JP2017210815A - Conservation method and coating material for reinforced concrete structure - Google Patents

Conservation method and coating material for reinforced concrete structure Download PDF

Info

Publication number
JP2017210815A
JP2017210815A JP2016105236A JP2016105236A JP2017210815A JP 2017210815 A JP2017210815 A JP 2017210815A JP 2016105236 A JP2016105236 A JP 2016105236A JP 2016105236 A JP2016105236 A JP 2016105236A JP 2017210815 A JP2017210815 A JP 2017210815A
Authority
JP
Japan
Prior art keywords
thickener
reinforced concrete
nitrite
parts
concrete structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016105236A
Other languages
Japanese (ja)
Inventor
心一 宮里
Shinichi Miyasato
心一 宮里
青山 實伸
Sanenobu Aoyama
實伸 青山
直秀 有馬
Naohide Arima
直秀 有馬
宮口 克一
Katsuichi Miyaguchi
克一 宮口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Kanazawa Institute of Technology (KIT)
Central Nippon Highway Engineering Nagoya Co Ltd
Original Assignee
Denka Co Ltd
Kanazawa Institute of Technology (KIT)
Central Nippon Highway Engineering Nagoya Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Kanazawa Institute of Technology (KIT), Central Nippon Highway Engineering Nagoya Co Ltd filed Critical Denka Co Ltd
Priority to JP2016105236A priority Critical patent/JP2017210815A/en
Publication of JP2017210815A publication Critical patent/JP2017210815A/en
Pending legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly reliable and simple conservation method for a reinforced concrete structure that enables efficient impregnation of a nitrate ion, a rustproof component, into the concrete over a long period.SOLUTION: A conservation method for a reinforced concrete structure has a gel substance applied on a surface of the reinforced concrete structure at an amount of 100 g/mor more and 3,000 g/mor less, the gel substance being made by mixing a thickner into a solution containing 5 wt% or more of nitrate ions and having viscosity of 5,000 mPa-s or more and 100,000 mPa-s or less. Furthermore, a coating material for the reinforced concrete structure is the gel substance made by mixing the thickner into the solution containing 5 wt% or more of nitrate ions and having viscosity of 5,000 mPa-s or more and 100,000 mPa-s or less.SELECTED DRAWING: None

Description

本発明は、コンクリート構造物のコンクリート内部にある鉄筋等の鋼材を腐食から長期間保護する、主に土木・建築分野において予防保全的に、もしくはすでに腐食が開始しているコンクリート内部にある鉄筋等の鋼材の腐食速度を抑制する、鉄筋コンクリート構造物の保全工法に関するものであって、特に、亜硝酸イオンを簡便な手法で効率良く長期間にわたってコンクリート内部に浸透させる鉄筋コンクリート構造物の保全工法に関する。   The present invention protects a steel material such as a reinforcing bar in the concrete of a concrete structure from corrosion for a long period of time, mainly in a civil engineering / architectural field for preventive maintenance, or in a concrete that has already started corrosion. The present invention relates to a maintenance method for a reinforced concrete structure that suppresses the corrosion rate of steel materials, and particularly relates to a maintenance method for a reinforced concrete structure in which nitrite ions are efficiently permeated into the concrete over a long period of time by a simple method.

コンクリート構造物の劣化要因としては、塩害、中性化、凍害、アルカリ骨材反応、及び化学的コンクリート腐食等が挙げられる。劣化が発生した構造物に対する選択可能な補修工法として、断面修復工法、表面保護工法、ひび割れ補修工法、除塩工法,電気防食工法,およびこれらの工法に表面保護工法を併用する工法が知られている。一般にこれらの対策は、コンクリート構造物が劣化した後に実施される対策であり、対策には多くの費用が発生するとともに再劣化のリスクも発生する。そこで、コンクリート構造物の劣化がまだ顕在化する前に予防保全的な対応がとられることがある。その対策の主なものとして、表面保護工法、アルカリ付与工法、表面含浸工法などが知られている。
しかし、表面保護工法は、定期的な表面被覆材の塗り替えが必要なことやピンホール等で想定外の劣化が進行するリスクがあり、アルカリ付与工法はアルカリの浸透性に課題があり、十分な予防保全効果が得られないリスクがあり、表面含浸工法は含浸剤の浸透が所定の深さまで達しないことがあるなど、当初期待した予防保全効果が十分に得られないリスクがあるものであった。
Factors that deteriorate concrete structures include salt damage, neutralization, frost damage, alkali aggregate reaction, and chemical concrete corrosion. Known repair methods for structures that have deteriorated include cross-sectional restoration methods, surface protection methods, crack repair methods, salt removal methods, cathodic protection methods, and methods that combine these methods with surface protection methods. Yes. In general, these measures are implemented after the concrete structure is deteriorated, and the measure involves a lot of costs and a risk of re-deterioration. Therefore, preventive maintenance measures may be taken before the deterioration of the concrete structure is still apparent. As the main countermeasures, a surface protection method, an alkali application method, a surface impregnation method and the like are known.
However, the surface protection method has a risk that it is necessary to periodically repaint the surface coating material and there is a risk of unexpected deterioration due to pinholes, etc. There is a risk that the preventive maintenance effect cannot be obtained, and the surface impregnation method has a risk that the preventive maintenance effect expected initially cannot be obtained sufficiently, such as the penetration of the impregnating agent may not reach the predetermined depth. .

表面含浸工法によって防錆効果のある成分を付与する技術としては、アルキニルオキシ基含有ポリアルキレンオキサイドを含有した亜硝酸塩水溶液を塗布する工法(特許文献1)、シリコーンオイル、選択されたアルコールおよびケイ酸含有水溶液に二酸化ケイ素を溶解させた水溶液を塗布する工法(特許文献2)、水と一種以上の水溶性珪酸塩とコロイド状珪酸塩と還元剤とを含み、水溶性珪酸塩には周期律表第1A族に属するアルカリ金属を含み、還元剤がチオ尿素またはチオ硫酸ナトリウムのいずれかであることを特徴とする改質剤を塗布する工法(特許文献3)、特殊な多孔質無機質材料用無溶剤一液常温硬化型含浸材を塗布する工法(特許文献4)、アルキルアルコキシシラン及び/又はその縮合物及びシクロデキストリンが水中に分散してなる吸水防止材を塗布する工法(特許文献5)、アルカリ金属シリケート水溶液にこれと異なる1種類あるいは複数種類のアルカリ金属イオン源を配合した水溶液に対して、重量比5〜20%でシランシロキサン系エマルジョンを混合して、1液性としたことを特徴とするケイ酸塩系コンクリート表面撥水含浸材を塗布する工法(特許文献6)や、ケイ酸塩系表面含浸材とコンクリートとの反応を促進する反応促進材であって、当該反応促進材がカルシウム成分と亜硝酸塩とを含有することを特徴とする反応促進材を塗布する工法(特許文献7)などが知られている。
しかし、これらの技術は溶液を塗布してコンクリートへ浸透させるため、低い粘性を特徴とする技術であり、上面からの浸透には有利であるが、壁面や天井面への浸透は思うようにいかない難点があった。
As a technique for imparting a component having an antirust effect by the surface impregnation method, a method of applying a nitrite aqueous solution containing an alkynyloxy group-containing polyalkylene oxide (Patent Document 1), silicone oil, selected alcohol and silicic acid A method of applying an aqueous solution in which silicon dioxide is dissolved in an aqueous solution (Patent Document 2), including water, one or more water-soluble silicates, a colloidal silicate, and a reducing agent. A method of applying a modifier containing an alkali metal belonging to Group 1A, wherein the reducing agent is either thiourea or sodium thiosulfate (Patent Document 3), special porous inorganic material useless Method of applying a solvent one-component room temperature curing type impregnating material (Patent Document 4), alkylalkoxysilane and / or its condensate and cyclodextrin are in water A method of applying a water-absorbing preventing material dispersed (Patent Document 5), an aqueous solution in which one or more alkali metal ion sources different from this are mixed in an aqueous alkali metal silicate solution at a weight ratio of 5 to 20%. A silicate-based concrete surface water-repellent impregnating method characterized by mixing a silanesiloxane-based emulsion into a one-component type (Patent Document 6), a silicate-based surface impregnating material and concrete A method of applying a reaction accelerator (Patent Document 7), which is a reaction accelerator that promotes the reaction, is characterized in that the reaction accelerator contains a calcium component and nitrite.
However, these techniques are characterized by low viscosity because they apply the solution and permeate into the concrete, which is advantageous for permeation from the top surface. There were no difficulties.

同様に亜硝酸リチウム溶液を含浸させた上でポリマーセメント組成物で被覆する工法(特許文献8)、ケイ酸塩の水溶液を含浸させた上で亜硝酸カルシウムの水溶液をさらに含浸させる工法(特許文献9)、セメント系組成体の表面に、珪弗化水素酸金属塩の水溶液を塗布し、乾燥後に、前記セメント系組成体の表面に、浸透性を有する吸水防止材を塗布する工法(特許文献10)、母材コンクリートに生じたひび割れ部の表面を目止めシールで塞ぎ、浸透性吸水防止材を、ひび割れ部の内部に注入し、ひび割れ部内のコンクリート表面に浸透性吸水防止材を浸透させて吸水防止層を形成したことを特徴とする工法(特許文献11)なども知られている。
しかし、これらの技術は同じ施工面に対して数回の施工作業が必要であり、作業手間がかかる難点があった。
Similarly, a method of impregnating a lithium nitrite solution and then coating with a polymer cement composition (Patent Document 8), a method of impregnating an aqueous solution of silicate and further impregnating an aqueous solution of calcium nitrite (Patent Document) 9) A method of applying an aqueous solution of a metal hydrofluoride salt to the surface of the cementitious composition, and after drying, applying a water absorption preventing material having permeability to the surface of the cementitious composition (Patent Document) 10) Seal the surface of the cracked part in the base material concrete with a sealing seal, inject the permeable water absorption prevention material into the cracked part, and infiltrate the permeable water absorption prevention material into the concrete surface in the cracked part. A construction method (Patent Document 11) characterized by forming a water absorption preventing layer is also known.
However, these techniques require several times of construction work on the same construction surface, and there is a problem that it takes time and effort.

水溶性リチウム化合物を含む水溶液を吸水させた高吸水性デンプン類を電気化学的脱塩工法の電解質部材とする技術(特許文献12)も知られている。しかし、そもそも電気回路を必要とするため機材の準備の手間がかかるうえ、施工も数週間から数か月は実施する必要があり、容易な施工性という点では難点もあった。   A technique (Patent Document 12) is also known in which superabsorbent starches obtained by absorbing an aqueous solution containing a water-soluble lithium compound are used as an electrolyte member of an electrochemical desalting method. However, since an electric circuit is required in the first place, it takes time and effort to prepare the equipment, and it is necessary to carry out the construction for several weeks to several months.

特許第4624193号公報Japanese Patent No. 4624193 特許第5268375号公報Japanese Patent No. 5268375 特許第5438264号公報Japanese Patent No. 5438264 特許第5762496号公報Japanese Patent No. 5764296 特開2009−155641号公報JP 2009-155641 A 特開2014−181156号公報JP 2014-181156 A 特開2014−201929号公報JP 2014-201929 A 特許第2939490号公報Japanese Patent No. 2939490 特許第2909739号公報Japanese Patent No. 29099739 特許第5277682号公報Japanese Patent No. 5277682 特開2009−249943号公報JP 2009-249943 A 特開2009−126728公報JP 2009-126728 A

本発明者は、前記課題を解決すべく種々検討を重ねた結果、特定の粘度をもつ亜硝酸イオンを含有するゲル状物質を使用し、特定の条件でコンクリート表面に塗布を行うことにより、簡便な施工方法で効率的に防錆成分である亜硝酸イオンを長期間にわたってコンクリート内部に浸透させることが可能となり、信頼性の高い鉄筋コンクリート構造物の保全工法を完成するに到った。
本発明は、特定の粘度を持つ亜硝酸イオン含有のゲル状物質を対象となるコンクリート表面に特定量塗布することにより、簡便な施工方法で効率的に防錆成分である亜硝酸イオンを長期間にわたってコンクリート内部に浸透させることが可能となり、信頼性の高い鉄筋コンクリート構造物の保全工法、ならびに該工法に使用される塗布材を提供することを目的とする。
As a result of various studies to solve the above problems, the present inventor has used a gel-like substance containing nitrite ions having a specific viscosity and applied it to the concrete surface under specific conditions. With a simple construction method, nitrite ions, which are rust-preventive components, can be permeated into the concrete for a long period of time, leading to the completion of a highly reliable maintenance method for reinforced concrete structures.
The present invention applies a specific amount of a nitrite ion-containing gel substance having a specific viscosity to a target concrete surface, thereby efficiently applying nitrite ions, which are rust preventive components, for a long period of time with a simple construction method. An object of the present invention is to provide a highly reliable maintenance method for a reinforced concrete structure and a coating material used for the method.

本発明は、上記課題を解決するために、以下の手段を採用する。
(1)亜硝酸イオンの含有量が5質量%以上の水溶液に増粘剤を混和してなる粘度5000mPa・s以上100000mPa・s以下のゲル状物質を、鉄筋コンクリート構造物の表面に100g/m以上3000g/m以下の塗布量で塗布することを特徴とする鉄筋コンクリート構造物の保全工法。
(2)前記増粘剤が、ポリアクリルアミドとポリエチレングリコールとを含むことを特徴とする、(1)の鉄筋コンクリート構造物の保全工法。
(3)前記増粘剤100質量部中、ポリアクリルアミドが50質量部以上90質量部以下、ポリエチレングリコールが10質量部以上50質量部以下であることを特徴とする、(2)の鉄筋コンクリート構造物の保全工法。
(4)前記亜硝酸イオンを含有する水溶液が亜硝酸リチウム水溶液であることを特徴とする、(1)〜(3)のいずれかの鉄筋コンクリート構造物の保全工法。
(5)亜硝酸イオンの含有量が5質量%以上の水溶液に増粘剤を混和してなる、粘度5000mPa・s以上100000mPa・s以下のゲル状物質である鉄筋コンクリート構造物用塗布材。
(6)前記増粘剤が、ポリアクリルアミドとポリエチレングリコールとを含むことを特徴とする、(5)の鉄筋コンクリート構造物用塗布材。
(7)前記増粘剤100質量部中、ポリアクリルアミドが50質量部以上90質量部以下、ポリエチレングリコールが10質量部以上50質量部以下であることを特徴とする、(6)の鉄筋コンクリート構造物用塗布材。
(8)前記亜硝酸イオンを含有する水溶液が亜硝酸リチウム水溶液であることを特徴とする、(5)〜(7)のいずれかの鉄筋コンクリート構造物用塗布材。
The present invention employs the following means in order to solve the above problems.
(1) A gel-like substance having a viscosity of 5000 mPa · s or more and 100000 mPa · s or less obtained by mixing a thickener in an aqueous solution containing 5% by mass or more of nitrite ions is applied to the surface of the reinforced concrete structure at 100 g / m 2. The maintenance method of the reinforced concrete structure characterized by apply | coating with the application amount of 3000 g / m < 2 > or less.
(2) The maintenance method for a reinforced concrete structure according to (1), wherein the thickener contains polyacrylamide and polyethylene glycol.
(3) The reinforced concrete structure according to (2), wherein polyacrylamide is 50 to 90 parts by mass and polyethylene glycol is 10 to 50 parts by mass in 100 parts by mass of the thickener. Conservation method.
(4) The maintenance method for a reinforced concrete structure according to any one of (1) to (3), wherein the aqueous solution containing nitrite ions is an aqueous lithium nitrite solution.
(5) A coating material for a reinforced concrete structure, which is a gel-like substance having a viscosity of 5000 mPa · s or more and 100000 mPa · s or less, obtained by mixing a thickener with an aqueous solution having a nitrite ion content of 5% by mass or more.
(6) The coating material for reinforced concrete structures according to (5), wherein the thickener contains polyacrylamide and polyethylene glycol.
(7) The reinforced concrete structure according to (6), wherein polyacrylamide is from 50 parts by weight to 90 parts by weight and polyethylene glycol is from 10 parts by weight to 50 parts by weight in 100 parts by weight of the thickener. Coating material.
(8) The coating material for reinforced concrete structures according to any one of (5) to (7), wherein the aqueous solution containing nitrite ions is an aqueous lithium nitrite solution.

本発明により、簡便な施工方法で効率的に防錆成分である亜硝酸イオンを長期間にわたってコンクリート内部に浸透させることが可能となり、信頼性の高い鉄筋コンクリート構造物の保全が出来る。   According to the present invention, it is possible to efficiently infiltrate concrete with nitrite ions, which are rust preventive components, over a long period of time by a simple construction method, and it is possible to maintain a highly reliable reinforced concrete structure.

以下、本発明を詳細に説明する。
なお、本発明における部や%は特に断りがない限り、質量基準で示す。
Hereinafter, the present invention will be described in detail.
In addition, unless otherwise indicated, the part and% in this invention are shown on a mass basis.

本発明で使用する亜硝酸イオンを含有する水溶液は、防錆成分である亜硝酸イオンを含有する水溶液であり、本発明で規定する亜硝酸イオンを含有するものであればよい。一般に金属塩の水溶液として、亜硝酸カリウム、亜硝酸カルシウム、亜硝酸ナトリウム、亜硝酸バリウム、亜硝酸リチウムなどの水溶液が知られている。その他の成分については特に限定するものではなく、硝酸イオン、炭酸イオンなどが混在しても本発明の目的を阻害しない限り問題ない。中でも亜硝酸リチウム水溶液は、コンクリートのアルカリシリカ反応を抑制する効果も付与することができることから、より好ましいものである。   The aqueous solution containing nitrite ions used in the present invention is an aqueous solution containing nitrite ions, which is a rust preventive component, as long as it contains nitrite ions as defined in the present invention. In general, aqueous solutions of potassium nitrite, calcium nitrite, sodium nitrite, barium nitrite, lithium nitrite and the like are known as aqueous solutions of metal salts. Other components are not particularly limited, and even if nitrate ions, carbonate ions, and the like are mixed, there is no problem as long as the object of the present invention is not impaired. Among these, an aqueous lithium nitrite solution is more preferable because it can also impart an effect of suppressing the alkali silica reaction of concrete.

水溶液中に含まれる亜硝酸イオンの量は、5%以上であり、10%以上40%以下が好ましく、35%以上40%以下がより好ましい。水溶液中に含まれる亜硝酸イオンが5%未満では、鉄筋に十分な量の亜硝酸イオンを供給することができず、本発明の効果が十分に得られない。なお40%を超えた飽和状態に近いものでも効果はあるが、効果は頭打ちとなるため経済的でない。   The amount of nitrite ions contained in the aqueous solution is 5% or more, preferably 10% or more and 40% or less, and more preferably 35% or more and 40% or less. When the amount of nitrite ions contained in the aqueous solution is less than 5%, a sufficient amount of nitrite ions cannot be supplied to the reinforcing bars, and the effects of the present invention cannot be obtained sufficiently. Even if it is close to a saturation state exceeding 40%, there is an effect, but the effect reaches a peak and is not economical.

本発明で使用する増粘剤は、本発明で規定する粘度が得られるものであれば特に限定されるものではないが、セルロースを主体としたものや、スターチエーテル、グルカン、デュータンガム、グァーガム、スターチエーテル、アルキルアリルスルホン酸とアルキルアンモニウム塩併用系やそれらを合成した合成ポリマー系の増粘剤、ポリアクリル酸ナトリウムを主体とした吸水性高分子などを使用することができる。好ましい増粘剤は、ポリアクリルアミドとポリエチレングリコールとを含むものであり、増粘剤100部中、ポリアクリルアミドが50部以上90部以下、ポリエチレングリコールが10部以上50部以下のものが特に好ましい。該増粘剤を用いることで、塗布材が、気中においても鉄筋コンクリート構造物表面に強固に付着した状態で長期的に残存し、亜硝酸イオンをコンクリート中に供給できる効果が得られる。   The thickener used in the present invention is not particularly limited as long as the viscosity specified in the present invention can be obtained, but those mainly composed of cellulose, starch ether, glucan, dutan gum, guar gum, starch Ether, alkylallylsulfonic acid and alkylammonium salt combined systems, synthetic polymer-based thickeners obtained by synthesizing them, water-absorbing polymers mainly composed of sodium polyacrylate, and the like can be used. A preferred thickener includes polyacrylamide and polyethylene glycol, and among 100 parts of the thickener, polyacrylamide is preferably 50 parts or more and 90 parts or less, and polyethylene glycol is preferably 10 parts or more and 50 parts or less. By using the thickener, the coating material remains for a long time in the state of being firmly attached to the surface of the reinforced concrete structure even in the air, and an effect of supplying nitrite ions into the concrete can be obtained.

本発明で使用する亜硝酸イオンと増粘剤を混和したゲル状物質は、粘度5000mPa・s以上100000mPa・s以下であり、10000mPa・s以上50000mPa・sが好ましい。前記粘度のゲル状物質であることにより、コンクリート構造物の表面への付着量を任意に調整できる。粘度が5000mPa・sよりも小さいと、壁面や天井面の施工で流れ落ち、所定量の施工が困難になるとともに、施工後に風雨等の影響で鉄筋コンクリート構造物表面から流失し易くなり、長期間にわたって亜硝酸イオンをコンクリート内部に供給することができず、本発明の効果が十分に得られないことがある。粘度が100000mPa・sを超えると粘りが強くなり、施工が難しく、亜硝酸イオンの浸透も阻害することがあり、本発明の効果が十分に得られないことがある。   The gel substance mixed with the nitrite ion and the thickener used in the present invention has a viscosity of 5,000 mPa · s to 100,000 mPa · s, preferably 10,000 mPa · s to 50,000 mPa · s. By using the gel-like substance having the viscosity, the amount of adhesion to the surface of the concrete structure can be arbitrarily adjusted. If the viscosity is less than 5000 mPa · s, it will flow down during the construction of walls and ceilings, making it difficult to carry out a predetermined amount of construction. Nitrate ions cannot be supplied into the concrete, and the effects of the present invention may not be sufficiently obtained. When the viscosity exceeds 100,000 mPa · s, the viscosity becomes strong, the construction is difficult, the penetration of nitrite ions may be inhibited, and the effects of the present invention may not be sufficiently obtained.

本発明で使用する亜硝酸イオンと増粘剤を混和したゲル状物質の塗布量は、前述の好ましい範囲の粘度のもので、鉄筋コンクリート構造物の表面に100g/m以上3000g/m以下が好ましく、500g/m以上1000g/m以下がより好ましい。100g/mより少ないと、十分な亜硝酸イオンを供給できないことがあり、3000g/mを超えると施工が困難になるばかりかコストもかさみ、本発明の効果を十分に得られないことがある。 The coating amount of the gel substance mixed with the nitrite ion and the thickener used in the present invention is the above-mentioned preferable range of viscosity, and the surface of the reinforced concrete structure is 100 g / m 2 or more and 3000 g / m 2 or less. Preferably, 500 g / m 2 or more and 1000 g / m 2 or less is more preferable. When the amount is less than 100 g / m 2 , sufficient nitrite ions may not be supplied. When the amount exceeds 3000 g / m 2 , the construction is difficult and the cost is high, and the effects of the present invention cannot be sufficiently obtained. is there.

本発明で使用する亜硝酸イオンと増粘剤を混和したゲル状物質の製造方法は、均一に混ぜることができる既存のいかなる方法でもよい。本発明では,各材料の混合方法は特に限定されるものではなく、それぞれの材料を施工時に混合しても良いし、あらかじめその一部、あるいは全部を混合しておいても差し支えない。混合装置としては、既存の如何なる装置も使用可能であり、例えば、傾胴ミキサ、オムニミキサ、ヘンシェルミキサ、V型ミキサ、プロシェアミキサ、及びナウターミキサ等が挙げられる。   The method for producing a gel material mixed with nitrite ions and a thickener used in the present invention may be any existing method that can be uniformly mixed. In the present invention, the mixing method of each material is not particularly limited, and the respective materials may be mixed at the time of construction, or a part or all of them may be mixed in advance. Any existing apparatus can be used as the mixing apparatus, and examples thereof include a tilting cylinder mixer, an omni mixer, a Henschel mixer, a V-type mixer, a proshear mixer, and a nauter mixer.

本発明で使用する亜硝酸イオンと増粘剤を混和したゲル状物質をコンクリート構造物の表面に塗布する方法は、既存のいかなる方法でもよい。はけ塗り、コテ塗り、ローラー塗りなど人の手で塗布する方法や、リシンガンなどのスプレーガン等を用いて圧縮エアを用いて吹き付けて施工する方法がある。
以下、実施例、比較例を挙げてさらに詳細に内容を説明するが、本発明はこれらに限定されるものではない。
Any existing method may be used as a method of applying a gel substance mixed with nitrite ions and a thickener to the surface of a concrete structure used in the present invention. There are a method of applying by hand such as brush coating, trowel coating, roller coating, and a method of spraying with compressed air using a spray gun such as a ricin gun.
Hereinafter, although an example and a comparative example are given and the contents are explained in detail, the present invention is not limited to these.

「実験例1」
150×150×150mmの立方体の鉄筋コンクリート供試体を作製した。コンクリートは単位セメント量250kg/m、水セメント比55%、s/a=45%、スランプ10±3cm、空気量4.0±1.0%のコンクリートとした。コンクリートにはあらかじめ塩化物イオン量が2kg/mとなるように塩化ナトリウムを混和した。
供試体の作製は20℃の恒温室で行った。内部には、かぶり3cmで公称直径が19mmの異型鉄筋D19を配置している。供試体は型枠に鉄筋を設置し、コンクリートを打設後、翌日に脱型し、20℃の恒温室内で材齢28日まで封緘養生を行った。養生終了後、かぶり側の面を下にした状態で以下に示す塗布材を500g/mとなるように刷毛で塗布した。塗布材の塗布後、新潟県糸魚川市の屋外に6か月間暴露した。暴露終了後、かぶり側の面から鉄筋を避けるようにコンクリートコアを抜き取り、かぶり側の面から1cmずつ、5cmまでコンクリートをスライスした。スライスしたコンクリートはジョークラッシャーとブラウンクラッシャーを用いて150μm以下の大きさに粉砕し、コンクリート中の全塩化物イオン量をJIS A 1154「硬化コンクリート中に含まれる塩化物イオンの試験方法」により、亜硝酸イオン量をイオンクロマトグラフにより測定した。
測定結果から、各コンクリートスライスのサンプルに含まれる塩化物イオンと亜硝酸イオンのモル比である〔NO/Cl〕比を算出し、鉄筋位置(かぶり面から3〜4cm)での〔NO/Cl〕比を比較した。また、同時に鉄筋を供試体から取り出し、変色している箇所をマーキングして鉄筋の腐食面積を計測した。結果を表1に示す。
"Experiment 1"
A 150 × 150 × 150 mm cubic reinforced concrete specimen was prepared. The concrete was a concrete having a unit cement amount of 250 kg / m 3 , a water cement ratio of 55%, s / a = 45%, a slump of 10 ± 3 cm, and an air amount of 4.0 ± 1.0%. Sodium chloride was mixed in the concrete in advance so that the chloride ion amount was 2 kg / m 3 .
The specimen was produced in a constant temperature room at 20 ° C. Inside, a deformed reinforcing bar D19 having a cover of 3 cm and a nominal diameter of 19 mm is arranged. The test specimen was provided with reinforcing bars in the formwork, casted with concrete, demolded the next day, and sealed and cured in a constant temperature room at 20 ° C. until the age of 28 days. After curing, the coating material shown below was applied with a brush so that the surface on the cover side was down to 500 g / m 2 . After applying the coating material, it was exposed to the outdoors in Itoigawa City, Niigata Prefecture for 6 months. After the exposure, the concrete core was removed from the cover side surface so as to avoid the reinforcing bars, and the concrete was sliced from the cover side surface to 5 cm in 1 cm increments. The sliced concrete is crushed to a size of 150 μm or less using a jaw crusher and a brown crusher, and the total chloride ion content in the concrete is determined according to JIS A 1154 “Test method for chloride ions contained in hardened concrete”. The amount of nitrate ions was measured by ion chromatography.
From the measurement results, to calculate the molar ratios [NO 2 / Cl] ratio of chloride ion and nitrite ion in the sample of each concrete slice, at rebar position (3-4 cm from head surface) [NO 2 / Cl] ratio was compared. At the same time, the reinforcing bars were taken out from the specimen, and the discolored portions were marked to measure the corrosion area of the reinforcing bars. The results are shown in Table 1.

<使用材料>
増粘剤A:増粘剤100質量部中、市販のポリアクリルアミド粉末70部、一級試薬のポリエチレングリコール粉末30部の割合で調整したもの
亜硝酸水溶液A:特級試薬の亜硝酸リチウムを純水に溶解して調整した亜硝酸イオン35%水溶液
塗布材A:亜硝酸水溶液Aに増粘剤Aを混和して粘度2000mPa・sに調整したもの
塗布材B:亜硝酸水溶液Aに増粘剤Aを混和して粘度5000mPa・sに調整したもの
塗布材C:亜硝酸水溶液Aに増粘剤Aを混和して粘度10000mPa・sに調整したもの
塗布材D:亜硝酸水溶液Aに増粘剤Aを混和して粘度30000mPa・sに調整したもの
塗布材E:亜硝酸水溶液Aに増粘剤Aを混和して粘度50000mPa・sに調整したもの
塗布材F:亜硝酸水溶液Aに増粘剤Aを混和して粘度100000mPa・sに調整したもの
塗布材G:亜硝酸水溶液Aに増粘剤Aを混和して粘度150000mPa・sに調整したもの
<Materials used>
Thickener A: 70 parts by weight of a commercially available polyacrylamide powder and 30 parts by weight of a first grade polyethylene glycol powder in 100 parts by weight of a thickener Aqueous nitrous acid A: Lithium nitrite, a special grade reagent, in pure water Dissolved and adjusted nitrite ion 35% aqueous solution coating material A: Thickener A mixed with nitrite aqueous solution A to adjust viscosity to 2000 mPa · s Coating material B: Thickener A added to nitrite aqueous solution A Coating material C mixed and adjusted to a viscosity of 5000 mPa · s Coating material C: Thickener A mixed with a nitrite aqueous solution A and adjusted to a viscosity of 10000 mPa · s Coating material D: Thickener A added to a nitrous acid aqueous solution A Coating material E mixed and adjusted to a viscosity of 30000 mPa · s Coating material E: Thickener A mixed with a nitrous acid aqueous solution A Adjusted to a viscosity of 50000 mPa · s Coating material F: Thickener A added to a nitrous acid aqueous solution A Blend Viscosity 100000 mPa · s as coating material was adjusted to G: those adjusted to a viscosity 150000mPa · s by mixing the thickener A in nitrite solution A

Figure 2017210815
Figure 2017210815

表1より、亜硝酸イオンと増粘剤を混和したゲル状物質の粘度を5000mPa・s以上100000mPa・s以下とすることで良好な鉄筋腐食抑制効果を示すことが分かる。
他方、ゲル状物質の粘度が5000mPa・s未満である実験No.1−2は、所定量の施工ができず、亜硝酸イオンの供給が十分でないため、鉄筋腐食抑制効果が不十分であった。また、ゲル状物質の粘度が100000mPa・s超である実験No.1−8は、高い粘度が亜硝酸イオンの浸透を阻害し、亜硝酸イオンの供給が十分でないため、鉄筋腐食抑制効果が不十分であった。
From Table 1, it can be seen that a satisfactory reinforcing steel corrosion inhibition effect is exhibited by setting the viscosity of the gel-like substance in which nitrite ions and a thickener are mixed to 5000 mPa · s or more and 100000 mPa · s or less.
On the other hand, in Experiment No. in which the viscosity of the gel-like substance is less than 5000 mPa · s. No. 1-2 was not able to perform a predetermined amount of work, and the supply of nitrite ions was not sufficient, so that the reinforcing bar corrosion suppression effect was insufficient. In addition, Experiment No. in which the viscosity of the gel-like substance is more than 100,000 mPa · s. In No. 1-8, since the high viscosity hinders the penetration of nitrite ions and the supply of nitrite ions is not sufficient, the effect of inhibiting corrosion of reinforcing steel bars was insufficient.

「実験例2」
亜硝酸溶液を種類や濃度を変え、増粘剤Aを用い、粘度を30000mPa・sとした塗布材を用いたこと以外は実験例1と同様に試験を行った。結果を表2に示す。
"Experimental example 2"
The test was performed in the same manner as in Experimental Example 1 except that the type and concentration of the nitrous acid solution were changed, the thickener A was used, and the coating material having a viscosity of 30000 mPa · s was used. The results are shown in Table 2.

<使用材料>
亜硝酸水溶液B:1級試薬の亜硝酸カリウムを純水に溶解して調整した亜硝酸イオン3%水溶液
亜硝酸水溶液C:1級試薬の亜硝酸カリウムを純水に溶解して調整した亜硝酸イオン5%水溶液
亜硝酸水溶液D:1級試薬の亜硝酸カリウムを純水に溶解して調整した亜硝酸イオン10%水溶液
亜硝酸水溶液E:1級試薬の亜硝酸カリウムを純水に溶解して調整した亜硝酸イオン35%水溶液
亜硝酸水溶液F:1級試薬の亜硝酸カリウムを純水に溶解して調整した亜硝酸イオン40%水溶液
亜硝酸水溶液G:1級試薬の亜硝酸カリウムを純水に溶解して調整した亜硝酸イオン50%水溶液
亜硝酸水溶液A:1級試薬の亜硝酸リチウムを純水に溶解して調整した亜硝酸イオン35%水溶液
亜硝酸水溶液H:1級試薬の亜硝酸ナトリウムを純水に溶解して調整した亜硝酸イオン35%水溶液
亜硝酸水溶液I:1級試薬の亜硝酸カルシウムを純水に溶解して調整した亜硝酸イオン35%水溶液
亜硝酸水溶液J:1級試薬の亜硝酸バリウムを純水に溶解して調整した亜硝酸イオン35%水溶液
<Materials used>
Aqueous nitrous acid B: 3% aqueous solution of nitrite ion prepared by dissolving potassium nitrite as a first grade reagent in pure water C: Nitrite ion 5 prepared by dissolving potassium nitrite as a first grade reagent in pure water % Aqueous nitrous acid solution D: prepared by dissolving potassium nitrite of the first grade reagent in pure water 10% aqueous solution of nitrite ion prepared by dissolving the first grade potassium nitrite E: nitrous acid prepared by dissolving the first grade potassium nitrite in pure water Ion 35% aqueous solution Nitrite aqueous solution F: First grade reagent potassium nitrite dissolved in pure water and adjusted 40% aqueous solution Nitrite aqueous solution G: First grade reagent potassium nitrite dissolved in pure water Nitrite ion 50% aqueous solution Nitrous acid aqueous solution A: First grade reagent lithium nitrite dissolved in pure water and adjusted 35% aqueous solution nitrite aqueous solution H: First grade reagent sodium nitrite dissolved in pure water Nitrite ion 35% aqueous solution nitrite aqueous solution I: First grade reagent calcium nitrite dissolved in pure water and adjusted Nitrite ion 35% aqueous solution nitrite aqueous solution J: first grade reagent barium nitrite pure Nitrite ion 35% aqueous solution prepared by dissolving in water

Figure 2017210815
Figure 2017210815

表2より、亜硝酸イオンと増粘剤を混和したゲル状物質に用いる亜硝酸水溶液中に含まれる亜硝酸イオンの量を5%以上とすることで、優れた鉄筋腐食抑制効果を示すことが分かる。より好ましい亜硝酸イオンの含有量は10%以上40%以下である。また、亜硝酸水溶液に含まれる金属イオンは、ナトリウム、カリウム、リチウム、バリウムでも同様な鉄筋腐食抑制効果を示すことが分かる。
他方、亜硝酸水溶液中に含まれる亜硝酸イオンの量が5%未満である実験No.2−1では、亜硝酸塩の供給が十分でないため鉄筋腐食抑制効果が不十分であった。
From Table 2, it can be shown that the amount of nitrite ion contained in the nitrite aqueous solution used in the gelled material mixed with nitrite ion and thickener is 5% or more, which shows an excellent corrosion inhibition effect on reinforcing steel bars. I understand. A more preferable content of nitrite ions is 10% or more and 40% or less. Moreover, it turns out that the metal ion contained in nitrous acid aqueous solution shows the same reinforcing bar corrosion inhibitory effect also in sodium, potassium, lithium, and barium.
On the other hand, in Experiment No. 5 in which the amount of nitrite ions contained in the aqueous nitrite solution was less than 5%. In 2-1, since the supply of nitrite was not sufficient, the reinforcing steel corrosion inhibitory effect was insufficient.

「実験例3」
亜硝酸リチウムを用いた亜硝酸イオン濃度35%の水溶液に増粘剤Aを用い、粘度を30000mPa・sとした塗布材Aを用いて、塗布量を変えたこと以外は実験例1と同様に試験を行った。結果を表3に示す。
"Experiment 3"
Similar to Experimental Example 1 except that the thickener A was used in an aqueous solution of 35% nitrite ion concentration using lithium nitrite and the coating material A was used with a viscosity of 30000 mPa · s, and the coating amount was changed. A test was conducted. The results are shown in Table 3.

Figure 2017210815
Figure 2017210815

表3より、亜硝酸イオンと増粘剤を混和したゲル状物質を鉄筋コンクリート構造物の表面に100g/m以上3000g/m以下の塗布量とすることで、特に良好な鉄筋腐食抑制効果を示すことが分かる。
なお、ゲル状物質の塗布量が3000g/m超である実験No.3−5は、施工の手間がかかる割に鉄筋腐食面積率の低減効果が小さいものであった。
From Table 3, it is possible to obtain a particularly good rebar corrosion inhibition effect by applying a gel-like substance mixed with nitrite ions and a thickener to the surface of the reinforced concrete structure at a coating amount of 100 g / m 2 or more and 3000 g / m 2 or less. You can see that
In addition, experiment No. whose application amount of a gel-like substance is more than 3000 g / m < 2 >. No. 3-5 had a small effect of reducing the corrosion rate of the reinforcing steel bar for the construction work.

「実験例4」
増粘剤を下記に示すように種類を変え、粘度を30000mPa・sとしたこと以外は実験例1と同様に試験を行った。
また、塗布材塗布後の屋外暴露を12か月まで継続した際の表面状況を観察した。表面状況観察時の判定基準は以下の通りである。
◎:塗布材の表面に弾力があり、塗布材に水分が残存している。
○:塗布材の表面に弾力はないが、指で表面を触っても壊れない。
△:塗布材の表面に弾力がないが、塗布材は表面に残存している。指で触れるとわずかに壊れる。
結果を表4に示す。
"Experimental example 4"
The test was performed in the same manner as in Experimental Example 1 except that the thickener was changed as shown below and the viscosity was changed to 30000 mPa · s.
Moreover, the surface condition when the outdoor exposure after application | coating material application was continued for 12 months was observed. The criteria for observing the surface condition are as follows.
A: The surface of the coating material is elastic, and moisture remains in the coating material.
○: Although there is no elasticity on the surface of the coating material, it is not broken even if the surface is touched with a finger.
Δ: There is no elasticity on the surface of the coating material, but the coating material remains on the surface. Slightly broken when touched with a finger.
The results are shown in Table 4.

<使用材料>
増粘剤B:メチルセルロース系増粘剤 ハイメトローズ30000PE(信越化学社製)
増粘剤C:スターチエーテル系増粘剤 スタービスSE25F(BASF社製)
増粘剤D:デュータンガム系増粘剤 (シーピーケルコ社製)
増粘剤E:グァーガム系増粘剤 (シーピーケルコ社製)
増粘剤F:アルキルスルホン酸系増粘剤 ビスコトップ(花王製)
増粘剤G:変性ポリアクリル系吸水性高分子 アクアリックCS (日本触媒製)
増粘剤H:増粘剤100質量部中、市販のポリアクリルアミド粉末45部、一級試薬のポリエチレングリコール粉末55部の割合で調整したもの
増粘剤I:増粘剤100質量部中、市販のポリアクリルアミド粉末50部、一級試薬のポリエチレングリコール粉末50部の割合で調整したもの
増粘剤J:増粘剤100質量部中、市販のポリアクリルアミド粉末90部、一級試薬のポリエチレングリコール粉末10部の割合で調整したもの
増粘剤K:増粘剤100質量部中、市販のポリアクリルアミド粉末95部、一級試薬のポリエチレングリコール粉末5部の割合で調整したもの
<Materials used>
Thickener B: Methylcellulose thickener Himetrozu 30000PE (Shin-Etsu Chemical Co., Ltd.)
Thickener C: Starch ether thickener Starvis SE25F (BASF)
Thickener D: Dutan gum thickener (manufactured by CPE Kelco)
Thickener E: Guar gum thickener (Cheap Kelco)
Thickener F: Alkylsulfonic acid thickener Visco Top (manufactured by Kao)
Thickener G: Modified polyacrylic water-absorbing polymer Aquaric CS (Nippon Shokubai)
Thickener H: Thickener adjusted at a ratio of 45 parts of commercially available polyacrylamide powder and 55 parts of polyethylene glycol powder of primary reagent in 100 parts by weight of thickener Thickener I: Commercially available in 100 parts by weight of thickener Thickener J: 50 parts of polyacrylamide powder and 50 parts of polyethylene glycol powder as primary reagent Thickener J: 90 parts of commercially available polyacrylamide powder and 10 parts of polyethylene glycol powder as primary reagent in 100 parts by weight of thickener Thickener K: Adjusted at a ratio of 95 parts of commercially available polyacrylamide powder and 5 parts of polyethylene glycol powder as a first grade reagent in 100 parts by weight of thickener

Figure 2017210815
Figure 2017210815

表4より、亜硝酸イオンと増粘剤を混和したゲル状物質に使用する増粘剤は、本発明で規定する粘度が得られるものであれば特に限定されるものではなく、各種の増粘剤の使用で、塗布材が、気中においても鉄筋コンクリート構造物表面に長期的に残存し、所定の鉄筋腐食抑制効果が得られる。なかでも、ポリアクリルアミドとポリエチレングリコールとを含む増粘剤は、鉄筋コンクリート構造物表面に塗布材が強固に付着し、特に増粘剤100部中、ポリアクリルアミドが50部以上90部以下、ポリエチレングリコールが10部以上50部以下の増粘剤では、塗布材が水分を含み弾力を保った状態で残存し、亜硝酸イオンをコンクリート中に供給できる効果が高いことが分かる。   From Table 4, the thickener used for the gel material mixed with nitrite ion and the thickener is not particularly limited as long as the viscosity specified in the present invention can be obtained. By using the agent, the coating material remains on the surface of the reinforced concrete structure for a long time even in the air, and a predetermined reinforcing steel corrosion inhibiting effect can be obtained. Among them, the thickener containing polyacrylamide and polyethylene glycol has a coating material firmly attached to the surface of the reinforced concrete structure. Especially, in 100 parts of the thickener, polyacrylamide is 50 parts or more and 90 parts or less, polyethylene glycol is It can be seen that the thickener of 10 parts or more and 50 parts or less remains high in a state where the coating material contains moisture and maintains elasticity, and is highly effective in supplying nitrite ions into the concrete.

「実験例5」
実験例1の実験No.1−1とNo.1−5において、コンクリートを打設後、翌日に脱型し、20℃の恒温室内で材齢28日まで封緘養生を行ったのち、温度20℃、湿度60%、二酸化炭素濃度5%の促進中性化環境条件下に26週間静置することで養生完了とした以外は、実験例1と同じ条件で試験を実施した。
実験例1の測定項目に加えて、塗布材を塗布したコンクリート面の中性化深さをJIS A 1153「コンクリートの促進中性化試験方法」に準拠して測定した。結果を表5に示す。
“Experimental Example 5”
Experiment No. 1 of Experimental Example 1 1-1 and No.1. In 1-5, after casting the concrete, it is demolded the next day and sealed and cured until the age of 28 days in a constant temperature room at 20 ° C., and then promotes temperature 20 ° C., humidity 60%, carbon dioxide concentration 5%. The test was carried out under the same conditions as in Experimental Example 1 except that the curing was completed by leaving it to stand for 26 weeks under neutralized environmental conditions.
In addition to the measurement items of Experimental Example 1, the neutralization depth of the concrete surface to which the coating material was applied was measured in accordance with JIS A 1153 “Promoted Neutralization Test Method for Concrete”. The results are shown in Table 5.

Figure 2017210815
Figure 2017210815

表5より、亜硝酸イオンと増粘剤を混和したゲル状物質は塩害による鉄筋腐食の抑制効果と中性化抑制効果も併せもつことが分かる。   From Table 5, it can be seen that a gel-like substance in which nitrite ions and a thickener are mixed has both an effect of inhibiting rebar corrosion due to salt damage and an effect of inhibiting neutralization.

本発明を使用することにより、塩害を受ける鉄筋コンクリート構造物や中性化の進行した鉄筋コンクリート構造物の外観を損ねることなく、効果的に防錆成分である亜硝酸イオンをコンクリート中に供給することができる。塩害を受けると想定される鉄筋コンクリート構造物や中性化の進行した鉄筋コンクリート構造物の保全工法として広範な用途に適する。
By using the present invention, it is possible to effectively supply nitrite ions, which are rust preventive components, into the concrete without impairing the appearance of the reinforced concrete structure subjected to salt damage or the reinforced concrete structure that has been neutralized. it can. It is suitable for a wide range of applications as a maintenance method for reinforced concrete structures that are expected to be damaged by salt and reinforced concrete structures that have become neutralized.

Claims (8)

亜硝酸イオンの含有量が5質量%以上の水溶液に増粘剤を混和してなる粘度5000mPa・s以上100000mPa・s以下のゲル状物質を、鉄筋コンクリート構造物の表面に100g/m以上3000g/m以下の塗布量で塗布することを特徴とする鉄筋コンクリート構造物の保全工法。 A gel-like substance having a viscosity of 5000 mPa · s or more and 100000 mPa · s or less formed by mixing a thickener in an aqueous solution containing 5% by mass or more of nitrite ions is applied to the surface of the reinforced concrete structure at a rate of 100 g / m 2 to 3000 g / m. preservation method of reinforced concrete structures, characterized in that applied in m 2 following coating amount. 前記増粘剤が、ポリアクリルアミドとポリエチレングリコールとを含むことを特徴とする、請求項1記載の鉄筋コンクリート構造物の保全工法。   The maintenance method for a reinforced concrete structure according to claim 1, wherein the thickener contains polyacrylamide and polyethylene glycol. 前記増粘剤100質量部中、ポリアクリルアミドが50質量部以上90質量部以下、ポリエチレングリコールが10質量部以上50質量部以下であることを特徴とする、請求項2記載の鉄筋コンクリート構造物の保全工法。   The maintenance of a reinforced concrete structure according to claim 2, characterized in that, in 100 parts by mass of the thickener, polyacrylamide is 50 parts by mass or more and 90 parts by mass or less, and polyethylene glycol is 10 parts by mass or more and 50 parts by mass or less. Construction method. 前記亜硝酸イオンを含有する水溶液が亜硝酸リチウム水溶液であることを特徴とする、請求項1〜3のいずれか1項記載の鉄筋コンクリート構造物の保全工法。   The maintenance method for a reinforced concrete structure according to any one of claims 1 to 3, wherein the aqueous solution containing nitrite ions is an aqueous lithium nitrite solution. 亜硝酸イオンの含有量が5質量%以上の水溶液に増粘剤を混和してなる、粘度5000mPa・s以上100000mPa・s以下のゲル状物質である鉄筋コンクリート構造物用塗布材。   A coating material for a reinforced concrete structure, which is a gel-like substance having a viscosity of 5000 mPa · s or more and 100000 mPa · s or less, which is obtained by mixing a thickener with an aqueous solution having a nitrite ion content of 5% by mass or more. 前記増粘剤が、ポリアクリルアミドとポリエチレングリコールとを含むことを特徴とする、請求項5記載の鉄筋コンクリート構造物用塗布材。   The said thickener contains polyacrylamide and polyethyleneglycol, The coating material for reinforced concrete structures of Claim 5 characterized by the above-mentioned. 前記増粘剤100質量部中、ポリアクリルアミドが50質量部以上90質量部以下、ポリエチレングリコールが10質量部以上50質量部以下であることを特徴とする、請求項6記載の鉄筋コンクリート構造物用塗布材。   The coating for reinforced concrete structure according to claim 6, wherein polyacrylamide is 50 parts by mass or more and 90 parts by mass or less and polyethylene glycol is 10 parts by mass or more and 50 parts by mass or less in 100 parts by mass of the thickener. Wood. 前記亜硝酸イオンを含有する水溶液が亜硝酸リチウム水溶液であることを特徴とする、請求項5〜7のいずれか1項記載の鉄筋コンクリート構造物用塗布材。
The coating material for reinforced concrete structures according to any one of claims 5 to 7, wherein the aqueous solution containing nitrite ions is an aqueous lithium nitrite solution.
JP2016105236A 2016-05-26 2016-05-26 Conservation method and coating material for reinforced concrete structure Pending JP2017210815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016105236A JP2017210815A (en) 2016-05-26 2016-05-26 Conservation method and coating material for reinforced concrete structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016105236A JP2017210815A (en) 2016-05-26 2016-05-26 Conservation method and coating material for reinforced concrete structure

Publications (1)

Publication Number Publication Date
JP2017210815A true JP2017210815A (en) 2017-11-30

Family

ID=60476733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016105236A Pending JP2017210815A (en) 2016-05-26 2016-05-26 Conservation method and coating material for reinforced concrete structure

Country Status (1)

Country Link
JP (1) JP2017210815A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019246180A1 (en) 2018-06-21 2019-12-26 3M Innovative Properties Company Mat material, method of making same, pollution control apparatus and thermal insulation
WO2020044228A1 (en) 2018-08-30 2020-03-05 3M Innovative Properties Company Holding material and method of manufacturing same, and pollution control apparatus
WO2020110026A1 (en) 2018-11-30 2020-06-04 3M Innovative Properties Company Mat material, method of manufacturing same, inorganic adhesive sheet, pollution control device, and thermal insulation
WO2021124057A1 (en) 2019-12-17 2021-06-24 3M Innovative Properties Company Thermal insulation structure and method of making same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019246180A1 (en) 2018-06-21 2019-12-26 3M Innovative Properties Company Mat material, method of making same, pollution control apparatus and thermal insulation
WO2020044228A1 (en) 2018-08-30 2020-03-05 3M Innovative Properties Company Holding material and method of manufacturing same, and pollution control apparatus
WO2020110026A1 (en) 2018-11-30 2020-06-04 3M Innovative Properties Company Mat material, method of manufacturing same, inorganic adhesive sheet, pollution control device, and thermal insulation
WO2021124057A1 (en) 2019-12-17 2021-06-24 3M Innovative Properties Company Thermal insulation structure and method of making same

Similar Documents

Publication Publication Date Title
KR101637987B1 (en) Patching repair material and repairing method of deteriorated reinforced concrete structures
JP2017210815A (en) Conservation method and coating material for reinforced concrete structure
JP7243982B2 (en) Concrete repair agent
JP5192146B2 (en) Concrete surface modifier
KR101312085B1 (en) Method to repair section damaged of reinforced concrete structures
KR101590951B1 (en) Mortar composition for cross-section restoration of reinforced concrete structures and restoring method for cross-section of reinforced concrete structures using the same
CN105366978A (en) Permeable steel bar corrosion inhibitor for durability repair of concrete structure and preparation method thereof
KR102246100B1 (en) Composition for repair and reinforcement of underground infrastructure facilities exposed to corrosive environments and construction method using the same
KR102184164B1 (en) Concrete section recovery and concrete surface repair method using inorganic sodium silicate which can heal self
KR101551842B1 (en) Method for Repairing Deteriorate Parts in Concrete Using Mortar
JP2016188156A (en) Method for enhancing strength and extending life of existing concrete structure
JPH0468272B2 (en)
JP7555348B2 (en) Non-invasive repair and renovation of hardened cementitious materials
JP2009208984A (en) Surface modifying agent for mortar or concrete and surface modification method
KR100773743B1 (en) Recipe of corrosion prevent repair mortar
US10647616B2 (en) Non-invasive repair and retrofitting of hardened reinforced concrete structures
JP6828875B2 (en) Concrete protection method
JP4616930B1 (en) Protecting concrete structures
JP6284223B2 (en) Concrete curing agent and curing method
KR102001448B1 (en) Composition of environmentally friendly functional waterproofing agent and method of construction using the same
JPS62265189A (en) Degradation preventive construction for cementitious material
JPH03285882A (en) Preventing method for deterioration of concrete structure
JP7014616B2 (en) Cement-based surface treatment materials, surface treatment materials, concrete structures, and concrete surface protection methods
JP5514479B2 (en) Treatment method for comprehensively improving durability of hardened cement body and hardened cement body treated by the method
KR101559373B1 (en) A Paint Composite for Treating Surface of Concrete and Method of Using the Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200608