JP2009204375A - Electrode base for biomolecule detection and its manufacturing method - Google Patents

Electrode base for biomolecule detection and its manufacturing method Download PDF

Info

Publication number
JP2009204375A
JP2009204375A JP2008045411A JP2008045411A JP2009204375A JP 2009204375 A JP2009204375 A JP 2009204375A JP 2008045411 A JP2008045411 A JP 2008045411A JP 2008045411 A JP2008045411 A JP 2008045411A JP 2009204375 A JP2009204375 A JP 2009204375A
Authority
JP
Japan
Prior art keywords
electrode
carbon
biomolecule detection
electrode substrate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008045411A
Other languages
Japanese (ja)
Inventor
Junichi Hori
淳一 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008045411A priority Critical patent/JP2009204375A/en
Publication of JP2009204375A publication Critical patent/JP2009204375A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode base for biomolecule detection not causing an electrochemiluminescence amount to lower even in case of a carbon electrode, and its manufacturing method. <P>SOLUTION: This electrode base for biomolecule detection and its manufacturing method are characterized in that acidic groups comprising either carboxyl groups or sulfonic acid groups bonding to only the surfaces of a plate substrate using any of glass, plastic resin, ceramics, and those of a carbon electrode using any carbon material out of carbon paste, glassy carbon, and DLC, on the plate substrate. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、生化学的試料中に存在する特定の生体分子を電気化学的に検出するための検出用電極基板およびその製造方法に関する。より詳細には、標識剤からの電気化学的な信号を高感度に検出するための検出用電極基板およびその製造方法に関する。   The present invention relates to a detection electrode substrate for electrochemically detecting a specific biomolecule present in a biochemical sample and a method for producing the same. More specifically, the present invention relates to a detection electrode substrate for detecting an electrochemical signal from a labeling agent with high sensitivity and a method for manufacturing the same.

ある特定の核酸や抗原、抗体といった検出すべき生体分子を検出する手法として、核酸のハイブリダイゼーション反応や抗原抗体反応などの特異的な結合能を利用して、生体分子に標識剤を結合させ、標識剤の有無により検出を行う手法が多数提案されている。   As a technique for detecting a specific biomolecule to be detected, such as a specific nucleic acid, antigen, or antibody, by using a specific binding ability such as a nucleic acid hybridization reaction or an antigen-antibody reaction, a labeling agent is bound to the biomolecule, Many methods for detecting by the presence or absence of a labeling agent have been proposed.

これらで使用される標識剤としては、放射性同位元素や蛍光色素、電気化学発光物質などが挙げられるが、特に、電気化学発光物質は、電気的に可逆な酸化還元反応時に発光を示すものであり、放射性同位元素のような危険性もなく、また蛍光色素のような励起光の必要性もなく、簡便に検出可能な標識剤として有用である。   Examples of the labeling agent used in these include radioisotopes, fluorescent dyes, and electrochemiluminescent materials. In particular, electrochemiluminescent materials emit light during an electrically reversible oxidation-reduction reaction. It is useful as a labeling agent that can be easily detected without the danger of a radioisotope and without the need for excitation light such as a fluorescent dye.

このような電気化学発光物質を標識剤に用いた手法として、磁性微粒子を用いた手法がある。この手法は、検出すべき生体分子を含む試料と、生体分子と特異的に結合する物質を固定した磁性微粒子と、生体分子と特異的に結合する物質が結合した電気化学発光物質とを混合し、生体分子を介して磁性微粒子に電気化学発光物質が結合した複合体を形成させる。そして、この複合体を磁力で収集し、洗浄することで、未反応の試料および電気化学発光物質を除去するB/F(Bound/Free)分離を行う。その後、複合体を電極上に滴下し、磁力で電極表面に複合体を収集する。そして、電極に電圧を印加し、複合体に結合している標識剤からの電気化学的な信号を測定することで、検出すべき生体分子の存在を検出するものである(例えば、特許文献1及び特許文献2参照。)。   As a method using such an electrochemiluminescent substance as a labeling agent, there is a method using magnetic fine particles. In this method, a sample containing a biomolecule to be detected, a magnetic fine particle to which a substance that specifically binds to a biomolecule is fixed, and an electrochemiluminescent substance to which a substance that specifically binds to a biomolecule is bound are mixed. Then, a complex in which the electrochemiluminescent substance is bonded to the magnetic fine particles through the biomolecule is formed. The composite is collected by magnetic force and washed to perform B / F (Bound / Free) separation that removes the unreacted sample and the electrochemiluminescent material. Thereafter, the composite is dropped on the electrode, and the composite is collected on the electrode surface by magnetic force. Then, by applying a voltage to the electrode and measuring an electrochemical signal from the labeling agent bound to the complex, the presence of a biomolecule to be detected is detected (for example, Patent Document 1). And Patent Document 2).

上記磁性微粒子を用いた手法の特徴は、磁力で複合体を電極表面に収集可能なことである。電気化学反応は、電気化学発光物質と電極との電子の授受により行われ、その反応領域は、電気二重層と呼ばれる電極表面から数nmといった非常に狭い領域である。そのため、高感度な検出には、より多くの電気化学発光物質が電極表面に存在するように、より多くの複合体を電極表面に収集することが必要であり、上記手法のような磁力による複合体の収集は、高感度化に有効な手法である。   A feature of the method using the magnetic fine particles is that the composite can be collected on the electrode surface by magnetic force. The electrochemical reaction is performed by exchanging electrons between the electrochemiluminescent substance and the electrode, and the reaction region is a very narrow region called several nanometers from the electrode surface called an electric double layer. Therefore, highly sensitive detection requires collecting more complex on the electrode surface so that more electrochemiluminescent material is present on the electrode surface. Body collection is an effective technique for increasing sensitivity.

しかし、磁性微粒子の使用には、問題点もある。それは、電気化学反応に寄与する電気化学発光物質の割合が非常に低いことである。確かに、上記のように磁力によって磁性微粒子を電極表面に収集することは有効な手法ではあるが、収集した磁性微粒子に結合した電気化学発光物質の全てが電気化学反応に寄与するのではないからである。これは、磁性微粒子のサイズはサブミクロンからミクロンオーダーであり、電気化学反応領域に比べ非常に大きいため、磁性微粒子に結合した電気化学発光物質のうち、電気化学反応に寄与する電気化学発光物質は、電極表面と接しているごく一部でしかないことに起因する。   However, the use of magnetic fine particles also has problems. That is, the proportion of the electrochemiluminescent material contributing to the electrochemical reaction is very low. It is true that collecting magnetic particles on the electrode surface by magnetic force as described above is an effective technique, but not all of the electrochemiluminescent materials bound to the collected magnetic particles contribute to the electrochemical reaction. It is. This is because the size of the magnetic fine particles is on the order of sub-micron to micron, which is much larger than the electrochemical reaction region. Among the electrochemiluminescent materials bonded to the magnetic fine particles, the electrochemiluminescent materials that contribute to the electrochemical reaction are This is because it is only a small part in contact with the electrode surface.

さらに、電極表面に収集された磁性微粒子が、発光を阻害する要因となることも問題である。磁石を用いて電極表面に収集された磁性微粒子は、凝集・積層した状態で電極表面に存在しており、電極表面で発生した発光が電極の上部にある光検出器に到達するためには、この凝集・積層した磁性微粒子間を通過しなければならない。磁性微粒子は不透明であるため、電極表面で発生した発光は、凝集・積層した磁性微粒子間を通過する間に、大きく減衰してしまう。したがって、電極表面で発生した発光が増加したとしても、検出できる発光は僅かでしかなく、電極表面で発生した発光を効率的に検出できない問題がある。   Furthermore, it is a problem that the magnetic fine particles collected on the electrode surface become a factor inhibiting light emission. The magnetic fine particles collected on the electrode surface using a magnet are present on the electrode surface in an aggregated and laminated state, and in order for the luminescence generated on the electrode surface to reach the photodetector above the electrode, It must pass between these agglomerated and laminated magnetic fine particles. Since the magnetic fine particles are opaque, light emission generated on the electrode surface is greatly attenuated while passing between the aggregated and laminated magnetic fine particles. Therefore, even if the luminescence generated on the electrode surface increases, the luminescence that can be detected is very small, and the luminescence generated on the electrode surface cannot be detected efficiently.

そこで、この磁性微粒子による影響を除去する手法として、磁性微粒子から標識剤を分離して検出を行う手法が提案されている。この手法は、B/F分離後の複合体から標識剤を分離し、分離した標識剤を含む溶液について検出を行うものである(例えば、特許文献3及び特許文献4参照。)。   Therefore, as a technique for removing the influence of the magnetic fine particles, a technique for separating and detecting the labeling agent from the magnetic fine particles has been proposed. In this method, a labeling agent is separated from the complex after B / F separation, and a solution containing the separated labeling agent is detected (see, for example, Patent Document 3 and Patent Document 4).

ここで、上記のような電気化学発光物質を標識剤に用いた手法において、検出時に使用される電極には、金電極や白金電極のような貴金属材料による電極以外にも、カーボン電極についても開示されている
特表平6−509412号公報 特開平11−125601号公報 特開2000−105236号公報 特開2004−121231号公報
Here, in the method using the electrochemiluminescent substance as described above as a labeling agent, the electrode used at the time of detection also discloses a carbon electrode in addition to an electrode made of a noble metal material such as a gold electrode or a platinum electrode. Has been
Japanese National Patent Publication No. 6-509212 JP-A-11-125601 JP 2000-105236 A JP 2004-121231 A

しかしながら、前記従来の技術において、カーボン電極を使用した際の電気化学発光量の変化については、開示も示唆もされていない。現実には、カーボン電極を使用すると、金電極を使用した場合と比べて、電気化学発光量は10%以下にまで低下するという課題を有していた。   However, there is no disclosure or suggestion of a change in the amount of electrochemiluminescence when the carbon electrode is used in the conventional technique. In reality, when a carbon electrode is used, the amount of electrochemiluminescence is reduced to 10% or less as compared with the case where a gold electrode is used.

本発明は、前記従来の課題を解決するもので、カーボン電極においても電気化学発光量の低下をまねかない生体分子検出用電極基板およびその製造方法を提供することを目的とする。   An object of the present invention is to solve the above-mentioned conventional problems, and to provide an electrode substrate for biomolecule detection that does not cause a decrease in the amount of electrochemiluminescence even in a carbon electrode, and a method for producing the same.

前記従来の課題を解決するために、本発明の生体分子検出用電極基板は、プレート基材と、前記プレート基材上に酸性基が結合されたカーボン材料からなるカーボン電極とからなることを特徴としたものである。   In order to solve the conventional problems, the biomolecule detection electrode substrate of the present invention comprises a plate base material and a carbon electrode made of a carbon material having an acidic group bonded to the plate base material. It is what.

また、発明の生体分子検出用電極基板の製造方法は、プレート基材上にカーボン電極を形成する電極形成工程と、前記プレートに形成されたカーボン電極の表面に酸性基を結合させる酸性基結合工程と、からなることを特徴としたものである。   The method for producing the electrode substrate for biomolecule detection according to the invention includes an electrode forming step of forming a carbon electrode on a plate substrate, and an acidic group binding step of binding an acidic group to the surface of the carbon electrode formed on the plate. It is characterized by comprising.

本発明の遺伝子検出基板およびその製造方法によれば、カーボン電極の表面に酸性基を結合させることにより、標識剤を電極表面に静電的に吸着させることで、電気化学発光量の低下を防ぐことができる。   According to the gene detection substrate and the method for producing the same of the present invention, a decrease in electrochemiluminescence is prevented by electrostatically adsorbing the labeling agent to the electrode surface by binding an acidic group to the surface of the carbon electrode. be able to.

以下に、本発明の生体分子検出用電極基板およびその製造方法の実施の形態を図面とともに詳細に説明する。
(実施の形態1)
以下、本発明の生体分子検出用電極基板の具体的な実施の形態を説明する。
Embodiments of a biomolecule detection electrode substrate and a method for producing the same according to the present invention will be described below in detail with reference to the drawings.
(Embodiment 1)
Hereinafter, specific embodiments of the electrode substrate for biomolecule detection of the present invention will be described.

図1に本発明の実施の形態1における生体分子検出用電極基板の上面図、図2に図1中のA−A’での断面図を示す。プレート基材4上に、作用極1、対極2、参照極3の3つのカーボン電極を形成している。これら3つの電極は3電極法にて電気化学発光を行うための電極である。電極プレート基材4の中央部に、標識剤を滴下する電極である作用極1を円形に形成し、作用極1を囲むように対極2を配置し、作用極1と対極2との隙間に参照極3を配置している。これらの電極を囲むように絶縁膜5を配置している。3つの電極はプレート基材4の端に向けて伸ばしてあり、これは電圧印加部と接続するための接点部である。   FIG. 1 is a top view of a biomolecule detection electrode substrate according to Embodiment 1 of the present invention, and FIG. 2 is a cross-sectional view taken along line A-A ′ in FIG. 1. Three carbon electrodes of a working electrode 1, a counter electrode 2, and a reference electrode 3 are formed on the plate substrate 4. These three electrodes are electrodes for performing electrochemiluminescence by a three-electrode method. A working electrode 1, which is an electrode for dropping the labeling agent, is formed in a circular shape at the center of the electrode plate substrate 4, and a counter electrode 2 is disposed so as to surround the working electrode 1, and in the gap between the working electrode 1 and the counter electrode 2. A reference pole 3 is arranged. An insulating film 5 is disposed so as to surround these electrodes. The three electrodes are extended toward the end of the plate substrate 4, which is a contact portion for connecting to the voltage application portion.

プレート基材4は、絶縁性の基板材料を用いることができ、例えば、ガラス、プラスチック樹脂、セラミックが挙げられる。   As the plate base material 4, an insulating substrate material can be used, and examples thereof include glass, plastic resin, and ceramic.

プレート基材4上に形成されるカーボン電極は、カーボン材料が表面に露出したカーボン電極であり、例えば、カーボンペースト、グラッシーカーボン、DLCにより形成されたものである。また、前記カーボン電極は、カーボン材料が表面に露出していれば良く、前述したカーボン材料層のみで構成されるもの以外にも、金属材料層の上にカーボン材料層を被覆し、形成したものでもよい。金属材料としては、特に限定されるものではないが、銀、銅、アルミニウム等の低抵抗な金属材料が使用可能である。このような2層構成にすることにより、導電性を向上させることができ、より好適である。   The carbon electrode formed on the plate substrate 4 is a carbon electrode with a carbon material exposed on the surface, and is formed of, for example, carbon paste, glassy carbon, or DLC. The carbon electrode may be formed by coating the carbon material layer on the metal material layer in addition to the carbon material layer described above, as long as the carbon material is exposed on the surface. But you can. Although it does not specifically limit as a metal material, Low resistance metal materials, such as silver, copper, and aluminum, can be used. With such a two-layer structure, the conductivity can be improved, which is more preferable.

絶縁膜5は、電極の面積を規定するために設けたものであり、絶縁性の材料であればよく、例えば、SiO2、SiN、ポリイミド、レジストペースト等が挙げられる。 The insulating film 5 is provided to define the area of the electrode, and may be any insulating material, and examples thereof include SiO 2 , SiN, polyimide, resist paste, and the like.

プレート基材4上に形成されるカーボン電極の表面には、酸性基6が結合している。酸性基6の結合は、3つの電極全てに対して行う必要はなく、少なくとも標識剤を滴下する作用極1に対して行っていれば良い。結合させる酸性基6としては、例えば、カルボキシル基、スルホン酸基が挙げられる。   An acidic group 6 is bonded to the surface of the carbon electrode formed on the plate substrate 4. The acidic group 6 does not need to be bonded to all three electrodes, but may be at least applied to the working electrode 1 to which the labeling agent is dropped. Examples of the acidic group 6 to be bonded include a carboxyl group and a sulfonic acid group.

ここで、カーボン電極表面に結合した酸性基6の働きについて説明する。前述した酸性基6は、酸素がもつ大きな電気陰性度により負の極性をもっており、酸性基6を結合させることによりカーボン電極の表面は負の電荷をもつようになる。一方、電気化学発光を示す標識剤は、ルテニウム錯体に代表されるように、正の電荷をもつ物質である。そのため、酸性基6の結合によって、正の電荷をもつ標識剤を、負の電荷をもつカーボン電極表面に静電的に吸着させることができ、カーボン電極でも電極表面近傍の発光領域に標識剤が多く存在するようになる。   Here, the function of the acidic group 6 bonded to the carbon electrode surface will be described. The above-mentioned acidic group 6 has a negative polarity due to the large electronegativity of oxygen, and the surface of the carbon electrode has a negative charge by binding the acidic group 6. On the other hand, a labeling agent that exhibits electrochemiluminescence is a substance having a positive charge, as represented by a ruthenium complex. Therefore, a positively charged labeling agent can be electrostatically adsorbed on the negatively charged carbon electrode surface by the binding of the acidic group 6, and the labeling agent is also present in the light emitting region near the electrode surface even with the carbon electrode. Many come to exist.

この標識剤の静電的な吸着は、金のような貴金属材料を用いた電極に対して起こるものと同一のものである。金のような貴金属材料を用いた電極は、電極表面に負の電荷をもつ性質があり、標識剤の静電的な吸着が起こる。そのため、カーボン電極表面に酸性基を結合させることにより、金のような貴金属材料を用いた電極と同様に、カーボン電極でも電極表面近傍の発光領域に標識剤が多く存在させることができ、発光量の低下を防止することが可能となる。   This electrostatic adsorption of the labeling agent is the same as that which occurs for an electrode using a noble metal material such as gold. An electrode using a noble metal material such as gold has a property of having a negative charge on the electrode surface, and electrostatic adsorption of the labeling agent occurs. Therefore, by attaching an acidic group to the surface of the carbon electrode, as in the case of an electrode using a noble metal material such as gold, a carbon electrode can have a large amount of labeling agent in the light emitting region near the electrode surface, and the amount of emitted light It is possible to prevent a decrease in the above.

以下、本発明の生体分子検出用電極基板の製造方法の具体的な実施の形態を説明する。図3に本発明の実施の形態1における生体分子検出用電極基板の製造方法の概略図を示す。   Hereinafter, specific embodiments of the method for producing a biomolecule detection electrode substrate of the present invention will be described. FIG. 3 shows a schematic view of a method for producing the biomolecule detection electrode substrate according to Embodiment 1 of the present invention.

まず、図3(a)に示すプレート基材4を準備する。次に、図3(b)のようにカーボン電極である作用極1および対極2を形成する。これらのカーボン電極の形成方法は、公知の方法で良い。例えば、カーボンペーストを用いてのスクリーン印刷をおこなう方法、または、成形したグラッシーカーボンフィルムを接着する方法、あるいは、CVDによるDLC成膜による方法が挙げられる。   First, the plate base material 4 shown in FIG. Next, as shown in FIG. 3B, the working electrode 1 and the counter electrode 2 which are carbon electrodes are formed. These carbon electrodes may be formed by a known method. For example, a method of performing screen printing using a carbon paste, a method of adhering a molded glassy carbon film, or a method of DLC film formation by CVD can be mentioned.

また、上記カーボン電極の下部に、銀、銅、アルミニウム等の金属材料層を形成する場合、例えば、ペーストを用いてのスクリーン印刷やスパッタや真空蒸着などで金属電極層をプレート基材に形成した後、前述したカーボン電極の形成方法を行うことで、カーボン材料が被覆した電極である作用極1および対極2を形成することができる。   In addition, when a metal material layer such as silver, copper, or aluminum is formed below the carbon electrode, for example, the metal electrode layer is formed on the plate base material by screen printing using a paste, sputtering, or vacuum deposition. Then, the working electrode 1 and the counter electrode 2 which are electrodes covered with a carbon material can be formed by performing the above-described carbon electrode forming method.

次に、図3(c)のように絶縁膜5を形成する。絶縁膜5の形成方法は、特に限定されるものではないが、例えば、レジストペーストを用いてのスクリーン印刷、感光性ポリイミドを用いてのフォトリソグラフィー、CVDによるSiO2、SiNの成膜、プラスチック樹脂やシリコンゴムの接着などが挙げられる。 Next, the insulating film 5 is formed as shown in FIG. The method for forming the insulating film 5 is not particularly limited. For example, screen printing using a resist paste, photolithography using a photosensitive polyimide, film formation of SiO 2 or SiN by CVD, plastic resin And silicon rubber adhesion.

次に、図3(d)のようにカーボン電極である作用極1の表面に酸性基6を結合させる。酸性基6の結合は、作用極1の表面を酸化処理すれば良い。酸化処理としては、公知の方法、例えば、酸素プラズマ、UVオゾンによる気相酸化処理が挙げられる。   Next, as shown in FIG. 3D, the acidic group 6 is bonded to the surface of the working electrode 1 which is a carbon electrode. The bonding of the acidic group 6 may be performed by oxidizing the surface of the working electrode 1. Examples of the oxidation treatment include known methods such as gas phase oxidation treatment using oxygen plasma and UV ozone.

酸素プラズマによる酸化処理は、酸素ガスを導入した真空チャンバー内に高周波電力を加えることでプラズマを発生させ、その際に生成した酸素ラジカルと電極表面のカーボンが反応することでカルボキシル基を結合させるものであり、例えば、リアクティブイオンエッチング装置等を用いて行うことができる。なお、この処理はカーボン電極表面のみを処理できればよいため、長時間行う必要はない。   Oxidation treatment with oxygen plasma generates plasma by applying high-frequency power in a vacuum chamber into which oxygen gas has been introduced, and oxygen radicals generated at that time react with carbon on the electrode surface to bond carboxyl groups. For example, it can be performed using a reactive ion etching apparatus or the like. In addition, since this process should just be able to process only the carbon electrode surface, it is not necessary to perform for a long time.

UVオゾンによる酸化処理は、酸素ガスにUV光を照射してオゾンを発生させ、このオゾンが電極表面のカーボンと反応することで、カルボキシル基を結合させるものである。なお、この処理も、酸素プラズマの場合と同様に、作用極1の表面のみを処理できればよいため、長時間行う必要はない。   In the oxidation treatment with UV ozone, oxygen gas is irradiated with UV light to generate ozone, and this ozone reacts with carbon on the electrode surface to bond carboxyl groups. Note that this treatment need not be performed for a long time because only the surface of the working electrode 1 needs to be treated, as in the case of oxygen plasma.

また、酸化処理としては、上記の気相酸化処理の他、液相酸化処理でも行うことが可能である。液相酸化処理は、酸化剤を含む溶液中にカーボン電極を浸漬させることで行う。酸化剤としては、カルボキシル基を結合させる場合には、例えば、硝酸、過酸化水素、オゾン水、ヨウ素水、次亜塩素酸塩、亜塩素酸塩、過マンガン酸塩、二クロム酸塩、ペルオキソニ硫酸塩、亜硫酸水素塩が挙げられる。また、スルホン酸基を結合させる場合には、スルホン化ピリジン塩、アミド硫酸、フルオロ硫酸、クロロ硫酸、三酸化硫黄、発煙硫酸が挙げられる。以上のようにして、本発明の生体分子検出用電極基板を製造することができる。   Further, as the oxidation treatment, liquid phase oxidation treatment can be performed in addition to the above gas phase oxidation treatment. The liquid phase oxidation treatment is performed by immersing the carbon electrode in a solution containing an oxidizing agent. As the oxidizing agent, when a carboxyl group is bonded, for example, nitric acid, hydrogen peroxide, ozone water, iodine water, hypochlorite, chlorite, permanganate, dichromate, peroxonitrate. Examples thereof include sulfate and bisulfite. In the case of bonding a sulfonic acid group, a sulfonated pyridine salt, amidosulfuric acid, fluorosulfuric acid, chlorosulfuric acid, sulfur trioxide, and fuming sulfuric acid are exemplified. As described above, the biomolecule detection electrode substrate of the present invention can be manufactured.

次に、上記で説明した本発明の生体分子検出用電極基板を用いた遺伝子サンプルの検出例について、具体的な実施の形態を詳細に説明する。   Next, a specific embodiment will be described in detail for an example of detection of a gene sample using the above-described biomolecule detection electrode substrate of the present invention.

(1)遺伝子サンプル
遺伝子サンプルには、ヒト由来Cytochrome P−450の遺伝子配列の5’−末端より599−698番目に位置するAATTGAATGA AAACATCAGG ATTGTAAGCA CCCCCTGGAT CCAGATATGC AATAATTTTC CCACTATCAT TGATTATTTC CCGGGAACCC ATAACAAATT(配列番号1)の配列を有する100塩基のオリゴデオキシヌクレオチドを使用した。
(1) Gene sample In the gene sample, AATTGAATGA AAACATCAGG ATTGTAAGCA CCCCCTGGAT CCAGATATGC AATATTTGTC CCACTATGA sequence of the cytoplasm P-450 derived from human cytochrome P-450 sequence A 100 base oligodeoxynucleotide was used.

(2)磁性微粒子表面への核酸プローブの固定化
磁性微粒子には、粒径0.35μmのストレプトアビジン磁気ビーズCM01N/5896(Bangs Laboratories社製)を用いた。核酸プローブには、5’末端よりAATTTGTTAT GGGTTCCCGG GAAATAATCA(配列番号2)の遺伝子サンプルと相補的な配列を有し、5’末端のリン酸基を介してビオチンを修飾したものを使用した。
(2) Immobilization of nucleic acid probe on the surface of magnetic fine particles Streptavidin magnetic beads CM01N / 5896 (manufactured by Bangs Laboratories) having a particle size of 0.35 μm were used as magnetic fine particles. A nucleic acid probe having a sequence complementary to the gene sample of AATTTGTTAT GGGTTCCCGG GAAATAATCA (SEQ ID NO: 2) from the 5 ′ end and modified with biotin via a phosphate group at the 5 ′ end was used.

まず、磁性微粒子を1mg採取し、TTLバッファー(500mmol/L Tris−HCl(pH8.0):Tween20:2mol/L塩化リチウム:超純水=2:10:5:3の体積比になるよう調製)で洗浄後、20μLのTTLバッファーに置換した。その後、100nmol/Lの核酸プローブを5μL添加し、室温で15分振とうした。   First, 1 mg of magnetic fine particles were sampled and prepared so as to have a volume ratio of TTL buffer (500 mmol / L Tris-HCl (pH 8.0): Tween 20: 2 mol / L lithium chloride: ultrapure water = 2: 10: 5: 3). ) And then replaced with 20 μL of TTL buffer. Thereafter, 5 μL of 100 nmol / L nucleic acid probe was added and shaken at room temperature for 15 minutes.

この溶液をデカントし、残留した磁性微粒子を0.15mol/Lの水酸化ナトリウム水溶液で洗浄後、TTバッファー(500mmol/L Tris−HCl(pH8.0):Tween20:超純水=1:2:1の体積比になるよう調製)で洗浄した。   This solution was decanted, and the remaining magnetic fine particles were washed with a 0.15 mol / L sodium hydroxide aqueous solution. Then, TT buffer (500 mmol / L Tris-HCl (pH 8.0): Tween 20: ultrapure water = 1: 2: 1).

洗浄後、TTEバッファー(500mM Tris−HCl(pH8.0):Tween20:200mM Na2EDTA(pH8.0):超純水=5:10:1:4の体積比になるよう調製)に溶液を置換し、80℃で10分間インキュベートすることにより、不安定な結合を除去した。これにより、核酸プローブが固定化された磁性微粒子を得た。   After washing, the solution was replaced with TTE buffer (500 mM Tris-HCl (pH 8.0): Tween 20: 200 mM Na 2 EDTA (pH 8.0): ultrapure water prepared to have a volume ratio of 5: 10: 1: 4)). Instable binding was removed by incubation at 80 ° C. for 10 minutes. As a result, magnetic fine particles having a nucleic acid probe immobilized thereon were obtained.

(3)標識剤
電気化学発光物質であるルテニウム錯体に、遺伝子サンプルと相補的な配列を有する核酸プローブを結合させた、下記(化1)に示す標識剤を使用した。
(3) Labeling agent The labeling agent shown in the following (Chemical Formula 1) in which a nucleic acid probe having a sequence complementary to a gene sample was bound to a ruthenium complex that is an electrochemiluminescent substance was used.

Figure 2009204375
Figure 2009204375

ここで用いた核酸プローブは、5’末端からTGCTTACAAT CCTGATGTTT TCATTCAATT(配列番号3)の配列を有する30塩基のオリゴデオキシヌクレオチドである。この標識剤を用いることで、ルテニウム錯体から620nmをピーク波長とする電気化学発光を得ることが可能である。   The nucleic acid probe used here is a 30-base oligodeoxynucleotide having a sequence of TGCTTACAAT CCTGATGTTT TCATTCAATT (SEQ ID NO: 3) from the 5 'end. By using this labeling agent, it is possible to obtain electrochemiluminescence having a peak wavelength of 620 nm from the ruthenium complex.

(4)ハイブリダイゼーション
前記核酸プローブを固定した磁性微粒子に、2XSSCを14μL加え、そこに5μmol/Lに調製した遺伝子サンプル及び標識剤をそれぞれ4μL添加し、70℃で1時間ハイブリダイゼーション反応を行った。
(4) Hybridization 14 μL of 2XSSC was added to the magnetic microparticles on which the nucleic acid probe had been immobilized, and 4 μL of the gene sample and labeling agent prepared at 5 μmol / L were added thereto, and a hybridization reaction was performed at 70 ° C. for 1 hour. .

(5)B/F分離
ハイブリダイゼーション反応させた後、磁石で磁性微粒子を収集後、溶液をデカントし、40℃に加温した2XSSCで洗浄してB/F分離を行い、標識剤が遺伝子サンプルを介して磁性微粒子に結合した複合体を得た。
(5) B / F separation After the hybridization reaction, magnetic fine particles were collected with a magnet, the solution was decanted, washed with 2XSSC heated to 40 ° C, B / F separation was performed, and the labeling agent was a gene sample. As a result, a composite bonded to the magnetic fine particles was obtained.

(6)標識剤分離
次に、磁性微粒子から標識剤を分離させるために、核酸分解酵素DNase I(タカラバイオ製)を使用した。B/F分離後の複合体に、DNase I処理溶液(10×DNase I Buffer 5μL、DNase I 2μL、DPEC処理水 40μL)を加え、37度で30分間揺動させ、磁性微粒子から標識剤を分離させた。その後、磁石で磁性微粒子を収集しながら、上澄み溶液の採取を行い、標識剤分離溶液を得た。
(6) Separation of labeling agent Next, nuclease DNase I (manufactured by Takara Bio Inc.) was used to separate the labeling agent from the magnetic fine particles. DNase I treatment solution (10 × DNase I Buffer 5 μL, DNase I 2 μL, DPEC treated water 40 μL) is added to the complex after B / F separation, and the labeling agent is separated from the magnetic fine particles by shaking at 37 ° C. for 30 minutes. I let you. Thereafter, the supernatant solution was collected while collecting magnetic fine particles with a magnet to obtain a labeling agent separation solution.

(7)カーボン電極基板の作製
次に、カーボン電極基板を作製した。図4に作製したカーボン電極基板の上面図、図5に図4中のB−B’での断面図を示す。
(7) Production of carbon electrode substrate Next, a carbon electrode substrate was produced. 4 is a top view of the produced carbon electrode substrate, and FIG. 5 is a cross-sectional view taken along the line BB ′ in FIG.

まず、PET基板7として20mm角のルミラーE20#250(東レ株式会社製)を準備し、このPET基板7上に、銀ペーストElectrodag6022SS(日本アチソン株式会社製)をスクリーン印刷し、130℃で1分乾燥させ、膜厚10μmの銀電極8を形成した。その銀電極8の上に、カーボンペーストJEF−120(日本アチソン株式会社製)をスクリーン印刷し、130℃で1分乾燥させ、膜厚15μmのカーボン電極9を形成することで、作用極1、対極2、参照極3の3つの電極パターンを形成した。カーボン電極9のパターン形状は、銀電極とほぼ同様の形状であるが、銀電極のパターンよりも200μm大きいパターンにしており、電極表面はすべて、カーボン材料が露出した表面となっている。その後、レジストペーストCCR−232CFV(株式会社アサヒ化学研究所製)をスクリーン印刷し、130℃で1分乾燥させ、膜厚20μmの絶縁膜5を形成した。なお、上記のスクリーン印刷には、スクリーン印刷機LS−34TV(ニューロング精密工業株式会社製)を使用し、ペースト印刷後の乾燥にはオーブンDOV−450(アズワン株式会社製)を用いた。   First, a 20 mm square Lumirror E20 # 250 (manufactured by Toray Industries, Inc.) is prepared as a PET substrate 7, and a silver paste Electrodag 6022SS (manufactured by Japan Atchison Co., Ltd.) is screen-printed on the PET substrate 7 at 130 ° C. for 1 minute. It was made to dry and the silver electrode 8 with a film thickness of 10 micrometers was formed. On the silver electrode 8, carbon paste JEF-120 (manufactured by Nippon Atson Co., Ltd.) is screen-printed and dried at 130 ° C. for 1 minute to form a carbon electrode 9 having a film thickness of 15 μm. Three electrode patterns of a counter electrode 2 and a reference electrode 3 were formed. The pattern shape of the carbon electrode 9 is almost the same as that of the silver electrode, but is 200 μm larger than the pattern of the silver electrode, and the electrode surface is a surface where the carbon material is exposed. Thereafter, resist paste CCR-232CFV (manufactured by Asahi Chemical Laboratory Co., Ltd.) was screen-printed and dried at 130 ° C. for 1 minute to form an insulating film 5 having a thickness of 20 μm. Note that a screen printer LS-34TV (manufactured by Neurong Seimitsu Kogyo Co., Ltd.) was used for the screen printing, and an oven DOV-450 (manufactured by As One Co., Ltd.) was used for drying after paste printing.

なお、作用極1はPET基板7の中央部に形成し、作用極1を囲むように対極2を配置し、作用極1と対極2との隙間に参照極3を配置した。本実施例では、作用極1の円形部の直径は3mm、対極2までの隙間は1mm、対極2の円形部の外周の直径は7mm、隙間にある参照極3の線幅は0.2mmとした。また、絶縁膜5はこれらの電極を円形に囲むように配置し、内周の直径は7.5mmとした。   The working electrode 1 was formed at the center of the PET substrate 7, the counter electrode 2 was disposed so as to surround the working electrode 1, and the reference electrode 3 was disposed in the gap between the working electrode 1 and the counter electrode 2. In this embodiment, the diameter of the circular part of the working electrode 1 is 3 mm, the gap to the counter electrode 2 is 1 mm, the diameter of the outer periphery of the circular part of the counter electrode 2 is 7 mm, and the line width of the reference electrode 3 in the gap is 0.2 mm. did. The insulating film 5 is arranged so as to surround these electrodes in a circular shape, and the inner diameter is 7.5 mm.

次に、上記カーボン電極9の表面の酸化処理を行った。酸化処理には、リアクティブイオンエッチング装置RIE−200L(サムコ株式会社製)を用いて、酸素プラズマによる酸化処理を行った。なお、酸化処理は、上記カーボン電極9の作用極1の部分が露出するように開口部を設けたPET基板を上記カーボン電極基板の上部に重ねた状態で行い、上記カーボン電極基板の作用極1のみを酸素プラズマに曝すことで処理した。表1に酸素プラズマの条件を示す。   Next, the surface of the carbon electrode 9 was oxidized. For the oxidation treatment, an oxidation treatment using oxygen plasma was performed using a reactive ion etching apparatus RIE-200L (manufactured by Samco Corporation). The oxidation treatment is performed in a state in which a PET substrate having an opening so as to expose a portion of the working electrode 1 of the carbon electrode 9 is overlaid on the carbon electrode substrate, and the working electrode 1 of the carbon electrode substrate is formed. Only was exposed to oxygen plasma. Table 1 shows the oxygen plasma conditions.

Figure 2009204375
Figure 2009204375

表1において、酸素ガス流量、圧力、電力条件は全て同一とし、処理時間のみ0、15、30、60秒の4種とした。なお、ここでの0秒は、酸化処理をしないことを意味し、従来と本発明との差異を明確にするために設定した条件である。   In Table 1, the oxygen gas flow rate, pressure, and power conditions were all the same, and the treatment time was set to four types of 0, 15, 30, and 60 seconds. Here, 0 seconds means that no oxidation treatment is performed, and is a condition set for clarifying the difference between the prior art and the present invention.

以上のようにして得たカーボン電極基板の表面状態を確認するために、X線光電子分光(XPS)測定を行った。   In order to confirm the surface state of the carbon electrode substrate obtained as described above, X-ray photoelectron spectroscopy (XPS) measurement was performed.

図5に表1に示した条件で酸素プラズマ処理したカーボン電極表面のXPS測定結果を示す。図5において、処理を15、30、60秒行ったものでは、処理を行わない0秒では存在していなかったCOOHが検出されており、酸素プラズマ処理によってカーボン電極表面に酸性基であるカルボキシル基が結合したことが分かる。   FIG. 5 shows the XPS measurement result of the surface of the carbon electrode treated with oxygen plasma under the conditions shown in Table 1. In FIG. 5, COOH that did not exist in 0 seconds when the treatment was performed for 15, 30, and 60 seconds was detected, and a carboxyl group that is an acidic group on the surface of the carbon electrode by oxygen plasma treatment. It can be seen that are combined.

本発明のカーボン電極基板と比較するため、従来の金電極基板を作製した。金電極基板の作製は、ガラス基板上にスパッタ装置SH−350(株式会社アルバック製)によりチタン10nmを下地に金200nmを形成し、フォトリソグラフィー工程により、上述のカーボン電極と同様の電極パターンを形成した後、上述のカーボン電極と同様にスクリーン印刷で絶縁膜を形成することで金電極基板を得た。   For comparison with the carbon electrode substrate of the present invention, a conventional gold electrode substrate was prepared. The gold electrode substrate is manufactured by forming 200 nm of gold on a glass substrate with a sputtering apparatus SH-350 (manufactured by ULVAC, Inc.) with a titanium of 10 nm as a base, and forming an electrode pattern similar to the above carbon electrode by a photolithography process. After that, a gold electrode substrate was obtained by forming an insulating film by screen printing in the same manner as the carbon electrode described above.

(8)電気化学測定によるカーボン電極基板および金電極基板との比較
以上のようにして得たカーボン電極基板および金電極基板のそれぞれの作用極上に、標識剤分離溶液を1μL滴下し、60℃の雰囲気中で5分間乾燥させた。その後、液だめ用の厚さ1mmのシリコンゴムを電極基板に貼り付けた。このシリコンゴムには直径8mmの開口部を設けてあり、この開口部の中心と作用極の中心とが同一となるように貼り付けた。その後、この液だめ内に電解液として、0.2mol/LのPBS(pH7.4のリン酸ナトリウム緩衝液)を500μL、0.2mol/Lのトリエチルアミンを500μL混合した溶液を80μL滴下し、電極に電圧を印加することにより発生した電気化学発光量を測定した。電圧の印加は、0Vから1.3Vまで1秒間で走査した後、4秒間1.3Vを保持することで行った。電気化学発光量の測定は、光電子増倍管(浜松ホトニクス製H7360−01)を用いて行い、電圧印加中における最大発光量を測定することで行った。
(8) Comparison with Carbon Electrode Substrate and Gold Electrode Substrate by Electrochemical Measurement 1 μL of a labeling agent separation solution is dropped on each working electrode of the carbon electrode substrate and the gold electrode substrate obtained as described above, It was dried in the atmosphere for 5 minutes. Thereafter, silicon rubber having a thickness of 1 mm for liquid reservoir was attached to the electrode substrate. The silicon rubber was provided with an opening having a diameter of 8 mm, and was pasted so that the center of the opening and the center of the working electrode were the same. Thereafter, 80 μL of a solution prepared by mixing 500 μL of 0.2 mol / L PBS (sodium phosphate buffer at pH 7.4) and 500 μL of 0.2 mol / L triethylamine as an electrolyte solution was dropped into the reservoir. The amount of electrochemiluminescence generated by applying a voltage to was measured. The voltage was applied by scanning from 0 V to 1.3 V in 1 second and then holding 1.3 V for 4 seconds. The electrochemiluminescence amount was measured by using a photomultiplier tube (H7360-01 manufactured by Hamamatsu Photonics) and measuring the maximum luminescence amount during voltage application.

図6に本発明の実施の形態1におけるカーボン電極基板および金電極基板の電気化学発光量を示す。図6において、酸素プラズマ処理を行わない0秒では発光量は非常に低く、金電極基板の発光量の4%である。しかし、酸素プラズマ処理を行うと発光量は大きく増加し、処理を行わない0秒の10倍以上の発光量を示し、最も高い発光量を示す15秒の時においては金電極基板の発光量の67%まで高めることができた。これは実用上充分な発光量である。   FIG. 6 shows the electrochemiluminescence amounts of the carbon electrode substrate and the gold electrode substrate in the first embodiment of the present invention. In FIG. 6, the light emission amount is very low at 0 seconds when oxygen plasma treatment is not performed, which is 4% of the light emission amount of the gold electrode substrate. However, when the oxygen plasma treatment is performed, the amount of light emission is greatly increased. The amount of light emission is 10 times or more of 0 seconds when the treatment is not performed, and the light emission amount of the gold electrode substrate is 15 seconds at the highest light emission amount. It was possible to increase to 67%. This is a sufficient amount of light emission for practical use.

以上の結果から、カーボン電極の表面を酸化処理し、カーボン電極表面に酸性基が結合することで、標識剤を電極表面に静電的に吸着させることができ、カーボン電極での電気化学発光量の低下を大きく改善することが出来る。   From the above results, the surface of the carbon electrode is oxidized, and acidic groups are bonded to the surface of the carbon electrode, so that the labeling agent can be electrostatically adsorbed on the surface of the electrode, and the amount of electrochemiluminescence at the carbon electrode Can be greatly improved.

本発明にかかる生体分子検出用電極基板およびその製造方法は、生化学的試料中の検出すべき生体分子を高感度に検出することができ、遺伝子診断、感染症診断、食品検査等の用途に適用できる。   The electrode substrate for biomolecule detection and the manufacturing method thereof according to the present invention can detect biomolecules to be detected in a biochemical sample with high sensitivity, and are used for genetic diagnosis, infectious disease diagnosis, food inspection and the like. Applicable.

本発明の実施の形態1における生体分子検出用電極基板の上面図Top view of biomolecule detection electrode substrate in accordance with the first exemplary embodiment of the present invention. 本発明の実施の形態1における生体分子検出用電極基板の断面図Sectional drawing of the electrode substrate for biomolecule detection in Embodiment 1 of this invention 本発明の実施の形態1における生体分子検出用電極基板の製造方法の概略図Schematic of the manufacturing method of the electrode substrate for biomolecule detection in Embodiment 1 of this invention 本発明の実施の形態1におけるカーボン電極基板の上面図Top view of carbon electrode substrate according to Embodiment 1 of the present invention 本発明の実施の形態1におけるカーボン電極基板のB−B’での断面図Sectional drawing in B-B 'of the carbon electrode substrate in Embodiment 1 of this invention 本発明の実施の形態1における酸素プラズマ処理したカーボン電極表面のXPS測定結果を示すグラフThe graph which shows the XPS measurement result of the carbon electrode surface which carried out the oxygen plasma processing in Embodiment 1 of this invention 本発明の実施の形態1における酸素プラズマ処理したカーボン電極基板および金電極基板の電気化学発光量を示すグラフThe graph which shows the electrochemiluminescence amount of the carbon electrode board | substrate and gold electrode board | substrate which carried out the oxygen plasma processing in Embodiment 1 of this invention

符号の説明Explanation of symbols

1 作用極
2 対極
3 参照極
4 プレート基材
5 絶縁膜
6 酸性基
7 PET基板
8 銀電極
9 カーボン電極
10 カルボキシル基
DESCRIPTION OF SYMBOLS 1 Working electrode 2 Counter electrode 3 Reference electrode 4 Plate base material 5 Insulating film 6 Acid group 7 PET substrate 8 Silver electrode 9 Carbon electrode 10 Carboxyl group

Claims (12)

電気化学的な検出に使用する生体分子検出用電極基板であって、
プレート基材と、
前記プレート基材上に酸性基が結合されたカーボン材料からなるカーボン電極とを備えた生体分子検出用電極基板。
An electrode substrate for biomolecule detection used for electrochemical detection,
A plate substrate;
A biomolecule detection electrode substrate comprising: a carbon electrode made of a carbon material having an acidic group bonded to the plate base material.
前記酸性基は、カーボン電極の表面にのみ結合している請求項1に記載の生体分子検出用電極基板。 The electrode substrate for biomolecule detection according to claim 1, wherein the acidic group is bonded only to the surface of the carbon electrode. 前記酸性基は、カルボキシル基、スルホン酸基のうちのいずれかである請求項1または2に記載の生体分子検出用電極基板。 The electrode substrate for biomolecule detection according to claim 1 or 2, wherein the acidic group is any one of a carboxyl group and a sulfonic acid group. 前記プレート基材は、ガラス、プラスチック樹脂、セラミックのうちのいずれかである請求項1に記載の生体分子検出用電極基板。 The biomolecule detection electrode substrate according to claim 1, wherein the plate base material is one of glass, plastic resin, and ceramic. 前記カーボン材料は、カーボンペースト、グラッシーカーボン、DLCのうちのいずれかである請求項1に記載の生体分子検出用電極基板。 The electrode substrate for biomolecule detection according to claim 1, wherein the carbon material is any one of carbon paste, glassy carbon, and DLC. 前記カーボン電極は、金属材料層の上にカーボン材料層を形成したものである請求項1に記載の生体分子検出用電極基板。 The electrode substrate for biomolecule detection according to claim 1, wherein the carbon electrode is obtained by forming a carbon material layer on a metal material layer. プレート基材上にカーボン電極を形成する電極形成工程と、
前記プレートに形成されたカーボン電極の表面に酸性基を結合させる酸性基結合工程と、
からなる生体分子検出用電極基板の製造方法。
An electrode forming step of forming a carbon electrode on the plate substrate;
An acidic group binding step of binding an acidic group to the surface of the carbon electrode formed on the plate;
The manufacturing method of the electrode substrate for biomolecule detection which consists of.
前記酸性基は、カルボキシル基、スルホン酸基のうちのいずれかである請求項7に記載の生体分子検出用電極基板の製造方法。 The method for producing an electrode substrate for biomolecule detection according to claim 7, wherein the acidic group is any one of a carboxyl group and a sulfonic acid group. 前記酸性基結合工程は、カーボン電極表面の酸化処理で行う請求項7に記載の生体分子検出用電極基板の製造方法。 The method for producing an electrode substrate for biomolecule detection according to claim 7, wherein the acidic group binding step is performed by an oxidation treatment of a carbon electrode surface. 前記酸化処理は、酸素プラズマ、UVオゾンのうちのいずれかを用いた気相酸化処理である請求項9に記載の生体分子検出用電極基板の製造方法。 The method for producing an electrode substrate for biomolecule detection according to claim 9, wherein the oxidation treatment is a gas phase oxidation treatment using either oxygen plasma or UV ozone. 前記酸化処理は、硝酸、過酸化水素、オゾン水、ヨウ素水、次亜塩素酸塩、亜塩素酸塩、過マンガン酸塩、二クロム酸塩、ペルオキソニ硫酸塩、亜硫酸水素塩、スルホン化ピリジン塩、アミド硫酸、フルオロ硫酸、クロロ硫酸、三酸化硫黄、発煙硫酸のうちのいずれかを用いた液相酸化処理である請求項9に記載の生体分子検出用電極基板の製造方法。 The oxidation treatment is nitric acid, hydrogen peroxide, ozone water, iodine water, hypochlorite, chlorite, permanganate, dichromate, peroxodisulfate, bisulfite, sulfonated pyridine salt The method for producing an electrode substrate for biomolecule detection according to claim 9, which is a liquid phase oxidation treatment using any one of amidesulfuric acid, fluorosulfuric acid, chlorosulfuric acid, sulfur trioxide, and fuming sulfuric acid. 前記電極形成工程は、前記プレート基材上に金属材料層を形成し、前記金属材料層の上にカーボン材料層を形成することで行う請求項7に記載の生体分子検出用電極基板の製造方法。 The method for producing an electrode substrate for biomolecule detection according to claim 7, wherein the electrode forming step is performed by forming a metal material layer on the plate base material and forming a carbon material layer on the metal material layer. .
JP2008045411A 2008-02-27 2008-02-27 Electrode base for biomolecule detection and its manufacturing method Pending JP2009204375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008045411A JP2009204375A (en) 2008-02-27 2008-02-27 Electrode base for biomolecule detection and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008045411A JP2009204375A (en) 2008-02-27 2008-02-27 Electrode base for biomolecule detection and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2009204375A true JP2009204375A (en) 2009-09-10

Family

ID=41146818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008045411A Pending JP2009204375A (en) 2008-02-27 2008-02-27 Electrode base for biomolecule detection and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2009204375A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011154589A1 (en) * 2010-06-11 2011-12-15 Sakari Kulmala Accurate integrated low-cost electrode chips for point- of-need analysis and a method of utilization in hot electron-induced electrochemiluminescent systems
WO2011154588A1 (en) * 2010-06-11 2011-12-15 Sakari Kulmala Methods and devices to generate luminescence from integrated electrode chips by cathodic and bipolar pulses
JP2012058168A (en) * 2010-09-13 2012-03-22 Dainippon Printing Co Ltd Biosensor and method for manufacturing the same
JP2012242274A (en) * 2011-05-20 2012-12-10 Univ Of Tsukuba Food inspection device and food inspection method
JP2013248139A (en) * 2012-05-31 2013-12-12 Fukuda Denshi Co Ltd Electrode for biological information acquisition
TWI475220B (en) * 2012-10-31 2015-03-01 Univ Nat Taiwan Simple oil quality detector and method for detecting oil quality
JP2017129572A (en) * 2016-01-15 2017-07-27 凸版印刷株式会社 Electrode for biological sensor

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2580580A4 (en) * 2010-06-11 2014-08-06 Labmaster Oy Integrated carbon electrode chips for the electric excitation of lanthanide chelates, and analytical methods using these chips.
US9535029B2 (en) 2010-06-11 2017-01-03 Labmaster Oy Low-cost electrode chip variants and methods for multi analyte analysis and referencing based on cathodic electroluminescence
JP2013531790A (en) * 2010-06-11 2013-08-08 クルマラ,サカリ Electrical excitation of lanthanide chelates with integrated carbon electrode tips and analytical methods using these tips
WO2011154590A1 (en) 2010-06-11 2011-12-15 Sakari Kumala Integrated carbon electrode chips for the electric excitation of lanthanide chelates, and analytical methods using these chips.
US20130206610A1 (en) * 2010-06-11 2013-08-15 Labmaster Oy Integrated carbon electrode chips for the electric excitation of lanthanide chelates, and analytical methods using these chips
WO2011154589A1 (en) * 2010-06-11 2011-12-15 Sakari Kulmala Accurate integrated low-cost electrode chips for point- of-need analysis and a method of utilization in hot electron-induced electrochemiluminescent systems
EP2580580A1 (en) * 2010-06-11 2013-04-17 Labmaster Oy Integrated carbon electrode chips for the electric excitation of lanthanide chelates, and analytical methods using these chips.
JP2013529772A (en) * 2010-06-11 2013-07-22 クルマラ,サカリ References based on low-cost electrode tip variations, multi-analyte analysis techniques, and cathodic electroluminescence
WO2011154588A1 (en) * 2010-06-11 2011-12-15 Sakari Kulmala Methods and devices to generate luminescence from integrated electrode chips by cathodic and bipolar pulses
WO2011154591A1 (en) * 2010-06-11 2011-12-15 Sakari Kulmala Low-cost electrode chip variants and methods for multi analyte analysis and referencing based on cathodic electroluminescence
KR20140012933A (en) * 2010-06-11 2014-02-04 랩마스터 오와이 Integrated carbon electrode chips for the electric excitation of lanthanide chelates, and analytical methods using these chips
KR101958741B1 (en) * 2010-06-11 2019-03-18 랩마스터 오와이 Integrated carbon electrode chips for the electric excitation of lanthanide chelates, and analytical methods using these chips
EA027942B1 (en) * 2010-06-11 2017-09-29 Закрытое акционерное общество "Научные приборы" Accurate integrated electrode chips for point-of-need analysis and method of utilization in hot electron-induced electrochemiluminescent systems
US8920718B2 (en) 2010-06-11 2014-12-30 Labmaster Oy Methods and devices to generate luminescence from integrated electrode chips by cathodic and bipolar pulses
EA031831B1 (en) * 2010-06-11 2019-02-28 Закрытое акционерное общество "Научные приборы" Integrated electrode chips for the electric excitation of lanthanide chelates, and analytical methods using the same
US9176092B2 (en) 2010-06-11 2015-11-03 Labmaster Oy Integrated carbon electrode chips for the electric excitation of lanthanide chelates, and analytical methods using these chips
US9377433B2 (en) 2010-06-11 2016-06-28 Labmaster Oy Accurate integrated low-cost electrode chips for point-of-need analysis and a method of utilization in hot electron-induced electrochemiluminescent systems
US9222909B2 (en) 2010-09-13 2015-12-29 Dai Nippon Printing Co., Ltd. Biosensor and method for producing the same
JP2012058168A (en) * 2010-09-13 2012-03-22 Dainippon Printing Co Ltd Biosensor and method for manufacturing the same
JP2012242274A (en) * 2011-05-20 2012-12-10 Univ Of Tsukuba Food inspection device and food inspection method
JP2013248139A (en) * 2012-05-31 2013-12-12 Fukuda Denshi Co Ltd Electrode for biological information acquisition
TWI475220B (en) * 2012-10-31 2015-03-01 Univ Nat Taiwan Simple oil quality detector and method for detecting oil quality
JP2017129572A (en) * 2016-01-15 2017-07-27 凸版印刷株式会社 Electrode for biological sensor

Similar Documents

Publication Publication Date Title
JP2009204375A (en) Electrode base for biomolecule detection and its manufacturing method
Dixon et al. An inkjet printed, roll-coated digital microfluidic device for inexpensive, miniaturized diagnostic assays
Loget et al. Shaping and exploring the micro-and nanoworld using bipolar electrochemistry
CA2413929C (en) Electrochemical immunoassays using colloidal metal markers
WO1999063347A2 (en) Electrochemical based assay processes, instrument and labels
US8920626B2 (en) Method of electrochemically detecting a sample substance
Li et al. A sensitive electrochemical aptasensor based on water soluble CdSe quantum dots (QDs) for thrombin determination
KR101925156B1 (en) Accurate integrated low-cost electrode chips for point- of-need analysis and a method of utilization in hot electron-induced electrochemiluminescent systems
KR102101941B1 (en) Manufacturing method of biosensor device
MXPA06004205A (en) Apparatus and methods for detecting nucleic acid in biological samples.
Zhao et al. Biochemical sensing by nanofluidic crystal in a confined space
KR101949537B1 (en) Methods and devices to generate luminescence from integrated electrode chips by cathodic and bipolar pulses
KR20120126977A (en) CNT-based three electrode system, fabrication of the same and electrochemical biosensor using the same
Yang et al. High specific surface gold electrode on polystyrene substrate: Characterization and application as DNA biosensor
KR20140106268A (en) Method for Detecting Biomolecules Using Magnetic Particles
Jin et al. Voltammetric characterization of a fully integrated, patterned single walled carbon nanotube three-electrode system on a glass substrate
Khanmohammadi et al. Electrochemical sandwich-type immunosensor for the detection of PSA based on a trimetallic AgAuPt nanocomposite synthesized using the galvanic replacement reaction
JP2008134105A (en) Solution component sensor
JP2009068869A (en) Biomolecule detection method
JP2005527799A (en) Vertical impedance sensor structure and method of manufacturing vertical impedance sensor structure
Raju et al. Ruthenium-tris-bipyridine derivatives as a divine complex for electrochemiluminescence based biosensor applications
KR100785007B1 (en) sensing switch and detecting method using the same
JUSKOVÁ MASARYK UNIVERSITY IN BRNO
JP5480105B2 (en) Electrode substrate, working electrode and inspection chip
JP5806892B2 (en) Electrochemical detection method of detection substance and electrochemical detection method of test substance