameter of the valve shaft,
The valve device, wherein a bead diameter of the welded portion is not more than twice a shaft diameter of the valve shaft.
請求項1又は2に記載のバルブ装置であって、
前記弁軸の材料は、SUS304相当の鋼材であり、
前記弁体の材料は、SUS316L相当の鋼材であり、
前記溶接部のNi当量が12(質量%)以下である、バルブ装置。
The valve device according to claim 1 or 2,
The material of the valve stem is a steel material equivalent to SUS304,
The material of the valve body is a steel material equivalent to SUS316L,
The valve device, wherein the Ni equivalent of the weld is 12 (% by mass) or less.
流路を有するバルブボディと、
前記バルブボディに往復直線運動可能に支持された弁軸と、
前記弁軸を往復直線運動させるアクチュエータと、
前記弁軸の先端部に嵌合した状態で固定されかつ前記流路を開閉する弁体と、
を備える、バルブ装置における弁軸と弁体との溶接方法であって、
前記弁軸の材料は、ステンレス鋼材であり、
前記弁体の材料は、耐食性の高いステンレス鋼材相当の高Ni含有鋼材であり、
前記弁軸の先端側において、該弁軸と前記弁体の内周部との間には、両者の溶融によって相互に固着した溶接部が形成されており、
前記溶接部におけるCr当量及びNi当量に基づいて定まる点がシェフラーの状態図に基づいて定められた安全域に属するように、前記弁軸と前記弁体との溶接を行う、バルブ装置における弁軸と弁体との溶接方法。
A valve body having a flow path;
A valve shaft supported by the valve body so as to be capable of reciprocating linear movement;
An actuator for reciprocating linear movement of the valve shaft;
A valve body that is fixed in a state of being fitted to a distal end portion of the valve shaft and opens and closes the flow path;
A method of welding the valve stem and the valve body in the valve device,
The valve stem material is stainless steel,
The material of the valve body is a high Ni content steel material equivalent to a stainless steel material having high corrosion resistance,
On the tip side of the valve shaft, a welded portion is formed between the valve shaft and the inner peripheral portion of the valve body.
The valve stem in the valve device that welds the valve stem and the valve body so that a point determined based on the Cr equivalent and Ni equivalent in the weld belongs to a safety range determined based on the Schaeffler state diagram. And welding method of valve body.
請求項4に記載のバルブ装置における弁軸と弁体との溶接方法であって、
前記弁体を嵌合した際の前記弁軸の突出量を前記弁軸の軸径の30%以上とした状態で前記溶接を行う、バルブ装置における弁軸と弁体との溶接方法。
A method for welding the valve shaft and the valve body in the valve device according to claim 4,
A welding method between a valve shaft and a valve body in a valve device, wherein the welding is performed in a state in which a protruding amount of the valve shaft when the valve body is fitted is 30% or more of a shaft diameter of the valve shaft.
請求項4又は5に記載のバルブ装置における弁軸と弁体との溶接方法であって、
前記溶接は、TIG溶接である、バルブ装置における弁軸と弁体との溶接方法。
A method of welding the valve shaft and the valve body in the valve device according to claim 4 or 5,
The welding is a method of welding the valve shaft and the valve body in the valve device, which is TIG welding.
JP2016108298A 2016-05-31 2016-05-31 Valve device and welding method of valve shaft and valve body of valve device Pending JP2017214967A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016108298A JP2017214967A (en) 2016-05-31 2016-05-31 Valve device and welding method of valve shaft and valve body of valve device
CN201710390854.9A CN107448627B (en) 2016-05-31 2017-05-27 Welding method between valve gear and valve shaft and spool in the valve gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016108298A JP2017214967A (en) 2016-05-31 2016-05-31 Valve device and welding method of valve shaft and valve body of valve device

Publications (1)

Publication Number Publication Date
JP2017214967A true JP2017214967A (en) 2017-12-07

Family

ID=60486510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016108298A Pending JP2017214967A (en) 2016-05-31 2016-05-31 Valve device and welding method of valve shaft and valve body of valve device

Country Status (2)

Country Link
JP (1) JP2017214967A (en)
CN (1) CN107448627B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019120360A (en) * 2018-01-10 2019-07-22 愛三工業株式会社 Manufacturing method of poppet valve

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109848596B (en) * 2018-12-28 2022-01-18 博格华纳排放系统(宁波)有限公司 Welding method special for valve core of exhaust gas recirculation valve

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09108873A (en) * 1995-10-13 1997-04-28 Aichi Steel Works Ltd Martensite member for assembly by welding and its welding method
JP2000063997A (en) * 1998-08-25 2000-02-29 Sumitomo Metal Ind Ltd Welded tube of martensitic stainless steel
JP2000087117A (en) * 1998-09-16 2000-03-28 Hitachi Powdered Metals Co Ltd Method for joining valve shaft of solenoid valve to sintered movable iron core
JP2002130491A (en) * 2000-10-25 2002-05-09 Katsushige Horiguchi Metal seal valve
JP2007181876A (en) * 2005-12-05 2007-07-19 Daihen Corp Two-electrode arc welding method for high alloy steel
JP2011020134A (en) * 2009-07-15 2011-02-03 Hitachi-Ge Nuclear Energy Ltd Different material build-up welding method and different material build-up welding structure
JP2012192431A (en) * 2011-03-16 2012-10-11 Daihen Corp Welding equipment
JP2015224754A (en) * 2014-05-29 2015-12-14 愛三工業株式会社 Fixing method of valve body and valve shaft

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200909593A (en) * 2007-08-29 2009-03-01 Advanced Int Multitech Co Ltd Chromium-manganese-nitrogen austenite series stainless steel
DE102008007275A1 (en) * 2008-02-01 2010-06-10 Böhler Schweisstechnik Deutschland GmbH Method for producing a welded joint
DE102012013020B3 (en) * 2012-06-29 2013-05-02 Daimler Ag Function layer comprises an iron based alloy having a martensitic structure, and alloy components indicated in characteristics consisting of nickel equivalent and chromium equivalent
JP6384708B2 (en) * 2014-02-14 2018-09-05 国立研究開発法人物質・材料研究機構 FMS steel welding wires and joints

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09108873A (en) * 1995-10-13 1997-04-28 Aichi Steel Works Ltd Martensite member for assembly by welding and its welding method
JP2000063997A (en) * 1998-08-25 2000-02-29 Sumitomo Metal Ind Ltd Welded tube of martensitic stainless steel
JP2000087117A (en) * 1998-09-16 2000-03-28 Hitachi Powdered Metals Co Ltd Method for joining valve shaft of solenoid valve to sintered movable iron core
JP2002130491A (en) * 2000-10-25 2002-05-09 Katsushige Horiguchi Metal seal valve
JP2007181876A (en) * 2005-12-05 2007-07-19 Daihen Corp Two-electrode arc welding method for high alloy steel
JP2011020134A (en) * 2009-07-15 2011-02-03 Hitachi-Ge Nuclear Energy Ltd Different material build-up welding method and different material build-up welding structure
JP2012192431A (en) * 2011-03-16 2012-10-11 Daihen Corp Welding equipment
JP2015224754A (en) * 2014-05-29 2015-12-14 愛三工業株式会社 Fixing method of valve body and valve shaft

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019120360A (en) * 2018-01-10 2019-07-22 愛三工業株式会社 Manufacturing method of poppet valve

Also Published As

Publication number Publication date
CN107448627A (en) 2017-12-08
CN107448627B (en) 2019-05-07

Similar Documents

Publication Publication Date Title
KR100876171B1 (en) Electron beam welding method
CN1891392B (en) Shimmed laser beam butt welding process for joining superalloys for gas turbine applications
JP5736135B2 (en) Double laser beam welding method for first and second filler metals
EP2902516B1 (en) A weld filler for nickel-base superalloys
CN105408056B (en) Repair of substrates with component-supported filler
US20080105659A1 (en) High temperature electron beam welding
WO2012036147A1 (en) Method for welding steel material to ni-based superalloy, and welding joint
US20110284666A1 (en) Laser welding method and pipe joint product joined by the method
FR3032058A1 (en) A NICKEL-BASED ALLOY-RESISTANT ENCLOSURE AND METHOD FOR THE IMPLEMENTATION THEREOF
JP2017214967A (en) Valve device and welding method of valve shaft and valve body of valve device
CN109396612A (en) A kind of UNS N08825 nickel-base material pipeline solid core welding wire consumable electrode pulse MIG welding procedure
CN105108273A (en) Welding process for high-strength type steel plate
JP2012061496A (en) Dissimilar metal welding method and dissimilar metal joined body
US20120294729A1 (en) Cold metal transfer hardfacing of buckets
US10234043B2 (en) Weldable, low lead and lead-free plumbing fittings and methods of making the same
CN102019500B (en) Electron beam welding method for aluminium alloy pistons of high-power diesel engine
CN105689854A (en) Metal plate welding method
JP2015224754A (en) Fixing method of valve body and valve shaft
US20190154160A1 (en) Weldable, low lead and lead-free plumbing fittings and methods of making the same
JP2017062041A (en) Method of fixing valve body and valve stem
EP2564978B1 (en) Filler metal chemistry for improved weldability of super alloys
US20230050740A1 (en) Weld-brazing techniques
Demenin Root Welding Using the Regulated Metal Deposition Technology
Arjakine et al. Advanced weld repair of gas turbine hot section components
RU2294822C2 (en) Method of automatic argon-arc welding of austenitic steel pipes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200303