JP2017210378A - Composition and non-flammable material - Google Patents

Composition and non-flammable material Download PDF

Info

Publication number
JP2017210378A
JP2017210378A JP2016102266A JP2016102266A JP2017210378A JP 2017210378 A JP2017210378 A JP 2017210378A JP 2016102266 A JP2016102266 A JP 2016102266A JP 2016102266 A JP2016102266 A JP 2016102266A JP 2017210378 A JP2017210378 A JP 2017210378A
Authority
JP
Japan
Prior art keywords
resin molded
parts
mass
resin
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016102266A
Other languages
Japanese (ja)
Other versions
JP6681272B2 (en
Inventor
荒木 昭俊
Akitoshi Araki
昭俊 荒木
浩徳 長崎
Hironori Nagasaki
浩徳 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd filed Critical Denka Co Ltd
Priority to JP2016102266A priority Critical patent/JP6681272B2/en
Publication of JP2017210378A publication Critical patent/JP2017210378A/en
Application granted granted Critical
Publication of JP6681272B2 publication Critical patent/JP6681272B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composition which imparts non-flammability without impairing heat insulating property.SOLUTION: A composition contains (1) cement, (2) a substance which has a specific area of 4500-12000 cm/g and contains at least free lime, anhydrous gypsum and hauyne, (3) inorganic powder having a hollow structure having an average particle diameter of 20-60 μm, and (4) waste glass foam body powder having an average particle diameter of 20-130 μm, where a used amount of (3) is 20-150 pts.mass with respect to 100 pts.mass of the total of (1) and (2), and a used amount of (4) is 20-100 pts.mass with respect to 100 pts.mass of the total of (1) and (2).SELECTED DRAWING: Figure 1

Description

本発明は、不燃材に関する。   The present invention relates to a non-combustible material.

建築物は気密性が向上し、外気温度との差異により結露が生じる場合があった、結露防止や省エネの観点から、様々な断熱材や結露防止材が開発されてきた。中でもポリウレタンフォームやポリスチレンフォームは、軽量性、接着性、コスト等にも優れているため多用されている。ポリウレタンフォームやポリスチレンフォームは有機系素材であることから不燃性が劣り、しばしば火災による被害拡大の原因となり、その対策を施すことが望まれている。解決策として、グラスウールやロックウール等の無機系の断熱材を使用することが挙げられる。しかし、無機系の断熱材の熱伝導率は有機系素材のフォームよりも高い傾向があり、断熱性の点で劣る場合がある。グラスウールやロックウール等は繊維状であるため、作業性の点で穿痛感を有するといった課題がある。   Various heat insulating materials and anti-condensation materials have been developed from the viewpoint of preventing condensation and saving energy, where the building has improved airtightness and condensation may occur due to the difference from the outside air temperature. Among them, polyurethane foam and polystyrene foam are frequently used because they are excellent in lightness, adhesiveness, cost and the like. Since polyurethane foam and polystyrene foam are organic materials, they are incombustible and often cause damage due to fire, and countermeasures are desired. One solution is to use an inorganic heat insulating material such as glass wool or rock wool. However, the thermal conductivity of an inorganic heat insulating material tends to be higher than that of an organic material foam, and may be inferior in heat insulation. Since glass wool, rock wool, and the like are fibrous, there is a problem of having a feeling of pain in terms of workability.

有機系素材のフォームに不燃性を付与した素材は既に市販されている。例えば、フェノール樹脂フォームのボードの片面又は両面を不燃材であるアルミニウム箔、水酸化アルミニウム紙、セッコウ系板材等で積層した構造の不燃断熱ボードが挙げられる。しかし、火災等で熱が加わると、火炎に面した表面は燃えないが、熱で内部のフェノール樹脂が溶け、空洞となりボード自体が脱落し延焼するという課題がある。ウレタン樹脂発泡体の耐燃焼性を向上する技術としては、アルカリ金属炭酸塩、イソシアネート類、水及び反応触媒で発泡体を形成する断熱材料に関する技術(特許文献1)、リチウム、ナトリウム、カリウム、ホウ素、及びアルミニウムからなる群より選ばれる金属の、水酸化物、酸化物、炭酸塩類、硫酸塩、硝酸塩、アルミン酸塩、ホウ酸塩、及びリン酸塩類からなる群より選ばれる一種又は二種以上の無機化合物と水とイソシアネート類とからなる硬化性組成物で、主にトンネルの地盤改良用の注入材に関する技術(特許文献2)がある。これらの発明は、断熱性について記載されていない。特に、アルカリ金属炭酸塩30%以上の水溶液とイソシアネート類を反応させ、多量の水を使用するため未反応の水が多量に残ることから断熱材として使用するためには乾燥する必要があり、作業工程が多い。   The material which gave the nonflammability to the foam of an organic material is already marketed. For example, a non-combustible heat insulating board having a structure in which one side or both sides of a phenol resin foam board is laminated with a non-combustible aluminum foil, aluminum hydroxide paper, gypsum-based board material, or the like. However, when heat is applied in a fire or the like, the surface facing the flame does not burn, but there is a problem that the phenol resin inside melts due to the heat and becomes a cavity and the board itself falls off and spreads. Technologies for improving the combustion resistance of urethane resin foams include technologies relating to heat insulating materials that form foams with alkali metal carbonates, isocyanates, water and reaction catalysts (Patent Document 1), lithium, sodium, potassium, boron , And a metal selected from the group consisting of aluminum, one or more selected from the group consisting of hydroxides, oxides, carbonates, sulfates, nitrates, aluminates, borates, and phosphates There is a technique (Patent Document 2) relating to an injection material for ground improvement of a tunnel, which is a curable composition comprising an inorganic compound of the above, water and isocyanates. These inventions are not described for heat insulation. In particular, an aqueous solution of 30% or more alkali metal carbonate and isocyanates are reacted, and since a large amount of water is used, a large amount of unreacted water remains. There are many processes.

合成樹脂発泡体を被覆して耐燃焼性を向上する技術としては、セピオライトと水溶性樹脂を主成分とする水性有機バインダーとからなる被覆を形成して表面処理を施した合成樹脂の発泡体粒子に、無機粉体とアルカリ金属ケイ酸塩を主成分とする水ガラスを含む水性無機バインダーとからなるコーティング材を更に被覆し、乾燥硬化させる断熱性被覆粒体に関する技術(特許文献3)、合成樹脂発泡体の少なくとも一部の表面の気泡構造内に、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ酸アルミニウム、アルミノケイ酸塩のうちの1種又は2種以上の混合物からなるシリカ系無機物が充填した無機物含有合成樹脂発泡体に関する技術(特許文献4)が開示されている。これらケイ酸塩類を用いる技術は、燃焼により、樹脂発泡体が溶け、充填されたケイ酸塩自体の結合力も失われ粉化し形状を保つことが難しいという課題がある。   As a technique for improving the combustion resistance by coating a synthetic resin foam, a synthetic resin foam particle is formed by forming a coating composed of sepiolite and an aqueous organic binder mainly composed of a water-soluble resin and performing surface treatment. In addition, a technology (Patent Document 3), synthesis relating to heat-insulating coated granules that are further coated with a coating material comprising an inorganic powder and a water-based inorganic binder containing water glass containing alkali metal silicate as a main component, followed by drying and curing. An inorganic substance in which a cellular structure of at least a part of the surface of a resin foam is filled with a silica-based inorganic substance made of one or a mixture of two or more of calcium silicate, magnesium silicate, aluminum silicate, and aluminosilicate The technique (patent document 4) regarding the containing synthetic resin foam is disclosed. The technique using these silicates has a problem that the resin foam is melted by combustion, and the bonding strength of the filled silicate itself is lost, and it is difficult to maintain the shape by pulverization.

更に、ビーズ法ポリスチレンフォームで形成された発泡樹脂において、発泡ビーズ間に形成された連続気泡に、酸素指数が21より大きい有機系物質からなる充填材料を充填した発泡樹脂複合構造体に関する技術が開示されている(特許文献5)。これらの技術は、充填材料が有機系物質であり不燃レベルの耐燃焼性の向上は期待できない。これらの技術は実験例より、発泡体の空隙率が3体積%であり、本発明に比べて非常に密実な空隙を持つ発泡ポリスチレンフォームを対象にしている。   Furthermore, a technology related to a foamed resin composite structure in which, in a foamed resin formed of a polystyrene foam bead method, open cells formed between the foamed beads are filled with a filling material made of an organic material having an oxygen index greater than 21 is disclosed. (Patent Document 5). In these techniques, the filling material is an organic substance, and an improvement in incombustibility at a non-combustible level cannot be expected. From these experimental examples, these techniques are directed to a foamed polystyrene foam having a void volume of 3% by volume and a very dense void compared to the present invention.

カルシウムアルミネートを用いた耐火材料としては、例えば、カルシウムアルミネート、セッコウ、及び凝結遅延剤を含有する耐火被覆材が知られている(特許文献6)。この技術は、鉄骨表面を被覆し火災から保護する目的で使用する材料であり、本発明の目的とは異なる。特許文献6は、中空構造を有する無機粉末、廃ガラス発泡体粉末について記載はない。   As a refractory material using calcium aluminate, for example, a refractory coating material containing calcium aluminate, gypsum, and a setting retarder is known (Patent Document 6). This technique is a material used for the purpose of covering the steel surface and protecting it from fire, and is different from the object of the present invention. Patent Document 6 does not describe inorganic powder having a hollow structure and waste glass foam powder.

耐熱骨材、軽量骨材、アルミナ系結合材、炭化珪素、及び補強繊維からなる不焼成耐火断熱材に関する技術が開示されており、軽量骨材としてシラスバルーン、アルミナ系結合材としてカルシウムアルミネートが記述されている(特許文献7)。この技術は、製鉄や製鋼で使用する高温領域の耐火断熱材に使用することを前提としており、通常環境下の断熱を目的とした用途ではない。特許文献7は、セッコウについて記載はない。   A technology related to a non-fired fire-resistant heat insulating material composed of a heat-resistant aggregate, a lightweight aggregate, an alumina-based binder, silicon carbide, and reinforcing fibers is disclosed, and a shirasu balloon as a lightweight aggregate and calcium aluminate as an alumina-based binder. (Patent Document 7). This technology is based on the premise that it is used for high-temperature refractory heat insulating materials used in steelmaking and steelmaking, and is not intended for heat insulation under normal circumstances. Patent Document 7 does not describe gypsum.

セメント、骨材、急硬材、及び特定の乾燥収縮低減剤を含有してなり、急硬材がカルシウムアルミネート単独又はカルシウムアルミネートとセッコウであり、セメント100部に対してカルシウムアルミネート1〜20部であり、カルシウムアルミネート100部に対してセッコウが30〜300部であり、乾燥収縮低減剤がセメント100部に対して0.1〜10部である、モルタル組成物が開示されており、骨材として、セラミックバルーン、シラスバルーン、廃ガラスを原料とし焼成して製造した軽量骨材が記述されている(特許文献8)。しかし、中空構造を有する無機粉末と廃ガラス発泡体粉末を特定量使用すること、不燃材として使用することについて記載はない。   Cement, aggregate, rapid hardening material, and a specific drying shrinkage reducing agent are included, and the rapid hardening material is calcium aluminate alone or calcium aluminate and gypsum, and calcium aluminate 1 to 100 parts of cement. A mortar composition is disclosed that is 20 parts, has 30 to 300 parts of gypsum to 100 parts of calcium aluminate, and 0.1 to 10 parts of dry shrinkage reducing agent to 100 parts of cement. In addition, as the aggregate, a ceramic balloon, a shirasu balloon, and a lightweight aggregate manufactured by firing using waste glass as a raw material are described (Patent Document 8). However, there is no description about using a specific amount of inorganic powder having a hollow structure and waste glass foam powder and using it as a noncombustible material.

アウインを含有する物質を用いた技術としては、CaO原料と、CaSO原料と、さらに、Al原料、Fe原料及びSiO原料からなる群から選ばれる少なくとも1種の原料とを混合したものを熱処理して得られ、かつ、遊離石灰、水硬性化合物及び無水石膏の合計100部中、遊離石灰10〜70部、水硬性化合物10〜50部、無水石膏10〜60部の割合で含有する熱処理物を含有してなる早期脱型材に関する技術が開示されており、水硬性化合物としてアウインを使用する記載がある(特許文献9)。しかし、中空構造を有する無機粉末と廃ガラス発泡体粉末を特定量使用すること、不燃材として使用することについて記載はない。 As a technique using an auin-containing substance, a CaO raw material, a CaSO 4 raw material, and at least one raw material selected from the group consisting of an Al 2 O 3 raw material, an Fe 2 O 3 raw material, and a SiO 2 raw material Of 100 to 70 parts of free lime, hydraulic compound and anhydrous gypsum, 10 to 70 parts of free lime, 10 to 50 parts of hydraulic compound, and 10 to 60 parts of anhydrous gypsum. The technique regarding the early mold release material formed by containing the heat processing material contained in a ratio is indicated, and there is a statement which uses Auin as a hydraulic compound (patent documents 9). However, there is no description about using a specific amount of inorganic powder having a hollow structure and waste glass foam powder and using it as a noncombustible material.

特開平10−67576号公報JP-A-10-67576 特開平8−92555号公報JP-A-8-92555 特開2001−329629号公報JP 2001-329629 A 特開2012−102305号公報JP 2012-102305 A 特許第4983967号公報Japanese Patent No. 498967 特開平7−48153号公報JP 7-48153 A 特開昭62−41774号公報JP-A-62-41774 特許第4860396号公報Japanese Patent No. 4860396 WO2013/054604号公報WO2013 / 054604

本発明は断熱性を損なうことなく、不燃性を付与する組成物を提供する。   The present invention provides a composition that imparts incombustibility without impairing the heat insulating properties.

即ち、本発明は、(1)セメント、(2)比表面積で4500〜12000cm/gの少なくとも遊離石灰、無水セッコウ、及びアウインを含有する物質、(3)平均粒子径が20〜60μmの中空構造を有する無機粉末、(4)平均粒子径が20〜130μmの廃ガラス発泡体粉末を含有する組成物であり、(3)の使用量が(1)と(2)の合計100質量部に対して20〜150質量部であり、(4)の使用量が(1)と(2)の合計100質量部に対して20〜100質量部である組成物であり、(3)が、シラスバルーン、フライアッシュバルーンからなる群の1種以上である該組成物であり、(5)材料分離防止剤を含有する該組成物であり、樹脂成形体に充填するために使用する該組成物であり、該組成物と水を含有するスラリーであり、水の使用量が、組成物100質量部に対して150〜500質量部である該スラリーであり、樹脂成形体に該スラリーを充填した樹脂成形充填体であり、樹脂成形体が、発泡ポリウレタン樹脂、発泡ポリスチレン樹脂、発泡ポリオレフィン樹脂、発泡フェノール樹脂からなる群の1種以上である該樹脂成形充填体であり、樹脂成形体が、連続気泡を有する該樹脂成形充填体であり、連続気泡率が25〜70体積%である該樹脂成形充填体であり、樹脂成形体に該スラリーを充填することにより得られる樹脂成形充填体の製造方法であり、該組成物からなる不燃材であり、該樹脂成形充填体からなる不燃断熱材である。 That is, the present invention includes (1) cement, (2) a substance containing at least free lime, anhydrous gypsum, and auin having a specific surface area of 4500 to 12000 cm 2 / g, and (3) a hollow having an average particle diameter of 20 to 60 μm. An inorganic powder having a structure, (4) a composition containing waste glass foam powder having an average particle size of 20 to 130 μm, and the amount of (3) used is 100 parts by mass in total of (1) and (2) The composition is 20 to 150 parts by mass, the amount of (4) used is 20 to 100 parts by mass with respect to the total of 100 parts by mass of (1) and (2), and (3) is shirasu. A composition comprising at least one member selected from the group consisting of a balloon and a fly ash balloon; and (5) the composition containing a material separation inhibitor, the composition used for filling a resin molded body. Yes, containing the composition and water The slurry is a slurry in which the amount of water used is 150 to 500 parts by mass with respect to 100 parts by mass of the composition, and is a resin molded filler in which the slurry is filled in the resin molded body. The resin molded filler is one or more of the group consisting of a polyurethane foam resin, a foamed polystyrene resin, a foamed polyolefin resin, and a foamed phenol resin, and the resin molded body is the resin molded filler having open cells, The resin molded filler having an open cell ratio of 25 to 70% by volume, a method for producing a resin molded filler obtained by filling the resin molded body with the slurry, and a noncombustible material comprising the composition. Yes, it is a non-combustible heat insulating material made of the resin molded filler.

本発明は断熱性を損なうことなく、不燃性を付与する。   The present invention imparts nonflammability without impairing the heat insulating properties.

減圧含浸装置を示す図である。It is a figure which shows a pressure reduction impregnation apparatus.

以下、本発明の実施形態を説明する。単位は特記しない限り、質量単位をいう。   Embodiments of the present invention will be described below. The unit is a mass unit unless otherwise specified.

本発明の(1)セメントとは、普通、早強、超早強、低熱及び中庸熱等の各種ポルトランドセメントや、これらポルトランドセメントに、高炉スラグ、フライアッシュ又はシリカを混合した各種混合セメント、ブレーン比表面積で2000cm/g以上の石灰石粉末や高炉徐冷スラグ微粉末等を混合したフィラーセメント、並びに、都市ゴミ焼却灰や下水汚泥焼却灰を原料として製造された環境調和型セメント(エコセメント)等のポルトランドセメント等が挙げられる。これらのうちの1種以上が使用可能である。これらの中では、ポルトランドセメントが好ましい。 The (1) cement of the present invention includes various portland cements such as ordinary, early strength, ultra-early strength, low heat and moderate heat, various mixed cements obtained by mixing blast furnace slag, fly ash or silica with these portland cements, and brains. Environmentally friendly cement (eco-cement) manufactured from filler cement mixed with limestone powder with a specific surface area of 2000 cm 2 / g or more, blast furnace slow-cooled slag fine powder, etc., and municipal waste incineration ash and sewage sludge incineration ash And portland cement. One or more of these can be used. Of these, Portland cement is preferred.

本発明の(2)ブレーン比表面積が4500〜12000cm/gの遊離石灰、無水セッコウ、及びアウインを含有してなる物質(以下、アウイン含有物質ということもある)とは、CaO原料、Al原料、CaSO原料等(必要に応じてFe原料やSiO原料)を所定量配合して、キルン等で熱処理して得られる。CaO原料としては石灰石や消石灰等が挙げられ、Al原料としてはボ−キサイトやアルミ残灰等が挙げられ、Fe原料としては銅スラグ(銅カラミ)、鉄粉及び市販の酸化鉄等が挙げられ、SiO原料としては市販の二酸化ケイ素や珪石等が挙げられ、CaSO原料としては二水石膏、半水石膏、無水石膏、廃セッコウボード等が挙げられる。アウインの組成は、一般的に、3CaO・3Al・CaSOで表される。 (2) A substance containing free lime, anhydrous gypsum and auin having a specific surface area of 4500 to 12000 cm 2 / g (hereinafter also referred to as auin-containing substance) of the present invention is a CaO raw material, Al 2 A predetermined amount of O 3 raw material, CaSO 4 raw material or the like (Fe 2 O 3 raw material or SiO 2 raw material as required) is mixed and heat-treated with a kiln or the like. Examples of the CaO raw material include limestone and slaked lime, examples of the Al 2 O 3 raw material include bauxite and aluminum residual ash, and examples of the Fe 2 O 3 raw material include copper slag (copper calami), iron powder, and commercially available products. Examples of the SiO 2 raw material include commercially available silicon dioxide and silica stone, and examples of the CaSO 4 raw material include dihydrate gypsum, hemihydrate gypsum, anhydrous gypsum, and waste gypsum board. The composition of Auin is generally represented by 3CaO · 3Al 2 O 3 · CaSO 4 .

本発明は、アウインを必須とするものであり、他にCSやCAF等といった別成分が目的とする性能を損なわない限り含有してもよい。 In the present invention, Auin is essential, and other components such as C 3 S and C 4 AF may be contained as long as the intended performance is not impaired.

カルシウムシリケート(以下、CSという)とは、CaO−SiO系を総称するものであり、特に限定されるものではないが、一般的に、2CaO・SiOや3CaO・SiOがよく知られている。通常は、3CaO・SiOとして存在していると考えられる。カルシウムアルミノフェライト(以下、CAFという)とは、CaO−Al−Fe系の化合物を総称するものであり、特に限定されるものではないが、一般的に、4CaO・Al・Feや6CaO・Al・2Fe等の化合物がよく知られている。通常は、4CaO・Al・Feとして存在していると考えられる。 Calcium silicate (hereinafter referred to as C 3 S) is a generic term for CaO—SiO 2 system, and is not particularly limited, but generally 2CaO · SiO 2 and 3CaO · SiO 2 are well known. It has been. Usually, it is considered to exist as 3CaO · SiO 2 . Calcium aluminoferrite (hereinafter referred to as C 4 AF) is a generic term for CaO—Al 2 O 3 —Fe 2 O 3 -based compounds, and is not particularly limited, but generally 4CaO · compounds such as Al 2 O 3 · Fe 2 O 3 and 6CaO · Al 2 O 3 · 2Fe 2 O 3 are well known. Normally, it is considered to be present as 4CaO · Al 2 O 3 · Fe 2 O 3.

本発明のアウイン含有物質の組成は、アウイン含有物質100%中、遊離石灰30〜70%、無水セッコウ10〜50%、アウイン5〜25%、CAF5〜25%が好ましく、遊離石灰40〜60%、無水セッコウ20〜40%、アウイン10〜20%、CAF10〜20%がより好ましい。 The composition of the auin-containing material of the present invention is preferably 30 to 70% free lime, 10 to 50% anhydrous gypsum, 5 to 25% auin, and 5 to 25% C 4 AF in 100% auin-containing material. 60%, anhydrous gypsum 20-40%, Auin 10~20%, C 4 AF10~20% is more preferable.

本発明のアウイン含有物質の粒度は、反応活性の点で、ブレーン比表面積で4500〜12000cm/gが好ましく、5000〜10000cm/gがより好ましい。4500cm/g未満では早期にエトリンガイトを生成できず、不燃性や断熱性が小さい場合があり、12000cm/gを超えるとエトリンガイトが効率的に生成できず、含浸時の充填性が得られない場合がある。 The particle size of Auin containing materials of the present invention, in terms of reactivity, preferably 4500~12000cm 2 / g in Blaine specific surface area, 5000~10000cm 2 / g is more preferable. If it is less than 4500 cm 2 / g, ettringite cannot be produced at an early stage, and incombustibility and heat insulation may be small. If it exceeds 12000 cm 2 / g, ettringite cannot be produced efficiently, and filling properties during impregnation cannot be obtained. There is a case.

本発明のアウイン含有物質の使用量は、セメント100部に対して100〜2000部が好ましく、200〜1000部がより好ましい。100部未満では効率的なエトリンガイトの生成に寄与しない場合があり、2000部を超えると断熱効果が頭打ちとなる場合がある。   100-2000 parts is preferable with respect to 100 parts of cement, and, as for the usage-amount of the Auin containing substance of this invention, 200-1000 parts is more preferable. If it is less than 100 parts, it may not contribute to the efficient production of ettringite, and if it exceeds 2000 parts, the heat insulation effect may reach its peak.

本発明の(3)中空構造を有する無機粉末(以下、中空無機粉末ということもある)としては、シラスバルーンに代表される火山性堆積物を高温で加熱して作られる発泡体、火力発電所から発生するフライアッシュバルーン、黒曜石や真珠岩を焼成したバルーン構造の無機粉末等が挙げられる。これらの中では、密度が小さく、樹脂成形体の連続気泡に充填した際に断熱性を損ないにくい点で、シラスバルーン、フライアッシュバルーンからなる群の1種以上が好ましい。   As the inorganic powder (3) having a hollow structure of the present invention (hereinafter sometimes referred to as a hollow inorganic powder), a foam produced by heating a volcanic deposit represented by a shirasu balloon at a high temperature, a thermal power plant Fly ash balloons generated from the above, inorganic powders of balloon structure obtained by firing obsidian and pearlite. Among these, at least one member selected from the group consisting of a shirasu balloon and a fly ash balloon is preferable because it has a low density and hardly impairs heat insulation properties when filled into open cells of a resin molded body.

本発明の中空構造を有する無機粉末の平均粒子径は、20〜60μmが好ましく、30〜50μmがより好ましい。20μm未満では粒子が細かすぎてスラリーにした時の粘度が高くなり、含浸時の充填性が低下する場合があり、60μmを超えると燃焼後の形状を保持することが難しい場合がある。   20-60 micrometers is preferable and, as for the average particle diameter of the inorganic powder which has a hollow structure of this invention, 30-50 micrometers is more preferable. If it is less than 20 μm, the particles are too fine and the viscosity becomes high when it is made into a slurry, and the filling property at the time of impregnation may be lowered, and if it exceeds 60 μm, it may be difficult to maintain the shape after combustion.

本発明の中空構造を有する無機粉末の使用量は、混合セメント100部に対して20〜150部が好ましく、30〜120部がより好ましい。混合セメントとは、(1)と(2)の混合物が好ましい。混合セメント100部とは、(1)と(2)の合計100部が好ましい。20部未満では燃焼後の形状を保持することが難しい場合があり、150部を超えると不燃性が低下する場合がある。   20-150 parts is preferable with respect to 100 parts of mixed cement, and, as for the usage-amount of the inorganic powder which has the hollow structure of this invention, 30-120 parts is more preferable. The mixed cement is preferably a mixture of (1) and (2). 100 parts of the mixed cement is preferably 100 parts in total of (1) and (2). If it is less than 20 parts, it may be difficult to maintain the shape after combustion, and if it exceeds 150 parts, nonflammability may be reduced.

本発明の(4)廃ガラス発泡体粉末としては、ガラスビン等の廃棄物を粉砕後、焼成して製造し、粒度調整したものであれば使用できる。   The (4) waste glass foam powder of the present invention can be used as long as it is produced by pulverizing and firing waste such as glass bottles and adjusting the particle size.

本発明の廃ガラス発泡体粉末の平均粒子径は20〜130μmが好ましく、40〜100μmがより好ましい。20μm未満では粒子が細かすぎてスラリーにしたときの粘度が高くなり、燃焼後の形状を保持することが難しい場合があり、130μmを超えると断熱性が低下する場合がある。   20-130 micrometers is preferable and, as for the average particle diameter of the waste glass foam powder of this invention, 40-100 micrometers is more preferable. If it is less than 20 μm, the particles are too fine to increase the viscosity when made into a slurry, and it may be difficult to maintain the shape after combustion, and if it exceeds 130 μm, the heat insulating property may be lowered.

廃ガラス発泡体の軟化点は、燃焼後の形状保持性が向上する点で、800℃以下が好ましい。800℃を超えると無機粉末や燃焼で分解した生成物に対する融着効果が十分に発揮できない場合がある。軟化点は、例えば、JIS R 3103−1により求める。   The softening point of the waste glass foam is preferably 800 ° C. or lower in view of improving shape retention after combustion. If it exceeds 800 ° C., the fusion effect on the inorganic powder or the product decomposed by combustion may not be sufficiently exhibited. A softening point is calculated | required by JISR3103-1, for example.

本発明の廃ガラス発泡体粉末の使用量は、混合セメント100部に対して20〜100部が好ましく、30〜80部がより好ましい。20部未満では燃焼後の形状を十分に保持することが難しい場合があり、100部を超えると不燃性が低下する場合がある。   20-100 parts is preferable with respect to 100 parts of mixed cement, and, as for the usage-amount of the waste glass foam powder of this invention, 30-80 parts is more preferable. If it is less than 20 parts, it may be difficult to maintain the shape after combustion sufficiently, and if it exceeds 100 parts, nonflammability may be reduced.

本発明は(5)材料分離防止剤を使用することが好ましい。   In the present invention, it is preferable to use (5) a material separation preventing agent.

本発明の材料分離防止剤とは、混合セメント、中空構造を有する無機粉末及び廃ガラス発泡体粉末に水を加えてスラリー状にした時の材料分離を防止し、充填性を向上する効果を発揮するものをいう。材料分離防止剤としては、有機系物質、ベントナイト類、コロイダルシリカ分散液等が挙げられる。有機系物質としては、メチルセルロース、メチルエチルセルロース等のセルロースエーテル類、カルボキシルメチルセルロース又はそのアルカリ金属塩、ポリアクリルアミド類、ポリビニルピロリドン、ポリビニルアルコール等が挙げられる。これらの中では、不燃性を阻害しにくい点で、ベントナイト類、コロイダルシリカ分散液からなる群の1種以上が好ましい。特に、コロイダルシリカ分散液は、適度なゲル化作用により粘性を与えて材料分離防止効果を付与すると共に、不燃性を高める効果も発揮する点で、好ましい。   The material separation preventive agent of the present invention is effective for preventing material separation and improving filling property when water is added to a mixed cement, inorganic powder having a hollow structure and waste glass foam powder to form a slurry. Say what you do. Examples of the material separation inhibitor include organic substances, bentonites, and colloidal silica dispersions. Examples of organic substances include cellulose ethers such as methyl cellulose and methyl ethyl cellulose, carboxymethyl cellulose or alkali metal salts thereof, polyacrylamides, polyvinyl pyrrolidone, and polyvinyl alcohol. Among these, one or more members selected from the group consisting of bentonites and colloidal silica dispersions are preferable in that nonflammability is hardly inhibited. In particular, the colloidal silica dispersion is preferable in that it imparts a viscosity by an appropriate gelling action to give an effect of preventing material separation and also exhibits an effect of enhancing nonflammability.

本発明の材料分離防止剤の使用量は、混合セメント100部に対して、固形分換算で、0.05〜10部が好ましい。有機系物質の場合は、混合セメント100部に対して、固形分換算で、0.05〜0.5部が好ましい。ベントナイト類の場合は、混合セメント100部に対して、固形分換算で、1〜10部が好ましい。コロイダルシリカ分散液の場合は、混合セメント100部に対して、固形分換算で、0.5〜5部が好ましい。   The amount of the material separation inhibitor of the present invention is preferably 0.05 to 10 parts in terms of solid content with respect to 100 parts of the mixed cement. In the case of an organic material, 0.05 to 0.5 part is preferable in terms of solid content with respect to 100 parts of the mixed cement. In the case of bentonites, 1 to 10 parts are preferable in terms of solid content with respect to 100 parts of the mixed cement. In the case of a colloidal silica dispersion, 0.5 to 5 parts are preferable in terms of solid content with respect to 100 parts of the mixed cement.

本発明は、水を混合してスラリーを調製する。スラリーを調製する時の水の量は、組成物100部に対して150〜500部が好ましく、200〜400部がより好ましい。150部未満では連続気泡への充填性が低下する場合があり、500部を超えると連続気泡内で生成する水和物強度が低下し、連続気泡への充填性が低下する場合がある。組成物とは、(1)〜(4)を含有する組成物が好ましい。組成物100部とは、(1)〜(4)の合計100部が好ましい。(5)を含有する場合、組成物とは、(1)〜(5)を含有する組成物が好ましく、組成物100部とは、(1)〜(5)の合計100部が好ましい。   In the present invention, a slurry is prepared by mixing water. The amount of water when preparing the slurry is preferably 150 to 500 parts, more preferably 200 to 400 parts, relative to 100 parts of the composition. If it is less than 150 parts, the filling property to open cells may be reduced, and if it exceeds 500 parts, the strength of hydrate produced in the open cells may be reduced, and the filling property to open cells may be reduced. The composition is preferably a composition containing (1) to (4). 100 parts of the composition is preferably 100 parts in total of (1) to (4). In the case of containing (5), the composition is preferably a composition containing (1) to (5), and 100 parts of the composition is preferably 100 parts in total of (1) to (5).

本発明のスラリーの粘度は、材料分離しない粘度であれば特に限定しないが、充填後の樹脂成形体の密度のばらつきが小さい点で、100〜700mPa・sが好ましく、300〜700mPa・sがより好ましく、400〜700mPa・sが最も好ましい。   The viscosity of the slurry of the present invention is not particularly limited as long as the viscosity does not cause material separation, but is preferably 100 to 700 mPa · s, more preferably 300 to 700 mPa · s, in terms of small variation in density of the resin molded body after filling. 400 to 700 mPa · s is most preferable.

本発明の樹脂成形体とは、スラリー等の液状物質が浸透できる気泡を有する樹脂成形体である。連続気泡を有する樹脂成形体であれば特に限定するものではない。樹脂としては、発泡ポリビニルアルコール樹脂、発泡ポリウレタン樹脂、発泡ポリスチレン樹脂、ポリエチレンフォーム等の発泡ポリオレフィン樹脂、フェノール樹脂フォーム等の発泡フェノール樹脂等が挙げられる。これらの発泡樹脂は独立気泡により発泡体を形成するものであり、直径数mmの樹脂発泡粒状体である。樹脂成形体としては、連続気泡が生じるように、これらの樹脂発泡粒状体を型枠に詰めて加圧し成形する。ポリスチレン樹脂についてはビーズ法ポリスチレンフォームの製造方法に準拠して、連続気泡を有する樹脂成形体を製造することが可能である。これらの中では、断熱材としてよく使われる点で、発泡ポリウレタン樹脂、発泡ポリスチレン樹脂、発泡ポリオレフィン樹脂、発泡フェノール樹脂からなる群の1種以上が好ましく、発泡ポリウレタン樹脂成形体、発泡ポリスチレン樹脂成形体からなる群の1種以上が好ましい。   The resin molded body of the present invention is a resin molded body having bubbles in which a liquid substance such as slurry can permeate. There is no particular limitation as long as it is a resin molded body having open cells. Examples of the resin include foamed polyvinyl alcohol resin, foamed polyurethane resin, foamed polystyrene resin, foamed polyolefin resin such as polyethylene foam, and foamed phenol resin such as phenol resin foam. These foamed resins form foams by closed cells, and are resin foam granules having a diameter of several mm. As the resin molded body, these resin foam granules are packed in a mold and molded so as to generate open cells. As for the polystyrene resin, it is possible to produce a resin molded body having open cells in accordance with a method for producing a beaded polystyrene foam. Among these, one or more members selected from the group consisting of foamed polyurethane resin, foamed polystyrene resin, foamed polyolefin resin, and foamed phenol resin are preferable because they are often used as heat insulating materials. One or more members of the group consisting of

本発明の樹脂成形体の連続気泡率は25〜70体積%が好ましい。25体積%未満ではスラリーを均一に浸透することが難しい場合があり、70体積%を超えると密度が大きくなり、断熱性が損なわれる場合がある。スラリーの浸透方法としては、以下の方法が挙げられる。連続気泡率が50体積%未満の樹脂成形体の場合、圧搾空気による圧入や真空ポンプによる減圧による吸引によりスラリーを浸透する方法が好ましい。連続気泡率が50体積%以上の樹脂成形体の場合、常圧下で、自然に或いは振動を加えながら気泡内に浸透させる方法が好ましい。   The open cell ratio of the resin molding of the present invention is preferably 25 to 70% by volume. If the amount is less than 25% by volume, it may be difficult to uniformly penetrate the slurry. If the amount exceeds 70% by volume, the density may increase and the heat insulating property may be impaired. Examples of the method for infiltrating the slurry include the following methods. In the case of a resin molded body having an open cell ratio of less than 50% by volume, a method of infiltrating the slurry by press-fitting with compressed air or suction by depressurization with a vacuum pump is preferable. In the case of a resin molded body having an open cell ratio of 50% by volume or more, a method of permeating into the bubbles naturally or while applying vibration is preferable under normal pressure.

本発明のスラリーの浸透量は、連続気泡率(体積%)に対して0.8〜1.5容量倍の容量のスラリーを浸透させることが好ましい。0.8容量倍未満では十分な不燃性を付与することができない場合があり、1.5容量倍を超えると樹脂成形充填体の密度が大きくなりすぎて断熱性が低下する場合がある。   The amount of penetration of the slurry of the present invention is preferably infiltrated with a slurry having a volume of 0.8 to 1.5 times the volume of the open cell rate (volume%). If it is less than 0.8 volume times, sufficient nonflammability may not be imparted, and if it exceeds 1.5 volume times, the density of the resin molded filler may become too high and the heat insulation may be lowered.

連続気泡に含浸したスラリーは、例えば、水和反応により水和生成物が生成し、水和生成物が連続気泡内で充填固化する。スラリーを乾燥すると、自由水が蒸発するので、樹脂成形充填体に細孔ができ、断熱性の向上に寄与する。水和生成物はエトリンガイト等である。エトリンガイトは分子内に多量の水を結晶水として有するので、加熱により100℃程度から徐々に脱水し、消火作用を示し、樹脂成形充填体に不燃性を付与する。平均粒子径が20〜60μmの中空構造を有する無機粉末、平均粒子径が20〜130μmの廃ガラス発泡体粉末を含有することにより、例えば、形状保持性が得られる。   In the slurry impregnated in the open cells, for example, a hydrated product is generated by a hydration reaction, and the hydrated product is filled and solidified in the open cells. Since the free water evaporates when the slurry is dried, pores are formed in the resin molded filler, which contributes to the improvement of heat insulation. Hydrated products are ettringite and the like. Since ettringite has a large amount of water as crystal water in the molecule, it gradually dehydrates from about 100 ° C. by heating, exhibits a fire extinguishing action, and imparts nonflammability to the resin molded filler. By containing an inorganic powder having a hollow structure with an average particle size of 20 to 60 μm and a waste glass foam powder with an average particle size of 20 to 130 μm, for example, shape retention can be obtained.

本発明のスラリーを連続気泡に充填した後の樹脂成形充填体の養生方法は、特に限定するものではないが、充填後、水分が蒸発しないように、常温で3日程度養生したり、更に養生時間を短縮するために50℃以下の温度で加温養生したりしてもよい。   The curing method of the resin molded filler after filling the slurry of the present invention into open cells is not particularly limited, but after the filling, it is cured for about 3 days at room temperature or further cured so that the water does not evaporate. In order to shorten time, you may heat cure at the temperature of 50 degrees C or less.

本発明では、不織布、繊維シート等の補強材を不燃断熱材の片面或いは両面に配置することも可能である。   In the present invention, reinforcing materials such as non-woven fabrics and fiber sheets can be disposed on one side or both sides of the non-combustible heat insulating material.

本発明の不燃断熱材の形状は、特に限定するものではないが、一般的にはボード状にすることが好ましく、例えば、縦200〜1000mm、横200〜2000mm、厚さ10〜100mmが好ましい。サイズが大きすぎると作業性が低下する場合がある。   The shape of the non-combustible heat insulating material of the present invention is not particularly limited, but in general, it is preferably a board shape, for example, 200 to 1000 mm in length, 200 to 2000 mm in width, and 10 to 100 mm in thickness. If the size is too large, workability may be reduced.

本発明の不燃断熱材の密度は、断熱性を損なわない範囲で調製する。不燃断熱材の密度は70〜300kg/mが好ましく、90〜230kg/mがより好ましい。70kg/m未満では十分な不燃性を確保することが難しい場合があり、300kg/mを超えると十分な断熱性が得られない場合がある。 The density of the incombustible heat insulating material of the present invention is adjusted within a range not impairing the heat insulating property. Density of noncombustible insulation material is preferably 70~300kg / m 3, 90~230kg / m 3 and more preferably. If it is less than 70 kg / m 3 , it may be difficult to ensure sufficient incombustibility, and if it exceeds 300 kg / m 3 , sufficient heat insulation may not be obtained.

本発明の組成物は、不燃材として使用できる。本発明のスラリーは、不燃材スラリーとして使用できる。本発明のスラリーを連続気泡に充填した樹脂成形体は、不燃断熱材として使用できる。   The composition of the present invention can be used as a non-combustible material. The slurry of the present invention can be used as a noncombustible material slurry. The resin molding which filled the slurry of this invention in the open cell can be used as a nonflammable heat insulating material.

本発明の不燃断熱材を用いた断熱方法としては、一般的なボード状断熱材が設置されている方法と同じ方法が採用できる。例えば、外張り断熱を壁で実施する場合は、柱等にボード状の不燃断熱材を釘等で仮止めし、気密性を必要とする場合は、ボード状の不燃断熱材の継ぎ目に気密テープを貼る。そして透湿防水シートを表面に貼り付け、専用のビスで胴縁を施工する。充填断熱を壁で実施する場合は、ボード状の不燃断熱材を柱間のサイズに合わせてカットし、隙間ができないように不燃断熱材を柱間にはめ込んで施工する。   As a heat insulating method using the non-combustible heat insulating material of the present invention, the same method as a method in which a general board-shaped heat insulating material is installed can be adopted. For example, when carrying out heat insulation with a wall, temporarily fix a board-like non-combustible heat insulating material to the pillar with a nail or the like, and if air tightness is required, air-tight tape at the joint of the board-like non-combustible heat insulating material Paste. Then, a moisture-permeable waterproof sheet is attached to the surface, and the trunk edge is constructed with a special screw. When filling insulation is carried out with walls, board-like non-combustible heat insulating material is cut according to the size between the columns, and the non-combustible heat insulating material is fitted between the columns so that there is no gap.

以下、実施例に基づき詳細に説明する。特記しない限り、常温(23℃)で実施した。   Hereinafter, it demonstrates in detail based on an Example. Unless otherwise stated, it was carried out at room temperature (23 ° C.).

(不燃材スラリーの調製)
表1に示すセメント100部、表1に示す量のアウイン含有物質、セメントとアウイン含有物質の合計100部に対して表1に示す量の中空無機粉末(以下無機粉末をいうこともある)、セメントとアウイン含有物質の合計100部に対して表1に示す量の廃ガラス発泡体粉末を混合することにより不燃材を調製した。水を不燃材100部に対して250部となるように、攪拌しながら少量ずつ加えた。全ての水を加えてから5分間攪拌し、不燃材スラリーを調製した。
(Preparation of non-combustible material slurry)
100 parts of cement shown in Table 1, the amount of Auin-containing material shown in Table 1, hollow inorganic powder in the amount shown in Table 1 with respect to a total of 100 parts of cement and Auin-containing material (hereinafter sometimes referred to as inorganic powder), A nonflammable material was prepared by mixing the amount of waste glass foam powder shown in Table 1 with a total of 100 parts of cement and auin-containing material. Water was added little by little with stirring so that the amount was 250 parts with respect to 100 parts of the noncombustible material. After adding all the water, the mixture was stirred for 5 minutes to prepare a noncombustible material slurry.

(不燃断熱材の調製)
連続気泡を有する発泡樹脂成形体A1(サイズ:縦20cm×横20cm×厚み5cm)を、図1に示す減圧含浸装置にセットした。発泡樹脂成形体上面に不燃材スラリー950cm(連続気泡率に対して1.36容量倍、単位は容量)を発泡樹脂成形体の上面に流し込んだ。セットした発泡樹脂成形体下面側から、開閉コックを徐々に開けることにより、減圧室を減圧し、連続気泡内に不燃材スラリーを浸透させ、不燃断熱材を製造した。浸透後、減圧含浸装置から不燃断熱材を取り外し、3日間常温で乾燥させ、不燃性、均一性、密度、形状保持性及び熱伝導率を評価した。結果を表1に示す。
(Preparation of non-combustible insulation)
A foamed resin molding A1 having open cells (size: 20 cm long × 20 cm wide × 5 cm thick) was set in the vacuum impregnation apparatus shown in FIG. 950 cm 3 of non-combustible material slurry (1.36 times the volume of the open cell ratio, the unit is the volume) was poured into the upper surface of the foamed resin molded body. By gradually opening the open / close cock from the lower surface side of the set foamed resin molded body, the decompression chamber was decompressed, and the incombustible material slurry was infiltrated into the open cells to produce an incombustible heat insulating material. After infiltration, the non-combustible heat insulating material was removed from the vacuum impregnation apparatus and dried at room temperature for 3 days to evaluate non-combustibility, uniformity, density, shape retention and thermal conductivity. The results are shown in Table 1.

(減圧含浸装置)
減圧含浸装置を図1に示す。減圧含浸装置(容器本体)1は、減圧室2,減圧室と発泡樹脂成形体をセットする部分の仕切り板3,不織布4,発泡樹脂成形体5,不燃材スラリー6,トラップ容器7,真空ポンプ8、開閉コック9から構成される。
(Low pressure impregnation equipment)
A vacuum impregnation apparatus is shown in FIG. The decompression impregnation apparatus (container body) 1 includes a decompression chamber 2, a partition plate for setting a decompression chamber and a foamed resin molded body 3, a nonwoven fabric 4, a foamed resin molded body 5, an incombustible material slurry 6, a trap container 7, and a vacuum pump 8 and an open / close cock 9.

(使用材料)
発泡樹脂成形体A1:市販されているポリスチレン発泡ビーズ(直径2〜5mm)にEVAエマルジョンを1%加え、ビーズ表面に均一に塗布されるように混合し、金型に詰めて加圧することにより成形体を作製した。連続気泡率35体積%、熱伝導率0.034W/m・K
セメントa:デンカ社製 普通ポルトランドセメント ブレーン比表面積3300cm/g
セメントb:デンカ社製 早強ポルトランドセメント、ブレーン比表面積4500cm/g
セメントc:デンカ社製 B種高炉セメント、ブレーン比表面積3400cm/g
アウインを含有する物質(1):遊離石灰50% 無水セッコウ30% アウイン15% CAF15% ブレーン比表面積4500cm/g
アウインを含有する物質(2):遊離石灰50% 無水セッコウ30% アウイン15% CAF15% ブレーン比表面積6200cm/g
アウインを含有する物質(3):遊離石灰50% 無水セッコウ30% アウイン15% CAF15% ブレーン比表面積12000cm/g
アウインを含有する物質(4):遊離石灰50% 無水セッコウ30% アウイン15% CAF15% ブレーン比表面積4200cm/g
アウインを含有する物質(5):遊離石灰50% 無水セッコウ30% アウイン15% CAF15% ブレーン比表面積13000cm/g
中空無機粉末ア:アクシーズケミカル社製シラスバルーン、商品名:MSB−301、平均粒子径50μm
中空無機粉末イ:アクシーズケミカル社製シラスバルーン、商品名:ISM−F015、平均粒子径10μm
中空無機粉末ウ:アクシーズケミカル社製シラスバルーン、商品名:MSB−5011、平均粒子径70μm
廃ガラス発泡体粉末α:DENNERT PORAVER GMBH社製廃ガラス発泡体粉末、商品名:Poraver(0.04−0.125mm粒度品)、軟化点700−750℃、平均粒子径90μm
廃ガラス発泡体粉末β:廃ガラス発泡体粉末αを粉砕した粒度調整品、軟化点700−750℃、平均粒子径15μm
廃ガラス発泡体粉末γ:DENNERT PORAVER GMBH社製廃ガラス発泡体粉末、商品名:Poraver(0.1−0.3mm粒度品)の粒度調整品、軟化点700−750℃、平均粒子径140μm
ガラス粉末θ:旭ガラス社製、商品名:AFS1717、平均粒子径2.5μm、軟化点808℃
水:水道水
(Materials used)
Foamed resin molded product A1: Molded by adding 1% EVA emulsion to commercially available polystyrene foam beads (2-5 mm in diameter), mixing them so that they are evenly applied to the surface of the beads, filling them in a mold and pressing them. The body was made. Open cell rate 35% by volume, thermal conductivity 0.034 W / m · K
Cement a: DENKA normal portland cement Blaine specific surface area 3300 cm 2 / g
Cement b: Denka's early strength Portland cement, Blaine specific surface area 4500 cm 2 / g
Cement c: Class B blast furnace cement manufactured by Denka Co., Blaine specific surface area 3400 cm 2 / g
Material containing Auin (1): Free lime 50% Anhydrous gypsum 30% Auin 15% C 4 AF 15% Blaine specific surface area 4500 cm 2 / g
Material containing Auin (2): free lime 50% anhydrous gypsum 30% Auin 15% C 4 AF 15% Blaine specific surface area 6200 cm 2 / g
Substance containing Auin (3): Free lime 50% Anhydrous gypsum 30% Auin 15% C 4 AF 15% Blaine specific surface area 12000 cm 2 / g
Material containing Auin (4): Free lime 50% Anhydrous gypsum 30% Auin 15% C 4 AF 15% Blaine specific surface area 4200 cm 2 / g
Material containing Auin (5): Free lime 50% Anhydrous gypsum 30% Auin 15% C 4 AF 15% Blaine specific surface area 13000 cm 2 / g
Hollow inorganic powder A: Shirasu balloon made by Axes Chemical Co., Ltd., trade name: MSB-301, average particle size 50 μm
Hollow inorganic powder A: Shirasu balloon manufactured by Axes Chemical Co., Ltd., trade name: ISM-F015, average particle size 10 μm
Hollow inorganic powder C: Shirasu balloon made by Axes Chemical Co., Ltd., trade name: MSB-5011, average particle size 70 μm
Waste glass foam powder α: Waste glass foam powder manufactured by DENNERT PORVER GMBH, trade name: Poraver (0.04-0.125 mm particle size product), softening point 700-750 ° C., average particle diameter 90 μm
Waste glass foam powder β: Particle size adjusted product obtained by pulverizing waste glass foam powder α, softening point 700-750 ° C., average particle diameter 15 μm
Waste glass foam powder γ: Waste glass foam powder manufactured by DENNERT POREVER GMBH, trade name: Poraver (0.1-0.3 mm particle size) particle size adjusted product, softening point 700-750 ° C., average particle size 140 μm
Glass powder θ: manufactured by Asahi Glass Co., Ltd., trade name: AFS1717, average particle size 2.5 μm, softening point 808 ° C.
Water: tap water

(測定方法)
ブレーン比表面積:JIS R5201に従い、測定した。
平均粒子径:レーザ回折式粒度分布計で測定した。機種は、LA−920(堀場製作所)を使用した。
均一性:装置から取り出した不燃断熱材を縦方向及び横方向で4分割し、更に、分割した不燃断熱材ブロックを厚さ方向に2分割し、合計8個の分割成形体としてそれぞれの密度を求めた。求めた密度の最小値と最大値の差を求めた。差か小さいほど均一に含浸していると評価した。
密度:均一性を求めるために算出した8点の密度の平均値を算出した。
不燃性:ISO−5660−1:2002に示されたコーンカロリーメータによる発熱試験に準拠して評価した。縦10cm×横10cm×厚さ5cmの不燃断熱材を試験体とした。例えば、この試験体を用いて加熱時間が20分間のときの総発熱量が8MJ/m以下であれば不燃性の効果が大きい。
熱伝導率:縦10cm×横5cm×厚み5cmの試験体を用いて迅速熱伝導率計(ボックス式プローブ法)で測定した。
形状保持性:不燃性試験後の試験体を観察し、亀裂、崩壊、収縮がない場合を○、亀裂、崩壊、収縮の何れかがある場合を×とした。
(Measuring method)
Blaine specific surface area: measured according to JIS R5201.
Average particle diameter: Measured with a laser diffraction particle size distribution meter. The model used was LA-920 (Horiba Seisakusho).
Uniformity: The non-combustible heat insulating material taken out from the apparatus is divided into four parts in the vertical direction and the horizontal direction, and further, the divided non-combustible heat insulating material block is divided into two parts in the thickness direction, and the respective densities are obtained as a total of eight divided molded bodies. Asked. The difference between the minimum value and the maximum value obtained was determined. It was evaluated that the smaller the difference, the more uniformly impregnated.
Density: The average value of the density of 8 points calculated for obtaining uniformity was calculated.
Nonflammability: Evaluated according to a heat generation test using a cone calorimeter shown in ISO-5660-1: 2002. A non-combustible heat insulating material having a length of 10 cm, a width of 10 cm, and a thickness of 5 cm was used as a test specimen. For example, if the total calorific value when the heating time is 20 minutes using this test body is 8 MJ / m 2 or less, the effect of nonflammability is great.
Thermal conductivity: It measured with the rapid thermal conductivity meter (box type probe method) using the test body of length 10cm x width 5cm x thickness 5cm.
Shape retention: The specimen after the nonflammability test was observed, and the case where there was no crack, collapse, or shrinkage was rated as “◯”, and the case where there was any crack, decay or shrinkage was marked as “X”.

Figure 2017210378
Figure 2017210378

セメントa100部、アウイン含有物質(2)500部、セメントとアウイン含有物質の合計100部に対して廃ガラス発泡体粉末α60部、セメントとアウイン含有物質の合計100部に対して表2に示す量の中空無機粉末エを混合して不燃材スラリーを調製したこと以外は、実施例1と同様に行った。結果を表2に示す。   100 parts of cement a, 500 parts of auin-containing material (2), 100 parts of waste glass foam powder for a total of 100 parts of cement and auin-containing material, and the amount shown in Table 2 for a total of 100 parts of cement and auin-containing substance The same procedure as in Example 1 was conducted, except that a non-combustible material slurry was prepared by mixing the hollow inorganic powders. The results are shown in Table 2.

(使用材料)
無機粉末エ:東海工業社製フライアッシュバルーン分級品、平均粒子径45μm
(Materials used)
Inorganic powder D: Fly ash balloon classification product manufactured by Tokai Kogyo Co., Ltd., average particle size 45 μm

Figure 2017210378
Figure 2017210378

セメントa100部、アウイン含有物質(2)500部、セメントとアウイン含有物質の合計100部に対して廃ガラス発泡体粉末α60部、セメントとアウイン含有物質の合計100部に対して中空無機粉末ア60部、セメントとアウイン含有物質の合計100部に対して固形分換算で表3に示す量の材料分離防止剤を混合して不燃材スラリーを調製したこと以外は、実施例1と同様に行った。スラリー粘度も測定した。結果を表3に示す。
(使用材料)
材料分離防止剤(1):信越化学工業社製メチルセルロース、商品名:SM4000
材料分離防止剤(2):クニミネ工業社製ベントナイト、商品名:クニゲルGS
材料分離防止剤(3):日産化学工業社製コロイダルシリカ分散液、商品名:スノーテックス50
100 parts of cement a, 500 parts of Auin-containing material (2), 60 parts of waste glass foam powder α for a total of 100 parts of cement and Auin-containing material, and 60% of hollow inorganic powder for 60 parts of cement and Auin-containing material The same procedure as in Example 1 was conducted except that a non-combustible material slurry was prepared by mixing the amount of the material separation inhibitor shown in Table 3 in terms of solid content with respect to a total of 100 parts of the cement and auin-containing substance. . The slurry viscosity was also measured. The results are shown in Table 3.
(Materials used)
Material separation inhibitor (1): methyl cellulose manufactured by Shin-Etsu Chemical Co., Ltd., trade name: SM4000
Material separation inhibitor (2): Benitonite manufactured by Kunimine Kogyo Co., Ltd., Trade name: Kunigel GS
Material separation inhibitor (3): Colloidal silica dispersion manufactured by Nissan Chemical Industries, Ltd., trade name: Snowtex 50

(測定方法)
スラリー粘度(粘度):不燃材スラリーの粘度をB型粘度計で測定した。
(Measuring method)
Slurry viscosity (viscosity): The viscosity of the noncombustible material slurry was measured with a B-type viscometer.

Figure 2017210378
Figure 2017210378

セメントa100部、アウイン含有物質(2)500部、セメントとアウイン含有物質の合計100部に対して廃ガラス発泡体粉末α60部、セメントとアウイン含有物質の合計100部に対して中空無機粉末ア60部を混合して不燃材を調製し、不燃材100部に対して表4に示す量の水を混合して不燃材スラリーを調製したこと以外は、実施例1と同様に行った。スラリー粘度も測定した。結果を表4に示す。   100 parts of cement a, 500 parts of Auin-containing material (2), 60 parts of waste glass foam powder α for a total of 100 parts of cement and Auin-containing material, and 60% of hollow inorganic powder for 60 parts of cement and Auin-containing material Parts were mixed to prepare a noncombustible material, and the same procedure as in Example 1 was performed except that 100 parts of noncombustible material was mixed with water in the amount shown in Table 4 to prepare a noncombustible material slurry. The slurry viscosity was also measured. The results are shown in Table 4.

Figure 2017210378
Figure 2017210378

セメントa100部、アウイン含有物質(2)500部、セメントとアウイン含有物質の合計100部に対して廃ガラス発泡体粉末α60部、セメントとアウイン含有物質の合計100部に対して中空無機粉末ア60部を混合して不燃材を調製し、表5に示す量の連続気泡率を有する発泡樹脂成形体を使用して不燃断熱材を製造したこと以外は実施例1と同様に行った。不燃材スラリーの浸透量は連続気泡率の1.36容量倍(単位は容量)とした。結果を表5に示す。   100 parts of cement a, 500 parts of Auin-containing material (2), 60 parts of waste glass foam powder α for a total of 100 parts of cement and Auin-containing material, and 60% of hollow inorganic powder for 60 parts of cement and Auin-containing material The incombustible material was prepared by mixing the parts, and the same procedure as in Example 1 was performed except that the incombustible heat insulating material was produced using a foamed resin molded article having an open cell ratio in the amount shown in Table 5. The infiltration amount of the non-combustible material slurry was 1.36 times the open cell ratio (unit: volume). The results are shown in Table 5.

(使用材料)
発泡樹脂成形体A(A1〜A4):市販されている発泡ポリスチレン樹脂ビーズ(粒径2〜5mm)に市販のEVAエマルジョンを1%加え混合し、金型に詰め加圧し、連続気泡を有する発泡ポリスチレン樹脂成形体とした。連続気泡率は加圧度合いを調整することにより制御した。不燃材スラリー未充填の発泡樹脂成形体の熱伝導率は0.034W/m・K
発泡樹脂成形体B(B1〜B4):市販されている発泡硬質ポリウレタン樹脂成形体を砕き、粒径2〜5mmの粒状物に調整した。市販のEVAエマルジョンを1%加え混合し、金型に詰め加圧し、連続気泡を有する発泡ポリウレタン樹脂成形体とした。連続気泡率は加圧度合いを調整することにより制御した。不燃材スラリー未充填の発泡樹脂成形体の熱伝導率は0.027W/m・K
発泡樹脂成形体C(C1〜C4):市販されているポリエチレンフォームを使い、発泡樹脂成形体Bと同様に行い、発泡樹脂成形体を得た。不燃材スラリー未充填の発泡樹脂成形体の熱伝導率は0.030W/m・K
発泡樹脂成形体D(D1〜D4):市販されているフェノール樹脂フォームを使い、発泡樹脂成形体Bと同様に行い、発泡樹脂成形体を得た。不燃材スラリー未充填の発泡樹脂成形体の熱伝導率は0.022W/m・K
(Materials used)
Foamed resin molded product A (A1 to A4): 1% of commercially available EVA emulsion is added to and mixed with commercially available expanded polystyrene resin beads (particle diameter 2 to 5 mm), and the mixture is filled in a mold and pressurized, and foamed with open cells. A polystyrene resin molded body was obtained. The open cell ratio was controlled by adjusting the degree of pressurization. The thermal conductivity of the foamed resin molding not filled with non-combustible material slurry is 0.034 W / m · K
Foamed resin molded body B (B1 to B4): A commercially available foamed hard polyurethane resin molded body was crushed and adjusted to a granular material having a particle diameter of 2 to 5 mm. 1% of a commercially available EVA emulsion was added and mixed, filled in a mold and pressed to obtain a foamed polyurethane resin molded article having open cells. The open cell ratio was controlled by adjusting the degree of pressurization. The thermal conductivity of the foamed resin molding not filled with the non-combustible material slurry is 0.027 W / m · K.
Foamed resin molded body C (C1 to C4): Using a commercially available polyethylene foam, the same procedure as for foamed resin molded body B was carried out to obtain a foamed resin molded body. The thermal conductivity of the foamed resin molding not filled with non-combustible material slurry is 0.030 W / m · K
Foamed resin molded product D (D1 to D4): Using a commercially available phenol resin foam, the same procedure as for foamed resin molded product B was performed to obtain a foamed resin molded product. The thermal conductivity of the foamed resin molding not filled with non-combustible material slurry is 0.022 W / m · K.

(測定方法)
連続気泡率:作製した発泡樹脂成形体の上面以外にエポキシ樹脂を塗装し遮水膜を形成させた。上面より、振動を加えながら溢れるまで水を流し込み、溢れた水をふき取り、充填された水の量を測定することにより連続気泡率を算出した。
連続気泡率(体積%)=〔(水を充填した後の樹脂成形体質量−水を充填する前の樹脂成形体質量)/樹脂成形体の体積〕×100、但し、水を充填した後の樹脂成形体質量は、塗装に使用したエポキシ樹脂の質量を除いた質量である。
(Measuring method)
Open cell ratio: An epoxy resin was applied to the top of the produced foamed resin molded body to form a water shielding film. From the upper surface, water was poured until it overflowed while applying vibration, the excess water was wiped off, and the amount of the filled water was measured to calculate the open cell ratio.
Open cell ratio (% by volume) = [(Mass of resin molded product after filling with water−Mass of resin molded product before filling with water) / Volume of resin molded product] × 100, but after filling with water The resin molded body mass is a mass excluding the mass of the epoxy resin used for coating.

Figure 2017210378
Figure 2017210378

実験No.1−13の不燃断熱材を、厚さ1cm×0.5m角のセッコウボードに敷き詰めた断熱壁を6枚作製した。断熱壁6枚からなる箱体を作製した。箱体内部の温度を30℃に調整し、外気温度を10℃に低下させて箱体内部の温度変化を確認した。比較のために、不燃材スラリーを充填する前の断熱材(発泡樹脂成形体A1)を敷き詰めた断熱壁からなる箱体、セッコウボードのみからなる箱体を作製し、温度変化を確認した。
その結果、実験No.1−13の不燃断熱材を用いた箱体は1時間後に12℃温度が低下した。不燃材スラリーを充填する前の断熱材の場合は1時間後に10℃低下した。不燃材スラリーを充填しても、断熱性は低下しないことが判った。このことは、不燃材スラリーを充填しても、温度低下が不燃材スラリーを充填しない場合と同等であることから、裏付けられる。セッコウボードのみの場合は1時間後に18℃低下し、外気温とほぼ同じ温度になり、断熱性を示さなかった。
Experiment No. Six heat-insulating walls were prepared by spreading 1-13 incombustible heat insulating material on a gypsum board having a thickness of 1 cm × 0.5 m square. A box made of six heat insulating walls was produced. The temperature inside the box was adjusted to 30 ° C., and the outside air temperature was lowered to 10 ° C. to confirm the temperature change inside the box. For comparison, a box made of a heat insulating wall and a box made of only a gypsum board were filled with a heat insulating material (foamed resin molded body A1) before filling with the noncombustible material slurry, and the temperature change was confirmed.
As a result, Experiment No. The box using the incombustible heat insulating material 1-13 had a 12 ° C. temperature drop after 1 hour. In the case of the heat insulating material before filling with the non-combustible material slurry, the temperature decreased by 10 ° C. after 1 hour. It was found that the heat insulating property does not decrease even when the nonflammable material slurry is filled. This is supported by the fact that even if the nonflammable material slurry is filled, the temperature drop is equivalent to the case where the nonflammable material slurry is not filled. In the case of the gypsum board alone, the temperature dropped by 18 ° C. after 1 hour, almost the same as the outside air temperature, and did not show heat insulation.

本発明は、良好な断熱性を維持しながら不燃性を付与でき、燃焼後も断熱材の形状を維持できるので、火災時の延焼を阻止する効果が大きくなり、防火安全性の高い建築物、車両、航空機、船舶、冷凍、冷蔵設備の建造等に寄与できる。本発明は、連続気泡を有する樹脂系断熱材に不燃性を付与し、燃焼後も崩壊や変形がなく、形状を保持できる断熱材を提供できる。   The present invention can impart incombustibility while maintaining good heat insulation, and since the shape of the heat insulating material can be maintained even after combustion, the effect of preventing the spread of fire at the time of fire is increased, and a fireproof safety building, It can contribute to the construction of vehicles, aircraft, ships, refrigeration and refrigeration equipment. INDUSTRIAL APPLICABILITY The present invention can provide a heat insulating material that imparts nonflammability to a resin-based heat insulating material having open cells and can maintain its shape without being collapsed or deformed even after combustion.

1 減圧含浸装置(容器本体)
2 減圧室
3 減圧室と連続気泡を有する発泡樹脂成形体をセットする部分の仕切り板
4 不織布
5 発泡樹脂成形体
6 不燃材スラリー
7 トラップ容器
8 真空ポンプ
9 開閉コック
1 Vacuum impregnation equipment (container body)
2 Decompression chamber 3 Partition plate 4 for setting the decompression chamber and the foamed resin molding having open cells 4 Non-woven fabric 5 Foamed resin molding 6 Non-combustible material slurry 7 Trap container 8 Vacuum pump 9 Opening / closing cock

Claims (13)

(1)セメント、(2)比表面積で4500〜12000cm/gの少なくとも遊離石灰、無水セッコウ、及びアウインを含有する物質、(3)平均粒子径が20〜60μmの中空構造を有する無機粉末、(4)平均粒子径が20〜130μmの廃ガラス発泡体粉末を含有する組成物であり、(3)の使用量が(1)と(2)の合計100質量部に対して20〜150質量部であり、(4)の使用量が(1)と(2)の合計100質量部に対して20〜100質量部である組成物。 (1) cement, (2) substance containing at least free lime, anhydrous gypsum, and Auin with a specific surface area of 4500 to 12000 cm 2 / g, (3) inorganic powder having a hollow structure with an average particle size of 20 to 60 μm, (4) It is a composition containing waste glass foam powder having an average particle diameter of 20 to 130 μm, and the amount of (3) used is 20 to 150 mass with respect to 100 parts by mass in total of (1) and (2). And the amount of (4) used is 20 to 100 parts by mass with respect to a total of 100 parts by mass of (1) and (2). (3)が、シラスバルーン、フライアッシュバルーンからなる群の1種以上である請求項1記載の組成物。   The composition according to claim 1, wherein (3) is at least one member of the group consisting of a shirasu balloon and a fly ash balloon. (5)材料分離防止剤を含有する請求項1又は2記載の組成物。   (5) The composition according to claim 1 or 2, comprising a material separation inhibitor. 樹脂成形体に充填するために使用する請求項1〜3のうちの1項記載の組成物。   The composition according to claim 1, which is used to fill a resin molded body. 請求項1〜4のうちの1項記載の組成物と水を含有するスラリー。   A slurry containing the composition according to one of claims 1 to 4 and water. 水の使用量が、組成物100質量部に対して150〜500質量部である請求項5記載のスラリー。   The slurry according to claim 5, wherein the amount of water used is 150 to 500 parts by mass with respect to 100 parts by mass of the composition. 樹脂成形体に請求項5又は6記載のスラリーを充填した樹脂成形充填体。   A resin molded filler obtained by filling the resin molded article with the slurry according to claim 5 or 6. 樹脂成形体が、発泡ポリウレタン樹脂、発泡ポリスチレン樹脂、発泡ポリオレフィン樹脂、発泡フェノール樹脂からなる群の1種以上である請求項7記載の樹脂成形充填体。   The resin molded filler according to claim 7, wherein the resin molded body is at least one member selected from the group consisting of a foamed polyurethane resin, a foamed polystyrene resin, a foamed polyolefin resin, and a foamed phenol resin. 樹脂成形体が、連続気泡を有する請求項7又は8記載の樹脂成形充填体。   The resin molded filler according to claim 7 or 8, wherein the resin molded body has open cells. 連続気泡率が25〜70体積%である請求項9記載の樹脂成形充填体。   The resin molded filler according to claim 9, wherein the open cell ratio is 25 to 70% by volume. 樹脂成形体に請求項5又は6記載のスラリーを充填することにより得られる樹脂成形充填体の製造方法。   A method for producing a resin molded filler obtained by filling the resin molded article with the slurry according to claim 5 or 6. 請求項1〜4のうちの1項記載の組成物からなる不燃材。   An incombustible material comprising the composition according to claim 1. 請求項8〜10記載のうちの1項記載の樹脂成形充填体からなる不燃断熱材。   An incombustible heat insulating material comprising the resin molded filler according to claim 8.
JP2016102266A 2016-05-23 2016-05-23 Composition and non-combustible material Active JP6681272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016102266A JP6681272B2 (en) 2016-05-23 2016-05-23 Composition and non-combustible material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016102266A JP6681272B2 (en) 2016-05-23 2016-05-23 Composition and non-combustible material

Publications (2)

Publication Number Publication Date
JP2017210378A true JP2017210378A (en) 2017-11-30
JP6681272B2 JP6681272B2 (en) 2020-04-15

Family

ID=60474476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016102266A Active JP6681272B2 (en) 2016-05-23 2016-05-23 Composition and non-combustible material

Country Status (1)

Country Link
JP (1) JP6681272B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019196484A (en) * 2018-05-08 2019-11-14 積水フーラー株式会社 Fire-resistant material
CN111574119A (en) * 2020-05-17 2020-08-25 郑宝霞 Foam concrete with high light weight and performance and preparation method thereof
CN112456882A (en) * 2020-12-09 2021-03-09 安徽鼎元新材料有限公司 Novel rock wool material
JP2022503876A (en) * 2018-09-28 2022-01-12 トレンコ シーピージー ユーケー リミテッド Flame stop product
WO2022224986A1 (en) * 2021-04-21 2022-10-27 株式会社トクヤマ Unburnt carbon reduction method and heating method using ferric oxide
KR102591767B1 (en) * 2023-03-20 2023-10-24 주식회사 피플코리아 Inflammable panel having thermal and sound insulation prooerties

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0986979A (en) * 1995-09-29 1997-03-31 Chichibu Onoda Cement Corp Refractory coating cement
JPH10120813A (en) * 1996-10-15 1998-05-12 Stylite Kogyo Kk Noncombustible fire-resistant composition and noncombustible fire-resistant foamed plastic
JP2000072504A (en) * 1998-08-27 2000-03-07 Taiheiyo Cement Corp Quick-hardening material for cement
JP2005068283A (en) * 2003-08-25 2005-03-17 Joji Matsuwaka Coating material composition
JP2012035462A (en) * 2010-08-05 2012-02-23 Kanayama Kasei Kk Foaming resin composite structure and manufacturing method
JP2014172801A (en) * 2013-03-12 2014-09-22 Yoshino Gypsum Co Ltd Mortar composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0986979A (en) * 1995-09-29 1997-03-31 Chichibu Onoda Cement Corp Refractory coating cement
JPH10120813A (en) * 1996-10-15 1998-05-12 Stylite Kogyo Kk Noncombustible fire-resistant composition and noncombustible fire-resistant foamed plastic
JP2000072504A (en) * 1998-08-27 2000-03-07 Taiheiyo Cement Corp Quick-hardening material for cement
JP2005068283A (en) * 2003-08-25 2005-03-17 Joji Matsuwaka Coating material composition
JP2012035462A (en) * 2010-08-05 2012-02-23 Kanayama Kasei Kk Foaming resin composite structure and manufacturing method
JP2014172801A (en) * 2013-03-12 2014-09-22 Yoshino Gypsum Co Ltd Mortar composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019196484A (en) * 2018-05-08 2019-11-14 積水フーラー株式会社 Fire-resistant material
JP7473118B2 (en) 2018-05-08 2024-04-23 積水フーラー株式会社 Fireproof Materials
JP2022503876A (en) * 2018-09-28 2022-01-12 トレンコ シーピージー ユーケー リミテッド Flame stop product
US11555306B2 (en) 2018-09-28 2023-01-17 Tremco CPG UK Limited Fire-stopping product
CN111574119A (en) * 2020-05-17 2020-08-25 郑宝霞 Foam concrete with high light weight and performance and preparation method thereof
CN112456882A (en) * 2020-12-09 2021-03-09 安徽鼎元新材料有限公司 Novel rock wool material
WO2022224986A1 (en) * 2021-04-21 2022-10-27 株式会社トクヤマ Unburnt carbon reduction method and heating method using ferric oxide
KR102591767B1 (en) * 2023-03-20 2023-10-24 주식회사 피플코리아 Inflammable panel having thermal and sound insulation prooerties

Also Published As

Publication number Publication date
JP6681272B2 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
JP6681272B2 (en) Composition and non-combustible material
KR102247280B1 (en) Fire-resistant coating applied to fire-resistant materials and high-strength, density-controlled cold fusion concrete cementitious spray
US9102076B2 (en) Methods for making aerogel composites
KR102098039B1 (en) Eco-friendly Mortar composition for repairing and reinforcing underwater concrete structures, and method of repairing and reinforcing using the same
CZ2010855A3 (en) Cement composites resistant to acids and high temperature values and process for preparing thereof
JP2014152101A (en) Fire-proof mortar
EP0254501B1 (en) Foamable composition
WO2020247876A1 (en) Fire resistant compositions and articles and methods of preparation and use thereof
CN111362647A (en) Inorganic micro-bead foaming modified silicon-plastic composite thermal insulation material and preparation method thereof
JP6556017B2 (en) Composition and incombustible material
CN110407555A (en) A kind of chlorine oxygen magnesium foam fireproof concrete light wall composite material and preparation method thereof
JP6953171B2 (en) Non-combustible building materials and non-combustible heat insulating building materials
US20100180797A1 (en) Ceramic Fire Protection Panel and Method for Producing the Same
WO2021177378A1 (en) Fireproof heat insulating board and fireproof heat insulating structural body
EP3904308B1 (en) Fire-resistant heat-insulation composition, fire-resistant heat-insulation composition slurry, fire-resistant heat-insulation board, and fire-resistant heat-insulation structure
JP6830817B2 (en) Refractory mortar composition
JP6681273B2 (en) Composition and non-combustible material
KR101985722B1 (en) Method of manufacturing lightweight foamed cement foam
KR101019980B1 (en) non-combustible styrofoam manufacture method
JP2000063161A (en) Filler inorganic hydraulic composition and board material
JP2006016218A (en) Refractory shotcrete and high strength lining concrete
JP7551064B2 (en) Fireproof heat insulating composition, fireproof heat insulating composition slurry, fireproof heat insulating board and fireproof heat insulating structure
WO2022004750A1 (en) Fire-resistant insulating composition, fire-resistant insulating composition slurry, fire-resistant insulating board, and fire-resistant insulating structure body
KR101998773B1 (en) Manufacturing method of the internal airfoil slab coated with the refractory mortar
KR101559346B1 (en) Fireproof coating material using slag, powder type fireproof coating material and method for using the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180921

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180928

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20181030

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200323

R150 Certificate of patent or registration of utility model

Ref document number: 6681272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350