JP3753815B2 - Method for measuring metal ion concentration in electroless plating solution - Google Patents

Method for measuring metal ion concentration in electroless plating solution Download PDF

Info

Publication number
JP3753815B2
JP3753815B2 JP30167396A JP30167396A JP3753815B2 JP 3753815 B2 JP3753815 B2 JP 3753815B2 JP 30167396 A JP30167396 A JP 30167396A JP 30167396 A JP30167396 A JP 30167396A JP 3753815 B2 JP3753815 B2 JP 3753815B2
Authority
JP
Japan
Prior art keywords
plating solution
output
metal ion
electroless plating
ion concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30167396A
Other languages
Japanese (ja)
Other versions
JPH10142144A (en
Inventor
秀逸 西中
泰光 森下
直樹 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Seisakusho KK
Original Assignee
Chuo Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Seisakusho KK filed Critical Chuo Seisakusho KK
Priority to JP30167396A priority Critical patent/JP3753815B2/en
Publication of JPH10142144A publication Critical patent/JPH10142144A/en
Application granted granted Critical
Publication of JP3753815B2 publication Critical patent/JP3753815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemically Coating (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、吸光光度法による無電解めっき液の金属イオン濃度測定方法に関するものである。
【0002】
【従来の技術】
無電解ニッケルめっき等の無電解めっきでは、めっき液中の金属イオンがワーク金属の触媒還元反応によりワーク表面に金属として析出し、それにつれて金属イオン濃度、還元剤濃度、pH等が徐々に低下して行く。そのため、めっき液をサンプリングして吸光光度法により金属イオン濃度を測定し、めっき液中の金属イオン量等を常に定められた値に保つめっき液管理が行われている。
【0003】
この吸光光度法による金属イオン濃度測定は、図3に示すように無電解めっき液をフローセル1の内部に導き、光源2から光を当ててフォトセンサー3により透過した光量を測定する方法で行われている。光源2からの投光量をL0とし、フォトセンサー3により測定された透過光量をL1としたとき、t=L1/L0 を透過率といい、E=log(1/t)を吸光度という。この場合一般に吸光度Eは金属イオン濃度に正比例するので、吸光度Eから無電解めっき液中の金属イオン濃度を求めることができる。
【0004】
従来は図3に示すように、光源2の近傍に配置されたフォトセンサー4により投光量L0を常時検出してこの投光量L0が一定となるように光源電力制御器5で光源2に加える電力を制御していた。このように投光量L0を一定に制御しているため、CPU7はプリアンプ6で増幅されたフォトセンサー3の出力のみに基づいて透過率tを演算することができる。ところがめっき液濃度が高くなり透過率が低下すると透過光量L1の絶対値が小さくなるため、フォトセンサー3の出力は微小となる。従って、E=log(1/t)として算出される吸光度Eの値の誤差は、めっき液濃度が低い場合に比較して大きくなるという問題があった。
【0005】
【発明が解決しようとする課題】
本発明は上記した従来の問題点を解決し、めっき液濃度が高くなり透過率が低下した場合にも、めっき液濃度が低い場合と同様に精度良く金属イオン濃度の測定ができる無電解めっき液の金属イオン濃度測定方法を提供するためになされたものである。
【0006】
【課題を解決するための手段】
上記の課題を解決するためになされた本発明は、無電解めっき液の金属イオン濃度を吸光光度法により測定する無電解めっき液の金属イオン濃度測定方法であって、実使用時の定常の最高金属イオン濃度以下の場合に無電解めっき液が導かれるフローセルの透過光を受光するフォトセンサーの出力が光源からの投光量を検出するフォトセンサーの出力より大きく、最大出力近くになるようにしておき、フローセルの透過光を受光するフォトセンサーの出力と、光源からの投光量を検出するフォトセンサーの出力とを比較して大きい方の信号を選択し、選択された信号が一定に保たれるように光源の出力を制御して、測定を行うことを特徴とするものである。
【0007】
【発明の実施の形態】
〔第1の実施形態〕
図1は本発明の第1の実施形態を示す図であり、従来例と同様、1は無電解めっき液が導かれるフローセル、2はLED等の光源、3は透過光を受光するフォトセンサー、4は光源2の近傍に配置されたフォトセンサー、5は光源電力制御器である。フォトセンサー3の出力はプリアンプ6で増幅されたうえでCPU7に入力され、またフォトセンサー4の出力もプリアンプ8で増幅されたうえでCPU7に入力される。CPU7は投光量L0と透過光量L1からt=L1/L0 の式により透過率tを演算する。
【0008】
前記したようにめっき液濃度が高くなると透過率が低下し透過光量L1が減少するが、本発明においてはCPU7が演算した透過率tが低下したとき、CPU7から光源電力制御器5に信号を送り、光源2に供給する電力を増し投光量L0を増加させる。このため、透過率が低下したときにも透過光量L1の絶対値が増加するので、従来のように吸光度Eの誤差がめっき液濃度が低い場合に比較して大きくなることはない。
【0009】
〔第2の実施形態〕
図2は本発明の第2の実施形態を示す図である。この実施形態では、無電解めっき液が導かれるフローセル1の透過光を受光するフォトセンサー3の出力Aと、光源2からの投光量L0を検出するフォトセンサー4の出力Bとが比較器9で比較され、高位選択スイッチ10が大きい方の信号を選択する。そして選択された信号が一定に保たれるように光源電力制御器5に制御信号が送られ、光源2の出力を制御する。
【0010】
この実施形態では、実使用時の定常の最高金属イオン濃度以下の場合、フォトセンサー3の出力Aがフォトセンサー4の出力Bより大きくなり、最大出力近くになるように設計しておく。実使用時の定常の最高金属イオン以下の場合には、第1の実施形態と同様に、透過光を受光するフォトセンサー3の出力Aが一定になるように光源電力制御器5が光源2の投光量を制御するので、吸光度の測定誤差を小さくすることができる。また金属イオン濃度が定常の最高濃度以上となり、フォトセンサー3の出力Aよりフォトセンサー4の出力Bが大きくなると高位選択スイッチ10が出力Bを選択し、光源2からの投光量L0を検出するフォトセンサー4の出力Bが一定になるように光源2の出力が制御される。これによってフォトセンサー4の出力Bは飽和しないので測定回路のダイナミックレンジを有効に活用することができ、実使用時の測定精度を向上させることができる。
【0011】
【発明の効果】
以上に説明したように、本発明によれば無電解めっき液の透過率が低下したときに光源の出力を高め、投光量を増加させて測定を行うようにしたので、透過光量の減少に伴う測定精度の低下が防止でき、無電解めっき液の濃度変化にかかわらず安定した精度で金属イオン濃度を測定できる利点がある。
【図面の簡単な説明】
【図1】第1の実施形態を示すブロック図である。
【図2】第2の実施形態を示すブロック図である。
【図3】従来法を示すブロック図である。
【符号の説明】
1 無電解めっき液が導かれるフローセル
2 光源
3 透過光を受光するフォトセンサー
4 投光量L0を検出するフォトセンサー
5 光源電力制御器
6 プリアンプ
7 CPU
8 プリアンプ
9 比較器
10 高位選択スイッチ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for measuring a metal ion concentration of an electroless plating solution by an absorptiometric method.
[0002]
[Prior art]
In electroless plating such as electroless nickel plating, metal ions in the plating solution are deposited as metal on the workpiece surface by the catalytic reduction reaction of the workpiece metal, and the metal ion concentration, reducing agent concentration, pH, etc. gradually decrease accordingly. Go. Therefore, plating solution management is performed in which the plating solution is sampled, the metal ion concentration is measured by an absorptiometric method, and the amount of metal ions and the like in the plating solution is always set to a predetermined value.
[0003]
The metal ion concentration measurement by this absorptiometry is performed by a method in which an electroless plating solution is guided into the flow cell 1 as shown in FIG. 3 and the amount of light transmitted through the photosensor 3 is measured by applying light from the light source 2. ing. When the amount of light emitted from the light source 2 is L 0 and the amount of transmitted light measured by the photosensor 3 is L 1 , t = L 1 / L 0 is called transmittance, and E = log (1 / t) is absorbance. That's it. In this case, since the absorbance E is generally directly proportional to the metal ion concentration, the metal ion concentration in the electroless plating solution can be determined from the absorbance E.
[0004]
As shown in FIG. 3 conventionally by photosensor 4 placed in the vicinity of the light source 2 by detecting the projection amount L 0 constantly light 2 by the light source power controller 5 as the projection amount L 0 is constant The power to be applied was controlled. Thus, since the light projection amount L 0 is controlled to be constant, the CPU 7 can calculate the transmittance t based only on the output of the photosensor 3 amplified by the preamplifier 6. However, when the plating solution concentration increases and the transmittance decreases, the absolute value of the transmitted light amount L 1 decreases, and the output of the photosensor 3 becomes minute. Therefore, there is a problem that an error in the value of the absorbance E calculated as E = log (1 / t) becomes larger than when the plating solution concentration is low.
[0005]
[Problems to be solved by the invention]
The present invention solves the above-mentioned conventional problems, and even when the plating solution concentration increases and the transmittance decreases, the electroless plating solution can measure the metal ion concentration with high accuracy in the same manner as when the plating solution concentration is low. It is made in order to provide the metal ion concentration measuring method of this.
[0006]
[Means for Solving the Problems]
The present invention has been made to solve the above problems is a metal ion concentration measuring method of the electroless plating solution for measuring the concentration of metal ions in an electroless plating solution by spectrophotometry, the best steady in actual use Make sure that the output of the photosensor that receives the transmitted light of the flow cell through which the electroless plating solution is guided when the concentration is below the metal ion concentration is greater than the output of the photosensor that detects the amount of light emitted from the light source and close to the maximum output. Compare the output of the photo sensor that receives the light transmitted through the flow cell with the output of the photo sensor that detects the amount of light emitted from the light source, and select the larger signal so that the selected signal is kept constant. Further, the measurement is performed by controlling the output of the light source.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
[First Embodiment]
FIG. 1 is a diagram showing a first embodiment of the present invention. Like the conventional example, 1 is a flow cell through which an electroless plating solution is guided, 2 is a light source such as an LED, 3 is a photosensor that receives transmitted light, 4 is a photosensor arranged in the vicinity of the light source 2, and 5 is a light source power controller. The output of the photosensor 3 is amplified by the preamplifier 6 and input to the CPU 7, and the output of the photosensor 4 is also amplified by the preamplifier 8 and input to the CPU 7. The CPU 7 calculates the transmittance t from the light projection amount L 0 and the transmitted light amount L 1 by the equation of t = L 1 / L 0 .
[0008]
As described above, when the plating solution concentration increases, the transmittance decreases and the transmitted light amount L 1 decreases. However, in the present invention, when the transmittance t calculated by the CPU 7 decreases, a signal is sent from the CPU 7 to the light source power controller 5. The electric power supplied to the light source 2 is increased and the light projection amount L 0 is increased. Therefore, the absolute value of the amount of transmitted light L 1 even when the transmittance is decreased to increase, not an error of the conventional way absorbance E is increased as compared to the case of a low plating solution concentration.
[0009]
[Second Embodiment]
FIG. 2 is a diagram showing a second embodiment of the present invention. In this embodiment, the output A of the photosensor 3 that receives the transmitted light of the flow cell 1 through which the electroless plating solution is guided and the output B of the photosensor 4 that detects the light projection amount L 0 from the light source 2 are compared with each other. And the higher level selection switch 10 selects the larger signal. Then, a control signal is sent to the light source power controller 5 so that the selected signal is kept constant, and the output of the light source 2 is controlled.
[0010]
In this embodiment, it is designed so that the output A of the photosensor 3 is larger than the output B of the photosensor 4 and is close to the maximum output when it is below the steady maximum metal ion concentration during actual use. In the case of less than the steady maximum metal ion in actual use, the light source power controller 5 is connected to the light source 2 so that the output A of the photosensor 3 that receives the transmitted light is constant, as in the first embodiment. Since the amount of emitted light is controlled, the measurement error of absorbance can be reduced. When the metal ion concentration is higher than the steady maximum concentration and the output B of the photosensor 4 is larger than the output A of the photosensor 3, the high-level selection switch 10 selects the output B and detects the light projection amount L 0 from the light source 2. The output of the light source 2 is controlled so that the output B of the photosensor 4 becomes constant. As a result, the output B of the photosensor 4 is not saturated, so that the dynamic range of the measurement circuit can be used effectively, and the measurement accuracy during actual use can be improved.
[0011]
【The invention's effect】
As described above, according to the present invention, when the transmittance of the electroless plating solution is lowered, the output of the light source is increased and the light projection amount is increased to perform the measurement. There is an advantage that the measurement accuracy can be prevented from being lowered and the metal ion concentration can be measured with stable accuracy regardless of the concentration change of the electroless plating solution.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a first embodiment.
FIG. 2 is a block diagram showing a second embodiment.
FIG. 3 is a block diagram showing a conventional method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Flow cell to which electroless plating solution is guided 2 Light source 3 Photosensor that receives transmitted light 4 Photosensor that detects the amount of emitted light L 0 Light source power controller 6 Preamplifier 7 CPU
8 Preamplifier 9 Comparator 10 High-level selection switch

Claims (1)

無電解めっき液の金属イオン濃度を吸光光度法により測定する無電解めっき液の金属イオン濃度測定方法であって、実使用時の定常の最高金属イオン濃度以下の場合に無電解めっき液が導かれるフローセルの透過光を受光するフォトセンサーの出力が光源からの投光量を検出するフォトセンサーの出力より大きく、最大出力近くになるようにしておき、フローセルの透過光を受光するフォトセンサーの出力と、光源からの投光量を検出するフォトセンサーの出力とを比較して大きい方の信号を選択し、選択された信号が一定に保たれるように光源の出力を制御して、測定を行うことを特徴とする無電解めっき液の金属イオン濃度測定方法。A method for measuring the metal ion concentration of an electroless plating solution by measuring the metal ion concentration of the electroless plating solution by an absorptiometric method, in which the electroless plating solution is guided when it is below the steady maximum metal ion concentration in actual use The output of the photo sensor that receives the transmitted light of the flow cell is larger than the output of the photo sensor that detects the amount of light emitted from the light source, and is close to the maximum output, the output of the photo sensor that receives the transmitted light of the flow cell, Compare the output of the photo sensor that detects the amount of light emitted from the light source, select the larger signal, and control the output of the light source so that the selected signal is kept constant. A method for measuring a metal ion concentration of an electroless plating solution.
JP30167396A 1996-11-13 1996-11-13 Method for measuring metal ion concentration in electroless plating solution Expired - Fee Related JP3753815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30167396A JP3753815B2 (en) 1996-11-13 1996-11-13 Method for measuring metal ion concentration in electroless plating solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30167396A JP3753815B2 (en) 1996-11-13 1996-11-13 Method for measuring metal ion concentration in electroless plating solution

Publications (2)

Publication Number Publication Date
JPH10142144A JPH10142144A (en) 1998-05-29
JP3753815B2 true JP3753815B2 (en) 2006-03-08

Family

ID=17899759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30167396A Expired - Fee Related JP3753815B2 (en) 1996-11-13 1996-11-13 Method for measuring metal ion concentration in electroless plating solution

Country Status (1)

Country Link
JP (1) JP3753815B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101808255B1 (en) * 2016-04-22 2017-12-13 (주) 테크로스 Apparatus and method for measuring concentration using absorption photometry

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4654534B2 (en) * 2000-05-22 2011-03-23 上村工業株式会社 Automatic analysis and management equipment for electroless composite nickel plating solution
US20030049169A1 (en) * 2000-05-22 2003-03-13 Tadashi Chiba Automatic analyzing/controlling device for electroless composite plating solution
KR100414550B1 (en) * 2001-09-20 2004-01-13 주식회사 아큐텍반도체기술 A system and a method for analyzing concentrations of multi components solution
JP2008032719A (en) * 2006-07-31 2008-02-14 Applied Materials Inc Raman spectroscopy as integrated chemical measurement
WO2014192554A1 (en) * 2013-05-29 2014-12-04 コニカミノルタ株式会社 Illumination device and reflection-characteristics measurement device
JP2017203669A (en) * 2016-05-11 2017-11-16 株式会社中央製作所 Metal ion concentration measurement device of electroless plating liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101808255B1 (en) * 2016-04-22 2017-12-13 (주) 테크로스 Apparatus and method for measuring concentration using absorption photometry

Also Published As

Publication number Publication date
JPH10142144A (en) 1998-05-29

Similar Documents

Publication Publication Date Title
US4407959A (en) Blood sugar analyzing apparatus
JP3753815B2 (en) Method for measuring metal ion concentration in electroless plating solution
JPH0339491A (en) Etching device for thin film
EP0261452B1 (en) Gas analyzer
JPH05232054A (en) Method and apparatus for monitoring aged state of oxygen sensor
FR2509879A1 (en) METHOD AND APPARATUS FOR CONTROLLING THE ACTIVITY OF A DEVELOPMENT SOLUTION AND OPPOSING ITS OXIDATION USING A TEST
JPH0878185A (en) Method for detecting replacing time of x-ray tube and device used therefor
JPH01235834A (en) Signal processing system of laser system gas sensor
CN115561207B (en) Concentration self-adaptive sewage detection method and system
JP3853978B2 (en) Water quality analyzer
JPH10185686A (en) Spectrophotometer
JPS61737A (en) Automatic calibration gas introduction time decision mechanism for continuous analyzer
CN102384901A (en) Chemical oxygen demand detection method and device
CN114942299B (en) Titration endpoint analysis method and system based on permanganate index automatic analyzer
JP6900566B1 (en) Electric discharge machine
JPH05118022A (en) Gate controller
KR20230098964A (en) Measurement device with quantity of light correcting function and quantity of light correcting method thereof
JP2017203669A (en) Metal ion concentration measurement device of electroless plating liquid
JPS621878A (en) Analyzer
JPH11173983A (en) Concentration measuring apparatus and substrate treatment apparatus using it
JPS63198852A (en) Measuring instrument for engine oil consumption
JPH01127684A (en) Etching system
JPH055703A (en) Absorbance detection device
RU2157510C1 (en) Technique determining flow rate of liquid
SU1074927A1 (en) Apparatus for automatic control of pulp bleaching stage

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees