JP2017211416A - Method of manufacturing optical waveguide - Google Patents

Method of manufacturing optical waveguide Download PDF

Info

Publication number
JP2017211416A
JP2017211416A JP2016102397A JP2016102397A JP2017211416A JP 2017211416 A JP2017211416 A JP 2017211416A JP 2016102397 A JP2016102397 A JP 2016102397A JP 2016102397 A JP2016102397 A JP 2016102397A JP 2017211416 A JP2017211416 A JP 2017211416A
Authority
JP
Japan
Prior art keywords
layer
polyimide
adhesive layer
optical waveguide
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016102397A
Other languages
Japanese (ja)
Inventor
宏真 青木
Hirosane Aoki
宏真 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2016102397A priority Critical patent/JP2017211416A/en
Publication of JP2017211416A publication Critical patent/JP2017211416A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing an optical waveguide that offers superior adhesion to a base material, even when a material thereof has poor adhesivity, and superior handleability during manufacture and in use.SOLUTION: Provided is a method of manufacturing an optical waveguide comprising a base material 1, lower cladding layer 3, core pattern 4, and upper cladding layer 5, where a polyimide with an adhesive layer is used as the base material, and the lower cladding layer is formed on an adhesive layer 2 side of the polyimide with an adhesive layer. The adhesive layer of the polyimide with an adhesive layer is preferably made of a heat curable adhesive. The polyimide with an adhesive layer is also used as another base material disposed on top of the upper cladding layer of the optical waveguide, where the adhesive layer of the polyimide with an adhesive layer is formed on an upper cladding layer side.SELECTED DRAWING: Figure 1

Description

本発明は光導波路の製造方法に関する。   The present invention relates to a method for manufacturing an optical waveguide.

光導波路を作製する際に、基材として耐熱性及び耐薬品性に優れたポリイミドを用いることがある。ところが、感光性樹脂を中心とする光導波路の材料の中には、基材であるポリイミドとの接着力がなくポリイミドを適用できないことがあった。
しかし、光導波路において前記の優れた特性からポリイミドを適用した製品のニーズが高まっている。
When producing an optical waveguide, polyimide having excellent heat resistance and chemical resistance may be used as a substrate. However, some optical waveguide materials centered on a photosensitive resin do not have an adhesive force with polyimide as a base material, and polyimide cannot be applied.
However, there is an increasing need for a product to which polyimide is applied in the optical waveguide due to the above-described excellent characteristics.

光導波路を作製するには、フィルム状の感光性材料を積層するする必要があり、その感光性材料は薄くハンドリングに注意しないと作製途中に折れやしわが発生するので、その土台の材料にポリイミドを利用している(特許文献1)。   In order to produce an optical waveguide, it is necessary to laminate a photosensitive material in the form of a film. Since the photosensitive material is thin and care is not taken in handling, folds and wrinkles occur during the production. (Patent Document 1).

特開2015−106034号公報JP, 2015-106034, A

光導波路を作製するには、作製途中の取扱いや部品として光導波路を使用する際の取扱い時のハンドリング性を良くするために、基材としてのポリイミドを使用する必要があり、そのため光導波路の材料は、ポリイミドと接着力のある材料にしなければならない。しかし、光導波路の材料は、伝送損失等を考慮した光学特性を優先した材料設計がなされており、光学特性と接着性を兼備する材料は得られにくい。
本発明は、光導波路の材料が接着性に劣っている場合でも基材との接着に優れ、製造時の取扱い性や使用時のハンドリング性に優れた光導波路の製造方法を提供する。
In order to produce an optical waveguide, it is necessary to use polyimide as a base material in order to improve handling during handling and when handling the optical waveguide as a component, and therefore, the material of the optical waveguide. Must be made of a material that adheres to polyimide. However, the material of the optical waveguide has been designed with priority given to optical characteristics in consideration of transmission loss and the like, and it is difficult to obtain a material having both optical characteristics and adhesiveness.
The present invention provides a method for producing an optical waveguide that is excellent in adhesion to a substrate even when the material of the optical waveguide is inferior in adhesion, and excellent in handling at the time of manufacture and handling properties at the time of use.

本発明者らは上記の課題を解決するために鋭意研究した結果、ポリイミドとクラッド層の間に接着力を高めるために、予め前記ポリイミド上に接着層を設け、前記接着層上に下部クラッド層、前記下部クラッド層上にコア層からなるコアパターン、前記コア層からなるコアパターン上に上部クラッド層とする光導波路で、製造時に前記接着層の形成工程を省いた光導波路の作製方法とすることで、上記課題を解決し得ることを見出した。
すなわち、本発明は、
(1) 基材、下部クラッド層、コアパターン、上部クラッド層を備える光導波路であって、基材として接着層付ポリイミドを用い、接着層付ポリイミドの接着層側に下部クラッド層を形成する光導波路の製造方法。
(2) 接着層付ポリイミドの接着層が、熱硬化性接着剤であり、下部クラッド層を形成後、下部クラッド層の後硬化の加熱時に接着層の硬化を行う上記(1)に記載の光導波路の製造方法。
(3) 上記(1)又は(2)に記載の光導波路の製造方法で得られる光導波路の上部クラッド層上に、更に基材として接着層付ポリイミドを用い、上部クラッド層側に接着層付ポリイミドの接着層を形成する光導波路の製造方法。
As a result of intensive studies to solve the above problems, the present inventors have provided an adhesive layer on the polyimide in advance in order to increase the adhesive force between the polyimide and the cladding layer, and the lower cladding layer on the adhesive layer. An optical waveguide having a core pattern made of a core layer on the lower clad layer and an upper clad layer on the core pattern made of the core layer, wherein the step of forming the adhesive layer is omitted at the time of manufacture. It has been found that the above problems can be solved.
That is, the present invention
(1) An optical waveguide including a base material, a lower clad layer, a core pattern, and an upper clad layer, wherein a polyimide with an adhesive layer is used as the base material, and the lower clad layer is formed on the adhesive layer side of the polyimide with an adhesive layer A method for manufacturing a waveguide.
(2) The optical layer according to (1), wherein the adhesive layer of the polyimide with an adhesive layer is a thermosetting adhesive, and after the lower cladding layer is formed, the adhesive layer is cured during post-curing heating of the lower cladding layer. A method for manufacturing a waveguide.
(3) On the upper clad layer of the optical waveguide obtained by the method for producing an optical waveguide according to (1) or (2) above, a polyimide with an adhesive layer is further used as a base material, and an adhesive layer is attached to the upper clad layer side. An optical waveguide manufacturing method for forming an adhesive layer of polyimide.

本発明の光導波路の製造方法は、基材となるポリイミドとクラッド層の間の接着力が高く、製造時や外形加工時に剥離がなく、歩留良く製造することができる。また、基材で光導波路を挟んだ構成の製造方法では、反りが改善され使用時のハンドリング性が向上する。   The method for producing an optical waveguide according to the present invention has a high adhesive force between a polyimide serving as a base material and a clad layer, and can be produced with good yield without peeling during production or outer shape processing. Further, in the manufacturing method having a configuration in which the optical waveguide is sandwiched between the base materials, the warpage is improved and the handling property at the time of use is improved.

本発明の光導波路の一例を示す断面図である。It is sectional drawing which shows an example of the optical waveguide of this invention. 本発明の光導波路の一例を示す断面図である。It is sectional drawing which shows an example of the optical waveguide of this invention.

本発明の光導波路の製造方法は、図1に示すようにポリイミド(カバーレイのポリイミド層1)と接着力に劣るクラッド層の間に接着力を高めるために、前記ポリイミド上に予め接着層(カバーレイの接着層2)を設け、前記接着層上に下部クラッド層3、前記下部クラッド層上にコア層4からなるコアパターン、前記コア層からなるコアパターン上に上部クラッド層5を形成する光導波路で、光導波路の製造時に前記接着層の形成工程を省いた光導波路を作製することができる。   As shown in FIG. 1, the optical waveguide manufacturing method of the present invention is provided with an adhesive layer (on the polyimide in advance) in order to increase the adhesive force between the polyimide (polyimide layer 1 of the coverlay) and the cladding layer having poor adhesive strength. A coverlay adhesive layer 2) is provided, and a lower clad layer 3 is formed on the adhesive layer, a core pattern made of the core layer 4 is formed on the lower clad layer, and an upper clad layer 5 is formed on the core pattern made of the core layer. With the optical waveguide, it is possible to manufacture an optical waveguide that omits the step of forming the adhesive layer when manufacturing the optical waveguide.

また、本発明の光導波路の製造方法は、図2に示すように接着層付ポリイミドで光導波路を挟む構造とすることで反りを抑えた光導波路を作製することができる。   Moreover, the manufacturing method of the optical waveguide of this invention can produce the optical waveguide which suppressed curvature by setting it as the structure which pinches | interposes an optical waveguide with the polyimide with an adhesive layer, as shown in FIG.

(接着層付ポリイミド)
本発明で用いる基材としてのポリイミドは、イミド結合を含む高分子素材(樹脂)の総称であり、耐熱性、機械的強度、耐薬品性を備えている。
ポリイミドの厚みは、5μm〜250μmであることが好ましく、10μm〜100μmであることがより好ましい。ポリイミドの厚みが5μm以上であると、基材としての剛性の点で好ましい。
接着層は、接着剤から構成され、熱硬化性樹脂であることが好ましく、半硬化状態であることが好ましい。接着層の厚みは、5μm〜50μmであることが好ましい。
接着層付ポリイミドは、ポリイミドフィルムの片面に接着剤を形成することで得ることができ、市販品を用いてもよい。市販品としては、フレキシブルプリント配線板材料として市販されているものを用いることができ、例えば、ニッカン工業株式会社製のハロゲンフリーポリイミド基材カバーレイ用フィルムであるニカフレックスCISG、CKSE、CKSG、CNSF、CNSYを用いることができる。
また、ポリイミドフィルムに、接着剤フィルムをラミネートして用いることもできる。
(Polyimide with adhesive layer)
Polyimide as a base material used in the present invention is a general term for polymer materials (resins) containing an imide bond, and has heat resistance, mechanical strength, and chemical resistance.
The thickness of the polyimide is preferably 5 μm to 250 μm, and more preferably 10 μm to 100 μm. It is preferable at the point of the rigidity as a base material that the thickness of a polyimide is 5 micrometers or more.
The adhesive layer is composed of an adhesive, is preferably a thermosetting resin, and is preferably in a semi-cured state. The thickness of the adhesive layer is preferably 5 μm to 50 μm.
The polyimide with an adhesive layer can be obtained by forming an adhesive on one side of a polyimide film, and a commercially available product may be used. As a commercial item, what is marketed as a flexible printed wiring board material can be used, for example, Nikaflex CISG, CKSE, CKSG, CNSF which are films for a halogen-free polyimide substrate coverlay made by Nikkan Kogyo Co., Ltd. CNSY can be used.
In addition, an adhesive film can be laminated on a polyimide film.

(光導波路)
光導波路は、下部クラッド層と、下部クラッド層に積層されたコアパターンと、コアパターンを覆うように下部クラッド層に積層される上部クラッド層を備える。
(Optical waveguide)
The optical waveguide includes a lower clad layer, a core pattern laminated on the lower clad layer, and an upper clad layer laminated on the lower clad layer so as to cover the core pattern.

(コアパターン)
コアパターンは、光が伝搬する部位である。伝搬する光は、コアパターンの壁面によって反射し、光出射部から出射される。上記壁面は、金属反射面であるか、又は、コアパターンが周囲よりも高屈折率に設計され、コアパターンと周囲との屈折率差を利用した全反射面であると好ましい。反射による損失が小さい点から後者であるとより好ましい。コアパターンを周囲よりも屈折率の高い透明な材質で形成すると形状の加工が容易に行えるためさらに好ましい。透明な材質は、伝搬する光の波長に対して所定の出射光の光強度が確保可能な透明性を有していれば特に限定はなく、特に形状の加工性の観点から樹脂等が好適に用いられる。
コアパターンをフォトリソ加工によって形成するため、樹脂の種類は感光性樹脂がより好適である。
コアパターンは、形成された下部クラッド層上にコア層を積層し、露光現像することで形成することができる。コア層形成用樹脂は、下部クラッド層及び上部クラッド層より高屈折率であり、活性光線によりパターン化し得るものを用いることが好ましい。
(Core pattern)
The core pattern is a part where light propagates. The propagating light is reflected by the wall surface of the core pattern and emitted from the light emitting part. The wall surface is preferably a metal reflection surface, or a total reflection surface in which the core pattern is designed to have a higher refractive index than the surroundings and a difference in refractive index between the core pattern and the surroundings is used. The latter is more preferable because the loss due to reflection is small. It is more preferable that the core pattern is formed of a transparent material having a higher refractive index than the surroundings because the shape can be easily processed. The transparent material is not particularly limited as long as it has transparency that can secure the light intensity of the predetermined emitted light with respect to the wavelength of the propagating light, and a resin or the like is preferable from the viewpoint of shape workability. Used.
Since the core pattern is formed by photolithography, the type of resin is more preferably a photosensitive resin.
The core pattern can be formed by laminating a core layer on the formed lower clad layer and exposing and developing it. The core layer forming resin preferably has a higher refractive index than the lower cladding layer and the upper cladding layer and can be patterned by actinic rays.

(下部クラッド層、上部クラッド層)
下部クラッド層は、接着層付ポリイミドの接着層上に形成される層で、例えばコア材より屈折率の低い感光性樹脂を用いて形成する。上部クラッド層は、コアパターンを覆うように下部クラッド層に積層される。
下部クラッド層、上部クラッド層の厚みは特に制限はないが、5〜200μmであることが好ましい。5μm以上あると伝搬光をコア内部に閉じ込めるのが容易となり、200μm以下であると、光導波路全体の厚みが大きすぎることがない。
(Lower cladding layer, upper cladding layer)
The lower cladding layer is a layer formed on the adhesive layer of polyimide with an adhesive layer, and is formed using, for example, a photosensitive resin having a refractive index lower than that of the core material. The upper cladding layer is laminated on the lower cladding layer so as to cover the core pattern.
The thickness of the lower cladding layer and the upper cladding layer is not particularly limited, but is preferably 5 to 200 μm. If it is 5 μm or more, it becomes easy to confine propagating light inside the core, and if it is 200 μm or less, the entire thickness of the optical waveguide is not too large.

(感光性樹脂フィルム)
感光性樹脂フィルムは、光エネルギーの作用で半硬化から固体に変化する合成有機材料(感光性樹脂)をフィルム上に塗工したものである。合成有機材料は、一般に(1)モノマー、(2)オリゴマー、(3)光重合開始剤、(4)各種添加剤から構成される組成物である。感光性樹脂フィルムは、材料の特性上活性光線を透過するものがよく、感光性樹脂が塗布される支持フィルムと前記感光性樹脂を保護するカバーフィルムから構成され、前記支持フィルム、前記感光性樹脂、前記カバーフィルムの3層からなる。
(Photosensitive resin film)
The photosensitive resin film is obtained by coating a synthetic organic material (photosensitive resin) that changes from semi-cured to solid by the action of light energy on the film. The synthetic organic material is generally a composition composed of (1) a monomer, (2) an oligomer, (3) a photopolymerization initiator, and (4) various additives. The photosensitive resin film is preferably one that transmits actinic rays due to the characteristics of the material, and is composed of a support film to which the photosensitive resin is applied and a cover film that protects the photosensitive resin, and the support film and the photosensitive resin. , Consisting of three layers of the cover film.

以下、本発明を実施例によりさらに具体的に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

(実施例1)
以下、光導波路の製造方法について説明する。
15cm角のハロゲンフリーポリイミド基材カバーレイ用フィルム(ニッカン工業株式会社製 CISG−1215、ポリイミドの厚み12.5μm、半硬化熱硬化性接着剤層の厚み15μm)の接着層面に、下部クラッド層となる感光性樹脂フィルムのカバーフィルムを除去した感光性樹脂面を真空加圧ラミネータ(株式会社名機製作所製 MVLP−500/600)を用いて真空下、温度100℃、圧力0.7MPa、加圧時間30秒でラミネートした。次いで、紫外線露光機(株式会社日立ハイテクノロジーズ製 EV−0800)にて、前記下部クラッドとなる感光性樹脂フィルムの支持フィルム面を介して4000mJ/cm露光した。露光後5分以上経過したのち、前記支持フィルムを除去しオーブンにて105℃から180℃に昇温後1時間の加熱処理を実施し前記カバーレイ用フィルムの接着層と前記下部クラッドとなる感光性樹脂を硬化させ下部クラッド層を作製した。
次に前記下部クラッド層の表面にコア層となる感光性樹脂フィルムのカバーフィルムを除去した感光性樹脂面を前記真空加圧ラミネータを用いて真空下、温度60℃、圧力0.7MPa、加圧時間30秒ラミネートした。次いで、前記紫外線露光機にて、フォトマスク(パターン幅50μm)を介して前記コア層となる感光性樹脂フィルムの支持フィルム面を介して3500mJ/cm露光した。露光後5分以上経過したのち、前記支持フィルムを除去し、アルカリ現像機(株式会社山縣機械製、RX−40DN、現像液炭酸カリウム濃度1質量%、温度30℃)にて、スプレー圧力0.16MPaで3分間現像し、その後純水(スプレー圧力0.05MPa)にて洗浄を実施した。
その後、酸処理機(株式会社山縣機械製、RX−40EN、酸処理液濃度(濃硫酸500mlに対し純水90Lの割合)、温度25℃)にて、スプレー圧力0.05MPaで1分間酸洗し、次いで純水(スプレー圧力0.05MPa)にて洗浄を実施した。
次に前記オーブンにて80℃、15分の乾燥実施後、前記紫外線露光機にて、コア層面を3000mJ/cm露光した。
次に、オーブンにて105℃から160℃に昇温後1時間の加熱処理を実施し前記コア層からコアパターンを形成した。
次に、上部クラッド層を形成するため前記コアパターン形成面に前記下部クラッド層と同じ感光性樹脂フィルムのカバーフィルムを除去した感光性樹脂面を前記真空加圧ラミネータを用いて真空下、温度100℃、圧力0.7MPa、加圧時間30秒ラミネートした。次いで、前記紫外線露光機にて、前記上部クラッドとなる感光性樹脂フィルムの支持フィルム面を介して4000mJ/cm露光した。露光後5分以上経過したのち、前記支持フィルムを除去しオーブンにて105℃から170℃に昇温後1時間の加熱処理を実施し前記上部クラッド層となる感光性樹脂を硬化させ上部クラッド層を形成した。前記上部クラッド層まで形成された光導波路を、ダイサーマシンにて短冊状に外形加工した。
これにより、前記接着層の形成工程を省いた光導波路が作製される。
Example 1
Hereinafter, a method for manufacturing an optical waveguide will be described.
15 cm square halogen-free polyimide substrate coverlay film (Niskan Kogyo Co., Ltd. CISG-1215, polyimide thickness 12.5 μm, semi-cured thermosetting adhesive layer thickness 15 μm) The photosensitive resin surface from which the cover film of the resulting photosensitive resin film was removed was vacuumed using a vacuum pressurization laminator (MVLP-500 / 600 manufactured by Meiki Seisakusho Co., Ltd.) at a temperature of 100 ° C., a pressure of 0.7 MPa, and a pressurization. Lamination was performed for 30 seconds. Subsequently, 4000 mJ / cm < 2 > exposure was carried out with the ultraviolet exposure machine (EV-0800 by Hitachi High-Technologies Corporation) through the support film surface of the photosensitive resin film used as the said lower clad. After 5 minutes or more after exposure, the support film is removed, the temperature is raised from 105 ° C. to 180 ° C. in an oven, and heat treatment is performed for 1 hour to form an adhesive layer for the coverlay film and the lower cladding. The lower resin layer was prepared by curing the functional resin.
Next, the photosensitive resin surface from which the cover film of the photosensitive resin film serving as the core layer is removed on the surface of the lower clad layer is vacuumed at a temperature of 60 ° C., a pressure of 0.7 MPa, and a pressure using the vacuum pressure laminator. Laminated for 30 seconds. Then, in the ultraviolet exposure machine to 3500mJ / cm 2 exposed through the support film surface of the photosensitive resin film serving as the core layer through a photomask (pattern width 50 [mu] m). After 5 minutes or more after exposure, the support film is removed, and spray pressure is set to 0. 0 with an alkali developing machine (manufactured by Yamazaki Kikai Co., Ltd., RX-40DN, developer potassium carbonate concentration 1 mass%, temperature 30 ° C.). Development was performed at 16 MPa for 3 minutes, and then washing was performed with pure water (spray pressure 0.05 MPa).
Then, pickling for 1 minute at a spray pressure of 0.05 MPa using an acid treatment machine (manufactured by Yamazaki Kikai Co., Ltd., RX-40EN, acid treatment solution concentration (ratio of 90 L of pure water to 500 ml of concentrated sulfuric acid, temperature 25 ° C.)) Next, cleaning was performed with pure water (spray pressure 0.05 MPa).
Next, after drying at 80 ° C. for 15 minutes in the oven, the core layer surface was exposed to 3000 mJ / cm 2 with the ultraviolet exposure machine.
Next, after heating from 105 ° C. to 160 ° C. in an oven, a heat treatment was performed for 1 hour to form a core pattern from the core layer.
Next, in order to form the upper clad layer, the photosensitive resin surface from which the cover film of the same photosensitive resin film as that of the lower clad layer is removed is formed on the core pattern forming surface under vacuum using the vacuum pressure laminator at a temperature of 100. Lamination was performed at 0 ° C., a pressure of 0.7 MPa, and a pressing time of 30 seconds. Subsequently, 4000 mJ / cm < 2 > exposure was carried out with the said ultraviolet exposure machine through the support film surface of the photosensitive resin film used as the said upper clad. After 5 minutes or more after exposure, the support film is removed, the temperature is raised from 105 ° C. to 170 ° C. in an oven, and heat treatment is performed for 1 hour to cure the photosensitive resin to be the upper clad layer, thereby curing the upper clad layer. Formed. The optical waveguide formed up to the upper cladding layer was processed into a strip shape by a dicer machine.
Thereby, the optical waveguide which eliminated the formation process of the above-mentioned adhesion layer is produced.

(実施例2)
実施例1の上部クラッド層形成後に、前記上部クラッド層形成面に前記カバーレイ用フィルムの接着層面を前記真空加圧ラミネータを用いて真空下、温度100℃、圧力0.7MPa、加圧時間30秒ラミネートした。次いで前記オーブンにて105℃から180℃に昇温後1時間の加熱硬化処理を実施し、前記ダイサーマシンにて短冊状に加工した。
これにより反りを抑えた光導波路が作製される。
(Example 2)
After the formation of the upper clad layer in Example 1, the adhesive layer surface of the coverlay film was applied to the upper clad layer forming surface under vacuum using the vacuum pressure laminator, at a temperature of 100 ° C., a pressure of 0.7 MPa, and a pressurization time of 30. Laminated for 2 seconds. Next, after heating from 105 ° C. to 180 ° C. in the oven, a heat curing treatment was performed for 1 hour, and the strips were processed by the dicer machine.
As a result, an optical waveguide with reduced warpage is produced.

(比較例)
実施例1において、カバーレイ用フィルムのポリイミド層側に下部クラッド層となる感光性樹脂フィルムのカバーフィルムを除去した感光性樹脂面を設けたこと以外は、実施例1と同様に光導波路を製造した。
ポリイミドと下部クラッド層の接着力が弱く、コアパターン形成の現像時に一部の端面の剥離が見られた。また、ダイサーマシンでの外形加工の際に、端部に一部の剥離が見られた。
(Comparative example)
In Example 1, an optical waveguide was produced in the same manner as in Example 1 except that the photosensitive resin surface from which the cover film of the photosensitive resin film serving as the lower cladding layer was removed was provided on the polyimide layer side of the coverlay film. did.
The adhesive force between the polyimide and the lower clad layer was weak, and some end faces were peeled off during the development of the core pattern formation. In addition, when the outer shape was processed with a dicer machine, some peeling was observed at the end.

本発明の光導波路の製造方法は、ポリイミドと、接着性に劣るクラッド層の間に接着力を高めるために、ポリイミド上に接着層を設け、接着層上に下部クラッド層、下部クラッド層上にコア層からなるコアパターン、コアパターン上に上部クラッド層を形成する光導波路で、予め接着剤層を設けた接着層付ポリイミドを用いることで接着層の形成工程を省いた光導波路の製造方法であり、ポリイミドを支持体にする分野など幅広い分野に適用可能である。   In the method of manufacturing an optical waveguide according to the present invention, an adhesive layer is provided on polyimide in order to increase adhesion between the polyimide and the cladding layer having poor adhesion, and the lower cladding layer and the lower cladding layer are formed on the adhesive layer. An optical waveguide for forming an upper clad layer on a core pattern composed of a core layer, and an optical waveguide manufacturing method in which an adhesive layer forming step is omitted by using a polyimide with an adhesive layer provided with an adhesive layer in advance. Yes, it can be applied to a wide range of fields such as the field of using polyimide as a support.

1.カバーレイのポリイミド層(接着剤付ポリイミドのポリイミド層)
2.カバーレイの接着層(接着剤付ポリイミドの接着層)
3.下部クラッド層
4.コア層(コアパターン)
5.上部クラッド層
1. Coverlay polyimide layer (Polyimide layer of polyimide with adhesive)
2. Coverlay adhesive layer (adhesive layer of polyimide with adhesive)
3. Lower clad layer 4. Core layer (core pattern)
5. Upper cladding layer

Claims (3)

基材、下部クラッド層、コアパターン、上部クラッド層を備える光導波路であって、基材として接着層付ポリイミドを用い、接着層付ポリイミドの接着層側に下部クラッド層を形成する光導波路の製造方法。   An optical waveguide comprising a base material, a lower clad layer, a core pattern, and an upper clad layer, wherein a polyimide with an adhesive layer is used as the base material, and the lower clad layer is formed on the adhesive layer side of the polyimide with an adhesive layer Method. 接着層付ポリイミドの接着層が、熱硬化性接着剤であり、下部クラッド層を形成後、下部クラッド層の後硬化の加熱時に接着層の硬化を行う請求項1に記載の光導波路の製造方法。   The method for producing an optical waveguide according to claim 1, wherein the adhesive layer of the polyimide with an adhesive layer is a thermosetting adhesive, and after the lower cladding layer is formed, the adhesive layer is cured during post-curing heating of the lower cladding layer. . 請求項1又は請求項2に記載の光導波路の製造方法で得られる光導波路の上部クラッド層上に、更に基材として接着層付ポリイミドを用い、上部クラッド層側に接着層付ポリイミドの接着層を形成する光導波路の製造方法。   The polyimide with adhesive layer is further used as a base material on the upper clad layer of the optical waveguide obtained by the method for manufacturing an optical waveguide according to claim 1 or 2, and the polyimide adhesive layer with an adhesive layer is provided on the upper clad layer side. The manufacturing method of the optical waveguide which forms.
JP2016102397A 2016-05-23 2016-05-23 Method of manufacturing optical waveguide Pending JP2017211416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016102397A JP2017211416A (en) 2016-05-23 2016-05-23 Method of manufacturing optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016102397A JP2017211416A (en) 2016-05-23 2016-05-23 Method of manufacturing optical waveguide

Publications (1)

Publication Number Publication Date
JP2017211416A true JP2017211416A (en) 2017-11-30

Family

ID=60475543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016102397A Pending JP2017211416A (en) 2016-05-23 2016-05-23 Method of manufacturing optical waveguide

Country Status (1)

Country Link
JP (1) JP2017211416A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020044654A (en) * 2018-09-14 2020-03-26 凸版印刷株式会社 Thermal transfer image receiving sheet
JP2020062817A (en) * 2018-10-17 2020-04-23 凸版印刷株式会社 Sublimation transfer image-receiving sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020044654A (en) * 2018-09-14 2020-03-26 凸版印刷株式会社 Thermal transfer image receiving sheet
JP7192335B2 (en) 2018-09-14 2022-12-20 凸版印刷株式会社 thermal transfer image receiving sheet
JP2020062817A (en) * 2018-10-17 2020-04-23 凸版印刷株式会社 Sublimation transfer image-receiving sheet

Similar Documents

Publication Publication Date Title
JP5498219B2 (en) Manufacturing method of optical waveguide having mirror surface and photoelectric composite wiring board
US9535216B2 (en) Optical waveguide dry film, and optical waveguide manufacturing method and optical waveguide using optical waveguide dry film
JP2010256877A (en) Method of manufacturing optical waveguide core, method of manufacturing optical waveguide, optical waveguide, and optoelectric composite wiring board
WO2007102431A1 (en) Flexible optical waveguide, method for manufacturing such flexible optical waveguide, and optical module
JP5468744B2 (en) Manufacturing method of optical waveguide
JP2017211416A (en) Method of manufacturing optical waveguide
JP2005164650A (en) Manufacturing method of optical waveguide and optical waveguide
WO2012060092A1 (en) Production method for optical waveguide and optical waveguide
JP2006039231A (en) Method for manufacturing photoelectric wiring consolidated board
JP4224259B2 (en) Manufacturing method of opto-electric hybrid board
JP2012103425A (en) Manufacturing method for photoelectric composite wiring board, and photoelectric composite wiring board manufactured by the same
JP5691561B2 (en) Optical fiber connector and manufacturing method thereof
TWI502234B (en) Optical waveguide production method
JP6857835B2 (en) Optical waveguide coupling
JP2015043050A (en) Optical waveguide and method for manufacturing the same
JP5378172B2 (en) Optical waveguide core manufacturing method, optical waveguide manufacturing method, optical waveguide, and photoelectric composite wiring board
WO2015029262A1 (en) Method for manufacturing optical member, optical member, transparent member for forming optical member, optical waveguide, and optical module
JP2015203841A (en) Light guide and production method of the same
JP4458328B2 (en) Optical waveguide manufacturing method
JP5631697B2 (en) MANUFACTURING METHOD FOR OPTICAL WAVEGUIDE WITH MICRO MIRROR, INTERMEDIATE STRUCTURE USABLE FOR MANUFACTURING METHOD
JP2005165133A (en) Method for manufacturing optical waveguide
JP2015179283A (en) Optical waveguide, photo-electric composite substrate, manufacturing method of optical waveguide, and manufacturing method of photo-electric composite substrate
JP2011112769A (en) Method of fabricating optical waveguide, optical waveguide and optoelectric composite wiring board
JP2012098332A (en) Method of manufacturing photoelectric composite wiring board and photoelectric composite wiring board
JP2015004855A (en) Optical waveguide with mirrors, and method for producing the same