JP2017207346A - Calibration method of three-dimensional shape measuring device - Google Patents

Calibration method of three-dimensional shape measuring device Download PDF

Info

Publication number
JP2017207346A
JP2017207346A JP2016099172A JP2016099172A JP2017207346A JP 2017207346 A JP2017207346 A JP 2017207346A JP 2016099172 A JP2016099172 A JP 2016099172A JP 2016099172 A JP2016099172 A JP 2016099172A JP 2017207346 A JP2017207346 A JP 2017207346A
Authority
JP
Japan
Prior art keywords
dimensional shape
cameras
light
calibration
calibration pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016099172A
Other languages
Japanese (ja)
Inventor
森 大輔
Daisuke Mori
大輔 森
高橋 信幸
Nobuyuki Takahashi
信幸 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2016099172A priority Critical patent/JP2017207346A/en
Publication of JP2017207346A publication Critical patent/JP2017207346A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a calibration method of a three-dimensional shape measuring device capable of calibrating a camera accurately, when measuring a three-dimensional shape of a self-luminous measuring object.SOLUTION: In a three-dimensional shape measuring device including a pair of cameras 1A, 1B, for measuring a three-dimensional shape of a self-luminous measuring object by parallax of the cameras 1A, 1B, wavelength light not included in self-luminous light is irradiated to a prescribed calibration pattern, and a band-pass filter passable only by wavelength light from the calibration pattern is mounted on each camera 1A, 1B, to thereby calibrate the cameras 1A, 1B.SELECTED DRAWING: Figure 1

Description

本発明は三次元形状測定装置の較正方法に関し、特に、一対のカメラを備え、これらカメラの視差によって三次元形状を測定する測定装置の較正方法に関するものである。   The present invention relates to a calibration method for a three-dimensional shape measuring apparatus, and more particularly, to a calibration method for a measuring apparatus that includes a pair of cameras and measures a three-dimensional shape based on the parallax of these cameras.

被測定体の三次元形状を測定する場合に人間の目のように左右に一対のカメラ(ステレオカメラ)を設けてこれらカメラの視差から三次元形状を認識する三次元形状測定装置が知られている。この場合、例えば特許文献1に開示されているように、被測定体にスリット光を当てて、当該スリット光の投影形状より三次元形状を測定することが多い。   There is known a three-dimensional shape measuring apparatus that provides a pair of cameras (stereo cameras) on the left and right like a human eye and recognizes the three-dimensional shape from the parallax of these cameras when measuring the three-dimensional shape of a measured object. Yes. In this case, for example, as disclosed in Patent Document 1, it is often the case that a three-dimensional shape is measured by applying slit light to a measured object and projecting the slit light.

特開平7−91929JP-A-7-91929

ところで、高温の熱間鋼材等では材料自体が自発光しており、その波長域は黄色〜赤色の領域にあることが多い。そこで、自発光に含まれていない波長光である例えば青色のスリット光を照射して、その投影像のみを、青色のバンドパスフィルタを設けたカメラで得るようにしている。   By the way, in high-temperature hot steel materials and the like, the material itself emits light, and its wavelength region is often in a yellow to red region. Therefore, for example, blue slit light, which is wavelength light not included in the self-light emission, is irradiated, and only the projection image is obtained by a camera provided with a blue bandpass filter.

この場合、カメラ間の位置誤差調整やレンズの歪み補正等の較正は、水玉模様や格子模様等の所定のパターンを自然光や白色光源の下で両カメラで撮影して行っているが、バンドパスフィルタを装着していると青色光以外の反射光が入射しないために光量が不足して正確な較正ができない。そこで、バンドパスフィルタを外して自然光や白色光源下で較正を行うが、自然光等に含まれる多様な波長光による色収差によって誤差を生じ、やはり正確な較正が困難であるという問題があった。   In this case, calibration such as positional error adjustment between the cameras and lens distortion correction is performed by photographing a predetermined pattern such as a polka dot pattern or a lattice pattern with both cameras under natural light or a white light source. When a filter is attached, reflected light other than blue light does not enter, so the amount of light is insufficient and accurate calibration cannot be performed. Therefore, although the calibration is performed under natural light or a white light source with the bandpass filter removed, there is a problem that errors are caused by chromatic aberration due to various wavelength light contained in natural light and the like, and accurate calibration is still difficult.

そこで、本発明はこのような課題を解決するもので、自発光する被測定体の三次元形状を測定する場合にカメラの較正を正確に行うことができる三次元測定装置の較正方法を提供することを目的とする。   Therefore, the present invention solves such a problem, and provides a calibration method for a three-dimensional measurement apparatus that can accurately calibrate a camera when measuring the three-dimensional shape of a self-luminous object to be measured. For the purpose.

上記目的を達成するために、本第1発明では、一対のカメラ(1A,1B)を備え、これらカメラ(1A、1B)の視差によって、自発光する被測定体(M)の三次元形状を測定する三次元形状測定装置において、所定の較正パターン(CP)に前記自発光に含まれていない波長光を照射し、前記較正パターン(CP)からの前記波長光のみを通過させるバンドパスフィルタを前記各カメラ(1A,1B)に装着してこれらカメラ(1A,1B)の較正を行う。   In order to achieve the above object, the first invention includes a pair of cameras (1A, 1B), and the three-dimensional shape of the measured object (M) that emits light by the parallax of these cameras (1A, 1B). In the three-dimensional shape measuring apparatus for measuring, a bandpass filter that irradiates a predetermined calibration pattern (CP) with a wavelength light not included in the self-emission and passes only the wavelength light from the calibration pattern (CP) The cameras (1A, 1B) are calibrated by being mounted on the cameras (1A, 1B).

本第1発明においては、較正パターンは被測定体の自発光に含まれていない波長光が照射されて十分な明るさを有しているから、カメラに当該波長光のみを通過させるバンドパスフィルタを装着していても正確な較正を行うことができる。   In the first aspect of the invention, the calibration pattern is irradiated with the wavelength light not included in the self-emission of the object to be measured and has sufficient brightness, so that the band-pass filter allows only the wavelength light to pass through the camera. Accurate calibration can be performed even if the is mounted.

本第2発明では、前記較正パターン(CP)は透明な基板(21)に不透明な較正用の模様を形成したものであり、前記較正パターン(CP)の背後から前記自発光に含まれていない波長光を照射して当該波長光を前記較正パターン(CP)に透過させる。   In the second invention, the calibration pattern (CP) is formed by forming an opaque calibration pattern on a transparent substrate (21), and is not included in the self-light emission from behind the calibration pattern (CP). The wavelength light is irradiated and the wavelength light is transmitted through the calibration pattern (CP).

本第2発明においては、較正パターンを効率的に照明することができる。   In the second invention, the calibration pattern can be efficiently illuminated.

上記カッコ内の符号は、後述する実施形態に記載の具体的手段との対応関係を参考的に示すものである。   The reference numerals in the parentheses refer to the correspondence with specific means described in the embodiments described later.

以上のように、本発明の三次元形状測定装置の較正方法によれば、自発光する被測定体の三次元形状を測定する場合にカメラの較正を正確に行うことができる。   As described above, according to the calibration method of the three-dimensional shape measuring apparatus of the present invention, the camera can be accurately calibrated when measuring the three-dimensional shape of the object to be self-luminous.

本発明の一実施形態を示す、較正方法を実施するための装置の概略斜視図である。1 is a schematic perspective view of an apparatus for performing a calibration method according to an embodiment of the present invention. 較正用ボードの概略断面図である。It is a schematic sectional drawing of the board for a calibration. 三次元形状測定装置の概略斜視図である。It is a schematic perspective view of a three-dimensional shape measuring apparatus. 測定誤差を示すグラフである。It is a graph which shows a measurement error.

なお、以下に説明する実施形態はあくまで一例であり、本発明の要旨を逸脱しない範囲で当業者が行う種々の設計的改良も本発明の範囲に含まれる。   The embodiment described below is merely an example, and various design improvements made by those skilled in the art without departing from the gist of the present invention are also included in the scope of the present invention.

図1には本発明の較正方法を実施する際の機器構成を示す。図1に示すように、左右一対のカメラ1A,1Bを較正用ボード2に対向して位置させる。なお、カメラ1A,1Bは図略の支持架台に、後述するラインレーザと共に支持固定されている。なお、カメラ1A,1Bは左右独立のものである必要はなく、一体になっているものでも良い。   FIG. 1 shows an apparatus configuration when the calibration method of the present invention is performed. As shown in FIG. 1, a pair of left and right cameras 1 </ b> A and 1 </ b> B are positioned facing the calibration board 2. The cameras 1A and 1B are supported and fixed together with a line laser to be described later on a support frame (not shown). The cameras 1A and 1B do not have to be independent on the left and right sides, and may be integrated.

較正用ボード2は四角の箱型のもので、カメラ1A,1Bに対向する上面に較正パターンCPが描かれている。なお各カメラ1A,1Bには本実施形態では青色のみを透過させるバンドパスフィルタが装着されている。また較正パターンCPは本実施形態では、四角の黒色枠の中に多数の黒色小円を左右上下に等間隔で配した水玉模様で構成されている。このような較正パターンCPは、透明な樹脂フィルムやガラスの基体21上に、上記枠や水玉模様を黒色印刷して構成されており、黒色の枠や小円の部分は光を通さない。なお、図中の鎖線は各カメラ1A,1Bの視野を示している。   The calibration board 2 has a rectangular box shape, and a calibration pattern CP is drawn on the upper surface facing the cameras 1A and 1B. In this embodiment, each camera 1A, 1B is equipped with a band-pass filter that transmits only blue. Further, in the present embodiment, the calibration pattern CP is constituted by a polka dot pattern in which a large number of small black circles are arranged at equal intervals on the left and right and up and down in a square black frame. Such a calibration pattern CP is formed by printing the frame or polka dot pattern on a transparent resin film or glass substrate 21 in black, and the black frame and small circles do not transmit light. In addition, the chain line in a figure has shown the visual field of each camera 1A, 1B.

図2には較正用ボード2の概略断面図を示す。較正用ボード2の、上方へ開放する箱体21の開口には上述した較正パターンCPを形成した基体21が開口を閉鎖するように設けられている。そして箱体22内には上方へ向けて青色光を発する照明器23が収納されている。照明器23は上方の基体21に向けて均等に青色光が出力されるように多数のLEDを平面内に分散設置したものである。   FIG. 2 shows a schematic sectional view of the calibration board 2. The base 21 on which the calibration pattern CP described above is formed is provided in the opening of the box 21 that opens upward on the calibration board 2 so as to close the opening. An illuminator 23 that emits blue light upward is housed in the box 22. The illuminator 23 has a large number of LEDs distributed in a plane so that blue light is output uniformly toward the upper base 21.

カメラ1A,1Bの較正を行う場合には、図2に示すように、較正用ボード2の上方に当該ボード2に向けてカメラ1A,1Bを位置させて公知の方法によって行う。この場合、較正用ボード2の較正パターンCPは照明器23のバックライト(図中の矢印)によって十分な明るさを有しているから、カメラ1A,1Bに青色のバンドパスフィルタを装着した状態でも較正を正確に行うことができる。   When the cameras 1A and 1B are calibrated, the cameras 1A and 1B are positioned toward the board 2 above the calibration board 2 as shown in FIG. In this case, the calibration pattern CP of the calibration board 2 has sufficient brightness due to the backlight of the illuminator 23 (arrow in the figure), so that the blue band-pass filter is attached to the cameras 1A and 1B. But calibration can be done accurately.

このようにして較正されたカメラ1A,1Bで被測定体の三次元形状を測定する場合には、図3に示すようにこれら一対のカメラ1A,1Bの間に青色ラインレーザ3を位置させて、当該ラインレーザ3から出力される青色スリット光SLを、水平回転する回転テーブル4上に置かれた被測定体Mに投影する。そして一対のカメラ1A,1Bによって当該スリット光SLの投影形状を撮影して公知の方法によって被測定体Mの三次元形状を測定する。   When measuring the three-dimensional shape of the measurement object with the cameras 1A and 1B calibrated in this way, the blue line laser 3 is positioned between the pair of cameras 1A and 1B as shown in FIG. The blue slit light SL output from the line laser 3 is projected onto the measurement object M placed on the rotary table 4 that rotates horizontally. Then, the projected shape of the slit light SL is photographed by the pair of cameras 1A and 1B, and the three-dimensional shape of the measurement object M is measured by a known method.

図4には、図3に示す円柱体を被測定体Mとして、その直径を測定した場合の各回転角度位置での実寸との測定誤差を示す。本実施形態の方法によって較正したカメラ1A,1Bで測定した場合の測定誤差は線xで示すようにほぼ零に近く、正確な三次元形状測定が可能であることを示している。   FIG. 4 shows a measurement error from the actual size at each rotation angle position when the diameter of the cylindrical body shown in FIG. The measurement error when measured by the cameras 1A and 1B calibrated by the method of the present embodiment is nearly zero as shown by the line x, indicating that accurate three-dimensional shape measurement is possible.

図4中の線yは比較例を示すもので、バンドパスフィルタを装着していない状態で白色光源下でカメラ1A,1Bの較正を行い、カメラ1A,1Bに青色バンドパスフィルタを装着して上記円柱体Mにおける青色スリット光の投影形状を撮影し、当該円柱体Mの直径を測定したものである。この場合には大きな測定誤差を生じている。なお、図中の線zは、バンドパスフィルタを装着していない状態で白色光源下でカメラ1A,1Bの較正を行い、そのまま青色バンドパスフィルタを装着しないカメラ1A,1Bで上記円柱体Mにおける青色スリット光の投影形状を撮影し、当該円柱体Mの直径を測定したものである。   A line y in FIG. 4 shows a comparative example. The cameras 1A and 1B are calibrated under a white light source in a state where no bandpass filter is attached, and a blue bandpass filter is attached to the cameras 1A and 1B. The projected shape of the blue slit light in the cylindrical body M is photographed, and the diameter of the cylindrical body M is measured. In this case, a large measurement error occurs. Note that a line z in the figure calibrates the cameras 1A and 1B under a white light source without wearing a bandpass filter, and in the cylinder M with the cameras 1A and 1B without wearing a blue bandpass filter as it is. The projected shape of blue slit light is photographed, and the diameter of the cylindrical body M is measured.

以上のように、本実施形態の較正方法によれば、カメラに青色のバンドパスフィルタを装着した状態で正確な較正を行うことができるから、自発光する熱間鋼材等に、自発光の波長光に含まれない青色のスリット光を投影して正確な三次元形状を測定することができる。なお、被測定体の自発光に含まれない波長光であれば良いから、青色に限られないことはもちろんである。また、較正パターンに対する照明をその前方から行って反射光をカメラに入射させるようにしても良い。   As described above, according to the calibration method of the present embodiment, accurate calibration can be performed with the blue bandpass filter attached to the camera. By projecting blue slit light not included in the light, an accurate three-dimensional shape can be measured. Of course, the wavelength light is not limited to the blue color as long as it is not included in the self-emission of the object to be measured. Moreover, illumination with respect to a calibration pattern may be performed from the front, and reflected light may be entered into a camera.

1A,1B…カメラ、2…較正用ボード、21…基板、23…照明器、M…円柱体(被測定体)、CP…較正パターン。 DESCRIPTION OF SYMBOLS 1A, 1B ... Camera, 2 ... Calibration board, 21 ... Board | substrate, 23 ... Illuminator, M ... Cylindrical body (measuring object), CP ... Calibration pattern.

Claims (2)

一対のカメラを備え、これらカメラの視差によって、自発光する被測定体の三次元形状を測定する三次元形状測定装置において、所定の較正パターンに前記自発光に含まれていない波長光を照射し、前記較正パターンからの前記波長光のみを通過させるバンドパスフィルタを前記各カメラに装着してこれらカメラの較正を行うことを特徴とする三次元形状測定装置の較正方法。 In a three-dimensional shape measuring apparatus that includes a pair of cameras and measures the three-dimensional shape of a measurement object that emits light by the parallax of these cameras, a predetermined calibration pattern is irradiated with light that is not included in the light emission. A calibration method for a three-dimensional shape measurement apparatus, wherein a band-pass filter that allows passage of only the wavelength light from the calibration pattern is attached to each camera to calibrate the cameras. 前記較正パターンは透明な基板に不透明な較正用の模様を形成したものであり、前記較正パターンの背後から前記自発光に含まれていない波長光を照射して当該波長光を前記較正パターンに透過させるようにした請求項1に記載の三次元形状測定装置の較正方法。 The calibration pattern is formed by forming an opaque calibration pattern on a transparent substrate, and irradiates wavelength light not included in the light emission from behind the calibration pattern to transmit the wavelength light to the calibration pattern. The method for calibrating a three-dimensional shape measuring apparatus according to claim 1, wherein the three-dimensional shape measuring apparatus is calibrated.
JP2016099172A 2016-05-18 2016-05-18 Calibration method of three-dimensional shape measuring device Pending JP2017207346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016099172A JP2017207346A (en) 2016-05-18 2016-05-18 Calibration method of three-dimensional shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016099172A JP2017207346A (en) 2016-05-18 2016-05-18 Calibration method of three-dimensional shape measuring device

Publications (1)

Publication Number Publication Date
JP2017207346A true JP2017207346A (en) 2017-11-24

Family

ID=60414981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016099172A Pending JP2017207346A (en) 2016-05-18 2016-05-18 Calibration method of three-dimensional shape measuring device

Country Status (1)

Country Link
JP (1) JP2017207346A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021099221A (en) * 2019-12-20 2021-07-01 大同特殊鋼株式会社 Calibration device for three-dimensional shape measurement
CN113155053A (en) * 2020-01-22 2021-07-23 株式会社三丰 Three-dimensional geometry measuring device and three-dimensional geometry measuring method
CN116494023A (en) * 2023-04-11 2023-07-28 中国航空制造技术研究院 Device and method for measuring and correcting geometrical parameters of machining electrode of electro-hydraulic beam machine tool

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10104033A (en) * 1996-09-27 1998-04-24 Komatsu Ltd Calibration plate of imaging device, calibration device using above described plate and three-dimensional position measuring device
JP2015200529A (en) * 2014-04-07 2015-11-12 大同特殊鋼株式会社 Shape measurement device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10104033A (en) * 1996-09-27 1998-04-24 Komatsu Ltd Calibration plate of imaging device, calibration device using above described plate and three-dimensional position measuring device
JP2015200529A (en) * 2014-04-07 2015-11-12 大同特殊鋼株式会社 Shape measurement device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021099221A (en) * 2019-12-20 2021-07-01 大同特殊鋼株式会社 Calibration device for three-dimensional shape measurement
JP7363456B2 (en) 2019-12-20 2023-10-18 大同特殊鋼株式会社 Calibration device for three-dimensional shape measurement
CN113155053A (en) * 2020-01-22 2021-07-23 株式会社三丰 Three-dimensional geometry measuring device and three-dimensional geometry measuring method
US11449970B2 (en) 2020-01-22 2022-09-20 Mitutoyo Corporation Three-dimensional geometry measurement apparatus and three-dimensional geometry measurement method
CN116494023A (en) * 2023-04-11 2023-07-28 中国航空制造技术研究院 Device and method for measuring and correcting geometrical parameters of machining electrode of electro-hydraulic beam machine tool
CN116494023B (en) * 2023-04-11 2024-03-22 中国航空制造技术研究院 Device and method for measuring and correcting geometrical parameters of machining electrode of electro-hydraulic beam machine tool

Similar Documents

Publication Publication Date Title
US10588494B2 (en) Camera and method for the three-dimensional measurement of a dental object
JP6453764B2 (en) Method and associated apparatus for examining the suitability of optical properties of ophthalmic lenses
CN106827515B (en) Calibration method and system is imaged in 3D printing
López et al. LED near-field goniophotometer at PTB
JP2017207346A (en) Calibration method of three-dimensional shape measuring device
JP5924511B2 (en) Optical film sticking position measuring device
ES2733651T3 (en) Measurement of the angular position of a lenticular lens sheet
KR20160046746A (en) Method for determining a local refractive index and device therefor
JP2010281778A (en) Three-dimensional shape measuring device
CN108683908A (en) Multi-functional caliberating device
CN110186927A (en) Image testing device and image checking method
JP2014232079A (en) Solar battery cell inspection device, and image position correction method of solar battery cell inspection device
JP2012002612A (en) Calibration board and calibration apparatus equipped with this calibration board
JP5804511B2 (en) Exposure equipment
CN109141506A (en) Multi-functional calibration system
CN208572296U (en) Multi-functional caliberating device
KR20180040316A (en) 3D optical scanner
JP2014095617A (en) Device for measuring pattern and method for measuring pattern
TWI539246B (en) Drawing apparatus
JP7151256B2 (en) Diffractive optical element, multifaceted body, inspection method for multifaceted body, light irradiation device, method for adjusting light irradiation device
CN111982025A (en) Point cloud data acquisition method and system for mold detection
ES2808801T3 (en) Calibration of digital images or digital video obtained as film scans
JP6075352B2 (en) Pattern irradiation apparatus and system
CN106840603A (en) A kind of laser angle calibrating installation and calibration method based on path time
WO2023058666A1 (en) Distance measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200623