JP2017203669A - Metal ion concentration measurement device of electroless plating liquid - Google Patents

Metal ion concentration measurement device of electroless plating liquid Download PDF

Info

Publication number
JP2017203669A
JP2017203669A JP2016095007A JP2016095007A JP2017203669A JP 2017203669 A JP2017203669 A JP 2017203669A JP 2016095007 A JP2016095007 A JP 2016095007A JP 2016095007 A JP2016095007 A JP 2016095007A JP 2017203669 A JP2017203669 A JP 2017203669A
Authority
JP
Japan
Prior art keywords
photosensor
optical axis
led
light
electroless plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016095007A
Other languages
Japanese (ja)
Inventor
泰 木野
Yasushi Kino
泰 木野
小崎 崇
Takashi Ozaki
崇 小崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Seisakusho KK
Original Assignee
Chuo Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Seisakusho KK filed Critical Chuo Seisakusho KK
Priority to JP2016095007A priority Critical patent/JP2017203669A/en
Publication of JP2017203669A publication Critical patent/JP2017203669A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Chemically Coating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metal ion concentration measurement device of an electroless plating liquid that is not affected even by use of an LED in which the ratio of the change of the light intensity to the change of driving current depends on a light projection angle and an error is not caused in a measurement result by dew condensation on an outside surface of a flow cell.SOLUTION: A first photosensor 3 for receiving a transmitted light through a flow cell 1 for introducing an electroless plating liquid and a second photosensor 4 for receiving light emitted by an LED 2 as a light source are disposed so that the optical axis of the first photosensor 3 and the optical axis of the second photosensor 4 pass near the focal point of a lens at the tip of the LED 2, and the angle between the optical axis of the first photosensor 3 and the optical axis of the LED 2 is the same as the angle between the optical axis of the second photosensor 4 and the optical axis of the LED 2.SELECTED DRAWING: Figure 1

Description

本発明は、吸光光度法による無電解めっき液の金属イオン濃度測定装置に関するものである。   The present invention relates to an apparatus for measuring a metal ion concentration of an electroless plating solution by an absorptiometric method.

無電解ニッケルめっき等の無電解めっきでは、めっき液中の金属イオンがワーク金属の触媒還元反応によりワーク表面に金属として析出し、それにつれて金属イオン濃度、還元剤濃度、pH等が徐々に低下して行く。そのため、めっき液をサンプリングして金属イオン濃度を測定し、めっき液中の金属イオン濃度等を常に定められた値に保つようにめっき液の管理が行われており、その金属イオン濃度は吸光光度法による例えば特許文献1に示されるような方法で測定されている。   In electroless plating such as electroless nickel plating, metal ions in the plating solution are deposited as metal on the workpiece surface by the catalytic reduction reaction of the workpiece metal, and the metal ion concentration, reducing agent concentration, pH, etc. gradually decrease accordingly. Go. Therefore, the plating solution is sampled, the metal ion concentration is measured, and the plating solution is managed so that the metal ion concentration in the plating solution is always maintained at a predetermined value. For example, it is measured by a method as disclosed in Patent Document 1.

この特許文献1に示されるのは、無電解めっき液の金属イオン濃度を吸光光度法により測定する無電解めっき液の金属イオン濃度測定方法であって、実使用時の定常の最高金属イオン濃度以下の場合に無電解めっき液が導かれるフローセルの透過光を受光するフォトセンサーの出力が光源からの投光量を検出するフォトセンサーの出力より大きく、最大出力近くになるようにしておき、フローセルの透過光を受光するフォトセンサーの出力と、光源からの投光量を検出するフォトセンサーの出力とを比較して大きい方の信号を選択し、選択された信号が一定に保たれるように光源の出力を制御して測定するものである。   Shown in Patent Document 1 is a method for measuring the metal ion concentration of an electroless plating solution in which the metal ion concentration of the electroless plating solution is measured by an absorptiometry, which is less than the steady maximum metal ion concentration in actual use. In this case, the output of the photosensor that receives the transmitted light of the flow cell through which the electroless plating solution is guided is larger than the output of the photosensor that detects the amount of light emitted from the light source, and is close to the maximum output. Compare the output of the photo sensor that receives light and the output of the photo sensor that detects the amount of light emitted from the light source, select the larger signal, and output the light source so that the selected signal remains constant Is controlled and measured.

従来、この特許文献1に示されるような方法により金属イオン濃度を測定する無電解めっき液の金属イオン濃度測定装置の光学系は図4及び図5に示されるように構成されており、フローセル1を挟んで光源であるLED2とフローセル1の透過光を受光する第一のフォトセンサー3が対向して配置され、LED2からの投光量を検出する第二のフォトセンサー4がLED2の近傍の側方に配置されている。そして、これらのフローセル1、LED2、第一のフォトセンサー3、第二のフォトセンサー4はこのような位置関係を保つようにブロック状の基体5に設けた孔に挿入して固定されている。   Conventionally, an optical system of a metal ion concentration measuring device for an electroless plating solution for measuring a metal ion concentration by a method as disclosed in Patent Document 1 is configured as shown in FIGS. The LED 2 that is the light source and the first photosensor 3 that receives the transmitted light of the flow cell 1 are arranged to face each other, and the second photosensor 4 that detects the amount of light emitted from the LED 2 is located on the side of the LED 2. Is arranged. The flow cell 1, the LED 2, the first photosensor 3, and the second photosensor 4 are inserted and fixed in holes provided in the block-shaped base 5 so as to maintain such a positional relationship.

吸光光度法ではフローセルすなわち測定対象のめっき液を透過した後の透過光の強度が十分に大きいことが好ましいので、LEDには強い光を出すものが使用されている。こうした強い光を出すLEDは先端がレンズ形状に成型されてレンズの焦点に相当する位置付近にLEDのチップが置かれており、光軸方向で光の強度が最も大きく、光軸から外れた方向では光の強度が減少する強い指向特性を有している。図6はそうしたLEDの指向特性の一例であって、光軸から外れる角度と光の強度の関係を表したものである。図4及び図5に示されるように光学系が構成される従来の金属イオン濃度測定装置では、第一のフォトセンサー3がLED2の光軸方向すなわち光軸から角度0度の方向に、第二のフォトセンサー4が90度の方向にそれぞれ配置されている。   In the absorptiometric method, it is preferable that the intensity of the transmitted light after passing through the flow cell, that is, the plating solution to be measured, is sufficiently large, so that an LED that emits strong light is used. The LED that emits such strong light has its tip shaped into a lens shape and the LED chip is placed near the focal point of the lens. The light intensity is greatest in the direction of the optical axis, and the direction away from the optical axis. Has strong directivity characteristics that reduce the light intensity. FIG. 6 shows an example of the directivity characteristics of such an LED, and shows the relationship between the angle deviating from the optical axis and the light intensity. In the conventional metal ion concentration measuring apparatus in which the optical system is configured as shown in FIGS. 4 and 5, the first photosensor 3 is arranged in the optical axis direction of the LED 2, that is, in the direction of 0 degree from the optical axis. Photosensors 4 are arranged in a direction of 90 degrees.

この測定方法では、フローセル1の透過光を受光する第一のフォトセンサー3の出力と、LED2からの投光量を検出する第二のフォトセンサー4の出力とを比較して大きい方の信号を選択し、選択された信号の大きさが一定に保たれるようにLED2の光出力を制御しており、LED2の光出力はLED2の駆動電流を増減させて制御される。ところがLED2の駆動電流を変化させたとき、指向特性の強いLEDでは駆動電流の増減に対する光の強度の増減率が投光角度によって異なることがあり、そうした場合にはフローセル1方向と第二のフォトセンサー4方向とで光の強度の増減率が異なることとなって測定結果に誤差を生じるという問題があった。   In this measurement method, the larger signal is selected by comparing the output of the first photosensor 3 that receives the light transmitted through the flow cell 1 with the output of the second photosensor 4 that detects the amount of light emitted from the LED 2. The light output of the LED 2 is controlled so that the magnitude of the selected signal is kept constant, and the light output of the LED 2 is controlled by increasing / decreasing the drive current of the LED 2. However, when the driving current of the LED 2 is changed, in an LED with strong directivity characteristics, the rate of increase / decrease of the light intensity with respect to the increase / decrease of the driving current may differ depending on the projection angle. There is a problem in that an error in the measurement result is caused because the increase / decrease rate of the light intensity is different in the direction of the sensor 4.

また、通常このようなフローセル1等が固定された基体5は図示しない筐体に収納して外気と遮断し、筐体内部を不活性ガスや乾燥した空気で満たすようにしているが、経年変化や温度サイクルによって筐体内部に外気が侵入することがある。外気温が高い場合には、筐体内部やフローセル1等の温度が上昇して測定のためフローセル1に流される冷却された無電解めっき液との間に温度差が生じることとなり、侵入した外気に含まれる水分がフローセル1の外表面に結露することがある。筐体の容積は小さく、侵入する水分も微量であるが、装置は静止しているのでフローセル1の外表面に結露すると容易に消滅せず、フローセル1の外表面で光の透過を妨げたり光の経路を曲げたりして光の透過量を減少させ、測定結果に誤差を生じるという問題があった。   Further, the base body 5 to which such a flow cell 1 or the like is normally fixed is housed in a housing (not shown) to shut off the outside air, and the inside of the housing is filled with inert gas or dry air. Outside air may enter the housing due to the temperature cycle. When the outside air temperature is high, the temperature inside the casing and the flow cell 1 rises, and a temperature difference is generated between the cooled electroless plating solution flowing into the flow cell 1 for measurement. Moisture contained in the water may condense on the outer surface of the flow cell 1. Although the volume of the housing is small and a small amount of moisture enters, the device is stationary so that it does not disappear easily when condensation occurs on the outer surface of the flow cell 1, preventing light from passing through the outer surface of the flow cell 1 There is a problem in that the amount of light transmitted is reduced by bending the path of the light and an error occurs in the measurement result.

特許第3753815号公報Japanese Patent No. 3753815

本発明は、駆動電流の増減に対する光の強度の増減率が投光角度によって異なるLEDを使用してもその影響を受けることがなく、フローセルの外表面に結露して測定結果に誤差を生じることのない、無電解めっき液の金属イオン濃度測定装置を提供することを目的とするものである。   The present invention is not affected by the use of an LED having a light intensity increase / decrease rate different from the increase / decrease of the drive current depending on the projection angle, and causes condensation on the outer surface of the flow cell, resulting in an error in the measurement result. An object of the present invention is to provide an apparatus for measuring the metal ion concentration of an electroless plating solution.

そして、本発明は上記の目的を達成するために、無電解めっき液の金属イオン濃度を吸光光度法により測定する無電解めっき液の金属イオン濃度測定装置であって、無電解めっき液が導かれるフローセルの透過光を受光する第一のフォトセンサーと、光源であるLEDが発光する光を受光する第二のフォトセンサーとを、第一のフォトセンサーの光軸と第二のフォトセンサーの光軸とがLED先端のレンズの焦点付近を通り、第一のフォトセンサーの光軸とLEDの光軸との間の角度と、第二のフォトセンサーの光軸とLEDの光軸との間の角度とが同一になるように配置したものである。ここにおいて、第一のフォトセンサーの光軸とLEDの光軸との間の角度と、第二のフォトセンサーの光軸とLEDの光軸との間の角度とを、LEDの光の強度が光軸方向の強度の80%以上となる方向の角度とすることが好ましく、フローセルの第一のフォトセンサーの光軸が通る面の外表面に親水性の塗膜を施すことが好ましい。   In order to achieve the above object, the present invention is an apparatus for measuring a metal ion concentration of an electroless plating solution that measures the metal ion concentration of the electroless plating solution by an absorptiometric method. The first photosensor that receives the light transmitted through the flow cell and the second photosensor that receives the light emitted from the LED, which is the light source, are divided into an optical axis of the first photosensor and an optical axis of the second photosensor. Passes near the focal point of the lens at the tip of the LED, the angle between the optical axis of the first photosensor and the optical axis of the LED, and the angle between the optical axis of the second photosensor and the optical axis of the LED. Are arranged so as to be the same. Here, the angle between the optical axis of the first photosensor and the optical axis of the LED, and the angle between the optical axis of the second photosensor and the optical axis of the LED, It is preferable to set the angle in a direction that is 80% or more of the intensity in the optical axis direction, and it is preferable to apply a hydrophilic coating on the outer surface of the flow cell through which the optical axis of the first photosensor passes.

上記の課題解決手段による作用は次の通りである。すなわち、第一のフォトセンサーの光軸と第二のフォトセンサーの光軸とがLED先端のレンズの焦点付近を通り、第一のフォトセンサーの光軸とLEDの光軸の間の角度と、第二のフォトセンサーの光軸とLEDの光軸の間の角度とが同一になるように第一のフォトセンサー及び第二のフォトセンサーが配置してあるので、LEDからの第一のフォトセンサー方向への光の強度と第二のフォトセンサー方向への光の強度とが同一になり、LEDの駆動電流の増減に対する第一のフォトセンサー方向への光の強度の増減率と第二のフォトセンサー方向への光の強度の増減率に大きな差を生じることがない。   The operation of the above problem solving means is as follows. That is, the optical axis of the first photosensor and the optical axis of the second photosensor pass near the focal point of the lens at the tip of the LED, and the angle between the optical axis of the first photosensor and the optical axis of the LED, Since the first photosensor and the second photosensor are arranged so that the angle between the optical axis of the second photosensor and the optical axis of the LED is the same, the first photosensor from the LED The intensity of light in the direction and the intensity of light in the direction of the second photosensor are the same, and the rate of increase / decrease in the intensity of light in the direction of the first photosensor relative to the increase / decrease of the LED drive current and the second photosensor There is no great difference in the rate of increase / decrease of the light intensity in the sensor direction.

第一のフォトセンサーの光軸とLEDの光軸との間の角度と、第二のフォトセンサーの光軸とLEDの光軸との間の角度とを、LEDの光の強度が光軸方向の強度の80%以上となる方向の角度とした場合には、第一のフォトセンサー及び第二のフォトセンサーに充分な強度の光が到達することになる。さらに、フローセルの外表面に親水性の塗膜を施した場合には、塗膜がない場合や撥水性の塗膜を施した場合のように水滴状の結露を生じることがなく、光の透過を妨げたり光の経路を曲げたりして光の透過量を減少させることがない。   The angle between the optical axis of the first photosensor and the optical axis of the LED, and the angle between the optical axis of the second photosensor and the optical axis of the LED, and the intensity of the LED light is in the optical axis direction. When the angle is in the direction of 80% or more of the intensity of light, light having sufficient intensity reaches the first photosensor and the second photosensor. Furthermore, when a hydrophilic coating is applied to the outer surface of the flow cell, there is no water droplet-like dew condensation that occurs when there is no coating or a water-repellent coating. The amount of transmitted light is not reduced by obstructing or bending the light path.

以上述べたたように、本発明の無電解めっき液の金属イオン濃度測定装置によれば、LEDからの第一のフォトセンサー方向への光の強度と第二のフォトセンサー方向への光の強度が同一になり、LEDの駆動電流の増減に対する両方向への光の強度の増減率も大差ないので測定結果に誤差を生じること少ない利点がある。第一のフォトセンサー及び第二のフォトセンサーの光軸とLEDの光軸との間の角度をLEDの光の強度が光軸方向の強度の80%以上となる方向の角度とした場合には、第一のフォトセンサー及び第二のフォトセンサーに充分な強度の光が到達し、測定結果に誤差を生じることがない利点がある。また、フローセルに親水性の塗膜を施した場合には、フローセル外表面に水滴状の結露を生じることがないので測定結果に誤差を生じない利点がある。   As described above, according to the metal ion concentration measuring device of the electroless plating solution of the present invention, the intensity of light from the LED toward the first photosensor and the intensity of light toward the second photosensor. And the rate of increase / decrease of the light intensity in both directions with respect to the increase / decrease of the LED drive current is not greatly different, and there is an advantage that there is little error in the measurement result. When the angle between the optical axis of the first photosensor and the second photosensor and the optical axis of the LED is an angle in a direction where the intensity of the LED light is 80% or more of the intensity in the optical axis direction There is an advantage that light of sufficient intensity reaches the first photosensor and the second photosensor, and no error occurs in the measurement result. Moreover, when a hydrophilic coating film is applied to the flow cell, there is an advantage that no error is caused in the measurement result because no water droplet-like condensation occurs on the outer surface of the flow cell.

本発明の無電解めっき液の金属イオン濃度測定装置の光学系の構成を示す横断平面図である。It is a cross-sectional top view which shows the structure of the optical system of the metal ion concentration measuring apparatus of the electroless-plating liquid of this invention. 本発明の無電解めっき液の金属イオン濃度測定装置の光学系の構成を示す縦断正面図である。It is a vertical front view which shows the structure of the optical system of the metal ion concentration measuring apparatus of the electroless-plating liquid of this invention. 本発明の無電解めっき液の金属イオン濃度測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the metal ion concentration measuring apparatus of the electroless-plating liquid of this invention. 従来の無電解めっき液の金属イオン濃度測定装置の光学系の構成を示す横断平面図である。It is a cross-sectional top view which shows the structure of the optical system of the conventional metal ion concentration measuring apparatus of an electroless-plating liquid. 従来の無電解めっき液の金属イオン濃度測定装置の光学系の構成を示す縦断正面図である。It is a vertical front view which shows the structure of the optical system of the conventional metal ion concentration measuring apparatus of an electroless-plating liquid. LEDの指向特性の一例を示す図である。It is a figure which shows an example of the directional characteristic of LED.

以下、本発明の実施の形態を図に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図において、1は無電解めっき液が導かれるフローセルであって、フローセル1の一方側にはLED2が、他方側にはフローセル1の透過光を受光する第一のフォトセンサー3がそれぞれ配置してあり、フローセル1の近傍にはLED2が発する光を受光する第二のフォトセンサー4が配置してある。ここにおいて、第一のフォトセンサー3及び第二のフォトセンサー4の光軸は共にLED2先端のレンズの焦点付近を通り、それぞれLED2の光軸と同一の角度αで交差するように配置してある。そして、これらのフローセル1、LED2、第一のフォトセンサー3、第二のフォトセンサー4は上記のような位置関係を保つようにブロック状の基体5に設けた孔に挿入して固定し、光学系が構成してある。また、図示していないがフローセル1の第一のフォトセンサー3の光軸が通る面の外表面には親水性の塗膜が施してあり、このように構成した光学系は図示しない筐体に収納してある。   In the figure, reference numeral 1 denotes a flow cell to which an electroless plating solution is guided. An LED 2 is arranged on one side of the flow cell 1, and a first photosensor 3 that receives light transmitted through the flow cell 1 is arranged on the other side. In the vicinity of the flow cell 1, a second photosensor 4 for receiving light emitted from the LED 2 is disposed. Here, the optical axes of the first photosensor 3 and the second photosensor 4 are both arranged so as to pass near the focal point of the lens at the tip of the LED 2 and intersect with the optical axis of the LED 2 at the same angle α. . The flow cell 1, LED 2, first photo sensor 3, and second photo sensor 4 are inserted into holes provided in the block-shaped base 5 so as to maintain the positional relationship as described above, and are fixed. The system is configured. Although not shown, a hydrophilic coating is applied to the outer surface of the surface through which the optical axis of the first photosensor 3 of the flow cell 1 passes, and the optical system configured in this manner is attached to a housing (not shown). It is stored.

この角度αは、LED2の光の強度が光軸方向の強度の80%以上となる方向の角度とすることが好ましい。高い測定精度を得るためには第一のフォトセンサー3及び第二のフォトセンサー4に充分な強度の光が到達することが好ましく、本願発明者は光軸方向の強度の80%以上の強度であれば充分な測定精度が得られることを確認している。多くのLEDでは、その光軸方向の光の強度に対して光の強度が80%以上となる方向の角度が15度程度であるので、第一のフォトセンサー3及び第二のフォトセンサー4はその光軸の角度がLED2の光軸に対して15度以内になるように配置するのが好ましいということになる。   This angle α is preferably an angle in the direction in which the light intensity of the LED 2 is 80% or more of the intensity in the optical axis direction. In order to obtain high measurement accuracy, it is preferable that light of sufficient intensity reaches the first photosensor 3 and the second photosensor 4, and the inventor of the present application has an intensity of 80% or more of the intensity in the optical axis direction. It has been confirmed that sufficient measurement accuracy can be obtained. In many LEDs, the angle in the direction in which the light intensity is 80% or more with respect to the light intensity in the optical axis direction is about 15 degrees, so the first photosensor 3 and the second photosensor 4 are It is preferable to arrange the optical axis so that the angle of the optical axis is within 15 degrees with respect to the optical axis of the LED 2.

第一のフォトセンサー3及び第二のフォトセンサー4からは受光した光の強度に比例した電流信号が出力されるので、それぞれ第一の変換器6及び第二の変換器7によって電圧信号に変換し、第一の変換器6及び第二の変換器7の出力を比較器8及びCPU9に入力してある。これらの第一の変換器6及び第二の変換器7の出力は、第一の変換器6の出力Aがフローセル1の透過光の強度の検出信号であり、第二の変換器7の出力Bが光源であるLED2の発する光の強度の検出信号ということになる。   Since the first photosensor 3 and the second photosensor 4 output current signals proportional to the intensity of the received light, they are converted into voltage signals by the first converter 6 and the second converter 7, respectively. The outputs of the first converter 6 and the second converter 7 are input to the comparator 8 and the CPU 9. The outputs of the first converter 6 and the second converter 7 are such that the output A of the first converter 6 is a detection signal of the intensity of light transmitted through the flow cell 1 and the output of the second converter 7. B is a detection signal of the intensity of light emitted from the LED 2 as a light source.

比較器8は第一の変換器6の出力Aと第二の変換器7の出力Bとを比較してその結果によりスイッチ10を駆動し、何れか大きい方の信号を選択して光源駆動装置11に送るようにしてあり、光源駆動装置11はその送られた信号が一定に保たれるようにLED2を駆動する電流を制御するようにしてある。また、CPU9は第一の変換器6及び第二の変換器7の出力から濃度を算出し、その結果を濃度表示装置12により表示するようにしてある。ここにおいて、第一の変換器6及び第二の変換器7の変換率は、測定対象の無電解めっき液が実使用時の定常の最高金属イオン濃度以下の場合に第一の変換器6の出力Aが第二の変換器7の出力Bより大きく、最大出力近くになるように設定してある。   The comparator 8 compares the output A of the first converter 6 and the output B of the second converter 7 and drives the switch 10 according to the result, and selects the larger signal to select the light source driving device. The light source driving device 11 controls the current for driving the LED 2 so that the transmitted signal is kept constant. Further, the CPU 9 calculates the density from the outputs of the first converter 6 and the second converter 7 and displays the result on the density display device 12. Here, the conversion rates of the first converter 6 and the second converter 7 are the same as those of the first converter 6 when the electroless plating solution to be measured is less than the steady maximum metal ion concentration during actual use. The output A is set to be larger than the output B of the second converter 7 and close to the maximum output.

このように構成した無電解めっき液の金属イオン濃度測定装置は以下のように動作する。すなわち、フローセル1に測定対象となる無電解めっき液を流して運転すると、LED2が点灯する。LED2から出た光はフローセル1を通って第一のフォトセンサー3に到達し、同時に第二のフォトセンサー4に到達する。このとき、フローセル1に到達する光の強度と第二のフォトセンサー4に到達する光の強度は同一となる。第一のフォトセンサー3及び第二のフォトセンサー4は受光した光の強度に比例した電流の信号を出力し、第一の変換器6及び第二の変換器7はそれぞれ電圧信号に変換してその信号を比較器8及びCPU9に送る。   The apparatus for measuring the metal ion concentration of the electroless plating solution thus configured operates as follows. That is, when the electroless plating solution to be measured is flowed through the flow cell 1, the LED 2 is turned on. The light emitted from the LED 2 reaches the first photosensor 3 through the flow cell 1 and at the same time reaches the second photosensor 4. At this time, the intensity of light reaching the flow cell 1 and the intensity of light reaching the second photosensor 4 are the same. The first photosensor 3 and the second photosensor 4 output current signals proportional to the intensity of the received light, and the first converter 6 and the second converter 7 convert the signals into voltage signals, respectively. The signal is sent to the comparator 8 and the CPU 9.

フローセル1に流される無電解めっき液が実使用時の定常の最高金属イオン濃度以下の場合には、第一の変換器6の出力Aが第二の変換器7の出力Bより大きいので、スイッチ10により第一の変換器6の出力Aが選択されて光源駆動装置11に送られる。光源駆動装置11は第一の変換器6の出力Aが一定になるようにLED2を駆動する電流を制御するので、フローセル1の透過光の強度が一定に保たれることになる。第一の変換器6の出力Aは最大出力近くに保たれることとなり、信号レベルの高い状態で動作するので吸光度の測定誤差を小さくすることができる。   Since the output A of the first converter 6 is larger than the output B of the second converter 7 when the electroless plating solution flowing into the flow cell 1 is below the steady maximum metal ion concentration in actual use, the switch 10, the output A of the first converter 6 is selected and sent to the light source driving device 11. Since the light source driving device 11 controls the current for driving the LED 2 so that the output A of the first converter 6 is constant, the intensity of the transmitted light of the flow cell 1 is kept constant. The output A of the first converter 6 is kept close to the maximum output, and the operation is performed with a high signal level, so that the measurement error of the absorbance can be reduced.

また無電解めっき液が定常の最高金属イオン濃度以上となった場合には、第二の変換器7の出力Bが第一の変換器6の出力Aより大きいので第二の変換器7の出力Bが選択され、光源駆動装置11は第二の変換器7の出力Bが一定になるようにLED2を駆動する電流を制御する。これによりLED2の発光強度が一定に保たれることになり、第二のフォトセンサー4に到達する光の強度が過大になることがないので第二のフォトセンサー4が飽和することがなく、測定回路のダイナミックレンジを有効に活用することができ、実使用時の測定精度を向上させることができる。   When the electroless plating solution is equal to or higher than the steady maximum metal ion concentration, the output B of the second converter 7 is larger than the output A of the first converter 6 and therefore the output of the second converter 7. B is selected, and the light source driving device 11 controls the current for driving the LED 2 so that the output B of the second converter 7 becomes constant. As a result, the light emission intensity of the LED 2 is kept constant, and the intensity of light reaching the second photosensor 4 is not excessive, so that the second photosensor 4 is not saturated and the measurement is performed. The dynamic range of the circuit can be used effectively, and the measurement accuracy during actual use can be improved.

以上説明したように、本発明の無電解めっき液の金属イオン濃度測定装置によれば、第一のフォトセンサー3の光軸と第二のフォトセンサー4の光軸とがLED2先端のレンズの焦点付近を通り、第一のフォトセンサー3の光軸とLED2の光軸の間の角度と、第二のフォトセンサー4の光軸とLED2の光軸の間の角度とが同一になるように第一のフォトセンサー3及び第二のフォトセンサー4が配置してあるので、LED2からの第一のフォトセンサー3方向への光の強度と第二のフォトセンサー4方向への光の強度が同一になり、LED2の駆動電流の増減に対する両方向への光の強度の増減率に大きな差を生じることはない。   As described above, according to the metal ion concentration measuring apparatus for electroless plating solution of the present invention, the optical axis of the first photosensor 3 and the optical axis of the second photosensor 4 are the focal points of the lens at the tip of the LED 2. The angle between the optical axis of the first photosensor 3 and the optical axis of the LED 2 and the angle between the optical axis of the second photosensor 4 and the optical axis of the LED 2 are the same. Since one photosensor 3 and the second photosensor 4 are arranged, the intensity of light from the LED 2 toward the first photosensor 3 and the intensity of light toward the second photosensor 4 are the same. Thus, there is no great difference in the rate of increase / decrease of the light intensity in both directions with respect to the increase / decrease of the drive current of the LED 2.

また、第一のフォトセンサー3の光軸とLED2の光軸との間の角度と、第二のフォトセンサー4の光軸とLED2の光軸との間の角度とを、LED2の光の強度が光軸方向の強度の80%以上となる方向の角度とした場合には、第一のフォトセンサー3及び第二のフォトセンサー4に充分な強度の光が到達し、測定結果に誤差を生じることがない利点がある。さらに、フローセル1の外表面に親水性の塗膜を施した場合には、塗膜がない場合や撥水性の塗膜を施した場合のように水滴状の結露を生じることがなく、光の透過を妨げたり光の経路を曲げたりして光の透過量を減少させることがないので測定結果に誤差を生じない利点がある。   In addition, the angle between the optical axis of the first photosensor 3 and the optical axis of the LED 2 and the angle between the optical axis of the second photosensor 4 and the optical axis of the LED 2 are determined based on the light intensity of the LED 2. Is set to an angle in a direction that becomes 80% or more of the intensity in the optical axis direction, light having sufficient intensity reaches the first photosensor 3 and the second photosensor 4, and an error occurs in the measurement result. There are no advantages. Furthermore, when a hydrophilic coating film is applied to the outer surface of the flow cell 1, water droplet-like condensation does not occur as in the case where there is no coating film or a water-repellent coating film. Since there is no reduction in the amount of transmitted light by preventing the transmission or bending the light path, there is an advantage that no error occurs in the measurement result.

1 フローセル
2 LED
3 第一のフォトセンサー
4 第二のフォトセンサー
5 基体
6 第一の変換器
7 第二の変換器
8 比較器
9 CPU
10 スイッチ
11 光源駆動装置
12 濃度表示装置
1 Flow cell 2 LED
3 First Photosensor 4 Second Photosensor 5 Base 6 First Converter 7 Second Converter 8 Comparator 9 CPU
10 switch 11 light source driving device 12 density display device

Claims (3)

無電解めっき液の金属イオン濃度を吸光光度法により測定する無電解めっき液の金属イオン濃度測定装置であって、無電解めっき液が導かれるフローセルの透過光を受光する第一のフォトセンサーと、光源であるLEDが発光する光を受光する第二のフォトセンサーとを、第一のフォトセンサーの光軸と第二のフォトセンサーの光軸とがLED先端のレンズの焦点付近を通り、第一のフォトセンサーの光軸とLEDの光軸との間の角度と、第二のフォトセンサーの光軸とLEDの光軸との間の角度とが同一になるように配置したことを特徴とする無電解めっき液の金属イオン濃度測定装置。   A metal ion concentration measuring device for an electroless plating solution for measuring a metal ion concentration of an electroless plating solution by an absorptiometry, a first photosensor for receiving transmitted light of a flow cell through which the electroless plating solution is guided, A second photosensor that receives light emitted from the LED, which is a light source, and the optical axis of the first photosensor and the optical axis of the second photosensor pass through the vicinity of the focal point of the lens at the tip of the LED. The optical sensor is arranged such that the angle between the optical axis of the photosensor and the optical axis of the LED is the same as the angle between the optical axis of the second photosensor and the optical axis of the LED. Equipment for measuring metal ion concentration in electroless plating solution. 第一のフォトセンサーの光軸とLEDの光軸との間の角度と、第二のフォトセンサーの光軸とLEDの光軸との間の角度とを、LEDの光の強度が光軸方向の強度の80%以上となる方向の角度としたことを特徴とする請求項1に記載の無電解めっき液の金属イオン濃度測定装置。   The angle between the optical axis of the first photosensor and the optical axis of the LED, and the angle between the optical axis of the second photosensor and the optical axis of the LED, and the intensity of the LED light is in the optical axis direction. 2. The apparatus for measuring a metal ion concentration of an electroless plating solution according to claim 1, wherein the angle is in the direction of 80% or more of the strength of the electroless plating solution. フローセルの第一のフォトセンサーの光軸が通る面の外表面に親水性の塗膜を施したことを特徴とする請求項1または2に記載の無電解めっき液の金属イオン濃度測定装置。   The apparatus for measuring a metal ion concentration of an electroless plating solution according to claim 1 or 2, wherein a hydrophilic coating is applied to the outer surface of the surface through which the optical axis of the first photosensor of the flow cell passes.
JP2016095007A 2016-05-11 2016-05-11 Metal ion concentration measurement device of electroless plating liquid Pending JP2017203669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016095007A JP2017203669A (en) 2016-05-11 2016-05-11 Metal ion concentration measurement device of electroless plating liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016095007A JP2017203669A (en) 2016-05-11 2016-05-11 Metal ion concentration measurement device of electroless plating liquid

Publications (1)

Publication Number Publication Date
JP2017203669A true JP2017203669A (en) 2017-11-16

Family

ID=60322174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016095007A Pending JP2017203669A (en) 2016-05-11 2016-05-11 Metal ion concentration measurement device of electroless plating liquid

Country Status (1)

Country Link
JP (1) JP2017203669A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019078310A1 (en) 2017-10-20 2019-04-25 日本電気株式会社 Three-dimensional face shape derivation device, three-dimensional face shape deriving method, and non-transitory computer readable medium
JP2022129394A (en) * 2020-01-17 2022-09-05 エレメント バイオサイエンシーズ,インク. High performance fluorescence imaging module for genomic testing assays
US12331356B2 (en) 2018-11-14 2025-06-17 Element Biosciences, Inc. Multipart reagents having increased avidity for polymerase binding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100391U (en) * 1982-12-25 1984-07-06 能美防災工業株式会社 optical fire detector
JPH10142144A (en) * 1996-11-13 1998-05-29 Chuo Seisakusho Ltd Metal ion concentration measuring method of nonelectrolytic plating solution
JP2009517641A (en) * 2005-11-29 2009-04-30 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ Method and apparatus for measuring the concentration of a substance in a solution
US20110295484A1 (en) * 2008-12-23 2011-12-01 Continental Automotive France Waveguide and associated automotive-vehicle-borne spectrometer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100391U (en) * 1982-12-25 1984-07-06 能美防災工業株式会社 optical fire detector
JPH10142144A (en) * 1996-11-13 1998-05-29 Chuo Seisakusho Ltd Metal ion concentration measuring method of nonelectrolytic plating solution
JP2009517641A (en) * 2005-11-29 2009-04-30 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ Method and apparatus for measuring the concentration of a substance in a solution
US20110295484A1 (en) * 2008-12-23 2011-12-01 Continental Automotive France Waveguide and associated automotive-vehicle-borne spectrometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019078310A1 (en) 2017-10-20 2019-04-25 日本電気株式会社 Three-dimensional face shape derivation device, three-dimensional face shape deriving method, and non-transitory computer readable medium
US12331356B2 (en) 2018-11-14 2025-06-17 Element Biosciences, Inc. Multipart reagents having increased avidity for polymerase binding
JP2022129394A (en) * 2020-01-17 2022-09-05 エレメント バイオサイエンシーズ,インク. High performance fluorescence imaging module for genomic testing assays

Similar Documents

Publication Publication Date Title
JP2017203669A (en) Metal ion concentration measurement device of electroless plating liquid
US9537580B2 (en) Optical receiver sensitivity system
US9068821B2 (en) Optical measuring device with positional displacement detection
US9506807B2 (en) Optical gas temperature sensor
TW201430631A (en) Optical mouse apparatus and method used in optical mouse apparatus
US10466226B2 (en) Measuring device
CN107340237A (en) Water quality on-line monitoring device based on light emitting diode
CN105866029A (en) Optical analyzer
EP1722214A1 (en) Gas sensor arrangement and measuring method for improving long-term stability
CN109596565B (en) A device and method for realizing self-stabilization of received light intensity based on laser array
KR102385865B1 (en) Apparatus and method for aligning beam aiming in free space optical communication system
CN104266691B (en) Flow rate measuring device for circulating liquid
KR101723981B1 (en) Apparatus for measuring and adjusting concentration of the slurry solution
CN115876437A (en) Laser numerical aperture measuring equipment and method
JP3753815B2 (en) Method for measuring metal ion concentration in electroless plating solution
KR101285093B1 (en) PLATING SOLUTION CONTROL APPARATUS COMPRISING RGB COLOR SENSOR AND pH SENSOR
US9869626B2 (en) Particle size distribution measuring apparatus and particle size distribution measuring method
JP2006284500A (en) Nitrogen oxide analyzer, and parameter setting method applied to nitrogen oxide analyzer
CN212134488U (en) Surrounding type online turbidity measuring instrument
KR101175891B1 (en) Apparatus and method for counting small electronic components using laser beam
CN113514841A (en) Optical displacement sensor
CN207114421U (en) A kind of diffusion type sensor of chemical gas and calibration system
JP2007292577A (en) Light source device
JP2008281342A (en) Tilt detector and laser marking device
JP2016114579A (en) Dust sensor and electrical equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200107