JP2017205221A - 呼吸波形描画システム及び生体情報モニタリングシステム - Google Patents

呼吸波形描画システム及び生体情報モニタリングシステム Download PDF

Info

Publication number
JP2017205221A
JP2017205221A JP2016098862A JP2016098862A JP2017205221A JP 2017205221 A JP2017205221 A JP 2017205221A JP 2016098862 A JP2016098862 A JP 2016098862A JP 2016098862 A JP2016098862 A JP 2016098862A JP 2017205221 A JP2017205221 A JP 2017205221A
Authority
JP
Japan
Prior art keywords
subject
waveform
vibration
load
bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016098862A
Other languages
English (en)
Other versions
JP6268219B2 (ja
JP2017205221A5 (ja
Inventor
浩之 赤津
Hiroyuki Akatsu
浩之 赤津
徳仁 飯田
Norihito Iida
徳仁 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MinebeaMitsumi Inc
Original Assignee
MinebeaMitsumi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MinebeaMitsumi Inc filed Critical MinebeaMitsumi Inc
Priority to JP2016098862A priority Critical patent/JP6268219B2/ja
Priority to PCT/JP2017/018338 priority patent/WO2017199945A1/ja
Priority to CN201780043419.7A priority patent/CN109475324B/zh
Priority to EP17799369.8A priority patent/EP3459452B1/en
Publication of JP2017205221A publication Critical patent/JP2017205221A/ja
Publication of JP2017205221A5 publication Critical patent/JP2017205221A5/ja
Application granted granted Critical
Publication of JP6268219B2 publication Critical patent/JP6268219B2/ja
Priority to US16/191,922 priority patent/US10758187B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1102Ballistocardiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1113Local tracking of patients, e.g. in a hospital or private home
    • A61B5/1115Monitoring leaving of a patient support, e.g. a bed or a wheelchair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6892Mats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G7/00Beds specially adapted for nursing; Devices for lifting patients or disabled persons
    • A61G7/05Parts, details or accessories of beds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0252Load cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/046Arrangements of multiple sensors of the same type in a matrix array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0803Recording apparatus specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1121Determining geometric values, e.g. centre of rotation or angular range of movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6891Furniture

Abstract

【課題】被験者の呼吸を示す波形を、ほぼリアルタイムで提示することのできる呼吸波形描画システムを提供する。【解決手段】ベッド上の被験者の呼吸波形を描画する呼吸波形描画システムは、ベッド又はベッドの脚下に設けられ、被験者の荷重を検出し荷重信号として出力する複数の荷重検出器と、前記荷重信号の周波数スペクトルに基づいてベッド上の被験者の数を判定する被験者数判定部と、ベッド上の被験者の数が複数であると判定された場合、各被験者の荷重成分を、各荷重検出器から出力された荷重信号ごとに分離する波形分離部と、前記分離された荷重成分に基づいて、各被験者の重心位置を算出する重心位置算出部と、各被験者の重心位置の時間的変動に基づいて各被験者の呼吸波形を描画する波形描画部とを備える。【選択図】図7

Description

本発明は、被験者の重心位置の変動に基づいて被験者の呼吸波形を描画する呼吸波形描画システム、及び被験者の重心位置の変動に基づいて被験者の生体情報をモニタリングする生体情報モニタリングシステムに関する。
被験者の生体情報は、医療や介護の現場において患者や被介護者の身体状態を知るための重要な情報の一つである。例えば被験者の呼吸状態を把握して、睡眠時無呼吸症候群やいびきなどの症状の把握、及びこれらの症状の改善に役立てることができる。
ベッドの脚部の下に荷重センサを配置して、荷重センサの計測値に基づいて被験者の呼吸状態を計測することが提案されている(特許文献1)。更に、ベッドの脚部の下に荷重検出器を配置してベッド上の被検生体の重心の移動を求め、この重心の移動に基づいて被検生体の呼吸運動と心拍運動とを求めることも提案されている(特許文献2)
特許第4883380号 特公昭61−24010号
医療現場では、被験者の呼吸状態を示す波形をリアルタイムで提示することが望まれているが、特許文献1、2に記載の発明は、このような現場の要望に応えることはできない。
そこで本発明は、被験者の呼吸を示す波形を、ほぼリアルタイムで提示することのできる呼吸波形描画システム及び呼吸波形描画方法を提供することを目的とする。
本発明の第1の態様に従えば、
ベッド上の被験者の呼吸波形を描画する呼吸波形描画システムであって、
ベッド又はベッドの脚下に設けられ、被験者の荷重を検出し荷重信号として出力する複数の荷重検出器と、
前記荷重信号の周波数スペクトルに基づいてベッド上の被験者の数を判定する被験者数判定部と、
ベッド上の被験者の数が複数であると判定された場合、各被験者の荷重成分を、各荷重検出器から出力された荷重信号ごとに分離する波形分離部と、
前記分離された荷重成分に基づいて、各被験者の重心位置を算出する重心位置算出部と、
各被験者の重心位置の時間的変動に基づいて各被験者の呼吸波形を描画する波形描画部とを備える呼吸波形描画システムが提供される。
第1の態様の呼吸波形描画システムにおいて、前記被験者数判定部は、前記荷重信号の周波数スペクトルに現れるピーク周波数の数をベッド上の被験者の数と判定してもよい。
第1の態様の呼吸波形描画システムは、各被験者の呼吸波形の振動原点及び振動軸を設定する振動座標設定部をさらに備えてもよく、前記振動座標設定部は、各被験者ごとに、ある時刻における重心位置を初期原点として、初期原点から変位する重心位置の距離が最大となる重心位置である第1極値点を求め、初期原点の第1極値点と反対側に現れる初期原点からの距離が最大になる重心位置である第2極値点を求め、第1極値点と第2極値点とを結ぶ方向を仮振動軸と設定し、第1極値点と第2極値点の中点を仮振動原点と設定してもよく、前記波形描画部は、前記仮振動軸上に投影した重心位置の前記仮振動原点からの変位を時間に対して表すことによって、各被験者の呼吸波形を描画してもよい。
第1の態様の呼吸波形描画システムは、各被験者の呼吸波形の描画状態を補償する描画補償部をさらに備えてもよく、前記描画補償部は、各被験者ごとに過去の呼吸波形に基づいて予測波形を生成する予測波形生成部と、各被験者ごとに所定のサンプリング時刻における呼吸波形と予測波形との間の距離を算出する補正距離算出部とを備えてもよく、各被験者の呼吸波形の描画状態を前記距離に応じて補償してもよい。
本発明の第2の態様に従えば、
ベッド上の被験者の生体情報をモニタリングする生体情報モニタリングシステムであって、
ベッド又はベッドの脚下に設けられ、被験者の荷重を検出し荷重信号として出力する複数の荷重検出器と、
前記荷重信号の周波数スペクトルに基づいてベッド上の被験者の数を判定する被験者数判定部と、
ベッド上の被験者の数が複数であると判定された場合、各被験者の荷重成分を、各荷重検出器から出力された荷重信号ごとに分離する波形分離部と、を備え、
前記分離された荷重成分は、各被験者の生体情報をモニタリングするのに供される生体情報モニタリングシステムが提供される。
第2の態様の生体情報モニタリングシステムは、各被験者の生体情報として、各被験者の心拍を表す波形をモニタリングしてもよい。
本発明の呼吸波形描画システム及び呼吸波形描画方法によれば、被験者の呼吸を示す波形をほぼリアルタイムで提示することができる。
図1は、本発明の実施形態に係る生体情報モニタリングシステムの構成を示すブロック図である。 図2は、本発明の実施形態に係る重心軌跡算出方法を示すフローチャートである。 図3は、荷重検出器のベッドに対する配置を示す説明図である。 図4は、ベッド上面に画成される4つの荷重検出領域の配置を示す説明図である。 図5は、荷重検出器からの荷重信号の一例を示す。 図6は、被験者の重心軌跡の一例を示す。 図7は、本発明の実施形態に係る波形描画方法を示すフローチャートである。 図8は、被験者の重心軌跡の他の例を示す。 図9(a)、図9(b)、図9(c)はそれぞれ、図8に示す重心軌跡の領域A、B、Cの拡大図である。 図10は、振動座標設定工程の手順を示すフローチャートである。 図11(a)は、振動原点及び振動軸の決定方法を説明するための説明図であり、設定された第1仮振動原点の一例を示す。図11(b)は、図11(a)に対応する時点までに波形描画部が描画した仮の呼吸波形の様子を示す。 図12(a)は、振動原点及び振動軸の決定方法を説明するための説明図であり、第1仮振動原点と重心との距離の一例を示す。図12(b)は、図12(a)に対応する時点までに波形描画部が描画した仮の呼吸波形の様子を示す。 図13(a)は、振動原点及び振動軸の決定方法を説明するための説明図であり、設定された第1極値点の一例を示す。図13(b)は、図13(a)に対応する時点までに波形描画部が描画した仮の呼吸波形の様子を示す。 図14(a)は、振動原点及び振動軸の決定方法を説明するための説明図であり、設定された第1仮振動軸の一例を示す。図14(b)は、図14(a)に対応する時点までに波形描画部が描画した仮の呼吸波形の様子を示す。 図15(a)は、振動原点及び振動軸の決定方法を説明するための説明図であり、第1仮振動原点と、重心から第1仮振動軸に下された垂線の足との距離の一例を示す。図15(b)は、図15(a)に対応する時点までに波形描画部が描画した仮の呼吸波形の様子を示す。 図16(a)は、振動原点及び振動軸の決定方法を説明するための説明図であり、設定された第2極値点の一例を示す。図16(b)は、図16(a)に対応する時点までに波形描画部が描画した仮の呼吸波形の様子を示す。 図17(a)は、振動原点及び振動軸の決定方法を説明するための説明図であり、設定された第2仮振動原点及び第2仮振動軸の一例を示す。図17(b)は、図17(a)に対応する時点までに波形描画部が描画した仮の呼吸波形の様子を示す。 図18(a)は、振動原点及び振動軸の決定方法を説明するための説明図であり、設定された振動原点及び振動軸の一例を示す。図18(b)は、図18(a)に対応する時点までに波形描画部が描画した仮の呼吸波形の様子を示す。 図19(a)は、決定された振動原点及び振動軸を用いて呼吸波形を描画する方法を説明するための説明図であり、振動原点と、重心から振動軸に下された垂線の足との距離の一例を示す。図19(b)は、図19(a)に対応する時点までに波形描画部に描画された仮の呼吸波形及び正規の呼吸波形の様子を示す。 図20は、被験者の呼吸波形の一例を示すグラフであり、被験者の体動による被験者の重心位置のシフトに起因して、体動前の呼吸波形と体動後の呼吸波形とが振動軸方向にシフトして描画されている様子を示す。 図21は、描画補償部の詳細な構成を示すブロック図である。 図22は、描画補償工程の手順を示すフローチャートである。 図23は、描画補償の方法を説明するための説明図である。 図24は、荷重信号の呼吸の周波数に相当する周波数帯域における周波数スペクトルの一例である。 図25は、描画補償の他の方法を説明するための説明図である。 図26は、被験者の周波数プロファイルの一例を示す。 図27は、変形例に係るベッドシステムの全体構成を示すブロック図である。
<第1実施形態>
図1〜図24を参照して、本発明の第1実施形態について説明する。
図1に示す通り、本実施形態の生体情報モニタリングシステム(呼吸波形描画システム、呼吸情報取得システム)100は、ベッド上の被験者の生体状態を把握するために観測や測定を行うもので、荷重検出部1、制御部3、記憶部4、表示部5を主に有する。荷重検出部1と制御部3とは、A/D変換部2を介して接続されている。制御部3には更に、報知部6及び入力部7が接続されている。
荷重検出部1は、4つの荷重検出器11、12、13、14を備える。荷重検出器11、12、13、14のそれぞれは、例えばビーム形のロードセルを用いて荷重を検出する荷重検出器である。このような荷重検出器は例えば、特許第4829020号や特許第4002905号に記載されている。荷重検出器11、12、13、14はそれぞれ、配線によりA/D変換部2に接続されている。
荷重検出部1の4つの荷重検出器11、12、13、14は、被験者が使用するベッドの脚の下に配置される。具体的には荷重検出器11、12、13、14は、図3に示す通り、ベッドBDの四隅の脚の下端部に取り付けられたキャスターC、C、C、Cの下にそれぞれ配置される。
A/D変換部2は、荷重検出部1からのアナログ信号をデジタル信号に変換するA/D変換器を備え、荷重検出部1と制御部3にそれぞれ配線で接続されている。
制御部3は、専用又は汎用のコンピュータであり、内部に重心位置算出部31、体動検出部(体動判定部)32、波形分離部(荷重分離部)33、振動座標設定部34、波形描画部35、描画補償部36が構築されている。
記憶部4は、生体情報モニタリングシステム100において使用されるデータを記憶する記憶装置であり、例えばハードディスク(磁気ディスク)を用いることができる。表示部5は、制御部3から出力される情報を生体情報モニタリングシステム100の使用者に表示する液晶モニター等のモニターである。
報知部6は、制御部3からの情報に基づいて所定の報知を視覚的又は聴覚的に行う装置、例えばスピーカを備える。入力部7は、制御部3に対して所定の入力を行うためのインターフェイスであり、キーボード及びマウスにし得る。
このような生体情報モニタリングシステム100を使用して、ベッド上の被験者の呼吸状態を始めとした各種生体情報を検知しモニターすることができる。各種生体情報の取得及びモニターは、ベッド上の被験者の重心位置の変動に基づいて行われる。
生体情報モニタリングシステム100を使用して、ベッド上の被験者の重心位置を算出する動作について説明する。生体情報モニタリングシステム100を使用した被験者の重心位置の算出は、図2に示す通り、被験者の荷重を検出する荷重検出工程(S01)と、検出した荷重に基づいて被験者の重心位置の時間的変動(重心軌跡)を算出する重心軌跡算出工程(S02)とを含む。
荷重検出工程S01では、荷重検出器11、12、13、14を用いてベッドBD上の被験者Sの荷重を検出する。荷重検出器11、12、13、14は、上記の通りキャスターC、C、C、Cの下にそれぞれ配置されているため、ベッドBDの上面に加えられる荷重は、4つの荷重検出器11、12、13、14に分散して検知される。具体的には、図4に示す通りベッドBDの矩形状の上面は、縦及び横にそれぞれ2分割されて4つの矩形領域I〜IVに均等に分割される。
これにより、ベッドBD上の中央部で仰臥する(仰向けに寝る)被験者Sの左下半身が位置する領域Iに加えられる荷重は主に荷重検出器11により検出され、同状態の被験者Sの右下半身が位置する領域IIに加えられる荷重は主に荷重検出器12により検出される。同様に、ベッドBD上の中央部で仰臥する被験者Sの右上半身が位置する領域IIIに加えられる荷重は主に荷重検出器13により検出され、同状態の被験者Sの左上半身が位置する領域IVに加えられる荷重は主に荷重検出器14により検出される。なお、ベッドBD上に被験者Sが乗っていない場合、荷重検出器11、12、13、14からの出力の合計はベッド単体の重量を表わし、ベッドBD上に被験者Sが乗っている場合、荷重検出器11、12、13、14からの出力の合計はベッド単体の重量と被験者Sの体重を表わしているため、予め記憶部4にベッド単体の重量を記憶しておくことにより、被験者Sが在床した時に被験者Sの体重を測定することが出来る。なお、ベッドの重量が4つの領域で均一でない場合には、その相違を荷重検出器に対応するベッド重量として記憶させておく。また、実際の計測中の被験者S以外の重量をもたらす状況、例えば、布団や荷物等が置かれたことをベッド重量に反映させるようにすることが望ましい。
荷重検出器11、12、13、14はそれぞれ、荷重(荷重変化)を検出してアナログ信号としてA/D変換部2に出力する。A/D変換部2は、サンプリング周期を例えば5ミリ秒として、アナログ信号をデジタル信号に変換し、デジタル信号(以下「荷重信号」)として制御部3に出力する。
荷重信号の一例を図5に示す。図5は、時刻t10〜時刻t14までの間に出力された荷重検出器11、12、13、14からの荷重信号s(実線)、s(破線)、s(一点鎖線)、s(二点鎖線)の様子を示している。被検者Sは、時刻t10〜時刻t11までの間(期間P11)には図4に示す通りベッドBDの中央部に仰臥しており、時刻t11〜時刻t12までの間(期間P12)にはベッドBDの領域I、IV側に移動しており、時刻t12〜時刻t13までの間(期間P13)には期間P12と比べてややベッドBDの中央側に移動しており、時刻t13〜時刻t14までの間(期間P14)にはベッドBDの中央部に仰臥していたことが観察されている。
期間P11には、被験者Sは図4に示す通りベッドBDの中央部に仰臥していたので、この期間P11では、被験者Sの頭側に配置された荷重検出器13、14からの信号s、sがほぼ等しく、被験者Sの脚側に配置された荷重検出器11、12からの信号s、sがほぼ等しい。
期間P12には、被験者SはベッドBDの領域I、IV側に移動していたので、この期間P12では、領域I、IVに配置された荷重検出器11、14からの信号s、sが期間P11に比べて大きな荷重値を示し、領域II、IIIに配置された荷重検出器12、13からの信号s、sは期間P11に比べて小さな荷重値を示している。
期間P13には、被験者Sは、期間P12と比べてややベッドBDの中央側に移動していたので、この期間P13では、領域I、IVに配置された荷重検出器11、14からの信号s、sは期間P12に比べて小さな荷重値を示し、領域II、IIIに配置された荷重検出器12、13からの信号s、sは期間P12に比べて大きな荷重値を示している。
期間P14には、被験者Sは、期間P11と同じくベッドBDの中央部に仰臥していたので、この期間P14における信号s〜sは、期間P11における信号s〜sと同じである。
重心軌跡算出工程S02では、重心位置算出部31が、荷重検出器11〜14からの荷重信号s〜sに基づいてベッドBD上の被験者Sの重心Gの位置G(X、Y)を所定の周期T(例えば上記のサンプリング周期5ミリ秒に等しい)で算出し、被験者Sの重心Gの位置の時間的変動(重心軌跡GT)を求める。ここで、(X、Y)は、ベッドBDの中心部を原点として長手方向にXを、短手方向にYを取ったXY座標面上における座標を示す(図6)。
重心位置算出部31による重心Gの位置G(X、Y)の算出は、次の演算により行われる。すなわちG(X、Y)は、荷重検出器11、12、13、14の座標をそれぞれ(X11、Y11)、(X12、Y12)、(X13、Y13)、(X14、Y14)、荷重検出器11、12、13、14の荷重の検出値をそれぞれW11、W12、W13、W14として、次式により算出される。
Figure 2017205221
Figure 2017205221
重心位置算出部31は、上記の数式1、数式2に基づいて重心Gの位置G(X、Y)を所定のサンプリング周期Tで算出しながら、重心Gの位置G(X、Y)の時間的変動、即ち重心軌跡GTを求め、例えば記憶部4に記憶させる。
重心位置算出部31で算出された重心軌跡GTの一例を図6に示す。図6は、図5の期間P11、P12、P13内の任意の時刻t110、t120、t130における、ベッドBD上の被験者Sの重心Gの位置G(XP11、YP11)、G(XP12、YP12)、G(XP13、YP13)を示しており、P11、P12、P13を繋ぐ一点鎖線の矢印は、位置G(XP11、YP11)からG(XP13、YP13)まで移動する被験者Sの重心Gの重心軌跡GTを示している。
本発明の発明者は、重心位置算出部31で算出される被験者Sの重心軌跡GTには、主に被験者Sの3種類の生体活動に起因する重心移動の軌跡が含まれていることを見出した。
第1は、寝返りなど、被験者Sの胴部の移動を伴う比較的大きな身体の移動に起因する重心移動の軌跡である。本発明においては、このような比較的大きな身体の移動を「大きな体動」と呼ぶ。
第2は、手足や顔の移動など、被験者Sの胴部の移動を伴わない比較的小さな身体の移動に起因する重心移動の軌跡である。本発明においては、このような比較的小さな身体の移動を「小さな体動」と呼ぶ。なお、本明細書及び本発明では、「大きな体動」と「小さな体動」をまとめて「体動」と呼ぶ。
第3は、被験者の呼吸に起因する重心移動の軌跡である。人間の呼吸は、胸郭及び横隔膜を移動させて、肺を膨張及び収縮させることにより行われる。ここで吸気時、すなわち肺が膨張する時には横隔膜は下方に下がり、内臓も下方に移動する。一方で呼気時、すなわち肺が収縮する時には横隔膜は上方に上がり、内臓も上方に移動する。本発明の発明者は、研究により、この内臓移動に伴って、重心Gが、背骨の延在方向(体軸方向)にほぼ沿って振動することを見出した。
なお本明細書及び本発明においては、被験者の呼吸に起因して生じる被験者の重心の体軸方向に沿った往復動を「呼吸振動」と呼び、呼吸振動の軌跡を「呼吸振動軌跡」と呼ぶ。また、呼吸振動を時間領域で示した波形、例えば体軸方向を縦軸とし時間を横軸として示した波形を被験者の「呼吸波形」と呼ぶ。
本明細書及び本発明においては、被験者が大きな体動を行っていない期間を「安定体位期間」と呼び、安定体位期間のうち、被験者が小さな体動も行わず一定の位置で呼吸のみを行っている期間を「安定呼吸期間」と呼ぶ。
次に、図7のフローチャートを参照して、重心位置算出部31で算出された被験者Sの重心位置に基づいて被験者Sの呼吸波形を描画する方法を述べる。まず、工程全体の概略を説明する。各工程の詳細は後述する。
体動判定工程S1では、体動検出部32が、ベッド上の被験者Sに体動(大きな体動、小さな体動)が生じているか否かを検出する。ベッド上の被験者に体動が生じている場合(S1:Yes)は、再度体動判定工程S1を繰り返す。体動が生じていない場合(S1:No)は、被験者数判定工程S2に進む。
被験者数判定工程S2では、制御部3がベッドBD上の被験者Sの人数を判定する。被験者Sが一人である場合(S2:Yes)は、制御部3は、振動座標設定工程S3において、振動座標設定部34に被験者Sの呼吸振動の振動座標(詳細は後述)を設定させる。
被験者Sが複数人である場合(S2:No)、制御部3は、波形分離部33に、波形分離工程S6を行わせる。波形分離工程S6では、複数の被験者Sの呼吸振動が重畳された振動が分離され、複数の被験者Sの各々の呼吸振動が取り出される。制御部3は、分離されて取り出された呼吸振動の各々について、振動座標設定部34に振動座標設定工程S3を行わせ、複数の被験者Sの各々の呼吸振動の振動座標を設定する。
波形描画工程S4では、波形描画部35が、振動座標設定工程S3で設定された振動座標に基づいて被験者Sの呼吸波形(被験者Sが複数人である場合は、被験者Sの各々の呼吸波形)を描画し、表示部5に表示する。
制御部3は、波形描画工程S4の実行中に、表示部5による呼吸波形の表示が確実に継続されるよう、必要に応じて、描画補償部36に描画補償工程S5を実行させる。描画補償部36は、波形描画工程S4において描画される呼吸波形が連続性を失った場合に、まず描画状態の補償が可能であるか否かを判断し、補償が可能である場合には描画状態の補償を行う。一方で、描画状態の補償が可能でない場合には、その旨を制御部3に知らせる。この場合、制御部3は呼吸波形の描画を中止して、工程を体動判定工程S1に戻す。
次に、図7のフローチャートに従って被験者Sの呼吸波形を描画するための各工程について、ベッドBD上に存在する被験者Sの数が一人であり、被験者Sが図8、図9に軌跡を示す重心移動を行っている期間において、被験者Sの呼吸波形を描画する場合を例として説明する。
図8に示す重心軌跡GTは、重心位置算出部31により算出された、被験者Sの約2分間の重心移動の軌跡を示している。なお、矢印は重心Gの移動した方向を示す。
図8、図9の点bから点dに向かう重心Gの移動が記録された期間において、被験者Sは寝返りをうち、ベッドの中央付近からベッドの左側(仰向けに寝た被験者Sから見た左側)端部付近に移動したことが観察されている。また図8、図9の点sから点tに向かう重心Gの軌跡が記録された期間において、被験者Sは寝返りをうち、ベッドの左端付近からベッドの中央付近に移動したことが観察されている。領域Aから領域Bに向かう重心Gの移動の軌跡及び領域Bから領域Cに向かう重心Gの移動の軌跡は、被験者Sの胴体の移動を伴う大きな体動による重心移動の軌跡である。
図8の領域Bの拡大図である図9(b)の、点lから点mに向かう重心Gの軌跡が記録された期間において、被験者Sは、ベッドの左端に伏臥した(うつ伏せに寝た)状態で右腕を斜め下に移動させたことが観察されていた。また図8の領域Cの拡大図である図9(c)の、点uから点vに向かう重心Gの軌跡が記録された期間において、被験者Sは、仰臥した状態で胴体を移動することなく右腕を曲げて手を上方に移動させたことが観察されていた。これらの期間における重心Gの斜め上方への移動の軌跡及び上方への移動の軌跡は、被験者Sの腕部の移動を伴う小さな体動による重心移動の軌跡である。
これらの大きな体動による重心移動の軌跡及び小さな体動による重心移動の軌跡が記録されていない残りの区間(期間)においては、重心軌跡GTは上下方向(x方向)に振動している。この区間(期間)においては、被験者Sは大きな体動、小さな体動を行うことなく、一定位置で睡眠していることが観察されていた。したがって、これらの期間における重心Gの往復動(振動)は被験者Sの体軸方向に沿った呼吸振動であり、その軌跡は呼吸振動軌跡である。
なお、呼吸振動は被験者Sの体軸方向に沿って生じるため、呼吸振動軌跡は、実際にはほぼ一軸上に重複して現れるが、図9においては、説明のため、呼吸振動軌跡を体軸方向に直交する方向にずらして描いている。
図8、図9に示す重心軌跡GTにおいては、点a〜点b、点d〜点s、点t〜点wの区間の重心軌跡GTが記録された期間が安定体位期間であり、その内の点a〜点b、点d〜点l、点m〜点s、点t〜点u、点v〜点wの区間の重心軌跡GT(即ち呼吸振動軌跡)が記録された期間が安定呼吸期間である。
[体動判定工程]
体動判定工程S1では、上述の通り、体動検出部32が、ベッド上の被験者Sに体動(大きな体動、小さな体動)が生じているか否かを検出する。
被験者Sが大きな体動又は小さな体動を行った際に生じる身体の移動は、被験者Sの呼吸により生じる内臓の移動よりも、はるかに大きな重心位置の変動を伴っている。換言すれば、大きな体動又は小さな体動により生じる重心Gの移動の移動速度(単位時間当たりの移動量)は、被験者Sの呼吸により生じる重心位置の移動の移動速度よりもはるかに大きい。また、大きな体動により生じる重心Gの移動の移動速度は、小さな体動によって生じる重心Gの移動の移動速度よりも大きい。なお、図8、図9は、説明のため呼吸振動軌跡を拡大して描いている。
したがって体動検出部32は、記憶部4に記憶される各時刻における被験者Sの重心Gの位置の変化に基づいて重心Gの移動速度を算出し、算出した速度が所定の閾値を越えている場合には、被験者Sは体動を行っていると判断し、算出した速度が所定の閾値以下であれば、被験者Sは体動を行っていないと判断する。
被験者Sの重心Gが、図9(b)の点cにある時点では、被験者Sは大きな体動を行っており、重心Gの移動速度は所定の閾値を越えている。したがって、体動検出工程S1において体動検出部32は体動ありと判断し、制御部3は工程を体動検出工程S1に戻す。
次いで被験者Sの重心Gが図8、図9(b)の点dに至ると、被験者Sの大きな体動は終了しており、重心Gの移動速度は所定の閾値以下となっている。したがって、体動検出工程S1において体動検出部32は体動なしと判断し、制御部3は工程を被験者数判定工程S2に進める。
[被験者数判定工程]
被験者数判定工程S2においては、制御部(被験者数判定部)3がベッドBD上の被験者Sが一人であるか否かを判定する。具体的には例えば、次の方法が用いられる。
上述の通り、被験者Sの重心Gの位置は、被験者Sの呼吸に応じてベッドBD上で振動しており、ベッドBDの4つの脚の下にそれぞれ配置された荷重検出器11〜14からの荷重信号s〜sも、それぞれ、ベッド上の被験者Sの呼吸に応じた周期で変動している。したがって、荷重信号s〜sの少なくとも一つについてフーリエ変換を行い、呼吸に相当する周波数帯域(約0.2Hz〜約0.33Hz。以下、呼吸帯域と呼ぶ。)の周波数スペクトルを求めれば、被験者Sの呼吸の周波数に対応する位置にピーク周波数が現れる。
ここで、呼吸の周期は被験者Sの性別や体格、肺活量等によって異なる。そのため、ベッドBD上に複数人の被験者Sが存在する場合には、呼吸帯域の周波数スペクトルには、被験者Sの数だけ、異なるピーク周波数が現れる。
したがって制御部3は、荷重検出部1から送られる荷重信号s〜sの少なくとも1つについて、波形分離部33にフーリエ解析を行わせて呼吸帯域の周波数スペクトルを算出し、現れるピーク周波数が1つであれば被験者Sは一人であると判定し、現れるピーク周波数が複数であれば被験者Sは複数人であると判定する。ここでは、上述の通り、ベッドBD上に存在する被験者Sの数は一人であるため、現れるピーク周波数の数は1つであり、制御部3は、被験者Sが一人であると判定する(S2:Yes)。
[振動座標設定工程、波形描画工程]
振動座標設定工程S3では、振動座標設定部34が、被験者Sの重心軌跡GTに含まれる呼吸振動の振動座標を設定し、設定した振動座標に基づいて呼吸波形の描画に必要な変位を算出する。波形描画工程S4では、波形描画部35が、振動座標設定部34で算出された変位に基づいて被験者Sの呼吸波形を描画する。
本明細書及び本発明において、振動座標の設定とは、呼吸振動の振動中心を示す「振動原点」、及び呼吸振動の振動方向(被験者Sの体軸の延びる方向)を示す振動軸の方向を設定することを意味する。
振動座標設定工程S3は、図10に示す通り、第1仮振動座標設定工程S301、第2仮振動座標設定工程S302、仮振動原点比較工程S303、振動座標決定工程S304を主に含む。
波形描画工程S4は、振動座標設定工程S3と一部並行して行われ、波形描画部35が、第1仮振動座標設定工程S301及び第2仮振動座標設定工程S302において振動座標設定部34から出力される距離情報を用いて被験者Sの仮の呼吸波形を描画して表示部5に表示し、振動座標決定工程S304で決定された振動座標に基づいて振動座標設定部34から出力される変位情報を用いて被験者Sの正規の呼吸波形を描画して表示部5に表示する。
なお、本明細書において「仮の呼吸波形」とは、振動座標決定工程S304において振動座標、即ち振動原点O及び振動軸Aが決定される前に仮振動座標、即ち仮振動原点及び仮振動軸に基づいて描かれる呼吸波形を意味し、「正規の呼吸波形」とは、振動座標決定工程S304において振動座標が決定された後に、振動原点Oと振動軸Aとに基づいて描かれる呼吸波形を意味する。
以下、振動座標設定部34による被験者Sの振動座標の設定、及び波形描画部35による被験者Sの呼吸波形の描画について、図10のフローチャートに沿って説明する。
(第1仮振動座標設定工程S301)
振動座標設定部34は、図11(a)に示すように、体動判定工程S1で体動がなくなったと判定した点を第1仮振動原点TO1(初期原点の一例)と置く。この点は、図9(b)に例示する重心軌跡GTにおいては点dに相当する。この時点において、波形描画部35は呼吸波形の描画を開始していない(図11(b))。
振動座標設定部34は、第1仮振動原点TO1を設定した後は、第1仮振動原点TO1と、そこから移動する重心Gとの間の直線距離D(図12(a)、図13(a))を逐次算出し、算出した値を波形描画部35に出力する。
波形描画部35は、受け取った直線距離Dの値を、横軸を時間軸(t軸)とし縦軸を距離軸(D軸)としたグラフ内にプロットして、被験者Sの仮の呼吸波形を描画し(図12(b)、図13(b))、表示部5に表示する。
振動座標設定部34は、第1仮振動原点TO1と重心Gとの間の距離Dの値を観察し、その距離Dが最大となる点を求め、この点を第1極値点EP1とする(図13(a))。第1極値点EP1では、距離Dの変化が増加から減少に転じている。第1極値点EP1は、図9(b)に例示する重心軌跡GTにおいては点eに相当する。
次いで、振動座標設定部34は、図14(a)に示す通り、第1仮振動原点TO1と第1極値点EP1とを結ぶ軸を算出してこれを第1仮振動軸TA1とし、第1仮振動原点TO1を第1仮振動軸TA1の原点とする。すなわち、第1仮振動原点TO1から開始した呼吸振動の振動方向、即ち振動軸の方向(体軸の方向)を第1仮振動軸TA1の方向であると仮決めし、当該呼吸振動の振動原点を第1仮振動原点TO1であると仮決めする。
また、第1仮振動原点TO1の第1極値点EP1側を第1仮振動軸TA1の正側と設定し、他方側を第1仮振動軸TA1の負側と設定する。
(第2仮振動座標設定工程S302)
第2仮振動座標設定工程S302において、振動座標設定部34は、第1極値点EP1から移動する重心Gから第1仮振動軸TA1に下した垂線の足FP1と第1仮振動原点TO1との間の距離Dを逐次算出し、算出した値を波形描画部35に送る。波形描画部35は、受け取った算出値に基づいて被験者Sの仮の呼吸波形を描画し(図15(b)、図16(b))、表示部5に表示する。
また、振動座標設定部34は距離D(図15、図16)を観察し、その距離Dが負側において最大となる点を求め、この点を第2極値点EP2とする。第2極値点EP2では、距離Dの変化が増加から減少に転じている。第1極値点EP2は、図9(b)に例示する重心軌跡GTにおいては点fに相当する。なお、このように重心Gと第1仮振動原点TO1との間の距離の第1振動軸TA1への投影成分を使って第2極値点の特定を行う代わりに、重心Gと第1仮振動原点TO1との間の直線距離を使って第2極値点の特定を行っても良い。
次に、振動座標設定部34は、図17(a)に示す通り、第1極値点EP1と第2極値点EP2とを結ぶ軸を算出してこれを第2仮振動軸(仮振動軸)TA2とし、第1極値点EP1と第2極値点EP2との中間点を第2仮振動原点(仮振動原点)TO2とする。すなわち、第1仮振動原点TO1から開始した呼吸振動の振動軸の方向(体軸の方向)を第2仮振動軸TA2の方向であると仮に決め直し、当該呼吸振動の振動原点を第2仮振動原点TO2であると仮に決め直す。また、第1仮振動軸TA1の正方向、負方向を参照して、第2仮振動原点TO2の一方側を第2仮振動軸TA2の正側と設定し、第2仮振動原点TO2の他方側を第2仮振動軸TA2の負側と設定する。
(仮振動原点比較工程S303)
次に、振動座標設定部34は、第1仮振動座標設定工程S301で設定された第1仮振動原点TO1と、第2仮振動座標設定工程S302で設定した第2仮振動原点TO2との間の距離を算出し、算出した距離が所定の値以下であるか否かを判定する。所定の値は、一例として第1極値点EP1と第2極値点EP2との間の距離の10%とすることができる。
(振動座標決定工程S304)
振動座標設定部34は、比較の結果、第1仮振動原点TO1と第2仮振動原点TO2との間の距離が所定の値以下であれば(S303:Yes)、図18(a)に示す通り、第2仮振動原点TO2を呼吸振動の振動原点Oと決定し、第2仮振動軸TA2を呼吸振動の振動軸Aと決定して振動座標を決定する。すなわち、体軸方向を振動軸Aの方向に向けた被験者Sの重心Gが、被験者Sの呼吸により、振動原点Oを振動中心として振動軸Aに沿って振動していると決定する。
一方で、振動座標設定部34は、比較の結果、第1仮振動原点TO1と第2仮振動原点TO2との間の距離が所定の距離を越えていれば(S303:No)、第3仮振動座標設定工程S305及び仮振動原点比較工程S306を実行する。
第3仮振動座標設定工程S305では、振動座標設定部34は、第2仮振動座標設定工程S302と同様に、重心Gから第2仮振動軸TA2に下した垂線の足と第2仮振動原点TO2との間の距離を観察して、その距離が正側において最大となる点を求め、この点を第3極値点とする。次に、振動座標設定部34は、第2極値点EP2と第3極値点とを結ぶ軸を算出してこれを第3仮振動軸とし、第2極値点EP2と第3極値点との中間点を第3仮振動原点TO3とする。
仮振動原点比較工程S306では、振動座標設定部34は、仮振動原点比較工程S303と同様に、第2仮振動座標設定工程S302で設定した第2仮振動原点TO2と、第3仮振動座標設定工程S305で設定した第3仮振動原点TO3との間の距離を算出し、算出した距離が所定の値以下であるか否かを判定する。比較の結果、第2仮振動原点TO2と第3仮振動原点TO3との間の距離が所定の値以下であれば(S306:Yes)、第3仮振動原点TO3を呼吸振動の振動原点Oと決定し、第3仮振動軸TA3を呼吸振動の振動軸Aと決定する(振動座標決定工程S304)。第2仮振動原点TO2と第3仮振動原点TO3との間の距離が所定の値を越えていれば(S306:No)、第N仮振動座標設定工程(N=4、5、6・・・)及び仮振動原点比較工程を、振動座標が決定されるまで、同様に繰りかえす。
振動座標設定部34は、振動座標決定工程S304において振動原点O及び振動軸Aを決定した後は、図19(a)に示す通り、重心Gから振動軸Aに下した垂線の足と振動原点Oとの間の距離Dを逐次算出し、算出した値を呼吸波形の変位として波形描画部35に送る。波形描画部35は、受け取った変位の値に基づいて正規の呼吸波形を描画し(図19(b))、表示部5に表示する。
決定された振動座標とその直前に設定されていた仮振動座標とは、多くの場合、振動原点の位置が異なっている。したがって、決定された振動座標に基づいた呼吸波形の描画を開始する時には、図19(b)に示すように、新たに描画される正規の呼吸波形と、それまでに描画されていた仮の呼吸波形との間に、わずかなずれが生じ得る。仮振動座標と決定された振動座標との差に基づいて描画済みの仮呼吸波形を補正して描画し直し、このずれを解消してもよい。
[描画補償工程]
ここで、波形描画工程S4において呼吸波形を描画している最中にベッド上の被験者Sに小さな体動が生じた場合、この小さな体動により、呼吸波形は振動軸方向にシフトする。例えば、図9(b)に示すように、点d〜点lの安定呼吸期間の後に小さな体動が生じ、その後点m〜点sの安定呼吸期間が続いた場合、図20に示すように、小さな体動前の呼吸波形Wに対して、小さな体動後の呼吸波形Wが、振動座標設定工程S3で設定した振動軸A方向にシフトする。そして、シフトの幅によっては、小さな体動後の呼吸波形Wを、表示部5の表示範囲内に描画できないことも起こり得る。このような場合には、本発明では描画補償部36により、以下のような方法で描画位置を補正する。
図21に示すように、描画補償部36は、予測波形生成部361、及び補正距離算出部362を有する。そして、描画補償部36は、描画補償工程S5において、図22に示すように、予測波形生成工程S501、及び補正距離算出工程S502を実行する。以下、描画補償部36が実行する予測波形生成工程S501と補正距離算出工程S502について説明する。
描画補償部36の予測波形生成部361は、予測波形生成工程S501において、例えば既に表示部5に描画されている呼吸波形Wの直近の1周期分を予測波形Wとして生成し、予測波形Wを、呼吸波形Wに連続するように表示部5に描画する(但し、予測波形Wを表示部5に描画しなくても良い)。なお、本実施形態では、呼吸波形Wを実線で描画し、予測波形Wを点線で描画することにより、呼吸波形Wと予測波形Wとを区別している。
次いで、描画補償部36の補正距離算出部362は、補正距離算出工程S502において、図23に示すように、現在のサンプリング時刻tにおける、予測波形W上の点(以下、予測点W(t)と表す)と、現在のサンプリング時刻tにおける距離Dのプロット点(以下、実測点D(t)と表す)との間の距離d(t)を算出する。そして、補正距離算出部362は、距離d(t)が、第一の閾値Th、又は第一の閾値Thよりも大きい第二の閾値Thを超えているか否かを判断する。ここで、第一の閾値Th、及び第二の閾値Thの値は、表示部5の表示領域のサイズに応じて適宜設定すればよい。距離d(t)が第一の閾値Thよりも小さい場合、制御部3は体動が生じていないものと判断し、波形描画工程S4を実行する。そして、波形描画工程S4において波形描画部35は、描画位置の補正は行わずに、実測点D(t)に基づく呼吸波形の描画を継続する。距離d(t)が第一の閾値Th以上第二の閾値Th以下の場合、制御部3は小さな体動が生じたと判断し、次のような補償動作を行いつつ波形描画工程S4を実行する。即ち、波形描画部35は、実測点D(t)を、振動軸Aの方向に距離d(t)だけ移動(オフセット)させて描画する。つまり、距離d(t)がそのまま補正距離として用いられる。距離d(t)が第二の閾値Thよりも大きい場合、制御部3は大きな体動が生じたと判断し、体動判定工程S1を再び実行する。
このようにして、描画補償工程S5では、呼吸波形を描画している最中に小さな体動が生じたとしても、小さな体動前後の呼吸波形を表示部5の表示範囲内に継続的に描画することができる。また、大きな体動が生じた場合には、再度、振動座標の設定を行い、上記のようなプロセスを経て波形描画を行うことができる。
次に、図7のフローチャートに従って、ベッドBD上の複数(二人)の被験者Sの呼吸波形を描画する工程について、上述した単一の被験者Sの呼吸波形を描画する工程との相違点を中心に説明する。
体動判定工程S1は、被験者Sが一人の場合と同様に、ベッドBD上の重心Gの移動速度に基づいて、被験者Sの体動の有無を判定する。ここで、被験者Sが複数の場合には、重心Gの位置は、複数の被験者S全体の重心位置として1つのみ現れる。したがって、制御部3は、複数の被験者Sの全員の体動がなくなった時に、被験者Sの体動がなくなったと判定する。
次いで、被験者数判定工程S2においては、上記の通り、波形分離部33が荷重信号s〜sの少なくとも一つについてフーリエ変換を行い、呼吸帯域(約0.2Hz〜約0.33Hz)の周波数スペクトルを求める。
被験者Sが二人の場合には、現れるピーク周波数の数は2つとなり、例えば図24に示すとおり、周波数ν1と周波数ν2にピークが現れる。これに基づき、制御部3は被験者Sは複数であると判定する(S2:No)。
[波形分離工程]
波形分離工程S6において、波形分離部33は、被験者数判定工程S2において複数のピーク周波数が特定された場合に、特定された各周波数に対して、各荷重信号の荷重成分を求める。これらの荷重成分は、例えば、荷重信号s〜sの各々に対するバンドパスフィルタ処理によって求めることができる。例えば、被験者数判定工程S2において2つのピーク周波数ν、νが特定された場合、ピーク周波数νに対応した4つの荷重成分s11、s21、s31、s41と、ピーク周波数νに対応した4つの荷重成分s12、s22、s32、s42とを求める。そして、波形分離部33は、ピーク周波数ν、νの各々に対応する4つの荷重成分を重心位置算出部31に出力する。重心位置算出部31は、波形分離部33から入力された4つの荷重成分に基づいて、ピーク周波数ν、νの各々(即ち、被験者Sの各々)に対応する重心位置及び重心軌跡を、重心軌跡算出工程S02と同様に算出する。
波形分離工程S6において、複数の被験者Sの各々についての重心軌跡が求められた後は、複数の被験者Sの各々の重心軌跡に基づいて振動座標設定工程S3、波形描画工程S4、描画補償工程S5が実行される。その詳細は、被験者Sが一人の場合を例として上述した通りである。
本実施形態の生体情報モニタリングシステム100の効果を以下にまとめる。
本実施形態の生体情報モニタリングシステム100においては、被験者Sが安定呼吸期間に入った直後に振動座標設定部34が仮の振動原点を設定した上で、そこからの重心位置の距離Dの算出を開始し、振動座標を設定する前に、波形描画部35が、距離Dの算出値に基づいて仮の座標系上で呼吸波形の描画を開始する。したがって、大きな体動や小さな体動が終了した略直後に、呼吸波形を表示部5に表示することができる。
それゆえ、安定呼吸期間において相当数の重心位置情報(複数の振動周期分)をサンプリングしてからそれらの軌跡を計算処理することで振動軸及び振動原点を決定してから呼吸波形の描画を開始する場合に比べて、より早く呼吸波形を提示することができる。よって、タイムラグの抑制されたリアルタイムの呼吸波形を観察することができる。
本実施形態の生体情報モニタリングシステム100は、描画補償工程S5において、過去の呼吸波形に基づいて予測波形Wを生成し、現在のサンプリング時刻tにおける実測点D(t)と予測点W(t)との間の距離d(t)に応じて、実測点D(t)の描画位置を補正する。したがって、実測点D(t)が予測点W(t)から乖離したとしても、実測点G(t)の描画位置を即座に補正し、呼吸波形を継続して表示部5に表示させることができる。
本実施形態の生体情報モニタリングシステム100では、被験者数判定工程S2においてベッドBD上の被験者Sの人数を判定する。また、ベッドBD上の被験者Sの人数が複数の場合、波形分離工程S6において複数の被験者Sの呼吸振動を分離し、各被験者Sの呼吸波形を描画することができる。このため、例えば、一人の患者が横たわるベッドBD上で、患者の家族が添い寝をしているような状況であっても、患者の呼吸波形を確実にモニターすることができる。
本実施形態の生体情報モニタリングシステム100は、ベッドBDの脚の下に配置した荷重検出器11〜14を用いて被験者Sの呼吸数を算出している。したがって、被験者Sの身体に計測装置を取り付ける必要がなく、被験者Sに不快感や違和感を与えることがない。
<変形例>
上記実施形態の生体情報モニタリングシステム100において、次の変形態様を採用することもできる。
上記実施形態においては、被験者数判定工程S2を、振動座標設定工程S3及び波形分離工程S6の前段にて実行する場合を例にとって説明したが、これには限られず、被験者数判定工程S2と波形分離工程S6とを、振動座標設定工程S3と並列に実行してもよい。この変形例においては、体動判定工程S1において被験者Sの体動がないと判定されたら、被験者Sが一人であるか否かを問わず、振動座標設定工程S3が開始される。そして、振動座標設定工程3と並列に被験者数判定工程S2及び波形分離工程S6が実行され、被験者Sが複数であれば、被験者数判定工程S2で特定された複数のピーク周波数(すなわち、複数の被験者S)に基づいて波形分離工程S6で複数の被験者Sの各々の重心軌跡を分離し、これに基づいて振動座標設定工程S3、波形描画工程S4、描画補償工程S5が実行される。
上記実施形態の生体情報モニタリングシステム100の振動座標設定部34は、仮振動原点比較工程S303、S306等において、最後に設定した仮振動原点とその直前に設定した仮振動原点との間の距離を所定値と比較することにより、振動原点Aの設定可否を判断していたが、これには限られない。
一例として、振動座標設定部34は、仮振動原点及び仮振動軸を予め決められた回数だけ設定し、最後に設定した仮振動原点及び仮振動軸を振動原点O及び振動軸Aと決定してもよい。または、振動座標設定部34は、仮振動原点及び仮振動軸を予め決められた回数だけ設定し、それらの平均を振動原点O及び振動軸Aと決定してもよい。
上記実施形態の生体情報モニタリングシステム100の波形描画部35は、振動座標設定部34から第N極値点EPNの座標、第N仮座標軸TANの傾き等に関する情報を受け取り、これらの情報に基づいてグラフエリアのスケールを適宜調整してもよい。例えば第1極値点EP1と第2極値点EP2の間の第2仮振動軸TA2方向の距離や、決定された振動原点O及び振動軸Aを用いて算出される距離D(変位)の最大値(振幅)に基づいてグラフエリアの縦軸(距離D軸。変位軸)のスケールを調整することができる。これにより、表示部5に、常に、観察に適した最適なスケールの呼吸波形を表示することができる。
上記実施形態では、振動座標設定工程S3及び波形描画工程S4を経て描画された呼吸波形に対し、描画補償工程S5を実行しているが、これに限らず、他の方法で描画された呼吸波形に対して、描画補償工程S5を適用してもよい。
上記実施形態では、描画補償部36が、予測点W(t)と実測点D(t)との距離に基づいて小さな体動、大きな体動の発生を検出していたがこれには限られない。例えば、振動座標設定部34が、決定した振動原点Oの位置と被験者Sの重心Gの位置との間の距離が所定値を超えたことに基づいて、小さな体動又は大きな体動が生じて安定呼吸期間が終了したと判定してよく、制御部3は、大きな体動が生じた時は工程を体動判定工程S1に戻しても良い。所定値は、例えば第1極値点EP1と第2極値点EP2との間の距離に基づいて設定し得る。
上記実施形態では、予測波形生成工程S501において、呼吸波形Wの直近の1周期分を予測波形Wとして描画しているが、これに限らず、過去の2周期分以上の呼吸波形をモデル化し、モデル化した波形を予測波形Wとしてもよい。また、予測波形Wは、既に表示部5に描画されている呼吸波形Wと区別できればよく、例えば、呼吸波形Wと予測波形Wとを異なる色で描画してもよい。
上記実施形態の補正距離算出工程S502では、サンプリング時刻tにおける距離d(t)が第一の閾値Th以上第二の閾値Th以下である場合、上記実施形態では小さな体動と判断される。しかしながら、例えば、その後のサンプリング時刻t、tにおける距離d(t)、d(t)が、距離d(t)よりもはるかに大きいか小さい場合、サンプリング時刻t〜tでは、サンプリング時刻t以前の呼吸波形の周期性が保たれていないと判断し、呼吸波形の描画を中断するのが妥当である。そこで、図25に示すように、複数のサンプリング時刻t(図25の例では、n=0、1、2)においてそれぞれ、予測点W(t)と実測点D(t)との間の距離d(t)を算出し、距離d(t)の平均値が第一の閾値Th以上第二の閾値Th以下の場合に、制御部3は小さな体動が生じたと判断し、距離d(t)の平均値を補正距離として用いてもよい。つまり、実測点D(t)をそれぞれ、振動軸Aの方向に、距離d(t)の平均値だけ移動させて描画してもよい。この方法によれば、小さな体動の判断の精度を高めることができる。
或いは、所定時間(例えば、予測波形Wの1/4周期)内に含まれる複数のサンプリング時刻tにおいてそれぞれ、予測点W(t)と実測点D(t)との間の距離d(t)を算出し、距離d(t)が一定値であり、且つ、第一の閾値Th以上第二の閾値Th以下の場合に、制御部3は小さな体動が生じたと判断し、距離d(t)を補正距離として用いてもよい。つまり、実測点D(t)をそれぞれ、振動軸Aの方向に、距離d(t)だけ移動させて描画してもよい。この方法によれば、小さな体動の判断の精度をより高めることができる。
さらに、上記いずれかの方法により実測点D(t)の描画位置を補正した後、補正距離算出部362は、次の(数式3)で表される積分値が最小となるようなΔxの値を算出し、そのΔxを更なる補正距離としてもよい。
Figure 2017205221
ここで、Tは予測波形Wの周期を意味し、W(t)は予測点の変動を時刻tの関数として示す式、D(t)は実測点の変動を時刻tの関数として示す式である。そして、Δxは、更なる補正距離を意味する。これにより、描画位置を補正した後の実際の呼吸波形と予測波形Wとを、より精密に比較することができる。
なお、上記波形分離工程S6で算出された各周波数に対応する重心軌跡に基づいて各被験者Sの呼吸波形を描画する場合、呼吸波形の各々は、特定の1つの周波数に対応する荷重成分から算出されているため、略正弦波となる。しかしながら、実際の呼吸波形は、例えば、吸気と呼気の速度差異やその各々でのホールド期間の差異に起因する周波数成分など、複数の周波数成分が重畳したものである。そこで、各被験者Sの呼吸パターンが予めモデル化されている場合、図26に示されるようなその周波数プロファイルから複数のピーク周波数を選択し、選択したピークに対応する荷重成分を求めることにより、実際の呼吸波形により近い呼吸波形を描画してもよい。
また、上記波形分離工程S6では、被験者数判定工程S2において特定されたピーク周波数に対応する荷重成分を算出したが、被験者数判定工程S2で特定されたピーク周波数は被験者Sの生体情報であり、変化するものである。そこで、一定時間ごとに周波数を特定し、特定した周波数に対応する荷重成分を算出することにより、各被験者Sの呼吸波形を、その被験者Sの変化する周波数に追従させてもよい。具体的には、既に特定されている周波数を分離可能な所定時間長Δtを用いて、フーリエ積分時間を、現在から所定時間長Δtだけ遡った時間から現在まで動的に変化させることにより、現在から所定時間長Δtだけ遡った時間から現在までの間で見られる係数ピークを計算する。これにより、既に特定されている周波数から現在の周波数までの変化を時系列に捕らえることができる。そして、現在の周波数に基づいて、波形分離工程S6以降の処理を実行することにより、各被験者Sの呼吸波形を、その被験者Sの周波数の変化に追従させることができる。
上記被験者数判定工程S2及び波形分離工程S6では、呼吸帯域におけるピーク周波数の数を判定することにより、ベッド上の被験者Sの人数や各被験者Sの呼吸波形を求めていたが、帯域を変えることにより、各被験者Sの様々な生体情報を分離することができる。例えば、被験者数判定工程S2において約0.5〜約3.3Hz程度の範囲で周波数ピークを特定することにより、波形分離工程S6において、複数の被験者Sの心拍を表す波形を分離し、モニタリングすることもできる。
上記波形分離工程S6では、複数の被験者Sがいずれも人間であることを前提として説明したが、これには限られず、例えばベッド上に、一人の被験者Sと、周期的な振動を発生する装置が存在するような場合であっても、一人の被験者Sの呼吸振動と装置による周期的な振動とを分離することができる。
上記実施形態の生体情報モニタリングシステム100の制御部3は、以下のような方法で被験者Sの呼吸数を求めることもできる。具体的には例えば、振動座標設定部34に、振動原点O及び振動軸Aを決定した後も引き続き極値点の特定を継続させ、制御部3は、単位時間当たりに特定される極値点の数に基づいて被験者Sの呼吸数を求めることができる。
なお、上記の実施形態において、荷重検出器11、12、13、14は、ビーム形ロードセルを用いた荷重センサに限られず、例えばフォースセンサを使用することもできる。
なお、上記の実施形態において、荷重検出器は4つに限られない。ベッドBDに追加の脚を設けて5つ以上の荷重検出器を使用してもよい。又はベッドBDの脚のうち3つのみに荷重検出器を配置してもよい。荷重検出器が3つの場合でも、これを一直線に配置しなければ、ベッドBD面上での被験者Sの重心位置Gを検出できる。
なお、上記の実施形態においては、荷重検出器11、12、13、14は、ベッドBDの脚の下端に取り付けられたキャスターC、C、C、Cの下にそれぞれ配置されていたがこれには限られない。荷重検出器11、12、13、14はそれぞれ、ベッドBDの4本の脚とベッドBDの床板との間に設けられてもよいし、ベッドBDの4本の脚が上下に分割可能であれば、上部脚と下部脚との間に設けられても良い。また、荷重検出器11、12、13、14をベッドBDと一体型とし、ベッドBDと本実施形態の生体情報モニタリングシステム100とからなるベッドシステムBDSを構成してもよい(図27)。なお、本明細書において「ベッドに設けられた荷重検出器」とは、上述のようにベッドBDの4本の脚とベッドBDの床板との間に設けられた荷重検出器や、上部脚と下部脚との間に設けられた荷重検出器を意味する。
なお、上記の実施形態において、荷重検出部1とA/D変換部2との間に、荷重検出部1からの荷重信号を増幅する信号増幅部や、荷重信号からノイズを取り除くフィルタリング部を設けても良い。
なお、上記実施形態の生体情報モニタリングシステム100において、表示部5は、使用者が視覚的に認識できるようにモニター上に情報を表示するものには限られない。例えば表示部5は、被験者Sの呼吸状態(呼吸数、呼吸換気量)、心拍の状態や身体状況を定期的に印字して出力するプリンタでもよく、又は睡眠状態なら青ランプの点灯、覚醒状態なら黄色ランプの点灯、無呼吸状態なら赤ランプの点灯といった簡易な視覚的表現を用いて表示するものであってもよい。または表示部5は、被験者Sの呼吸状態や身体状態を使用者に音声で伝えるものであってもよい。さらに、生体情報モニタリングシステム100は表示部5を有さなくてもよく、情報を出力する出力端子を有するのみであってもよい。表示を行うためのモニター(ディスプレイ装置)等は、当該出力端子を介して生体情報モニタリングシステム100に接続される。
なお、上記実施形態の報知部6は聴覚的に報知を行っていたが、報知部6は、光の点滅等によって視覚的に報知を行う構成であってもよく、振動により報知を行う構成であってもよい。また、上記実施形態の生体情報モニタリングシステム100は、報知部6を有さなくても良い。
本発明の特徴を維持する限り、本発明は上記実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。
本発明の生体情報モニタリングシステムによれば、被験者の呼吸振動を、途切れやタイムラグの少ない良好な状態で使用者に提示できるため、主に医者である使用者により観察に適したデータを提供して、医療の質の向上に寄与することができる。
1 荷重検出部
11、12、13、14 荷重検出器
2 A/D変換部
3 制御部
31 重心位置算出部
32 体動検出部
33 波形分離部
34 振動座標設定部
35 波形描画部
36 描画補償部
4 記憶部
5 表示部
6 報知部
7 入力部
100 生体情報モニタリングシステム
BD ベッド
BDS ベッドシステム
GT 重心軌跡
S 被験者

Claims (6)

  1. ベッド上の被験者の呼吸波形を描画する呼吸波形描画システムであって、
    ベッド又はベッドの脚下に設けられ、被験者の荷重を検出し荷重信号として出力する複数の荷重検出器と、
    前記荷重信号の周波数スペクトルに基づいてベッド上の被験者の数を判定する被験者数判定部と、
    ベッド上の被験者の数が複数であると判定された場合、各被験者の荷重成分を、各荷重検出器から出力された荷重信号ごとに分離する波形分離部と、
    前記分離された荷重成分に基づいて、各被験者の重心位置を算出する重心位置算出部と、
    各被験者の重心位置の時間的変動に基づいて各被験者の呼吸波形を描画する波形描画部とを備える呼吸波形描画システム。
  2. 前記被験者数判定部は、前記荷重信号の周波数スペクトルに現れるピーク周波数の数をベッド上の被験者の数と判定する請求項1に記載の呼吸波形描画システム。
  3. 各被験者の呼吸波形の振動原点及び振動軸を設定する振動座標設定部をさらに備え、
    前記振動座標設定部は、各被験者ごとに、ある時刻における重心位置を初期原点として、初期原点から変位する重心位置の距離が最大となる重心位置である第1極値点を求め、初期原点の第1極値点と反対側に現れる初期原点からの距離が最大になる重心位置である第2極値点を求め、第1極値点と第2極値点とを結ぶ方向を仮振動軸と設定し、第1極値点と第2極値点の中点を仮振動原点と設定し、
    前記波形描画部は、前記仮振動軸上に投影した重心位置の前記仮振動原点からの変位を時間に対して表すことによって、各被験者の呼吸波形を描画する請求項2に記載の呼吸波形描画システム。
  4. 各被験者の呼吸波形の描画状態を補償する描画補償部をさらに備え、
    前記描画補償部は、各被験者ごとに過去の呼吸波形に基づいて予測波形を生成する予測波形生成部と、各被験者ごとに所定のサンプリング時刻における呼吸波形と予測波形との間の距離を算出する補正距離算出部とを備え、各被験者の呼吸波形の描画状態を前記距離に応じて補償する請求項3に記載の呼吸波形描画システム。
  5. ベッド上の被験者の生体情報をモニタリングする生体情報モニタリングシステムであって、
    ベッド又はベッドの脚下に設けられ、被験者の荷重を検出し荷重信号として出力する複数の荷重検出器と、
    前記荷重信号の周波数スペクトルに基づいてベッド上の被験者の数を判定する被験者数判定部と、
    ベッド上の被験者の数が複数であると判定された場合、各被験者の荷重成分を、各荷重検出器から出力された荷重信号ごとに分離する波形分離部とを備え、
    前記分離された荷重成分は、各被験者の生体情報をモニタリングするのに供される生体情報モニタリングシステム。
  6. 各被験者の生体情報として、各被験者の心拍を表す波形がモニタリングされる請求項5に記載の生体情報モニタリングシステム。
JP2016098862A 2016-05-17 2016-05-17 呼吸波形描画システム及び生体情報モニタリングシステム Active JP6268219B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016098862A JP6268219B2 (ja) 2016-05-17 2016-05-17 呼吸波形描画システム及び生体情報モニタリングシステム
PCT/JP2017/018338 WO2017199945A1 (ja) 2016-05-17 2017-05-16 呼吸波形描画システム及び生体情報モニタリングシステム
CN201780043419.7A CN109475324B (zh) 2016-05-17 2017-05-16 呼吸波形描绘系统以及生物体信息监视系统
EP17799369.8A EP3459452B1 (en) 2016-05-17 2017-05-16 Respiration waveform drawing system and biological information monitoring system
US16/191,922 US10758187B2 (en) 2016-05-17 2018-11-15 Respiration waveform drawing system and biological information monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016098862A JP6268219B2 (ja) 2016-05-17 2016-05-17 呼吸波形描画システム及び生体情報モニタリングシステム

Publications (3)

Publication Number Publication Date
JP2017205221A true JP2017205221A (ja) 2017-11-24
JP2017205221A5 JP2017205221A5 (ja) 2018-01-11
JP6268219B2 JP6268219B2 (ja) 2018-01-24

Family

ID=60325358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016098862A Active JP6268219B2 (ja) 2016-05-17 2016-05-17 呼吸波形描画システム及び生体情報モニタリングシステム

Country Status (5)

Country Link
US (1) US10758187B2 (ja)
EP (1) EP3459452B1 (ja)
JP (1) JP6268219B2 (ja)
CN (1) CN109475324B (ja)
WO (1) WO2017199945A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6666940B2 (ja) * 2018-03-14 2020-03-18 ミネベアミツミ株式会社 体動判定システム及びベッドシステム
JP6893528B2 (ja) * 2019-04-15 2021-06-23 ミネベアミツミ株式会社 生体情報モニタリングシステム、生体情報モニタリング方法、及びベッドシステム
CN114258283A (zh) * 2019-10-31 2022-03-29 国立大学法人山形大学 评估检测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5392577A (en) * 1977-01-22 1978-08-14 Anima Corp Method of measuring respiration and heart motion
JP2006149957A (ja) * 2004-12-01 2006-06-15 Advanced Medical Kk 位置検出装置
JP2008093198A (ja) * 2006-10-12 2008-04-24 Aisin Seiki Co Ltd ベッド装置
JP2008264338A (ja) * 2007-04-24 2008-11-06 Showa Denko Kk ベッドの在床検知方法
JP4985107B2 (ja) * 2007-05-30 2012-07-25 アイシン精機株式会社 ベッド装置
WO2013179189A1 (en) * 2012-05-31 2013-12-05 Koninklijke Philips N.V. Separating cardiac signal and respiratory signal from vital signs
JP2014180432A (ja) * 2013-03-19 2014-09-29 Aisin Seiki Co Ltd 動作検出装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829020B1 (ja) 1969-10-18 1973-09-06
JPH0654532B2 (ja) 1984-07-12 1994-07-20 富士写真フイルム株式会社 磁気記録媒体
JP4883380B2 (ja) 2001-06-25 2012-02-22 アドバンスドメディカル株式会社 生体生理検出装置
JP2005131036A (ja) * 2003-10-29 2005-05-26 Denso Corp センサシート
IL160308A0 (en) * 2004-02-10 2004-07-25 Itshak Y Ben Yesha Method for determining heart rate
JP4002905B2 (ja) 2004-04-13 2007-11-07 日本圧着端子製造株式会社 荷重スケール及びこれを用いた荷重スケールシステム
US8376964B2 (en) * 2005-02-17 2013-02-19 Seoul National University Industry Foundation Apparatus for analyzing a sleep structure according to non-constrained weight detection
WO2007052755A1 (ja) 2005-11-04 2007-05-10 Kabushiki Kaisha Toshiba 呼吸モニタリング装置、呼吸モニタリングシステム、医療的処理システム、呼吸モニタリング方法、呼吸モニタリングプログラム
JP4829020B2 (ja) 2006-07-10 2011-11-30 昭和電工株式会社 ベッドの荷重検出器
CN102481127B (zh) 2009-08-13 2015-07-15 帝人制药株式会社 呼吸波形信息的运算装置和利用呼吸波形信息的医疗设备
US10292625B2 (en) * 2010-12-07 2019-05-21 Earlysense Ltd. Monitoring a sleeping subject
DE102011011988A1 (de) * 2011-02-22 2012-08-23 Kunz GbR (mit den Gesellschaftern: Gerhard, Cornelia, Karsten Sebastian Kunz, 55286 Wörrstadt) Personen-Überwachungsvorrichtung bzw. Verfahren zur Überwachung von Personen, insbesondere Patienten
WO2012164453A1 (en) 2011-05-30 2012-12-06 Koninklijke Philips Electronics N.V. Method and apparatus for monitoring movement and breathing of multiple subjects in a common bed
JP6099422B2 (ja) * 2013-02-12 2017-03-22 住友理工株式会社 位置検出装置並びに呼吸計測装置及び心拍計測装置
US10292881B2 (en) * 2014-10-31 2019-05-21 Hill-Rom Services, Inc. Dynamic apnea therapy surface
US10181959B2 (en) * 2015-07-27 2019-01-15 International Business Machines Corporation Methods and systems for mindful home automation
JP6321719B2 (ja) * 2016-05-20 2018-05-09 ミネベアミツミ株式会社 生体情報モニタリングシステム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5392577A (en) * 1977-01-22 1978-08-14 Anima Corp Method of measuring respiration and heart motion
JP2006149957A (ja) * 2004-12-01 2006-06-15 Advanced Medical Kk 位置検出装置
JP2008093198A (ja) * 2006-10-12 2008-04-24 Aisin Seiki Co Ltd ベッド装置
JP2008264338A (ja) * 2007-04-24 2008-11-06 Showa Denko Kk ベッドの在床検知方法
JP4985107B2 (ja) * 2007-05-30 2012-07-25 アイシン精機株式会社 ベッド装置
WO2013179189A1 (en) * 2012-05-31 2013-12-05 Koninklijke Philips N.V. Separating cardiac signal and respiratory signal from vital signs
JP2014180432A (ja) * 2013-03-19 2014-09-29 Aisin Seiki Co Ltd 動作検出装置

Also Published As

Publication number Publication date
US20190167202A1 (en) 2019-06-06
WO2017199945A1 (ja) 2017-11-23
US10758187B2 (en) 2020-09-01
EP3459452A1 (en) 2019-03-27
JP6268219B2 (ja) 2018-01-24
EP3459452A4 (en) 2020-01-29
EP3459452B1 (en) 2021-04-14
CN109475324A (zh) 2019-03-15
CN109475324B (zh) 2020-01-31

Similar Documents

Publication Publication Date Title
JP6594399B2 (ja) 生体情報モニタリングシステム
US10390735B2 (en) Body state detecting apparatus, body state detecting method and bed system
US10610430B2 (en) Respiration waveform drawing system and respiration waveform drawing method
US10617326B2 (en) Respiration waveform drawing system
JP6268219B2 (ja) 呼吸波形描画システム及び生体情報モニタリングシステム
JP6321719B2 (ja) 生体情報モニタリングシステム
CN110740684B (zh) 床监测系统
JP2017205410A (ja) 生体情報モニタリングシステム
JP6487081B2 (ja) 生体情報モニタリングシステム
JP2017205222A (ja) 呼吸波形描画システム及び呼吸波形描画方法
JP2018086284A (ja) 生体情報モニタリングシステム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171006

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20171006

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20171122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

R150 Certificate of patent or registration of utility model

Ref document number: 6268219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150