JP2017209642A - Method of adjusting return sludge amount and excess sludge amount from final sedimentation place - Google Patents

Method of adjusting return sludge amount and excess sludge amount from final sedimentation place Download PDF

Info

Publication number
JP2017209642A
JP2017209642A JP2016105358A JP2016105358A JP2017209642A JP 2017209642 A JP2017209642 A JP 2017209642A JP 2016105358 A JP2016105358 A JP 2016105358A JP 2016105358 A JP2016105358 A JP 2016105358A JP 2017209642 A JP2017209642 A JP 2017209642A
Authority
JP
Japan
Prior art keywords
sludge
amount
predetermined period
mlss concentration
final sedimentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016105358A
Other languages
Japanese (ja)
Other versions
JP6655847B2 (en
Inventor
考寛 唐鎌
Takahiro Karakama
考寛 唐鎌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2016105358A priority Critical patent/JP6655847B2/en
Publication of JP2017209642A publication Critical patent/JP2017209642A/en
Application granted granted Critical
Publication of JP6655847B2 publication Critical patent/JP6655847B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technology for kinetically predicting MLSS concentration simply and adjusting return sludge amount and excess sludge amount from a final sedimentation place based on the prediction.SOLUTION: A water treatment system has a reaction tank and a final sedimentation place. MLSS concentration at a terminal of a reaction tank during a prescribed period having time length at a level that MLSS concentration of the terminal of the reaction tank is not deviated from a prescribed range is predicted. Then return sludge amount and excess sludge amount from the final sedimentation place in the prescribed period is determined based on a prediction value of the MLSS concentration and the water treatment system is operated to have the return sludge amount and the excess sludge amount in the prescribed period.SELECTED DRAWING: Figure 1

Description

本発明は下水処理場の最終沈澱池からの返送汚泥量・余剰汚泥量を調節する技術に関する。   The present invention relates to a technique for adjusting the amount of returned sludge and excess sludge from the final sedimentation basin of a sewage treatment plant.

下水処理場における運転管理では、日常的に返送汚泥量と余剰汚泥量を操作し、最終沈澱池からの引抜量を決定している。例えば、反応槽における活性汚泥の確保するために、返送汚泥量を調整するとともに、返送汚泥濃度を確認する。最終沈澱池における汚泥のキャリーオーバーの防止するために、余剰汚泥量を調節するとともに、汚泥界面を確認する。汚泥処理設備への負荷を調整するために、余剰汚泥量を調整するとともに、余剰汚泥濃度を確認する。   In operation management at the sewage treatment plant, the amount of return sludge and excess sludge are routinely manipulated to determine the amount of withdrawal from the final sedimentation basin. For example, in order to secure the activated sludge in the reaction tank, the return sludge amount is adjusted and the return sludge concentration is confirmed. In order to prevent sludge carryover in the final sedimentation basin, the amount of excess sludge is adjusted and the sludge interface is confirmed. In order to adjust the load on the sludge treatment facility, the amount of excess sludge is adjusted and the concentration of excess sludge is confirmed.

このような複数の要素を考慮して、返送汚泥量と余剰汚泥量を調整することは、熟練者の経験に頼るところが大きいのが現状である。   In consideration of such a plurality of factors, adjusting the amount of returned sludge and the amount of excess sludge largely depends on the experience of skilled workers.

一方で、従来から、反応槽のMLSS(活性汚泥浮遊物)濃度を適正な範囲に維持することにより、安定した運転管理を実現することが検討されている。   On the other hand, it has been conventionally studied to realize stable operation management by maintaining the MLSS (activated sludge suspended matter) concentration in the reaction tank within an appropriate range.

例えば、特許文献1では、MLSS濃度の実測値が目標値に追従するように、最終沈澱池からの返送汚泥量・余剰汚泥量を調節する。   For example, in Patent Document 1, the amount of returned sludge and the amount of excess sludge from the final sedimentation basin are adjusted so that the measured value of the MLSS concentration follows the target value.

特許文献2では、将来の挙動を予測し、MLSS濃度の予測値および返送汚泥濃度の予測値が目標値に追従するように、最終沈澱池からの返送汚泥量・余剰汚泥量を調節する。   In Patent Document 2, the future behavior is predicted, and the amount of returned sludge and the amount of surplus sludge from the final sedimentation basin are adjusted so that the predicted value of MLSS concentration and the predicted value of returned sludge concentration follow the target values.

特開平9−168791号公報JP-A-9-168791 特公平1−47238号公報JP-B-1-47238

しかしながら、特許文献1記載の調整方法では、MLSS濃度を事後的に確認してから、返送汚泥量・余剰汚泥量を決定して調節することになる為、MLSS濃度が変動した際の対応が遅れ、MLSS濃度を適正な範囲に維持することが困難になる場合も少なくなかった。   However, in the adjustment method described in Patent Document 1, since the MLSS concentration is confirmed afterwards, the amount of returned sludge and excess sludge are determined and adjusted, so the response when the MLSS concentration fluctuates is delayed. In many cases, it was difficult to maintain the MLSS concentration within an appropriate range.

一方、特許文献2記載の調整方法では、MLSS濃度の変動へ対応遅れを回避できる可能性が高まる。しかしながら、MLSS濃度及び返送汚泥濃度の両方の瞬間値を同時に適正な範囲に維持することが必要となり、アルゴリズムが複雑化してしまう。また、各種パラメータを設定するための事前実験等に高度な知識を要する。その結果、運転管理現場での活用が難しい。   On the other hand, the adjustment method described in Patent Document 2 increases the possibility of avoiding a delay in responding to the variation in the MLSS concentration. However, it is necessary to maintain the instantaneous values of both the MLSS concentration and the returned sludge concentration in an appropriate range at the same time, which complicates the algorithm. In addition, advanced knowledge is required for prior experiments for setting various parameters. As a result, it is difficult to utilize at the operation management site.

本発明は、上記課題を解決するものであり、簡便にMLSS濃度を動的に予測し、これに基づき、最終沈澱池からの返送汚泥量・余剰汚泥量を調節する技術を提供することを目的とする。   The present invention solves the above-mentioned problems, and dynamically and simply predicts the MLSS concentration, and based on this, an object is to provide a technique for adjusting the amount of returned sludge and excess sludge from the final sedimentation basin. And

上記課題を解決する本発明は、反応槽と最終沈澱池を備える水処理システムにおける返送汚泥量・余剰汚泥量調整方法である。該反応槽末端のMLSS濃度が所定範囲を逸脱しない程度の時間的長さを有する所定期間における該反応槽末端のMLSS濃度を予測し、該MLSS濃度の予測値に基づいて、該所定期間における最終沈澱池からの返送汚泥量および余剰汚泥量を決定し、該所定期間において該返送汚泥量および余剰汚泥量となるように操作する。   The present invention that solves the above problems is a method for adjusting the amount of returned sludge and excess sludge in a water treatment system including a reaction tank and a final sedimentation basin. The MLSS concentration at the end of the reaction vessel is predicted for a predetermined period having a length of time that does not deviate from the predetermined range, and the final value in the predetermined period is determined based on the predicted value of the MLSS concentration. The amount of returned sludge and the amount of excess sludge from the settling basin are determined, and the operation is performed so that the amount of returned sludge and the amount of excess sludge are the same during the predetermined period.

上記発明において、好ましくは、該所定期間における該MLSS濃度の予測値の平均が所定範囲を逸脱しない。   In the above invention, preferably, an average of predicted values of the MLSS concentration in the predetermined period does not deviate from a predetermined range.

予測に基づく運用を行うため、変動へ対応遅れを回避できる。また、長期予測(所定期間)に基づく運用であるため、瞬間値の予測に基づく運用に比べて、アルゴリズムが複雑化して運転管理現場が混乱することを回避できる。   Because operations are performed based on forecasts, delays in response to fluctuations can be avoided. In addition, since the operation is based on long-term prediction (predetermined period), it is possible to avoid complication of the operation management site due to the complexity of the algorithm compared to the operation based on the instantaneous value prediction.

上記発明において、好ましくは、前記所定期間における該反応槽末端のMLSS濃度の予測は、予測モデルに基づくものであって、該予測モデルは、反応槽末端のMLSS濃度を予測する反応槽モデルと返送汚泥濃度を予測する最終沈殿池モデルとからなり、該反応槽モデルでの反応槽末端のMLSS濃度予測値は、該最終沈殿池モデルに入力され、該最終沈殿池モデルより返送汚泥濃度予測値が出力され、該返最終沈殿池モデルでの送汚泥濃度予測値は該反応槽モデルに入力され、該反応槽モデルよりMLSS濃度予測値が出力され、該所定期間において、入力および出力が繰り返される。   In the above invention, preferably, the prediction of the MLSS concentration at the end of the reaction tank in the predetermined period is based on a prediction model, and the prediction model is returned to the reaction tank model for predicting the MLSS concentration at the end of the reaction tank. It consists of a final sedimentation basin model that predicts the sludge concentration, and the MLSS concentration prediction value at the end of the reaction tank in the reaction tank model is input to the final sedimentation basin model, and the return sludge concentration prediction value from the final sedimentation basin model is The output sludge concentration predicted value in the return final sedimentation basin model is input to the reaction tank model, the MLSS concentration predicted value is output from the reaction tank model, and input and output are repeated in the predetermined period.

これにより、MLSS濃度の長期予測ができる。   Thereby, long-term prediction of MLSS concentration can be performed.

上記発明において、好ましくは、前記反応槽モデルでは、反応槽内の汚泥の滞留時間分布に基づき、反応槽末端のMLSS濃度を予測し、前記最終沈殿池モデルでは、最終沈殿池内の汚泥の滞留時間分布に基づき、返送汚泥濃度を予測する。   In the above invention, preferably, in the reaction tank model, MLSS concentration at the end of the reaction tank is predicted based on the sludge residence time distribution in the reaction tank, and in the final sedimentation tank model, the sludge residence time in the final sedimentation tank. Based on the distribution, the return sludge concentration is predicted.

これにより、簡便に精度よくMLSS濃度の予測できる。   Thereby, MLSS concentration can be easily and accurately predicted.

上記発明において、好ましくは前記反応槽末端のMLSS濃度を実測し、前記MLSS濃度予測値と実測値に基づいて誤差評価を行い、該誤差評価に基づいて前記前記所定期間の時間的長さを変更する。   In the above invention, preferably, the MLSS concentration at the end of the reaction vessel is measured, and an error is evaluated based on the MLSS concentration predicted value and the measured value, and the time length of the predetermined period is changed based on the error evaluation. To do.

上記発明において、更に好ましくは、前記誤差評価において、許容範囲を逸脱したと判断する場合は、現時点の所定期間開始時点から該許容範囲逸脱判断時点までの時間的長さを有する期間を次期所定期間と設定し、該該次期所定期間における反応槽末端のMLSS濃度を予測する。   In the above invention, more preferably, in the error evaluation, when it is determined that the deviation has deviated from the allowable range, a period having a time length from the start of the present predetermined period to the determination of the deviation from the allowable range is set as the next predetermined period. And MLSS concentration at the end of the reaction tank in the next predetermined period is predicted.

上記発明において、更に好ましくは、前記誤差評価において、所定期間において許容範囲を逸脱しなかったと判断する場合は、現時点の所定期間より長い期間を次期所定期間と設定し、該次期所定期間における反応槽末端のMLSS濃度を予測する。   In the above invention, more preferably, in the error evaluation, when it is determined that the allowable range is not deviated in a predetermined period, a period longer than the present predetermined period is set as the next predetermined period, and the reaction tank in the next predetermined period is set. Predict terminal MLSS concentration.

このような運用により、安定性を確保しつつ、運転管理現場での負担を更に軽減することができる。   Such operations can further reduce the burden on the operation management site while ensuring stability.

上記課題を解決するために、本発明は、反応槽と最終沈澱池と制御装置とを備える水処理システムである。該制御装置は、該反応槽末端のMLSS濃度が所定範囲を逸脱しない程度の時間的長さを有する所定期間を設定し、該所定期間における該反応槽末端のMLSS濃度を予測し、該MLSS濃度の予測値に基づいて、該所定期間における最終沈澱池からの返送汚泥量および余剰汚泥量を決定し、該所定期間において該返送汚泥量および余剰汚泥量となるように最終沈澱池の調整弁を操作する。   In order to solve the above problems, the present invention is a water treatment system including a reaction tank, a final sedimentation basin, and a control device. The control device sets a predetermined period of time that does not deviate from the predetermined range of the MLSS concentration at the end of the reaction tank, predicts the MLSS concentration at the end of the reaction tank in the predetermined period, and The amount of returned sludge and surplus sludge from the final sedimentation basin during the predetermined period is determined based on the predicted value of the final sedimentation basin so that the amount of return sludge and excess sludge during the predetermined period is determined. Manipulate.

上記課題を解決するために、本発明は、反応槽と最終沈澱池と制御装置とを備える水処理システムを運用するプログラムである。該反応槽末端のMLSS濃度が所定範囲を逸脱しない程度の時間的長さを有する所定期間を設定する処理と、該所定期間における該反応槽末端のMLSS濃度を予測する処理と、該MLSS濃度の予測値に基づいて、該所定期間における最終沈澱池からの返送汚泥量および余剰汚泥量を決定する処理と、該所定期間における該返送汚泥量および余剰汚泥量となるように最終沈澱池の調整弁に操作指令を出力する処理とを該制御装置に実行させる。   In order to solve the above problems, the present invention is a program for operating a water treatment system including a reaction vessel, a final sedimentation basin, and a control device. A process for setting a predetermined period having a time length such that the MLSS concentration at the end of the reaction tank does not deviate from a predetermined range; a process for predicting the MLSS concentration at the end of the reaction tank in the predetermined period; Based on the predicted value, a process for determining the amount of return sludge and surplus sludge from the final sedimentation basin during the predetermined period, and the adjustment valve for the final sedimentation basin so as to obtain the amount of return sludge and surplus sludge during the predetermined period And processing for outputting an operation command to the control device.

本発明によれば、簡便にMLSS濃度を動的に予測できる。MLSS濃度の動的予測に基づき最終沈澱池からの返送汚泥量・余剰汚泥量を調節することで、運転管理現場での負担を軽減することができる。   According to the present invention, MLSS concentration can be dynamically predicted easily. By adjusting the amount of return sludge and excess sludge from the final sedimentation basin based on the dynamic prediction of MLSS concentration, the burden on the operation management site can be reduced.

システム概要図System overview 長期予測概念図Long-term forecast conceptual diagram 制御装置の機能ブロック図Functional block diagram of control device 予測モデル概念図Prediction model conceptual diagram 予測モデル検証Predictive model verification

〜システム概論〜
図1は水処理システムの基本構成である。水処理システムは、反応槽10と最終沈殿池20とを有する。
~ System overview ~
FIG. 1 shows a basic configuration of a water treatment system. The water treatment system has a reaction tank 10 and a final sedimentation tank 20.

外部より有機物を含む下水が反応槽10に流入する。反応槽10において、槽内の微生物と撹拌させるとともに、曝気を行なう。その後、反応槽10末端から最終沈殿池20へ流出する。最終沈殿池20において沈澱により固液分離される。上澄液は放流管により放流される。   Sewage containing organic matter flows into the reaction tank 10 from the outside. In the reaction tank 10, the microorganisms in the tank are agitated and aerated. Thereafter, it flows out from the end of the reaction tank 10 to the final sedimentation tank 20. Solid-liquid separation is performed by precipitation in the final sedimentation tank 20. The supernatant is discharged through a discharge pipe.

最終沈殿池20に沈降した汚泥は引き抜かれて、一部がポンプを介して反応槽10に返送される。残りはポンプを介して余剰汚泥として系外に搬出される。   The sludge settled in the final sedimentation basin 20 is withdrawn, and a part thereof is returned to the reaction tank 10 via a pump. The rest is carried out of the system as excess sludge through a pump.

このとき調整弁21を操作することで、返送汚泥量・余剰汚泥量を調節する。   At this time, the return sludge amount and the excess sludge amount are adjusted by operating the adjustment valve 21.

〜システム運用〜
本実施形態におけるシステムの運用について説明する。
~System operation~
The operation of the system in this embodiment will be described.

本実施形態では、まず、所定期間(例えば2週間)における反応槽10末端のMLSS濃度の動的予測をおこなう。図2は、長期予測の概念図である。   In the present embodiment, first, dynamic prediction of the MLSS concentration at the end of the reaction tank 10 in a predetermined period (for example, two weeks) is performed. FIG. 2 is a conceptual diagram of long-term prediction.

動的予測は、予測モデル(たとえば後述の予測モデル)に基づくことが好ましいが、過去データに基づいて算出してもよい。予測モデルから求めた動的予測を過去データにより補正してもよい。   The dynamic prediction is preferably based on a prediction model (for example, a prediction model described later), but may be calculated based on past data. The dynamic prediction obtained from the prediction model may be corrected by past data.

このとき、予測値が所定範囲(許容範囲)を逸脱しないように設定する。なお、所定期間における全ての予測値が許容範囲に維持されていることが好ましいが、瞬間的に一部の予測値が逸脱しても、予測値の平均が許容範囲に維持されていれば、一部逸脱を許容してもよい。   At this time, the predicted value is set so as not to deviate from a predetermined range (allowable range). In addition, it is preferable that all the predicted values in the predetermined period are maintained in the allowable range, but even if some predicted values deviate instantaneously, if the average of the predicted values is maintained in the allowable range, Some deviation may be allowed.

ついで、動的予測に追従するように、固形物収支に基づき、最終沈澱池からの返送汚泥量および余剰汚泥量を決定し、返送汚泥量・余剰汚泥量を調節する。   Next, the return sludge amount and surplus sludge amount from the final sedimentation basin are determined based on the solids balance so as to follow the dynamic prediction, and the return sludge amount and surplus sludge amount are adjusted.

本実施形態では、予測に基づく運用を行うため、変動へ対応遅れを回避できる。また、長期予測(例えば2週間)に基づく運用であるため、瞬間値の予測に基づく運用に比べて、アルゴリズムが複雑化することを回避できる。   In this embodiment, since operation based on prediction is performed, it is possible to avoid a delay in dealing with fluctuations. In addition, since the operation is based on long-term prediction (for example, two weeks), it is possible to avoid the algorithm from becoming complicated as compared to the operation based on the instantaneous value prediction.

これにより、運転管理現場での負担を軽減することができる。   Thereby, the burden at the operation management site can be reduced.

本実施形態におけるシステムの付随的な運用について更に説明する。   Additional operations of the system in this embodiment will be further described.

本実施形態は、反応槽10末端のMLSS濃度の長期予測(例えば2週間)に基づいた運用を行うことを特徴とする。所定期間の運用が終了すれば、新たに長期予測を行ない、所定期間の運用を開始する。これを繰り返す。   This embodiment is characterized in that operation is performed based on long-term prediction (for example, two weeks) of the MLSS concentration at the end of the reaction tank 10. When the operation for a predetermined period is completed, a long-term prediction is newly made and the operation for the predetermined period is started. Repeat this.

このとき、センサ11を介して反応槽10末端のMLSS濃度を実測し、予測値と実測値に基づいて誤差評価を行い、予測精度を確認してもよい。   At this time, the MLSS concentration at the end of the reaction vessel 10 may be measured via the sensor 11 and error evaluation may be performed based on the predicted value and the measured value to confirm the prediction accuracy.

後述の予測モデルは精度が良く、所定期間において反応槽10末端のMLSS濃度が適正な範囲に維持されるのが前提であるが、不測の要因により、誤差が許容範囲を超えた場合、所定期間(例えば2週間)終了前に運用を中断する。そして、現時点の所定期間開始時点から許容範囲逸脱判断時点までの期間を次期所定期間(例えば10日間)と設定する。新たに次期所定期間における長期予測を行ない、所定期間(10日間)の運用を開始する。   The prediction model described later is accurate, and it is premised that the MLSS concentration at the end of the reaction vessel 10 is maintained within an appropriate range for a predetermined period. However, if the error exceeds an allowable range due to unexpected factors, Suspend operation before the end (for example, 2 weeks). Then, the period from the current predetermined period start time to the allowable range deviation determination time is set as the next predetermined period (for example, 10 days). A long-term prediction for the next predetermined period is newly made, and operation for the predetermined period (10 days) is started.

このように、誤差評価に基づいて所定期間を変更してもよい。   Thus, the predetermined period may be changed based on the error evaluation.

一方で、所定期間において、誤差が許容範囲にある場合(反応槽10末端のMLSS濃度が適正な範囲に維持された)、現時点の所定期間(例えば2週間)より長い期間(例えば18日)を次期所定期間と設定し、新たに次期所定期間における長期予測を行ない、所定期間(18日間)の運用を開始してもよい。   On the other hand, if the error is within an allowable range in the predetermined period (the MLSS concentration at the end of the reaction tank 10 is maintained in an appropriate range), a period (for example, 18 days) longer than the current predetermined period (for example, 2 weeks) The next predetermined period may be set, a long-term prediction for the next predetermined period may be newly performed, and the operation for the predetermined period (18 days) may be started.

また、例えば、2週間の運用を数回(例えば5回)繰り返した後、誤差が許容範囲にある場合、18日間の運用を開始してもよい。   Further, for example, after the operation for two weeks is repeated several times (for example, five times), if the error is within the allowable range, the operation for 18 days may be started.

このような運用により、安定性を確保しつつ、運転管理現場での負担を更に軽減することができる。   Such operations can further reduce the burden on the operation management site while ensuring stability.

〜制御装置〜
さらに、制御装置30を設けて、制御装置30の判断に基づき上記運用を行なってもよい。図3は、制御装置30の機能ブロック図である。
~Control device~
Furthermore, a control device 30 may be provided and the above operation may be performed based on the determination of the control device 30. FIG. 3 is a functional block diagram of the control device 30.

制御装置30は、運用期間設定部31と、MLSS濃度予測部32と、返送汚泥量・余剰汚泥量調整部33と、誤差評価部34とを有する。   The control device 30 includes an operation period setting unit 31, an MLSS concentration prediction unit 32, a return sludge amount / surplus sludge amount adjustment unit 33, and an error evaluation unit 34.

運用期間設定部31は、運用期間(=予測期間)を設定する。MLSS濃度予測部32は、当該運用期間における反応槽10末端のMLSS濃度の動的予測をおこなう。   The operation period setting unit 31 sets an operation period (= prediction period). The MLSS concentration prediction unit 32 performs dynamic prediction of the MLSS concentration at the end of the reaction tank 10 during the operation period.

返送汚泥量・余剰汚泥量調整部33は、動的予測に追従するように、最終沈澱池からの返送汚泥量および余剰汚泥量を決定するとともに、制御信号を調整弁21に出力する。   The return sludge amount / surplus sludge amount adjustment unit 33 determines the return sludge amount and the excess sludge amount from the final sedimentation basin so as to follow the dynamic prediction, and outputs a control signal to the adjustment valve 21.

誤差評価部34は、センサ11より反応槽10末端のMLSS濃度の実測値を入力し、誤差評価を行なう。さらに、誤差評価結果に基づいて、適宜、運用期間を変更する。運用期間設定部31は、誤差評価部34からの指令に基づき運用期間を再設定する。   The error evaluation unit 34 inputs the measured value of the MLSS concentration at the end of the reaction vessel 10 from the sensor 11 and performs error evaluation. Further, the operation period is changed as appropriate based on the error evaluation result. The operation period setting unit 31 resets the operation period based on a command from the error evaluation unit 34.

尚、制御装置30はCPUや記憶装置等から構成され、その一部又は全部はプログラムにより動作する。   The control device 30 is composed of a CPU, a storage device, and the like, and a part or all of them are operated by a program.

〜予測モデル概要〜
本実施形態において、反応槽10末端のMLSS濃度の長期予測に基づいた運用を行うためには、予測精度を担保する必要がある。さらに、アルゴリズムが複雑化することを回避して、運転管理現場で運用するためには、予測モデルが簡易である必要がある。
~ Outline of prediction model ~
In this embodiment, in order to perform the operation based on the long-term prediction of the MLSS concentration at the end of the reaction tank 10, it is necessary to ensure the prediction accuracy. Furthermore, the prediction model needs to be simple in order to avoid the complexity of the algorithm and to operate the operation management site.

図4は予測モデルの概念図である。本願予測モデルは、反応槽モデルと最終沈殿池モデルとを組み合わせて構築される。反応槽モデルではMLSS濃度予測結果が出力され、反応槽モデルでのMLSS濃度予測結果が最終沈殿池モデルに入力され、最終沈殿池モデルでは返送汚泥濃度予測結果が出力され、最終沈殿池モデルでの返送汚泥濃度予測結果が反応槽モデルに入力され、再度、反応槽モデルよりMLSS濃度予測結果が出力される。   FIG. 4 is a conceptual diagram of the prediction model. The present application prediction model is constructed by combining the reaction tank model and the final sedimentation basin model. MLSS concentration prediction results are output in the reactor model, MLSS concentration prediction results in the reactor model are input to the final sedimentation basin model, return sludge concentration prediction results are output in the final sedimentation basin model, and the final sedimentation basin model The return sludge concentration prediction result is input to the reaction tank model, and the MLSS concentration prediction result is output again from the reaction tank model.

このように所定の予測期間において、固形物収支に基づき入力および出力が繰り返される。これにより、MLSS濃度の長期予測が可能となる。   Thus, input and output are repeated based on the solid balance in a predetermined prediction period. This enables long-term prediction of MLSS concentration.

反応槽モデルでは、反応槽における流入固形物量と流出固形物量の関係を、反応槽での汚泥の滞留時間分布を介して数式化する。   In the reaction tank model, the relationship between the inflow solids amount and the outflow solids amount in the reaction tank is mathematically expressed through the sludge residence time distribution in the reaction tank.

最終沈澱池モデルでは、最終沈澱池における流入固形物量と流出固形物量の関係を、最終沈澱池での汚泥の滞留時間分布を介して数式化する。   In the final sedimentation basin model, the relationship between the inflow solids amount and the outflow solids amount in the final sedimentation basin is formulated through the sludge residence time distribution in the final sedimentation basin.

反応槽や最終沈澱池における汚泥の滞留時間分布は、トレーサー試験を実施して測定結果に基づいて設定してもよい。また、正規分布と仮定したり、既往の研究結果に基づき設定してもよい。   The sludge residence time distribution in the reaction tank or the final sedimentation basin may be set based on the measurement result by performing a tracer test. Further, it may be assumed to be a normal distribution or set based on past research results.

なお、発明者は、汚泥の滞留時間分布を一様分布(最長と最短を設定)と仮定しても、実測値との誤差が許容範囲であり、十分な予測精度が得られることを確認している。さらに、一様分布と仮定することにより、設定すべきパラメータを制限し、より簡易なモデルとすることができる。パラメータ設定のための水質分析や事前実験が不要である。   The inventor confirmed that even if the sludge residence time distribution is assumed to be a uniform distribution (the longest and shortest are set), the error from the measured value is within an allowable range and sufficient prediction accuracy can be obtained. ing. Further, assuming a uniform distribution, the parameters to be set can be limited, and a simpler model can be obtained. Water quality analysis and prior experiments for parameter setting are not required.

さらに、反応槽における固形物増加率を用いて系外からの固形物増加の影響を反映させてもよい。   Furthermore, you may reflect the influence of the solid increase from the outside using the solid increase rate in a reaction tank.

以上のように、本実施形態では、簡便に精度よくMLSS濃度の長期予測ができる。その結果、MLSS濃度の長期予測に基づき最終沈澱池からの返送汚泥量・余剰汚泥量を調節することができる。   As described above, in the present embodiment, long-term prediction of the MLSS concentration can be performed easily and accurately. As a result, it is possible to adjust the amount of return sludge and excess sludge from the final sedimentation basin based on long-term prediction of MLSS concentration.

〜予測モデル検証〜
発明者は、上記予測モデル(一様分布)について検証試験をおこなった。予測期間を30日と設定した。図5は検証試験結果である。
~ Prediction model verification ~
The inventor conducted a verification test on the prediction model (uniform distribution). The forecast period was set at 30 days. FIG. 5 shows the verification test results.

MLSS濃度の予測値と実測値の差の絶対値を実測値で除した数値を誤差率とした。MLSS濃度の予測値と実測値の差は小さく(誤差率平均7.3%)、モデルの予測精度が高いことが確認した。また、経時的に予測精度が低下しないことも確認した。   The numerical value obtained by dividing the absolute value of the difference between the predicted value of MLSS concentration and the actual measurement value by the actual measurement value was taken as the error rate. The difference between the predicted value of MLSS concentration and the measured value was small (average error rate: 7.3%), and it was confirmed that the prediction accuracy of the model was high. It was also confirmed that the prediction accuracy did not decrease over time.

上記検証結果より、MLSS濃度の長期予測に基づき最終沈澱池からの返送汚泥量・余剰汚泥量を調節する本実施形態の運用について、実用性が高いことを示した。   From the above verification results, it was shown that the operation of this embodiment for adjusting the return sludge amount and the excess sludge amount from the final sedimentation basin based on the long-term prediction of the MLSS concentration is highly practical.

10 反応槽
11 センサ
20 最終沈澱池
21 調整弁
30 制御装置
31 運用期間設定部
32 MLSS濃度予測部
33 返送汚泥量・余剰汚泥量調整部
34 誤差評価部
DESCRIPTION OF SYMBOLS 10 Reaction tank 11 Sensor 20 Final sedimentation basin 21 Control valve 30 Control apparatus 31 Operation period setting part 32 MLSS density | concentration estimation part 33 Return sludge quantity and excess sludge quantity adjustment part 34 Error evaluation part

Claims (9)

反応槽と最終沈澱池を備える水処理システムにて、
該反応槽末端のMLSS濃度が所定範囲を逸脱しない程度の時間的長さを有する所定期間における該反応槽末端のMLSS濃度を予測し、
該MLSS濃度の予測値に基づいて、該所定期間における最終沈澱池からの返送汚泥量および余剰汚泥量を決定し、
該所定期間において該返送汚泥量および余剰汚泥量となるように操作する
ことを特徴とする返送汚泥量・余剰汚泥量調整方法。
In a water treatment system equipped with a reaction tank and final sedimentation basin,
Predicting the MLSS concentration at the end of the reactor in a predetermined period of time that does not deviate from the predetermined range.
Based on the predicted value of the MLSS concentration, determine the amount of return sludge and the amount of excess sludge from the final sedimentation basin during the predetermined period,
The return sludge amount / surplus sludge amount adjustment method, wherein the return sludge amount and the excess sludge amount are operated during the predetermined period.
該所定期間における該MLSS濃度の予測値の平均が所定範囲を逸脱しない
ことを特徴とする請求項1記載の返送汚泥量・余剰汚泥量調整方法。
The return sludge amount / surplus sludge amount adjusting method according to claim 1, wherein an average of the predicted values of the MLSS concentration in the predetermined period does not deviate from a predetermined range.
前記所定期間における該反応槽末端のMLSS濃度の予測は、予測モデルに基づくものであって、
該予測モデルは、反応槽末端のMLSS濃度を予測する反応槽モデルと返送汚泥濃度を予測する最終沈殿池モデルとからなり、
該反応槽モデルでの反応槽末端のMLSS濃度予測値は、該最終沈殿池モデルに入力され、
該最終沈殿池モデルより返送汚泥濃度予測値が出力され、
該返最終沈殿池モデルでの送汚泥濃度予測値は該反応槽モデルに入力され、
該反応槽モデルよりMLSS濃度予測値が出力され、
該所定期間において、入力および出力が繰り返される
ことを特徴とする請求項1または請求項2記載の返送汚泥量・余剰汚泥量調整方法。
The prediction of the MLSS concentration at the end of the reactor in the predetermined period is based on a prediction model,
The prediction model consists of a reaction tank model that predicts the MLSS concentration at the end of the reaction tank and a final sedimentation basin model that predicts the return sludge concentration.
MLSS concentration predicted value at the end of the reactor in the reactor model is input to the final sedimentation basin model,
The return sludge concentration prediction value is output from the final sedimentation basin model,
The predicted sludge concentration in the return final sedimentation basin model is input to the reactor model,
MLSS concentration predicted value is output from the reactor model,
The input and output are repeated during the predetermined period. The return sludge amount / surplus sludge amount adjusting method according to claim 1 or 2.
前記反応槽モデルでは、反応槽内の汚泥の滞留時間分布に基づき、反応槽末端のMLSS濃度を予測し、
前記最終沈殿池モデルでは、最終沈殿池内の汚泥の滞留時間分布に基づき、返送汚泥濃度を予測する
ことを特徴とする請求項3記載の返送汚泥量・余剰汚泥量調整方法。
In the reactor model, the MLSS concentration at the end of the reactor is predicted based on the sludge residence time distribution in the reactor,
The return sludge amount / surplus sludge amount adjusting method according to claim 3, wherein the final sedimentation basin model predicts the return sludge concentration based on sludge residence time distribution in the final sedimentation basin.
前記反応槽末端のMLSS濃度を実測し、
前記MLSS濃度の予測値と該実測値に基づいて誤差評価を行い、
該誤差評価に基づいて前記所定期間の時間的長さを変更する
ことを特徴とする請求項1または請求項2記載の返送汚泥量・余剰汚泥量調整方法。
Measure the MLSS concentration at the end of the reactor,
Perform error evaluation based on the MLSS concentration predicted value and the measured value,
The return sludge amount / surplus sludge amount adjusting method according to claim 1 or 2, wherein the time length of the predetermined period is changed based on the error evaluation.
前記誤差評価において、許容範囲を逸脱したと判断する場合は、
現時点の所定期間開始時点から該許容範囲逸脱判断時点までの時間的長さを有する期間を次期所定期間と設定し、
該次期所定期間における反応槽末端のMLSS濃度を予測する
ことを特徴とする請求項5記載の返送汚泥量・余剰汚泥量調整方法。
In the error evaluation, if it is determined that the tolerance has deviated,
A period having a length of time from the start of the predetermined period at the present time to the determination point of deviation from the allowable range is set as the next predetermined period,
The method for adjusting the amount of returned sludge and excess sludge according to claim 5, wherein the MLSS concentration at the end of the reaction tank in the next predetermined period is predicted.
前記誤差評価において、所定期間において許容範囲を逸脱しなかったと判断する場合は、
現時点の所定期間より長い期間を次期所定期間と設定し、
該次期所定期間における反応槽末端のMLSS濃度を予測する
ことを特徴とする請求項5記載の返送汚泥量・余剰汚泥量調整方法。
In the error evaluation, when it is determined that the allowable range is not deviated in a predetermined period,
Set a period longer than the current period as the next period,
The method for adjusting the amount of returned sludge and excess sludge according to claim 5, wherein the MLSS concentration at the end of the reaction tank in the next predetermined period is predicted.
反応槽と最終沈澱池と制御装置とを備え、
該制御装置は、
該反応槽末端のMLSS濃度が所定範囲を逸脱しない程度の時間的長さを有する所定期間を設定し、
該所定期間における該反応槽末端のMLSS濃度を予測し、
該MLSS濃度の予測値に基づいて、該所定期間における最終沈澱池からの返送汚泥量および余剰汚泥量を決定し、
該所定期間において該返送汚泥量および余剰汚泥量となるように最終沈澱池の調整弁を操作する
ことを特徴とする水処理システム。
Equipped with a reaction vessel, final sedimentation basin and control device,
The control device
Set a predetermined period of time so that the MLSS concentration at the end of the reactor does not deviate from the predetermined range,
Predicting the MLSS concentration at the end of the reactor during the predetermined period,
Based on the predicted value of the MLSS concentration, determine the amount of return sludge and the amount of excess sludge from the final sedimentation basin during the predetermined period,
A water treatment system, wherein a regulating valve of a final sedimentation basin is operated so that the amount of returned sludge and the amount of surplus sludge are obtained during the predetermined period.
反応槽と最終沈澱池と制御装置とを備える水処理システムを運用するプログラムであって、
該反応槽末端のMLSS濃度が所定範囲を逸脱しない程度の時間的長さを有する所定期間を設定する処理と、
該所定期間における該反応槽末端のMLSS濃度を予測する処理と、
該MLSS濃度の予測値に基づいて、該所定期間における最終沈澱池からの返送汚泥量および余剰汚泥量を決定する処理と、
該所定期間において該返送汚泥量および余剰汚泥量となるように最終沈澱池の調整弁に操作指令を出力する処理と
を該制御装置に実行させることを特徴とする水処理システム運用プログラム。
A program for operating a water treatment system comprising a reaction tank, a final sedimentation basin, and a control device,
A process for setting a predetermined period of time that does not deviate from the predetermined range of the MLSS concentration at the end of the reaction vessel;
A process for predicting the MLSS concentration at the end of the reaction vessel in the predetermined period;
Based on the predicted value of the MLSS concentration, a process for determining the amount of return sludge and the amount of excess sludge from the final sedimentation basin during the predetermined period;
A water treatment system operation program that causes the control device to execute a process of outputting an operation command to a regulating valve of a final sedimentation basin so that the amount of returned sludge and the amount of surplus sludge during the predetermined period.
JP2016105358A 2016-05-26 2016-05-26 How to control the amount of sludge returned and excess sludge from the final sedimentation basin Active JP6655847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016105358A JP6655847B2 (en) 2016-05-26 2016-05-26 How to control the amount of sludge returned and excess sludge from the final sedimentation basin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016105358A JP6655847B2 (en) 2016-05-26 2016-05-26 How to control the amount of sludge returned and excess sludge from the final sedimentation basin

Publications (2)

Publication Number Publication Date
JP2017209642A true JP2017209642A (en) 2017-11-30
JP6655847B2 JP6655847B2 (en) 2020-02-26

Family

ID=60476484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016105358A Active JP6655847B2 (en) 2016-05-26 2016-05-26 How to control the amount of sludge returned and excess sludge from the final sedimentation basin

Country Status (1)

Country Link
JP (1) JP6655847B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127192A (en) * 1979-03-22 1980-10-01 Toshiba Corp Operating of sewage treating apparatus by activated soludge method
JPS56115687A (en) * 1980-02-15 1981-09-10 Toshiba Corp Optimum operating method for sewage treatment system by activated sludge process
JPS57156087A (en) * 1981-03-24 1982-09-27 Toshiba Corp Operating system for sewage treatment system by activated sludge method
JPH08192140A (en) * 1995-01-12 1996-07-30 Toshiba Corp Mlss meter calibration judgment apparatus
JP2012141712A (en) * 2010-12-28 2012-07-26 Toshiba Corp Process monitoring diagnostic system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127192A (en) * 1979-03-22 1980-10-01 Toshiba Corp Operating of sewage treating apparatus by activated soludge method
JPS56115687A (en) * 1980-02-15 1981-09-10 Toshiba Corp Optimum operating method for sewage treatment system by activated sludge process
JPS57156087A (en) * 1981-03-24 1982-09-27 Toshiba Corp Operating system for sewage treatment system by activated sludge method
JPH0147238B2 (en) * 1981-03-24 1989-10-12 Tokyo Shibaura Electric Co
JPH08192140A (en) * 1995-01-12 1996-07-30 Toshiba Corp Mlss meter calibration judgment apparatus
JP2012141712A (en) * 2010-12-28 2012-07-26 Toshiba Corp Process monitoring diagnostic system

Also Published As

Publication number Publication date
JP6655847B2 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
JP4746385B2 (en) Flocculant injection control device applied to water treatment plant
Torfs et al. Impact on sludge inventory and control strategies using the benchmark simulation model no. 1 with the Bürger-Diehl settler model
US11866348B2 (en) System, apparatus, and method for treating wastewater in real time
JP6655975B2 (en) Aeration control device and aeration control method
Carstensen et al. Prediction of hydraulic load for urban storm control of a municipal WWT plant
JP2012205996A (en) Operation method of ion exchange apparatus and ion exchange system
JP2017209642A (en) Method of adjusting return sludge amount and excess sludge amount from final sedimentation place
US11763243B2 (en) Plant operation support system and plant operation support method
US20180356275A1 (en) Calibration apparatus and sensitivity determining module for virturl flow meter and associated method
JP6098553B2 (en) Rejuvenated phosphorus amount prediction device, recovered phosphorus amount prediction method, and converter dephosphorization control method
JP5330604B2 (en) Material transfer control method
JP2010037770A (en) Inflow rate predicting method and dam management control system
JPS6129793B2 (en)
JP7375616B2 (en) Operation variable explanatory variable selection device for water treatment facilities
JP7378972B2 (en) Membrane treatment control system and membrane treatment control method
JPH05309376A (en) Liquid neutralizing apparatus
JP2020151649A (en) Processing method and device of fluorine-containing waste water
JP2005174334A (en) Method and device for suboptimal control by means of search strategy, and method and device for gas separation, particularly for cryogenic air separation
JPS62180796A (en) Control device for amount of sludge for activated sludge treatment plant
JP2023043413A (en) Water quality prediction device and water quality prediction method
JP2008308910A (en) Received water flow rate calculating method and device
CN117930899A (en) Controllable pressure curve control system and method
Hassapis Biological oxygen demand (BOD) monitoring by a multiprocessing system
Lynggaard-Jensen et al. On-line determination of sludge settling velocity for flux-based real-time control of secondary clarifiers
Leone Development of a simulation platform for control of the Engineering Pilot Plant

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160531

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200130

R150 Certificate of patent or registration of utility model

Ref document number: 6655847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250