JP2017203665A - Photocleavable microcapsules, sensor using the same and a measuring method of substance to be measured using the same - Google Patents

Photocleavable microcapsules, sensor using the same and a measuring method of substance to be measured using the same Download PDF

Info

Publication number
JP2017203665A
JP2017203665A JP2016094860A JP2016094860A JP2017203665A JP 2017203665 A JP2017203665 A JP 2017203665A JP 2016094860 A JP2016094860 A JP 2016094860A JP 2016094860 A JP2016094860 A JP 2016094860A JP 2017203665 A JP2017203665 A JP 2017203665A
Authority
JP
Japan
Prior art keywords
substance
photocleavable
measured
microcapsule
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016094860A
Other languages
Japanese (ja)
Inventor
昌樹 山口
Masaki Yamaguchi
昌樹 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eyes Japan
Eyes Japan Co Ltd
Shinshu University NUC
Original Assignee
Eyes Japan
Eyes Japan Co Ltd
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eyes Japan, Eyes Japan Co Ltd, Shinshu University NUC filed Critical Eyes Japan
Priority to JP2016094860A priority Critical patent/JP2017203665A/en
Priority to PCT/JP2017/017479 priority patent/WO2017195758A1/en
Publication of JP2017203665A publication Critical patent/JP2017203665A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/544Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being organic

Abstract

PROBLEM TO BE SOLVED: To provide a sensor capable of amplifying a signal from the sensor by a molecule recognition element, a photocleavable microcapsule used therefor, and a measuring method of substance to be measured using the same.SOLUTION: The photocleavable microcapsules has a multilayered structure including, from the inner side to the outer side; a skeleton layer 1; a lipid bilayer film 2; an outer shell layer 3; and an antibody modify layer 4 in this order. The skeleton layer 1 is a lamination of polycation and polyanion high molecule electrolyte laminated alternately. The lipid bilayer film 2 consists of 2 molecule film of cationic amphiphile. The outer shell layer 3 is composed of TiO2 functioning as a photocatalyst. The antibody modify layer 4 is a self-assembled monolayer film binned with an antibody 5.SELECTED DRAWING: Figure 1

Description

本発明は、光開裂性マイクロカプセル、それを用いたセンサ、及びそれを用いた被測定物質の測定方法に関し、バイオマーカーの高感度測定のために用いて好適である。   The present invention relates to a photocleavable microcapsule, a sensor using the same, and a method for measuring a substance to be measured using the same, and is suitable for highly sensitive measurement of a biomarker.

バイオマーカーの高感度測定には,クロマトグラフィー,酵素標識免疫測定 (ELISA),電気泳動などがあるが,多大な時間と煩雑な作業に対する労力やコストが必要である。バイオマーカーの可視化デバイスには,迅速で高感度な計測が求められる。化学反応は拡散現象なので,サンプル量が少ないほど迅速・高感度化に有利であり,微小な基板上に設けた分注槽,混合槽,反応槽,廃液槽など複数の液槽を,流路で繋いだ微細な流路システムを採用したバイオセンサが最適である。   High-sensitivity measurement of biomarkers includes chromatography, enzyme-linked immunoassay (ELISA), and electrophoresis, but it requires a lot of time and labor and cost for complicated work. Biomarker visualization devices require rapid and sensitive measurement. Since chemical reaction is a diffusion phenomenon, the smaller the amount of sample, the more advantageous is rapid and high sensitivity. Multiple flow tanks such as dispensing tanks, mixing tanks, reaction tanks, and waste liquid tanks on a small substrate are connected to the flow path. A biosensor that employs a fine flow path system connected by the most suitable.

バイオセンサは、目的物質のみを認識する部分(分子認識素子)と、認識した情報をシグナルに変換する部分(信号変換素子)とから構成されており、両素子の特性がセンサ性能を左右する。通常は信号変換素子がシグナルの増幅を兼ねており、分子認識素子側においてシグナル増幅を行うことについては、ほとんど報告されていない。   A biosensor is composed of a part that recognizes only a target substance (molecular recognition element) and a part that converts recognized information into a signal (signal conversion element), and the characteristics of both elements influence the sensor performance. Usually, the signal conversion element also serves as signal amplification, and there is almost no report about signal amplification on the molecular recognition element side.

一方、本発明に関連する技術として、マイクロカプセルにフェロセン化合物を内包させておき、カプセルを破壊することによって放出されたフェロセン化合物をメディエータとして用い、その酸化電流をアンペロメトリックに測定するという電気化学センサがある(特許文献2)。
また、脂質二重層からなるマイクロカプセルの表面にSiO2-TiO2膜をコーティングし、TiO2の光触媒能を利用して光開裂を起こさせるマイクロカプセルの技術が知られている(非特許文献1)。
On the other hand, as a technique related to the present invention, an electrochemistry in which a ferrocene compound is encapsulated in a microcapsule, the ferrocene compound released by breaking the capsule is used as a mediator, and its oxidation current is measured amperometrically. There is a sensor (Patent Document 2).
Also known is a microcapsule technology in which a surface of a microcapsule composed of a lipid bilayer is coated with a SiO 2 —TiO 2 film and photocleavage is caused by utilizing the photocatalytic ability of TiO 2 (Non-patent Document 1). ).

特開2009−210417号公報JP 2009-210417 A 特開2011−145079号公報JP 2011-145079 A

Tunable UV-Responsive Organic-Inorganic HybridCapsules Kiyofumi Katagiri , Kunihito Kournoto, Shogo IseyaMototsugu Sakai. Atsunori Matsuda,and Frank CarusoTunable UV-Responsive Organic-Inorganic HybridCapsules Kiyofumi Katagiri, Kunihito Kournoto, Shogo IseyaMototsugu Sakai. Atsunori Matsuda, and Frank Caruso

本発明は分子認識素子側でセンサのシグナルを増幅することが可能なセンサ、それに用いる光開裂性マイクロカプセル、及びそれらを用いた被測定物質の測定方法を提供することを目的とする。   An object of the present invention is to provide a sensor capable of amplifying a sensor signal on the molecular recognition element side, a photocleavable microcapsule used therefor, and a method for measuring a substance to be measured using the same.

本発明の光開裂性マイクロカプセルは、被測定物質と特異的に結合することが可能な分子認識プローブが表面に修飾されたマイクロカプセルであって、該マイクロカプセルの内部には受光素子による検知を可能とするための物質が内包されており、該マイクロカプセルの殻壁は光触媒と、該光触媒への光照射によって分解される材料とを含むことを特徴とする。   The photocleavable microcapsule of the present invention is a microcapsule whose surface is modified with a molecular recognition probe capable of specifically binding to a substance to be measured, and the inside of the microcapsule is detected by a light receiving element. A substance for enabling is included, and the shell wall of the microcapsule includes a photocatalyst and a material that is decomposed by light irradiation to the photocatalyst.

本発明の光開裂性マイクロカプセルでは、被測定物質と特異的に結合することが可能な分子認識プローブが表面に修飾されているため、被測定液と接触させた場合に、分子認識プローブが被測定物質と結合してマイクロカプセル−被測定物質複合体を形成することができる。このため、この複合体を含んだ被測定液を被測定物質が固定化された固定部に接触させた場合、固定部に固定化された被測定物質に分子認識プローブを介してマイクロカプセルが固定化される反応と、測定液中に存在する被測定物質に分子認識プローブを介してマイクロカプセルが結合する反応とが起こる。さらに、このマイクロカプセルの内部には受光素子による検知を可能とするための物質が内包されており、該マイクロカプセルの殻壁は光触媒と、該光触媒への光照射によって分解される材料とを含むため、固定部に固定化されたマイクロカプセル、又は、固定部に固定化されず留去されたマイクロカプセルに光を照射すれば、カプセルの殻壁が光触媒の作用によって破壊され、内包されていた多数の物質が放出される。そして、この放出された多数の物質は、受光素子による検知を可能とするための物質であるため、放出された物質の量に応じてセンサのシグナルを増幅することができる。   In the photocleavable microcapsule of the present invention, since the molecular recognition probe capable of specifically binding to the substance to be measured is modified on the surface, the molecular recognition probe is not subjected to contact with the liquid to be measured. It can be combined with a measurement substance to form a microcapsule-measurement substance complex. For this reason, when the liquid to be measured containing this complex is brought into contact with a fixed part on which the substance to be measured is immobilized, the microcapsule is fixed to the substance to be measured immobilized on the fixed part via the molecular recognition probe. And a reaction in which microcapsules bind to a substance to be measured existing in a measurement solution via a molecular recognition probe. Furthermore, a substance for enabling detection by a light receiving element is included inside the microcapsule, and the shell wall of the microcapsule includes a photocatalyst and a material that is decomposed by light irradiation to the photocatalyst. Therefore, if light was irradiated to the microcapsule fixed to the fixing part or the microcapsule not fixed to the fixing part but distilled off, the shell wall of the capsule was broken and encapsulated by the action of the photocatalyst. A number of substances are released. And since many of this emitted substance is a substance for enabling the detection by a light receiving element, the signal of a sensor can be amplified according to the quantity of the released substance.

本発明の光開裂性マイクロカプセルに内包させる物質としては、受光素子による検知を可能とする物質であれば特に限定はない。このような物質としては、例えば、発光前駆体を発光させるための触媒(例えば、アルカリホスファターゼのように、発光前駆体を分解して発光する反応を促進する酵素等)、色素前駆体を色素に変換するための触媒、吸光物質、蛍光物質等が挙げられる。   The substance to be encapsulated in the photocleavable microcapsule of the present invention is not particularly limited as long as it can be detected by a light receiving element. Examples of such substances include a catalyst for emitting a luminescent precursor (for example, an enzyme that promotes a reaction that decomposes the luminescent precursor to emit light, such as alkaline phosphatase), and a dye precursor as a dye. Examples include a catalyst for conversion, a light-absorbing substance, and a fluorescent substance.

また、本発明の光開裂性マイクロカプセルの表面に修飾されている分子認識プローブとしては、被測定物質と特異的に結合することが可能なプローブであれば特に限定はない。このような分子認識プローブとして、例えば、抗原と特異的に結合して複合体を形成する抗体、基質と複合体を形成する酵素、特定の塩基配列にコードされる遺伝子等が挙げられる。   In addition, the molecular recognition probe modified on the surface of the photocleavable microcapsule of the present invention is not particularly limited as long as it is a probe that can specifically bind to the substance to be measured. Examples of such a molecular recognition probe include an antibody that specifically binds to an antigen to form a complex, an enzyme that forms a complex with a substrate, a gene encoded by a specific base sequence, and the like.

また、本発明の光開裂性マイクロカプセルは骨格層と、該骨格槽を被覆する脂質二重膜と、該脂質二重膜を被覆し光触媒を含有する外殻層とを備えた構造とすることができる。   The photocleavable microcapsule of the present invention has a structure comprising a skeleton layer, a lipid bilayer membrane that covers the skeleton tank, and an outer shell layer that covers the lipid bilayer membrane and contains a photocatalyst. Can do.

本発明の光開裂性マイクロカプセルを用いれば、分子認識素子側でセンサのシグナルを増幅することが可能なセンサを構築することができる。すなわち、本発明の光開裂性マイクロカプセルと、被測定物質と特異的に結合することが可能な分子認識プローブが表面に固定された固定部と、該固定部又は被測定液に光を照射するための光照射部と、前記受光素子による検知を可能とするための物質の作用によって生じた光を感知する光受光部とを備えるセンサである。   By using the photocleavable microcapsule of the present invention, a sensor capable of amplifying the sensor signal on the molecular recognition element side can be constructed. That is, the photocleavable microcapsule of the present invention, a fixed part on which a molecular recognition probe capable of specifically binding to a substance to be measured is fixed on the surface, and the fixed part or the liquid to be measured are irradiated with light And a light receiving unit that senses light generated by the action of a substance for enabling detection by the light receiving element.

このセンサを用いて、次の方法により分子認識素子側でセンサのシグナルを増幅することができる。すなわち、
被測定物質と特異的に結合することが可能な分子認識プローブが表面に固定された固定部に被測定物質を含む測定液を接触させる第1工程と、
該固定部上の該被測定液を除去する第2工程と、
該被測定物質が該分子認識プローブに捕捉された該固定部に請求項1乃至4のいずれかの光開裂性マイクロカプセルを分散させたカプセル含有液を接触させる第3工程と、
該固定部上の該カプセル含有液を除去する第4工程と、
該固定部又は該除去されたカプセル含有液に光を照射して該光開裂性カプセルを開裂させて受光素子による検知を可能とするための物質を放出させる第5工程と、
該物質の作用によって生じた光の強度をセンシングする第6工程と、
を備えるの被測定物質の測定方法である。
Using this sensor, the signal of the sensor can be amplified on the molecular recognition element side by the following method. That is,
A first step in which a measurement liquid containing a substance to be measured is brought into contact with a fixing part on which a molecular recognition probe capable of specifically binding to the substance to be measured is fixed on the surface;
A second step of removing the liquid to be measured on the fixed part;
A third step in which the capsule-containing liquid in which the photocleavable microcapsules according to any one of claims 1 to 4 are dispersed is brought into contact with the immobilization part in which the substance to be measured is captured by the molecular recognition probe;
A fourth step of removing the capsule-containing liquid on the fixing part;
A fifth step of irradiating the fixing part or the removed capsule-containing liquid with light to cleave the photocleavable capsule to release a substance enabling detection by a light receiving element;
A sixth step of sensing the intensity of light generated by the action of the substance;
A method for measuring a substance to be measured.

本発明によれば、例えばバイオセンサにおいて、分子認識素子側でセンサのシグナルを増幅することが可能となるため、被測定物質(がん等のバイオマーカー等)の高感度な測定を行うことができる。   According to the present invention, for example, in a biosensor, it is possible to amplify the sensor signal on the molecular recognition element side, so that it is possible to perform highly sensitive measurement of a substance to be measured (biomarker such as cancer) it can.

実施形態の光開裂性マイクロカプセルの模式断面図である。It is a schematic cross section of the photocleavable microcapsule of an embodiment. 実施形態の光開裂性マイクロカプセルに内包されているアルカリホスファターゼの模式図である。It is a schematic diagram of alkaline phosphatase encapsulated in the photocleavable microcapsule of the embodiment. 実施形態の光開裂性マイクロカプセルを調製する工程図である。It is process drawing which prepares the photocleavable microcapsule of embodiment. 遠心式センサ20の平面図である。2 is a plan view of a centrifugal sensor 20. FIG. 光開裂性マイクロカプセルを用いたセンサによるサイトカインの測定を示す工程図である。It is process drawing which shows the measurement of the cytokine by the sensor using a photocleavable microcapsule. 骨格層のモデルとなる積層膜のQCM法による測定結果を示すグラフである。It is a graph which shows the measurement result by the QCM method of the laminated film used as a model of a skeleton layer. 骨格層からなる中空粒子のSEM写真((A)〜(C))及びTEM写真(D)である。It is the SEM photograph ((A)-(C)) and TEM photograph (D) of the hollow particle which consists of a frame layer. カチオン高分子電過質及びアニオン高分子電解質を積層した場合の各ステップごとのゼータ電位を測定したグラフである。It is the graph which measured the zeta potential for every step at the time of laminating | stacking a cationic polymer electrolyte and an anionic polymer electrolyte. シリコンウエハー上にTiO2層を形成し、さらにその表面に抗体を固定化する場合の工程図である。It is a process diagram in the case of forming a TiO 2 layer on a silicon wafer and further immobilizing antibodies on the surface thereof. シリコンウエハー上にポリアニオン/ポリカチオン積層膜及びTiO2層が積層された多層構造のEDXによる解析結果を示すグラフである。On a silicon wafer polyanion / polycation laminated film and TiO 2 layers is a graph showing the analysis results by EDX of the stacked multilayer structure. 遠心式イムノセンサの外観を示す写真である。It is a photograph which shows the external appearance of a centrifugal immunosensor. コルチゾールの検量線の作成方法を示す模式工程図である。It is a model process figure which shows the preparation method of the calibration curve of cortisol. 遠心式イムノセンサでコルチゾールの濃度を測定した場合の検量線である。It is a calibration curve when the concentration of cortisol is measured with a centrifugal immunosensor.

以下、本発明を具体化した実施形態について説明する。ただし、この発明はこの実施形態及び以下に示す実施例の説明に何ら限定されるものではない。特許請求の範囲を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。   Hereinafter, embodiments embodying the present invention will be described. However, the present invention is not limited to the description of this embodiment and the following examples. Various modifications are also included in the present invention as long as those skilled in the art can easily conceive without departing from the scope of the claims.

<光開裂性マイクロカプセル>
実施形態の光開裂性マイクロカプセルは、図1に示すように、内側から外側に向かって順に骨格層1、脂質二重膜2、外殻層3、抗体修飾層4の多層構造とされている。骨格層1はポリカチオン高分子電解質とポリアニオン高分子電解質とが交互に積層された構造とされており、脂質二重膜2はカチオン型の両親媒性物質の親水性基を両外側に向けた2分子膜からなる。また、外殻層3は光触媒として機能するTiO2から構成されている。さらに、抗体修飾層4はカルボキシデシルホスホン酸からなる自己組織化単分子膜(SAM膜:Self-Asssembled. Monolayers)からなり、カルボキシデシルホスホン酸のカルボキシ基にはコルチゾールを抗原とする抗体5がアミド結合しており、ホスホン酸基は外殻層3を形成するTiO2表面の水酸基とホスホン酸エステル結合によって固定されている。
一方、光開裂性マイクロカプセルの内部には、アルカリホスファターゼ6が水溶媒7中に分散されている。図2に示すように、アルカリホスファターゼ6は抗体と結合するエピトープ6aを有している。
<Photocleavable microcapsules>
As shown in FIG. 1, the photocleavable microcapsule of the embodiment has a multilayer structure of a skeleton layer 1, a lipid bilayer membrane 2, an outer shell layer 3, and an antibody modification layer 4 in order from the inside to the outside. . The skeleton layer 1 has a structure in which polycation polymer electrolytes and polyanion polymer electrolytes are alternately laminated, and the lipid bilayer membrane 2 has a hydrophilic group of a cationic type amphiphile facing outward. It consists of a bimolecular film. The outer shell layer 3 is made of TiO 2 that functions as a photocatalyst. Furthermore, the antibody modification layer 4 is composed of a self-assembled monolayer (SAM film: Self-Asssembled. Monolayers) composed of carboxydecylphosphonic acid, and an antibody 5 having cortisol as an antigen is present on the carboxy group of carboxydecylphosphonic acid. The phosphonic acid group is fixed by a phosphonic acid ester bond and a hydroxyl group on the surface of TiO 2 forming the outer shell layer 3.
On the other hand, alkaline phosphatase 6 is dispersed in an aqueous solvent 7 inside the photocleavable microcapsule. As shown in FIG. 2, alkaline phosphatase 6 has an epitope 6a that binds to an antibody.

以上のように構成される実施形態の光開裂性マイクロカプセルは、図3に示す工程図に従い、次のようにして製造することができる。
(1)骨格層1の形成
まず、核となる中実粒子10をビーカーに入れ、カチオン高分子電過質(又はアニオン高分子電解質)の水溶液を加えて撹拌した後、一定時間インキュベートする。このとき、カチオン高分子電解質(又はアニオン高分子電解質)は、中実粒子10の表面に吸着される。そして、上澄み液を遠心分離して除去した後、アニオン高分子電解質(又はカチオン高分子電解質)の水溶液を加えて撹拌した後、一定時間インキュベートする。ここで、アニオン高分子電解質(又はカチオン高分子電解質)は、先に吸着したカチオン高分子電過質(又はアニオン高分子電解質)に静電引力で吸着する。こうして、中実粒子10上にカチオン高分子電解質とアニオン高分子電解質とを交互に数回繰り返して積層させる(図3(b)参照)。最後に、中実粒子10を溶解する液で中実粒子10を溶解除去し、カチオン高分子電解質とアニオン高分子電解質とが交互に積層した骨格層1からなる中空粒子11を得る(図3(c)参照)。
The photocleavable microcapsule of the embodiment configured as described above can be manufactured as follows according to the process chart shown in FIG.
(1) Formation of skeletal layer 1 First, solid particles 10 serving as nuclei are placed in a beaker, an aqueous solution of cationic polymer electrolyte (or anionic polymer electrolyte) is added and stirred, and then incubated for a certain period of time. At this time, the cationic polymer electrolyte (or anionic polymer electrolyte) is adsorbed on the surface of the solid particles 10. Then, after removing the supernatant by centrifugation, an aqueous solution of anionic polymer electrolyte (or cationic polymer electrolyte) is added and stirred, and then incubated for a certain period of time. Here, the anionic polymer electrolyte (or cationic polymer electrolyte) is adsorbed to the previously adsorbed cationic polymer electrolyte (or anionic polymer electrolyte) by electrostatic attraction. In this way, the cationic polymer electrolyte and the anionic polymer electrolyte are alternately and repeatedly laminated on the solid particles 10 (see FIG. 3B). Finally, the solid particles 10 are dissolved and removed with a solution for dissolving the solid particles 10 to obtain hollow particles 11 composed of a skeleton layer 1 in which a cationic polymer electrolyte and an anionic polymer electrolyte are alternately laminated (FIG. 3 ( c)).

(2)脂質二重膜2の積層
次に、上記のようにして得られた中空粒子11に脂質二重層を積層させる。
脂質二重膜の材料としては、ジメチルジオクタデシルアンモニウムブロミド等のカチオン型の両親媒性物質を用いることができる。これらのカチオン型の両親媒性物質を精製した後、相転移温度以上の温度(例えば60℃)で純水に溶解し、カチオン型の両親媒性物質からなるMLV(多層膜リポソーム、マルチラメラベシクル multilamellar vesicle) 分散液を調製する。このMLV分散液を相転移温度以上の温度で超音波処理をすることで,SUV(1枚膜リポソーム、スモールユニラメラベシクル small unilamellar vesicle)分散液を得る。そして上記のようにして得られた中空粒子11を含む溶液に,SUV分散液を加え,一昼夜静置する。その後,スターラーで混合し,上澄みを除いて、図3(d)に示す、脂質二重膜2が積層された中空粒子13を得る。
(2) Lamination of lipid bilayer membrane 2 Next, a lipid bilayer is laminated on the hollow particles 11 obtained as described above.
As a material for the lipid bilayer membrane, a cationic amphiphile such as dimethyldioctadecyl ammonium bromide can be used. These cationic amphiphiles are purified and then dissolved in pure water at a temperature higher than the phase transition temperature (for example, 60 ° C.), and MLV (multilayer liposomes, multilamellar vesicles) composed of cationic amphiphiles multilamellar vesicle) Prepare a dispersion. SUV (single-membrane liposome, small unilamellar vesicle) dispersion is obtained by sonicating this MLV dispersion at a temperature above the phase transition temperature. Then, the SUV dispersion is added to the solution containing the hollow particles 11 obtained as described above, and left to stand overnight. Thereafter, the mixture is mixed with a stirrer, and the supernatant is removed to obtain hollow particles 13 on which the lipid bilayer membrane 2 is laminated as shown in FIG.

(3)アルカリホスファターゼ6の内包
アルカリホスファターゼ6を溶解した溶液を脂質二重膜の相転移温度以上の温度に設定しておき、そこへ上記のようにして調製した脂質二重膜2が積層された中空粒子13を浸す。ここで、中空粒子13の脂質二重膜2は相転移温度以上の温度となるため、膜自体の透過性が上がり、中空粒子13の中空部分にアルカリホスファターゼ6を溶解した溶液が侵入する。その後、溶液の温度を相転移温度以下とすることにより、脂質二重膜2の透過性が低下し、水溶媒7にアルカリホスファターゼ6が分散された液を内包する粒子14を得る(図3(e)参照)。
(3) Encapsulation of alkaline phosphatase 6 A solution in which alkaline phosphatase 6 is dissolved is set to a temperature equal to or higher than the phase transition temperature of the lipid bilayer, and the lipid bilayer 2 prepared as described above is laminated thereon. The hollow particles 13 are immersed. Here, since the lipid bilayer membrane 2 of the hollow particles 13 has a temperature equal to or higher than the phase transition temperature, the permeability of the membrane itself increases, and a solution in which the alkaline phosphatase 6 is dissolved enters the hollow portions of the hollow particles 13. Thereafter, by setting the temperature of the solution to be equal to or lower than the phase transition temperature, the permeability of the lipid bilayer membrane 2 is lowered, and particles 14 containing a liquid in which alkaline phosphatase 6 is dispersed in an aqueous solvent 7 are obtained (FIG. 3 ( e)).

(4)外殻層3の形成
粒子14へのTiO2からなる外殻層3の形成には、酸化チタン皮膜を形成するためによく知られたゾル−ゲル法を利用することができる。すなわち、チタンテトライソプロポキシド(Ti[OCH(CH3)2]4)等のチタンアルコラートを加水分解した後、酸化チタンゾル液とし、この液に中空粒子14を添加してTiO2を中空粒子14に吸着させた後、上澄みを除いた後、乾燥させることにより、表面にTiO2粒子からなる外殻層3が形成された粒子15を得る。
(4) Formation of outer shell layer 3 For forming the outer shell layer 3 made of TiO 2 on the particles 14, a well-known sol-gel method for forming a titanium oxide film can be used. That is, after a titanium alcoholate such as titanium tetraisopropoxide (Ti [OCH (CH 3 ) 2 ] 4 ) is hydrolyzed, a titanium oxide sol solution is obtained, and hollow particles 14 are added to this solution to add TiO 2 to the hollow particles 14. Then, after removing the supernatant and drying, particles 15 having the outer shell layer 3 made of TiO2 particles formed on the surface are obtained.

(5)分子認識プローブによる表面修飾
最後に、粒子15をカルボキシデシルホスホン酸の水溶液に浸漬し、外殻層3を構成するTiO2表面の水酸基とホスホン酸エステル結合させて自己組織化単分子膜(SAM膜:Self-Asssembled. Monolayers)とした後、サイトカインを抗原とする抗体5を自己組織化単分子膜に存在するカルボン酸基とアミド結合させることにより抗体修飾層4を形成させて、光開裂性マイクロカプセル16を得る。
(5) Surface modification with molecular recognition probe Finally, the particle 15 is immersed in an aqueous solution of carboxydecylphosphonic acid, and the hydroxyl group on the surface of TiO 2 constituting the outer shell layer 3 is bonded to the phosphonate ester to form a self-assembled monomolecular film. (SAM membrane: Self-Asssembled. Monolayers), then the antibody modification layer 4 is formed by linking the carboxylic acid group present in the self-assembled monolayer with the antibody 5 having a cytokine as an antigen. A cleavable microcapsule 16 is obtained.

<サイトカインの測定>
次に、上記光開裂性マイクロカプセルを用いたサイトカインの測定について説明する。図4にセンシングにおける反応の場となる遠心式センサ20の平面図を示す。この遠心式センサ20は、プラスチックからなる円板21の中央に丸穴21aが設けられており、図示しない回転駆動装置の回転軸に丸穴21aを挿入して任意の回転数で回転させることができる。円板21には互いに直交する対称位置4か所に亜鈴形状のセンサ凹部22が設けられているおり、測定部凹部22は混合部22aと測定部22bが細い溝22cで連結されている。混合部22aの表面は、抗サイトカイン抗体(ただし、光開裂性マイクロカプセルの表面に固定化された抗体5とはエピトープを異にする抗体)が固定化されている。一方、測定部22bの表面は抗アルカリホスファターゼ抗体が固定化されている。固定化において必要とされる抗体密度は,被測定物質の濃度で決定される。がんマーカーとして利用する場合のサイトカインでは、1〜100 pg/mL の濃度で光開裂性マイクロカプセルを捕捉できるように設計する。固定化効率は,SAMを構成する分子のアルキル鎖長で調整することができる。
<Measurement of cytokines>
Next, cytokine measurement using the photocleavable microcapsule will be described. FIG. 4 is a plan view of the centrifugal sensor 20 that serves as a reaction field in sensing. The centrifugal sensor 20 is provided with a round hole 21a at the center of a plastic disc 21. The round sensor 21 can be rotated at an arbitrary number of rotations by inserting the round hole 21a into a rotation shaft of a rotation driving device (not shown). it can. The disc 21 is provided with dumbbell-shaped sensor recesses 22 at four symmetrical positions orthogonal to each other. The measurement unit recess 22 is connected to the mixing unit 22a and the measurement unit 22b by a thin groove 22c. On the surface of the mixing portion 22a, an anti-cytokine antibody (however, an antibody having an epitope different from that of the antibody 5 immobilized on the surface of the photocleavable microcapsule) is immobilized. On the other hand, an anti-alkaline phosphatase antibody is immobilized on the surface of the measurement unit 22b. The antibody density required for immobilization is determined by the concentration of the substance to be measured. Cytokines for use as cancer markers are designed to capture photocleavable microcapsules at a concentration of 1-100 pg / mL. Immobilization efficiency can be adjusted by the alkyl chain length of the molecules constituting SAM.

以上のように構成された遠心式センサ20を回転駆動装置に水平になるようにセットする。なお、遠心式センサの詳細については、次の文献に記載されている。
1)Tomoki Shimakura and Masaki Yamaguchi: Application of hydrophobic micropatterns to centrifugal fluid valve in flow channel, Journal of Adhesion Science and Technology, 29(23) (2015) 2565-2575
2)Masaki Yamaguchi, Hiroki Katagata, Yuki Tezuka, Daisuke Niwa, Vivek Shetty: Automated-immunosensor with centrifugal fluid valves for salivary cortisol measurement, Sensing and BioSensing Research, 1 (2014) 15-20
そして、混合部22aにサイトカインを含んだ測定液を所定量添加する(図5(a)上)。これにより、測定液中のサイトカインは、混合部22aに固定化されている抗サイトカイン抗体に対して、濃度に応じた割合で結合する(図5(a)下)。そして、回転駆動装置を駆動して測定液を除去した後、光開裂性マイクロカプセルの分散液を添加する。これにより、光開裂性マイクロカプセルの表面に修飾されている抗サイトカイン抗体が混合部22aに固定化されている抗サイトカイン抗体に結合しているサイトカインにおける別のエピトープを認識してさらに結合する(図5(b)下)。そして、回転駆動装置を駆動して固定化されていない光開裂性マイクロカプセルを除去した後、水を添加し、図示しない高圧水銀ランプにて光照射する。これにより、サイトカインに結合している光開裂性マイクロカプセルの酸化チタン触媒の作用によってカプセルが破壊され、内包していたアルカリホスファターゼが放出される(図5(c)下)。そして、回転駆動装置を駆動してアルカリホスファターゼを水と共に測定部22bに移動させる(図5(d)上)。こうして、測定部22bに移動したアルカリホスファターゼは、測定部22bに固定化されている抗アルカリホスファターゼ抗体と結合する(図5(d)下)。最後に測定部22bにアルカリホスファターゼ(ALP)によって発光する発光基質を添加し、アルカリホスファターゼの触媒作用によって発生した化学発光の光を光電子倍増管23で受光し、光強度を図示しない測定装置で測定する。
The centrifugal sensor 20 configured as described above is set on the rotary drive device so as to be horizontal. The details of the centrifugal sensor are described in the following document.
1) Tomoki Shimakura and Masaki Yamaguchi: Application of hydrophobic micropatterns to centrifugal fluid valve in flow channel, Journal of Adhesion Science and Technology, 29 (23) (2015) 2565-2575
2) Masaki Yamaguchi, Hiroki Katagata, Yuki Tezuka, Daisuke Niwa, Vivek Shetty: Automated-immunosensor with centrifugal fluid valves for salivary cortisol measurement, Sensing and BioSensing Research, 1 (2014) 15-20
Then, a predetermined amount of a measurement solution containing cytokine is added to the mixing unit 22a (upper part of FIG. 5A). Thereby, the cytokine in the measurement solution binds to the anti-cytokine antibody immobilized on the mixing portion 22a at a ratio corresponding to the concentration (bottom of FIG. 5 (a)). And after driving a rotation drive device and removing a measurement liquid, the dispersion liquid of a photocleavable microcapsule is added. As a result, the anti-cytokine antibody modified on the surface of the photocleavable microcapsule recognizes and further binds to another epitope in the cytokine bound to the anti-cytokine antibody immobilized on the mixing part 22a (FIG. 5 (b) bottom). Then, after driving the rotation driving device to remove the non-fixed photocleavable microcapsules, water is added and light is irradiated with a high-pressure mercury lamp (not shown). As a result, the capsule is broken by the action of the titanium oxide catalyst of the photocleavable microcapsule bonded to the cytokine, and the encapsulated alkaline phosphatase is released (bottom of FIG. 5 (c)). Then, the rotational drive device is driven to move the alkaline phosphatase together with water to the measurement unit 22b (upper part of FIG. 5 (d)). Thus, the alkaline phosphatase that has moved to the measurement unit 22b binds to the anti-alkaline phosphatase antibody immobilized on the measurement unit 22b (bottom of FIG. 5 (d)). Finally, a luminescent substrate that emits light by alkaline phosphatase (ALP) is added to the measurement unit 22b, chemiluminescent light generated by the catalytic action of alkaline phosphatase is received by the photomultiplier tube 23, and the light intensity is measured by a measuring device (not shown). To do.

この測定方法においては、発光強度を光電子増倍管 (波長185〜680 nm) で超高感度に検出するため、高感度測定が可能である。また、補足された被測定物質と放出された被測定物質の濃度比に応じて,被測定物質の数が増幅される仕組みであり,増幅率は内包する抗原のモル濃度,マイクロ粒子直径,および被測定抗原濃度などに関係する。このため、これらのファクターを調整することにより,シグナル増幅率を任意の範囲(例えば5〜100倍)で調整することができる。   In this measurement method, since the emission intensity is detected with a photomultiplier tube (wavelength 185 to 680 nm) with extremely high sensitivity, high sensitivity measurement is possible. In addition, the number of substances to be measured is amplified according to the concentration ratio between the captured substance to be measured and the released substance to be measured, and the amplification factor is the molar concentration of the contained antigen, the microparticle diameter, and It is related to the antigen concentration to be measured. Therefore, by adjusting these factors, the signal amplification factor can be adjusted in an arbitrary range (for example, 5 to 100 times).

ところで、サイトカインには多くの種類が知られており、例えば、臓器選択性を制御しているケモカインにはMCP-1,MIP-1α,RANTES,MCP-2, TARC,ELC,SLC,MDC,MIP-3α,TECK,Gro-γ, IL-8, IP-10, SDF-1α, CXCL16 などの種類があり,その他のサイトカインでは IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12, IL-18, IL-21, GM-CSF, TNF-α, TFG-β, EGF, PDGF, INF-γ, G-CSF などの種類がある。このため、測定対象に応じたサイトカインを選択することによって、様々なサイトカインの濃度を測定することができる。   By the way, many types of cytokines are known. For example, chemokines controlling organ selectivity include MCP-1, MIP-1α, RANTES, MCP-2, TARC, ELC, SLC, MDC, MIP -3α, TECK, Gro-γ, IL-8, IP-10, SDF-1α, CXCL16, and other cytokines include IL-1β, IL-2, IL-4, IL-6, IL- 10, IL-12, IL-18, IL-21, GM-CSF, TNF-α, TFG-β, EGF, PDGF, INF-γ, G-CSF. For this reason, the density | concentration of various cytokine can be measured by selecting the cytokine according to a measuring object.

<実施形態の変形例>
上記実施形態では、光開裂性マイクロカプセルに内包させる、受光素子による検知を可能とするための物質として、アルカリホスファターゼを用いたが、これの替りに色素前駆体を色素に変換するための触媒や、吸光物質や、蛍光物質等を用いてもよい。
<Modification of Embodiment>
In the above embodiment, alkaline phosphatase is used as the substance that enables the detection by the light receiving element to be included in the photocleavable microcapsule, but instead of this, a catalyst for converting the dye precursor to the dye or Alternatively, a light-absorbing substance or a fluorescent substance may be used.

<試験例>
(1)骨格層モデルの形成
本発明の光開裂性マイクロカプセルの調製における骨格層の形成工程(図3の工程図における(a)〜(c))の基本となる技術として、水晶単結晶薄板にAu電極を貼り付けた水晶振動子を用意し、Au電極への交互積層法による骨格層形成試験を行った。すなわち、
1)水晶振動子のAu電極に3μLのピラニア溶液(濃硫酸:30%過酸化水素水=3:1の混合溶液)を滴下し,5分間静置することで表面に付着した有機物質を取り除いた。その後,純水で3回洗浄し,N2ガスで乾燥させた。
2)そして、積層量の評価を行うため、QCM法(測定装置:FFINIX QN (株)イニシアム製) を用い、共振周波数の変化F (Hz)を測定した(以下同様)。
3)さらに0.5M NaCl溶液にポリエチレンイミン(SigmaAldrich,CAS No. 9002-98-6、平均分子量 〜1,800 by GPC, 〜2,000 by LS、以下「PEI」と表記する)を1 mg/mLの濃度となるように添加した溶液中にAu電極を所定時間浸漬させたのち,純水で3回洗浄し,N2ガスで乾燥させてからQCMで共振周波数を計測した。
4) 次に、0.5M NaCl溶液にpoly(sodium 4-styrenesulfonate) (SigmaAldrich,CAS No.26062-79-3,平均分子量100,000-200,000、以下「PSS」と表記する) が1 mg/mLの濃度となるように添加した溶液にAu電極を所定時間浸漬させたのち,純水で3回洗浄し,N2ガスで乾燥させてからQCMで共振周波数を計測した。
5)さらに、所定濃度のNaCl溶液にPoly(diallyldimethylammonium chloride) (SigmaAldrich,CAS No.25704-18-1,平均分子量 〜70,000)、以下「PDDA」と表記する) が1 mg/mLの濃度となるように添加した溶液にAu電極を所定時間浸漬させたのち,純水で3回洗浄し,N2ガスで乾燥させてからQCMで共振周波数を計測した。
6)積層順をPEI(+)→PSS(−)→PDDA(+)→PSS(−)の順で合計7層となるように4)〜6)の工程を繰り返した。
<Test example>
(1) Formation of skeletal layer model As a basic technology of the skeleton layer forming step ((a) to (c) in the process diagram of FIG. 3) in the preparation of the photocleavable microcapsule of the present invention, a single crystal quartz crystal A crystal resonator with an Au electrode attached thereto was prepared, and a skeletal layer formation test was performed by an alternate lamination method on the Au electrode. That is,
1) 3μL of piranha solution (concentrated sulfuric acid: 30% hydrogen peroxide solution = 3: 1 mixed solution) is dropped onto the Au electrode of the crystal unit and left for 5 minutes to remove organic substances adhering to the surface. It was. Then, it was washed 3 times with pure water and dried with N 2 gas.
2) Then, in order to evaluate the stacking amount, a change F (Hz) in resonance frequency was measured using the QCM method (measuring device: manufactured by FINIIX QN Corporation) (hereinafter the same).
3) Furthermore, polyethyleneimine (SigmaAldrich, CAS No. 9002-98-6, average molecular weight ~ 1,800 by GPC, ~ 2,000 by LS, hereinafter referred to as "PEI") was added to 0.5M NaCl solution at a concentration of 1 mg / mL. After immersing the Au electrode in the solution added for a predetermined time, it was washed 3 times with pure water and dried with N 2 gas, and then the resonance frequency was measured by QCM.
4) Next, poly (sodium 4-styrenesulfonate) (Sigma Aldrich, CAS No. 26062-79-3, average molecular weight 100,000-200,000, hereinafter referred to as “PSS”) in 0.5 M NaCl solution is 1 mg / mL. After immersing the Au electrode in the added solution for a predetermined time, it was washed 3 times with pure water and dried with N2 gas, and then the resonance frequency was measured by QCM.
5) Furthermore, Poly (diallyldimethylammonium chloride) (SigmaAldrich, CAS No.25704-18-1, average molecular weight ~ 70,000), hereinafter referred to as “PDDA”) in the NaCl solution of the prescribed concentration is 1 mg / mL. After immersing the Au electrode in the solution so added for a predetermined time, it was washed three times with pure water and dried with N 2 gas, and then the resonance frequency was measured by QCM.
6) The steps 4) to 6) were repeated so that the stacking order was 7 layers in the order of PEI (+) → PSS (−) → PDDA (+) → PSS (−).

以上のようにして水晶振動子のAu電極上に形成した、骨格層のモデルとなる積層膜をQCM法により測定した結果、共振周波数の減少量は7層の合計で 3.89 kHzであり、この値から推定した層の厚さは78 nmであった(図6参照)。   As a result of measuring the laminated film, which is a model of the skeleton layer, formed on the Au electrode of the quartz resonator as described above by the QCM method, the amount of decrease in the resonance frequency is 3.89 kHz in total for the seven layers. Was estimated to be 78 nm (see FIG. 6).

(2)骨格層からなる中空粒子の調製
架橋度が低く、塩酸に溶解する性質を持ったメラミンホルムアルデヒド縮合物からなるMF粒子(microParticles GmbH,カスタムメイド品(Weakly cross-linked MF particles diam (HCl-soluble)),2.86μm,SD = 0.06μm)をビーカーに入れ、カチオン高分子電過質(又はアニオン高分子電解質)の水溶液を加えて撹拌した後、一定時間インキュベートした。そして、上澄み液を遠心分離して除去する操作を3回繰り返した後、アニオン高分子電解質(又はカチオン高分子電解質)の水溶液を加えて撹拌した後、一定時間インキュベートした後上澄み液を遠心分離して除去する操作を3回繰り返した。こうして、FM粒子上にカチオン高分子電解質とアニオン高分子電解質とを交互に数回繰り返して積層させた。最後に、塩酸でMF粒子を溶解除去し、上澄み液を遠心分離して除去する操作を3回繰り返した。こうしてカチオン高分子電解質とアニオン高分子電解質とが交互に積層した骨格層からなる中空粒子を得た。
(2) Preparation of hollow particles composed of a skeletal layer MF particles composed of melamine formaldehyde condensate with a low degree of crosslinking and soluble in hydrochloric acid (microParticles GmbH, custom-made products (Weakly cross-linked MF particles diam (HCl- soluble)), 2.86 μm, SD = 0.06 μm) were placed in a beaker, an aqueous solution of cationic polymer electrolyte (or anionic polymer electrolyte) was added and stirred, and then incubated for a certain period of time. Then, the operation of centrifuging and removing the supernatant liquid is repeated three times, and then an aqueous solution of anionic polymer electrolyte (or cationic polymer electrolyte) is added and stirred, followed by incubation for a certain period of time, and then the supernatant liquid is centrifuged. The removal operation was repeated 3 times. Thus, the cationic polymer electrolyte and the anionic polymer electrolyte were alternately laminated on the FM particles several times. Finally, the operation of dissolving and removing the MF particles with hydrochloric acid and centrifuging and removing the supernatant was repeated three times. Thus, hollow particles composed of a skeleton layer in which a cationic polymer electrolyte and an anionic polymer electrolyte were alternately laminated were obtained.

上記のようにして得られた中空粒子のSEM写真及びTEM写真を図7に示す。
(A)は骨格層を未積層のコア (melamine-formaldehyde; MF) 粒子,(B) は骨格層を積層後のMF粒子,(C) はHClでMF粒子を溶解した後のマイクロカプセル(骨格層) のSEM画像である(装置名:JSM−7001F,日本電子(株)製) 画像である。また,(D) はHClでMF粒子を溶解した後のマイクロカプセル(骨格層)のTEM画像 (装置名:JEM−2100,日本電子(株)製) である。未積層(A)と積層後(B)のMF粒子のTEM画像では,粒子の部分が黒みを帯びている。これは,粒子が厚く,電子が透過できなかったためである。積層後のMF粒子の外形(C)では,未積層のMF粒子と比較し少し凹凸がある。これらに対して,HClでMF粒子を溶解した後の中空マイクロカプセル(D)は,電子が透過し中空となっていることが観察された。なお,TEM画像において中空マイクロカプセルがつぶれた形態となっているのは、観察を真空系で行ったことによるものと考えられる。
The SEM photograph and TEM photograph of the hollow particles obtained as described above are shown in FIG.
(A) is a core (melamine-formaldehyde; MF) particle with a non-laminated skeleton layer, (B) is an MF particle after laminating the skeleton layer, and (C) is a microcapsule (skeleton) after dissolving the MF particle with HCl. (Device name: JSM-7001F, manufactured by JEOL Ltd.). (D) is a TEM image (device name: JEM-2100, manufactured by JEOL Ltd.) of a microcapsule (skeleton layer) after MF particles are dissolved with HCl. In the TEM images of the unstacked (A) and post-laminated (B) MF particles, the particles are blackish. This is because the particles were thick and the electrons could not be transmitted. The outer shape (C) of the laminated MF particles is slightly uneven compared to the unstacked MF particles. On the other hand, it was observed that the hollow microcapsule (D) after dissolving the MF particles with HCl was permeated and hollow. The reason why the hollow microcapsules are collapsed in the TEM image is thought to be due to the observation in a vacuum system.

骨格層からなる中空粒子の調製時における、カチオン高分子電過質及びアニオン高分子電解質の積層の様子を作製ステップごとのゼータ電位の測定によって確認した。ゼータ電位の測定にはゼータ電位計 (ゼータサイザーナノZS90 ,Malvern)を用いた。結果を図8に示す。未積層のMF粒子は,プラスの電荷を持っている。PSSの積層後はマイナス,PDDAの積層後はプラスとなっている。このことから,ゼータ電位がマイナスの時は最表面にPSS層が,プラスの時は最表面がPDDA層が形成されており、PSS層とPDDA層とが交互に積層されていることが分かった。   The state of lamination of the cationic polymer electrolyte and the anionic polymer electrolyte during the preparation of the hollow particles composed of the skeleton layer was confirmed by measuring the zeta potential at each production step. A zeta potential meter (Zetasizer Nano ZS90, Malvern) was used for the measurement of the zeta potential. The results are shown in FIG. Unstacked MF particles have a positive charge. It is negative after PSS lamination and positive after PDDA lamination. This indicates that when the zeta potential is negative, the PSS layer is formed on the outermost surface, and when the zeta potential is positive, the PDDA layer is formed on the outermost surface, and the PSS layer and the PDDA layer are alternately stacked. .

(3)カプセル表面への骨格層、TiO2層からなる殻壁の形成及び抗体の固定化
本発明の光開裂性マイクロカプセルの調製における骨格層表面への殻壁の形成及び抗体の固定化(図3の工程図における(f)〜(g))の基本となる技術として、シリコンウエハー上にTiO2層を形成し、さらにその表面に抗体を固定化した(図9に示す工程図参照)。すなわち、
1)まず、30%NH4OH:30%H2O2:水=1:1:5の混合比の溶液を75℃に保ち,シリコンウエハーをこの溶液に10分間浸漬させた。この操作によりシリコンウエハーの表層に存在するSiO2層の表面にシラノール基を形成させて親水性を高めておいた(図9(b)参照)。そして、純水に15 min浸漬してSiO2表面を水和させ,負電荷を持たせた。
2)0.5M NaCl溶液にPEIを1 mg/mLの濃度となるように添加した溶液中にシラノール基を形成させたシリコンウエハーを5分間浸漬させたのち,純水で3回洗浄した。
3) 次に、0.5M NaCl溶液にPSSが1 mg/mLの濃度となるように添加した塩化ナトリウム水溶液に5分間浸漬させたのち,純水で3回洗浄した。
4)さらに、所定濃度のNaCl溶液にPDDAが1 mg/mLの濃度となるように添加した溶液にシリコンウエハーを5分間浸漬させたのち,純水で3回洗浄した。
5)積層順をPEI(+)→PSS(−)→PDDA(+)→PSS(−)の順で合計5層となるように4)〜6)の工程を繰り返した(図9(c)参照)。
6)さらにPSS/PDDAを積層させたシリコンウエハーをTiO2の分散液(TiO2: 1.99重量%(テイカTKS-203を純水にて10倍に希釈),ゼータ電位:-49.2 mV)に浸漬して10分間静置した後、純水で洗浄し、常温で乾燥させた。
こうして、シリコンウエハー上にポリアニオン/ポリカチオン積層膜及びTiO2層が積層された多層構造を調製した(図9(d)参照)。このもののEDXによる解析結果を表1及び図10に示す。これらの結果から、TiO2の層が形成されていることが分かった。
(3) Formation of shell wall consisting of skeleton layer and TiO 2 layer on capsule surface and antibody immobilization Formation of shell wall and antibody immobilization on skeleton layer surface in preparation of photocleavable microcapsule of the present invention ( As a basic technique of (f) to (g) in the process diagram of FIG. 3, a TiO 2 layer is formed on a silicon wafer, and an antibody is immobilized on the surface thereof (see the process diagram shown in FIG. 9). . That is,
1) First, a solution having a mixing ratio of 30% NH 4 OH: 30% H 2 O 2 : water = 1: 1: 5 was kept at 75 ° C., and a silicon wafer was immersed in this solution for 10 minutes. By this operation, silanol groups were formed on the surface of the SiO2 layer present on the surface layer of the silicon wafer to enhance the hydrophilicity (see FIG. 9B). Then, it was immersed in pure water for 15 min to hydrate the SiO 2 surface and to have a negative charge.
2) A silicon wafer on which silanol groups were formed was immersed in a solution in which PEI was added to a 0.5 M NaCl solution to a concentration of 1 mg / mL for 5 minutes, and then washed three times with pure water.
3) Next, it was immersed in an aqueous sodium chloride solution added to a 0.5 M NaCl solution so that the concentration of PSS was 1 mg / mL for 5 minutes, and then washed three times with pure water.
4) Further, after immersing the silicon wafer in a solution in which PDDA was added to a predetermined concentration of NaCl solution to a concentration of 1 mg / mL for 5 minutes, it was washed three times with pure water.
5) The steps 4) to 6) were repeated so that the total number of layers was 5 in the order of PEI (+) → PSS (−) → PDDA (+) → PSS (−) (FIG. 9C). reference).
6) Further PSS / PDDA dispersion of a silicon wafer formed by laminating TiO 2 and (TiO 2: diluted 1.99% by weight (Tayca TKS-203 10-fold with pure water), the zeta potential: -49.2 mV) immersion The mixture was allowed to stand for 10 minutes, washed with pure water, and dried at room temperature.
Thus, a multilayer structure in which a polyanion / polycation laminate film and a TiO 2 layer were laminated on a silicon wafer was prepared (see FIG. 9D). The results of analysis by EDX of this product are shown in Table 1 and FIG. These results show that a layer of TiO 2 is formed.

上記のようにして形成した、図9(d)に示すシリコンウエハー上にポリアニオン/ポリカチオン積層膜及びTiO2層が積層された多層構造の最上層であるTiO2膜上に自己組織化単分子膜(SAM膜)を形成した(図9(e)参照)。
すなわち、図9(d)に示す多層構造を構築したシリコンウエハーをカルボキシデシルホスホン酸(同人化学研究所製)のエタノール溶液に12時間浸漬した。その後エタノールで洗浄し,窒素ガスを吹き付けながら室温で乾燥させ、さらに50℃で30分間加熱し乾燥させた。これにより、TiO2表面の水酸基とカルボキシデシルホスホン酸が脱水縮合してホスホン酸エステル結合が形成されることにより、自己組織化単分子膜(SAM膜)が形成された(図9(e)参照)。
A self-assembled monomolecule on the TiO 2 film, which is the uppermost layer of a multilayer structure in which a polyanion / polycation laminate film and a TiO 2 layer are laminated on the silicon wafer shown in FIG. A film (SAM film) was formed (see FIG. 9E).
That is, the silicon wafer having the multilayer structure shown in FIG. 9D was immersed in an ethanol solution of carboxydecylphosphonic acid (manufactured by Dojin Chemical Laboratories) for 12 hours. Thereafter, it was washed with ethanol, dried at room temperature while blowing nitrogen gas, and further heated at 50 ° C. for 30 minutes for drying. As a result, a hydroxyl group on the surface of TiO 2 and carboxydecylphosphonic acid were dehydrated and condensed to form a phosphonate ester bond, thereby forming a self-assembled monolayer (SAM film) (see FIG. 9 (e)). ).

さらに、SAM膜のカルボキシル基をアミンカップリング法によって活性エステル化し、cort-3-BSAと結合させることによって固定化した。(図9(f)参照)。以下に詳細を示す。
1)マイクロチューブに濃度が100 mmol/Lの1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド (WSC) 溶液 200μLと、濃度が100 mmol/LのN-ヒドロキシこはく酸イミド (NHS)溶液 200 Μlとをピペッティングして混合した。
2)SAM 膜表面に1)で作成した混合液を滴下し,室温で10分間放置した後、リン酸緩衝生理食塩水で3回洗浄した。
3)Sample 溶液を パッド 表面に滴下し,室温で30分間放置した。Sample 溶液には付属のActivation Buffer に cort-3-BSAを10μg/mLで溶解したものを用いた。
5)リン酸緩衝生理食塩水で3回洗浄した。
6)自己組織化単分子膜(SAM膜)にBlocking 溶液を滴下し,室温で30分間放置した。
7)リン酸緩衝生理食塩水で3回洗浄した後、常温にて乾燥させた後、撥水剤によって撥水処理し、さらにブロッキング処理(Milk protein)を施すことにより、コルチゾールがBSAを介してSAM膜上に固定化されたコルチゾール固定化シリコンウエハーを得た。
Furthermore, the carboxyl group of the SAM membrane was activated ester by the amine coupling method and immobilized by binding with cort-3-BSA. (Refer FIG.9 (f)). Details are shown below.
1) 200μL of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (WSC) solution with a concentration of 100 mmol / L in a microtube and N-hydroxysuccinimide (NHS) solution with a concentration of 100 mmol / L 200 μl was pipetted and mixed.
2) The mixed solution prepared in 1) was dropped on the surface of the SAM membrane, allowed to stand at room temperature for 10 minutes, and then washed three times with phosphate buffered saline.
3) The sample solution was dropped on the pad surface and left at room temperature for 30 minutes. The sample solution used was a solution obtained by dissolving cort-3-BSA at 10 μg / mL in the attached Activation Buffer.
5) Washed 3 times with phosphate buffered saline.
6) Blocking solution was dropped onto the self-assembled monolayer (SAM film) and left at room temperature for 30 minutes.
7) After washing with phosphate buffered saline three times, drying at room temperature, water repellent treatment with a water repellent, and further blocking treatment (Milk protein), so that cortisol is mediated by BSA A cortisol-immobilized silicon wafer immobilized on the SAM film was obtained.

以上のようにして得られたコルチゾール固定化シリコンウエハーを用いて、コルチゾール含有試料のコルチゾール濃度の測定を行った。測定には図11に示す遠心式イムノセンサを用いた(下記非特許文献1,2参照)。この遠心式イムノセンサは、分析用のディスクチップと、これを任意の回転速度で回転させるためのステッピングモータと、測定用の高電子倍増管とを備えている(図11左)。そして、分析用ディスクチップは,各槽とそれらを結ぶ微細流路で構成されており,コンジュゲート槽や基質槽に滴下された溶液が遠心力によって反応槽に送液され,発光強度が測定される仕組みとされている(図11右)。
1)Masaki Yamaguchi, Hiroki Katagata, Yuki Tezuka, Daisuke Niwa, Vivek Shettyc. “Automated-immunosensor with centrifugal fluid valves for salivary cortisol measurement”. Sensing and Bio-Sensing Research 1, 15-20. (2014).
2)Masaki Yamaguchi,Yohei Matsuda,Shohei Sasaki,Makoto Sasaki,Yoshihiro Kadoma,Yoshikatsu Imai,Daisuke Niwa,Vivek Shetty:Immunosensor with fluid control mechanism for salivary cortisol analysis,Biosensors and Bioelectronics 41: 186-191, (2012).
Using the cortisol-immobilized silicon wafer obtained as described above, the cortisol concentration of the cortisol-containing sample was measured. For the measurement, a centrifugal immunosensor shown in FIG. 11 was used (see Non-Patent Documents 1 and 2 below). This centrifugal immunosensor includes a disk chip for analysis, a stepping motor for rotating the disk chip at an arbitrary rotation speed, and a high electron multiplier for measurement (left of FIG. 11). The analytical disc chip is composed of each tank and a fine channel connecting them, and the solution dropped into the conjugate tank and the substrate tank is sent to the reaction tank by centrifugal force, and the luminescence intensity is measured. (Right side of Fig. 11).
1) Masaki Yamaguchi, Hiroki Katagata, Yuki Tezuka, Daisuke Niwa, Vivek Shettyc. “Automated-immunosensor with centrifugal fluid valves for salivary cortisol measurement”. Sensing and Bio-Sensing Research 1, 15-20. (2014).
2) Masaki Yamaguchi, Yohei Matsuda, Shohei Sasaki, Makoto Sasaki, Yoshihiro Kadoma, Yoshikatsu Imai, Daisuke Niwa, Vivek Shetty: Immunosensor with fluid control mechanism for salivary cortisol analysis, Biosensors and Bioelectronics 41: 186-191, (2012).

コルチゾールの検量線を以下の方法で作成した。
1)コルチゾール固定化シリコンウエハーを図11右の反応槽に両面テープで張り付ける。
2)サンプル (コルチゾール標準液 1.0,3.0,10 ng / mL) 30μLとコンジュゲート溶液 30μLを混合し,恒温室温 25℃で 1分間、抗原抗体反応させる。(図12(a)参照)。なお、ここでコンジュゲートとは、抗コルチゾール抗体に対してアルカリホスファターゼ(ALP)をアミド結合させたものであり、市販のアルカリホスファターゼ標識キットを用いて容易に調製することができる。
3)抗原抗体反応を行った反応液を分析用ディスクチップのコンジュゲート槽に 20μL分注し,遠心力によって流動させて反応槽に移動させ、25 ℃で 1 分間、コルチゾール固定化シリコンウエハーのコルチゾールと抗原抗体反応をさせる(図12(b)(c))。
4)そして、緩衝液槽から緩衝液 30μLを遠心力によって導入して反応槽を洗浄した後,アルカリホスファターゼ(ALP)によって発光する発光基質30μL を分注し,発光強度特性を評価した(図12(d))。測定条件は以下のとおりである。
・コルチゾール標準液濃度:1 ng/mL,3 ng/mL,10 ng/mL
・測定温度 25℃、・測定回数:n = 3、
・発光強度の測定開始時:反応から300秒後の値
A calibration curve for cortisol was prepared by the following method.
1) A cortisol-immobilized silicon wafer is attached to the reaction tank on the right side of FIG.
2) Mix 30 µL of the sample (cortisol standard solution 1.0, 3.0, 10 ng / mL) and 30 µL of the conjugate solution, and let the antibody react for 1 minute at a constant room temperature of 25 ° C. (See FIG. 12 (a)). Here, the conjugate is an anti-cortisol antibody obtained by amide-bonding alkaline phosphatase (ALP) and can be easily prepared using a commercially available alkaline phosphatase labeling kit.
3) Dispense 20 μL of the reaction solution that has undergone the antigen-antibody reaction into the conjugation tank of the analytical disk chip, flow it by centrifugal force, move it to the reaction tank, and cortisol on the cortisol-immobilized silicon wafer for 1 minute at 25 ° C. And an antigen-antibody reaction (FIGS. 12B and 12C).
4) After introducing 30 μL of buffer solution from the buffer solution tank by centrifugal force and washing the reaction vessel, 30 μL of the luminescent substrate that emits light by alkaline phosphatase (ALP) was dispensed, and the luminescence intensity characteristics were evaluated (FIG. 12). (D)). The measurement conditions are as follows.
Cortisol standard solution concentration: 1 ng / mL, 3 ng / mL, 10 ng / mL
・ Measurement temperature 25 ℃ ・ Number of measurements: n = 3,
・ At the start of emission intensity measurement: Value after 300 seconds from the reaction

その結果、図13に示すように,出力(発光強度) がコルチゾール濃度に反比例する検量線が得られ、検量線の決定係数R2=0.99と求めらた。この測定方法では、測定溶液中のコルチゾール及びシリコンウエハーに固定化されたコルチゾールがアルカリホスファターゼ(ALP)修飾抗コルチゾール抗体と競争的に結合する反応を利用しており、測定されるのは、シリコンウエハーに固定化されたコルチゾールに結合されたアルカリホスファターゼ(ALP)修飾抗コルチゾール抗体である(図12参照)。このため、測定溶液中のコルチゾールの濃度が高いほど、シリコンウエハーに固定化されたコルチゾールに結合されたアルカリホスファターゼ(ALP)修飾抗コルチゾール抗体は少なくなり、その結果出力(発光強度) がコルチゾール濃度に反比例する検量線となったのである。 As a result, as shown in FIG. 13, a calibration curve in which the output (luminescence intensity) was inversely proportional to the cortisol concentration was obtained, and the calibration curve determination coefficient R 2 = 0.99 was obtained. This measurement method uses a reaction in which cortisol in a measurement solution and cortisol immobilized on a silicon wafer competitively bind to an alkaline phosphatase (ALP) -modified anti-cortisol antibody, and the measurement is performed on a silicon wafer. It is an alkaline phosphatase (ALP) modified anti-cortisol antibody bound to cortisol immobilized on (see FIG. 12). For this reason, the higher the concentration of cortisol in the measurement solution, the fewer alkaline phosphatase (ALP) -modified anti-cortisol antibodies bound to cortisol immobilized on the silicon wafer, and as a result the output (luminescence intensity) becomes the cortisol concentration. It was an inversely proportional calibration curve.

1…骨格層、2…脂質二重膜、3…外殻層、4…抗体修飾層、5…抗体
6…アルカリホスファターゼ(6a…エピトープ)、7…水溶媒、16…光開裂性マイクロカプセル、22…センサ凹部(22a…混合部,22b…測定部,22c…溝)

DESCRIPTION OF SYMBOLS 1 ... Skeletal layer, 2 ... Lipid bilayer, 3 ... Outer shell layer, 4 ... Antibody modification layer, 5 ... Antibody 6 ... Alkaline phosphatase (6a ... Epitope), 7 ... Aqueous solvent, 16 ... Photocleavable microcapsule, 22 ... sensor recess (22a ... mixing part, 22b ... measuring part, 22c ... groove)

Claims (7)

被測定物質と特異的に結合することが可能な分子認識プローブが表面に修飾されたマイクロカプセルであって、
該マイクロカプセルの内部には受光素子による検知を可能とするための物質が内包されており、該マイクロカプセルの殻壁は光触媒と、該光触媒への光照射によって分解される材料とを含むことを特徴とするセンサシグナル増幅用の光開裂性マイクロカプセル。
A microcapsule whose surface is modified with a molecular recognition probe capable of specifically binding to a substance to be measured,
A substance for enabling detection by a light receiving element is contained inside the microcapsule, and the shell wall of the microcapsule contains a photocatalyst and a material that is decomposed by light irradiation to the photocatalyst. Features photocleavable microcapsules for sensor signal amplification.
前記受光素子による検知を可能とするための物質は、発光前駆体を発光させるための触媒、色素前駆体を色素に変換するための触媒、吸光物質及び蛍光物質のいずれかであることを特徴とする請求項1記載の光開裂性マイクロカプセル。   The substance for enabling detection by the light receiving element is any one of a catalyst for emitting a light emitting precursor, a catalyst for converting a dye precursor into a dye, a light absorbing substance, and a fluorescent substance. The photocleavable microcapsule according to claim 1. 前記分子認識プローブは抗体であることを特徴とする請求項1又は2に記載の光開裂性マイクロカプセル。   The photocleavable microcapsule according to claim 1 or 2, wherein the molecular recognition probe is an antibody. 前記抗体は抗原をサイトカインとする抗体であることを特徴とする請求項3に記載の光開裂性マイクロカプセル。   The photocleavable microcapsule according to claim 3, wherein the antibody is an antibody having an antigen as a cytokine. 前記マイクロカプセルは骨格層と、該骨格槽を被覆する脂質二重膜と、該脂質二重膜を被覆し光触媒を含有する外殻層とを備えることを特徴とする請求項1乃至4のいずれか1項に記載の光開裂性マイクロカプセル。   The microcapsule includes a skeleton layer, a lipid bilayer membrane covering the skeleton tank, and an outer shell layer covering the lipid bilayer membrane and containing a photocatalyst. The photocleavable microcapsule according to claim 1. 前記請求項1乃至5のいずれかの光開裂性マイクロカプセルと、
前記被測定物質と特異的に結合することが可能な分子認識プローブが表面に固定された固定部と、
該固定部又は被測定液に光を照射するための光照射部と、
前記受光素子による検知を可能とするための物質の作用によって生じた光を感知する光受光部と、
を備えることを特徴とするセンサ。
The photocleavable microcapsule according to any one of claims 1 to 5,
An immobilization part in which a molecular recognition probe capable of specifically binding to the substance to be measured is immobilized on the surface;
A light irradiator for irradiating the fixed part or the liquid to be measured with light;
A light receiving part for sensing light generated by the action of a substance for enabling detection by the light receiving element;
A sensor comprising:
被測定物質と特異的に結合することが可能な分子認識プローブが表面に固定された固定部に被測定物質を含む測定液を接触させる第1工程と、
該固定部上の該被測定液を除去する第2工程と、
該被測定物質が該分子認識プローブに捕捉された該固定部に請求項1乃至5のいずれかの光開裂性マイクロカプセルを分散させたカプセル含有液を接触させる第3工程と、
該固定部上の該カプセル含有液を除去する第4工程と、
該固定部又は該除去されたカプセル含有液に光を照射して該光開裂性カプセルを開裂させて受光素子による検知を可能とするための物質を放出させる第5工程と、
該物質の作用によって生じた光の強度をセンシングする第6工程と、
を備えるの被測定物質の測定方法。

A first step in which a measurement liquid containing a substance to be measured is brought into contact with a fixing portion where a molecular recognition probe capable of specifically binding to the substance to be measured is fixed on the surface;
A second step of removing the liquid to be measured on the fixed part;
A third step in which the capsule-containing liquid in which the photocleavable microcapsules of any one of claims 1 to 5 are dispersed is brought into contact with the immobilization part in which the substance to be measured is captured by the molecular recognition probe;
A fourth step of removing the capsule-containing liquid on the fixing part;
A fifth step of irradiating the fixing part or the removed capsule-containing liquid with light to cleave the photocleavable capsule to release a substance enabling detection by a light receiving element;
A sixth step of sensing the intensity of light generated by the action of the substance;
A method for measuring a substance to be measured.

JP2016094860A 2016-05-10 2016-05-10 Photocleavable microcapsules, sensor using the same and a measuring method of substance to be measured using the same Pending JP2017203665A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016094860A JP2017203665A (en) 2016-05-10 2016-05-10 Photocleavable microcapsules, sensor using the same and a measuring method of substance to be measured using the same
PCT/JP2017/017479 WO2017195758A1 (en) 2016-05-10 2017-05-09 Photocleavable microcapsule, sensor employing same, and method of measuring substance to be measured employing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016094860A JP2017203665A (en) 2016-05-10 2016-05-10 Photocleavable microcapsules, sensor using the same and a measuring method of substance to be measured using the same

Publications (1)

Publication Number Publication Date
JP2017203665A true JP2017203665A (en) 2017-11-16

Family

ID=60266639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016094860A Pending JP2017203665A (en) 2016-05-10 2016-05-10 Photocleavable microcapsules, sensor using the same and a measuring method of substance to be measured using the same

Country Status (2)

Country Link
JP (1) JP2017203665A (en)
WO (1) WO2017195758A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021508040A (en) * 2017-12-29 2021-02-25 ブリンク アーゲー Microcapsules for detecting and / or quantifying the analyte in the sample

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109362066B (en) * 2018-11-01 2021-06-25 山东大学 Real-time behavior recognition system based on low-power-consumption wide-area Internet of things and capsule network and working method thereof
JP2020144176A (en) * 2019-03-05 2020-09-10 マクセル株式会社 Antireflection film forming method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159652A (en) * 1984-01-31 1985-08-21 Toshiba Corp Reagent for immunological analysis
JPS6459070A (en) * 1987-08-28 1989-03-06 Toshiba Corp Immunoassay method
JPH04303770A (en) * 1991-03-30 1992-10-27 Toyo Ink Mfg Co Ltd Analyzing method for immunity of antigen
JP2005265737A (en) * 2004-03-22 2005-09-29 National Institute Of Advanced Industrial & Technology Concentration measuring method by enzyme cascade
US20080182056A1 (en) * 2007-01-30 2008-07-31 Eric Bakker Hollow Microsphere Particles
JP2011069646A (en) * 2009-09-24 2011-04-07 Sekisui Chem Co Ltd Quantitative analysis method
JP2015528283A (en) * 2012-08-14 2015-09-28 テンエックス・ジェノミクス・インコーポレイテッド Microcapsule composition and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001069646A (en) * 1999-09-01 2001-03-16 Yazaki Corp Penetrating structure into vehicle body for wire harness

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159652A (en) * 1984-01-31 1985-08-21 Toshiba Corp Reagent for immunological analysis
JPS6459070A (en) * 1987-08-28 1989-03-06 Toshiba Corp Immunoassay method
JPH04303770A (en) * 1991-03-30 1992-10-27 Toyo Ink Mfg Co Ltd Analyzing method for immunity of antigen
JP2005265737A (en) * 2004-03-22 2005-09-29 National Institute Of Advanced Industrial & Technology Concentration measuring method by enzyme cascade
US20080182056A1 (en) * 2007-01-30 2008-07-31 Eric Bakker Hollow Microsphere Particles
JP2011069646A (en) * 2009-09-24 2011-04-07 Sekisui Chem Co Ltd Quantitative analysis method
JP2015528283A (en) * 2012-08-14 2015-09-28 テンエックス・ジェノミクス・インコーポレイテッド Microcapsule composition and method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEN, K. ET AL.: "Fabrication of ultraviolet-responsive microcapsules via Pickering emulsion polymerization using modi", RSC ADVANCES, vol. 5, JPN6020014012, 2015, pages 13850 - 13856, ISSN: 0004366124 *
GAO, H. ET AL.: "Bifunctional ultraviolet/ultrasound responsive composite TiO2/polyelectrolyte microcapsules", NANOSCALE, vol. 8, JPN6020014013, 28 January 2016 (2016-01-28), pages 5170 - 5180, ISSN: 0004366125 *
KATAGIRI, K. ET AL.: "Tunable UV-Responsive Organic−Inorganic Hybrid Capsules", CHEMISTRY OF MATERIALS, vol. 21, no. 2, JPN6020014011, 27 January 2009 (2009-01-27), pages 195 - 197, XP055124292, ISSN: 0004366123, DOI: 10.1021/cm802873f *
ZHENG, Y. ET AL.: "An ultrasensitive chemiluminescence immunosensor for PSA based on the enzyme encapsulated liposome", TALANTA, vol. 77, no. 2, JPN6020014010, 2008, pages 809 - 814, XP025586407, ISSN: 0004366126, DOI: 10.1016/j.talanta.2008.07.038 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021508040A (en) * 2017-12-29 2021-02-25 ブリンク アーゲー Microcapsules for detecting and / or quantifying the analyte in the sample
JP7378154B2 (en) 2017-12-29 2023-11-13 ブリンク アーゲー Microcapsules for detecting and/or quantifying analytes in samples

Also Published As

Publication number Publication date
WO2017195758A1 (en) 2017-11-16

Similar Documents

Publication Publication Date Title
Chen et al. “Three-in-one” multifunctional nanohybrids with colorimetric magnetic catalytic activities to enhance immunochromatographic diagnosis
JP6379149B2 (en) Sensitive immunoassay using coated nanoparticles
Muzyka Current trends in the development of the electrochemiluminescent immunosensors
Nichkova et al. Microarray immunoassay for phenoxybenzoic acid using polymer encapsulated Eu: Gd2O3 nanoparticles as fluorescent labels
Nichkova et al. Eu 3+-doped Gd 2 O 3 nanoparticles as reporters for optical detection and visualization of antibodies patterned by microcontact printing
WO2017195758A1 (en) Photocleavable microcapsule, sensor employing same, and method of measuring substance to be measured employing same
de Dios et al. Multifunctional nanoparticles: analytical prospects
Mao et al. Virus‐based chemical and biological sensing
JP4231869B2 (en) Biochemical sensor and measuring device
Hofmann et al. Nanocontainers for analytical applications
Kim et al. Applications, techniques, and microfluidic interfacing for nanoscale biosensing
Joo et al. Highly sensitive diagnostic assay for the detection of protein biomarkers using microresonators and multifunctional nanoparticles
CN106566879B (en) Coding microsphere for biomolecule screening or detection and preparation method and application thereof
JP2008540308A (en) Silica-based photoluminescence sensor and method of use
He et al. Suspension array with shape-coded silica nanotubes for multiplexed immunoassays
CN116559153A (en) Homogeneous chemiluminescence detection kit and application thereof
Li et al. High-throughput signal-on photoelectrochemical immunoassay of lysozyme based on hole-trapping triggered by disintegrating bioconjugates of dopamine-grafted silica nanospheres
Nasrin et al. Fluorescent and electrochemical dual-mode detection of Chikungunya virus E1 protein using fluorophore-embedded and redox probe-encapsulated liposomes
Guo et al. Highly sensitive fluorescence-linked immunosorbent assay for the determination of human IgG in serum using quantum dot nanobeads and magnetic Fe3O4 nanospheres
JP5419199B2 (en) Magnetic inclusion particles, method for producing magnetic inclusion particles, immunoassay particles, and immunochromatography method
Chen et al. Hydrophobic localized enrichment of Co-reactants to enhance electrochemiluminescence of conjugated polymers for detecting SARS-CoV-2 nucleocapsid proteins
WO2015055708A1 (en) Sensitive qualitative bioassay using graphene oxide as analyte revealing agent
Wang et al. Applications of self-assembly strategies in immunoassays: A review
JP2009204375A (en) Electrode base for biomolecule detection and its manufacturing method
JP2009092616A (en) Biosensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201014