JPH04303770A - Analyzing method for immunity of antigen - Google Patents

Analyzing method for immunity of antigen

Info

Publication number
JPH04303770A
JPH04303770A JP9314591A JP9314591A JPH04303770A JP H04303770 A JPH04303770 A JP H04303770A JP 9314591 A JP9314591 A JP 9314591A JP 9314591 A JP9314591 A JP 9314591A JP H04303770 A JPH04303770 A JP H04303770A
Authority
JP
Japan
Prior art keywords
antigen
antibody
enzyme
secondary antibody
primary antibody
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9314591A
Other languages
Japanese (ja)
Inventor
Kiyoshi Kotani
小谷 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP9314591A priority Critical patent/JPH04303770A/en
Publication of JPH04303770A publication Critical patent/JPH04303770A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

PURPOSE:To provide a new immunity analyzing method, of a high detection sensitivity, to destroy an immunoriposome and detect indirectly an antigen, after catching the multivalent antigen between an immobilized primary antibody and the immunoriposome. CONSTITUTION:A primary antibody immobilized to the solid phase of a microwell, etc., and a immunoriposome to enclose a detecting element of an enzyme reagent, etc., within the reposome and to combine the secondary antibody in its surface are used, and by stages, a multivalent antigen is in a sandwich state caught between these primary and secondary antibodies, and an immunity complex is formed. The quantity of the antigen is measured by destroying the immunoriposome, with which the secondary antibody taken part in this complex formation combines, with a lipase, etc., and measuring the quantity reacted by a discharged detecting element.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、免疫リポソームを用い
た抗原の免疫分析法に関する。さらに詳しくは、一次抗
体をプラスチックチューブ、マイクロウェルおよび膜表
面等の固相に固定し、二次抗体をリポソーム表面に固定
し、この一次抗体および二次抗体間に試料中のタンパク
質や多糖類など二つ以上の抗体認識部位を持つ化合物を
抗原として挟み込むことで、これらの特定の抗原を被検
液から分離し検出する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for immunoassay of antigens using immunoliposomes. More specifically, the primary antibody is immobilized on a solid phase such as a plastic tube, microwell, or membrane surface, and the secondary antibody is immobilized on the liposome surface. The present invention relates to a method of separating and detecting specific antigens from a test liquid by sandwiching compounds having two or more antibody recognition sites as antigens.

【0002】0002

【従来の技術】免疫測定法は、血中、尿中の各種ホルモ
ン(甲状腺刺激ホルモン、黄体形成ホルモン、卵胞刺激
ホルモン、サイロキシン、プロラクチン、絨毛性ゴナド
トロピン等)、腫瘍マーカー(α−フェトプロテイン、
癌胎児性抗原、フェリチン、エラスターゼ、ニューロン
特異エノラーゼ等)、ウィルス(麻疹ウィルス、風疹ウ
ィルス、単純ヘルペスウィルス、サイトメガロウィルス
、成人T細胞白血病ウィルス、AIDSウィルス、EB
ウィルス等)、病原微生物(クラミジア、リン菌、溶連
菌、肺炎マイコプラズマ、アスペルギルス、ヒストプラ
ズマ、コクシジオイデス、トキソプラズマ等)、白血球
抗原(血小板表面抗原、HLA−A,C,DR等)、自
己抗体(抗核抗体、抗DNA抗体、抗ヒストン核蛋白抗
体、抗セントロメア抗体、膵島細胞膜抗体、抗ミトコン
ドリア抗体等)の検査において、また食品や汚水等環境
中の汚染病原菌等(サルモネラ、エンテロバクター、ブ
ドウ球菌、大腸菌、各種エンテロトキシン等)の微量成
分の検出において、現在最も頻繁に用いられている方法
である。
[Prior Art] Immunoassay is based on various hormones (thyroid-stimulating hormone, luteinizing hormone, follicle-stimulating hormone, thyroxine, prolactin, chorionic gonadotropin, etc.) in the blood and urine, tumor markers (α-fetoprotein,
carcinoembryonic antigen, ferritin, elastase, neuron-specific enolase, etc.), viruses (measles virus, rubella virus, herpes simplex virus, cytomegalovirus, adult T-cell leukemia virus, AIDS virus, EB)
Viruses, etc.), pathogenic microorganisms (Chlamydia, Phosphorus bacteria, Streptococcus, Mycoplasma pneumoniae, Aspergillus, Histoplasma, Coccidioides, Toxoplasma, etc.), leukocyte antigens (platelet surface antigens, HLA-A, C, DR, etc.), autoantibodies (antinuclear antibodies, anti-DNA antibodies, anti-histone nuclear protein antibodies, anti-centromere antibodies, pancreatic islet cell membrane antibodies, anti-mitochondrial antibodies, etc.), as well as contaminating pathogenic bacteria in the environment such as food and sewage (Salmonella, Enterobacter, Staphylococcus, Escherichia coli). This is currently the most frequently used method for detecting trace components of enterotoxins, various enterotoxins, etc.

【0003】免疫測定法には各種の方法が知られている
が、中でも、検出しようとするタンパク質および多糖類
等が高分子量の、二つ以上の抗体認識部位を有するいわ
ゆる多価抗原である場合に特異的抗原認識部位が異なる
二種以上の抗体を用いてその抗原を挟みこむ反応様式に
より抗原を捕獲、検出する方法がある。
[0003] Various methods are known for immunoassay, but among them, when the protein, polysaccharide, etc. to be detected is a so-called multivalent antigen having a high molecular weight and two or more antibody recognition sites. There is a method of capturing and detecting an antigen by using two or more types of antibodies with different specific antigen recognition sites and sandwiching the antigen between them.

【0004】この方法は、まず大過剰量の固相固定化抗
体(一次抗体)と試料中の抗原とで免疫複合体を形成さ
せ、次に酵素で標識した過剰量の二次抗体を先の免疫複
合体の異なった抗体認識部位に結合させた後、未反応の
標識抗体を洗浄で除いたのち二次抗体標識の酵素に起因
する情報を吸光度等で測定し、最終的にある濃度範囲の
抗原を検出しようとする免疫測定法であり、サンドイッ
チ型Enzyme−linked Immunosor
bent Assay 法(Sandwich−ELI
SA 法)[文献:(1)石川等編、「酵素免疫測定法
第2版」、医学書院(1982年)、(2)今田由美子
、食品衛生研究、Vol.38, No. 5, pp
39−54 、(3)Addison, G.M., 
Horm. Metab. Res., 3, 59(
1971)] と呼ばれている。現在では、この方法は
抗原の検出感度の高い方法の一つとして常用されている
[0004] In this method, an immune complex is first formed with a large excess of a solid-phase immobilized antibody (primary antibody) and an antigen in a sample, and then an excess amount of an enzyme-labeled secondary antibody is injected into the first antibody. After binding to different antibody recognition sites on the immune complex, unreacted labeled antibodies are removed by washing, and information resulting from the enzyme of the secondary antibody label is measured by absorbance, etc., and finally a concentration range of It is an immunoassay method that attempts to detect antigens, and is a sandwich type enzyme-linked immunosor.
bent assay method (Sandwich-ELI
SA method) [References: (1) Edited by Ishikawa et al., "Enzyme immunoassay method 2nd edition", Igaku Shoin (1982), (2) Yumiko Imada, Food Hygiene Research, Vol. 38, No. 5, pp.
39-54, (3) Addison, G. M. ,
Horm. Metab. Res. , 3, 59 (
1971)]. At present, this method is commonly used as one of the highly sensitive methods for detecting antigens.

【0005】この免疫測定法における一次抗体を固定化
する固相は、一般的にポリスチレン等のプラスチック製
マイクロウェル、プラスチック製各種チューブ、ラテッ
クスビーズ、ポリスチレンボール [Yoshihir
o Kasai, Clin. Chem. Enzy
m. Comms.,Vol. 2, pp137−1
43 (1990)] 、マグネチックパーティクル 
[Smith, K.O. : J. Intect.
 Disease, 136, 329 (1977)
]等であり、このような各種固相に固定化された一次抗
体および二次抗体は、共にモノクローナル抗体またはポ
リクローナル抗体が用いられる。二次抗体の標識には酵
素以外に、蛍光物質、発光物質または放射性同位体など
が用いられ、用いる標識物質の違いによってそれぞれ 
Immunofluorometric Assay 
(IFMA)法、Immunoluminometri
c Assay (ILMA) 法、Immunora
diometric Assay(IRMA)法と呼ば
れている [川島紘一郎訳、「イムノアッセイ入門」、
南山堂(1987年)]。
[0005] The solid phase for immobilizing the primary antibody in this immunoassay is generally made of plastic microwells such as polystyrene, various plastic tubes, latex beads, polystyrene balls [Yoshihiri et al.
o Kasai, Clin. Chem. Enzy
m. Comms. , Vol. 2, pp137-1
43 (1990)], magnetic particles
[Smith, K. O. : J. Intect.
Disease, 136, 329 (1977)
] etc., and both the primary antibody and the secondary antibody immobilized on such various solid phases are monoclonal antibodies or polyclonal antibodies. In addition to enzymes, fluorescent substances, luminescent substances, radioactive isotopes, etc. are used to label the secondary antibodies, and each label differs depending on the labeling substance used.
Immunofluorometric assay
(IFMA) method, Immunoluminometri
c Assay (ILMA) method, Immunora
It is called the diometric assay (IRMA) method [Translated by Koichiro Kawashima, "Introduction to Immunoassay",
Nanzando (1987)].

【0006】これらの方法は、具体的には、前記のよう
に抗体間にサンドイッチ型に抗原を挟んだ後、ELIS
A法では二次抗体標識の酵素、例えばHRP(Hors
eradishPeroxidase) 酵素の活性を
発色量で測定したり、またはIRMA法ではI−125
等の標識ラジオアイソトープの放射能を液体シンチレー
ションカウンターで測定することにより抗原の検出を行
う方法である。このサンドイッチ型免疫測定法では、上
記のような二次抗体の標識物質の違いにより抗原の検出
感度が大きく異なるし、また感度の違い以外にも測定装
置、方法の簡便さなど実用性の面で多くの長所短所の特
徴を持っている。しかし、簡便さ、感度、速度、精度お
よび歴史的な面から目的に応じてIFMA法とIRMA
法が現在最もよく用いられている。
[0006] Specifically, these methods involve sandwiching an antigen between antibodies as described above, and then performing ELIS.
In method A, a secondary antibody-labeled enzyme, such as HRP (Hors
(eradishPeroxidase) Enzyme activity can be measured by color development, or IRMA method can be used to measure I-125 enzyme activity.
This is a method for detecting antigens by measuring the radioactivity of labeled radioisotopes, such as, using a liquid scintillation counter. In this sandwich-type immunoassay method, the detection sensitivity of the antigen varies greatly depending on the labeling substance of the secondary antibody as mentioned above. It has many advantages and disadvantages. However, due to convenience, sensitivity, speed, accuracy, and historical aspects, the IFMA method and the IRMA method are
method is currently the most commonly used.

【0007】しかしながら、このような各種の標識によ
る免疫測定法について、種々の問題点が指摘されている
。例えば、まず第一に抗体の標識法にラジオアイソトー
プを用いた方法は、現在では最も感度が高い(数amo
l)検出方法であるが、(1)標識化合物の純度が問題
となる、(2)核種の崩壊という原理的な限界から、あ
る抗原濃度以上の感度は困難である、(3)アイソトー
プ使用可能な設備のもとでのみ利用され得るという問題
を有する。蛍光物質を標識として用いる方法は、(1)
未反応の蛍光標識物質の洗浄除去時の非特異吸着が問題
となる、(2)蛍光発光の条件で他分子との相互作用で
蛍光が衰弱することがある、(3)吸収スペクトルと蛍
光スペクトルのピーク波長領域の重なりがバックグラウ
ンドとして生じやすい、(4)装置が簡便化し難い、(
5)蛍光発光時間に限度があるという問題を有する。発
光物質を標識として用いる方法は、(1)用いる試薬が
高価なものが多い、(2)生物発光を利用する場合は、
二種類の酵素を利用するので高価となり、また操作が煩
雑である、(3)発光時間が比較的短いという問題を有
する。一方、酵素を標識として用いる方法は、前記のよ
うな問題点はなく、むしろ(1)試薬が安価である、(
2)測定装置が簡便である、(3)時間の経過に伴い発
色が比較的長く続くので非特異吸着のみなくせば高感度
化が期待される、(4)取扱いが安全であるという利点
を有する。
[0007] However, various problems have been pointed out regarding immunoassay methods using such various labels. For example, the method that uses radioisotopes to label antibodies is currently the most sensitive (several
l) Regarding the detection method, (1) the purity of the labeled compound is a problem, (2) sensitivity above a certain antigen concentration is difficult due to the fundamental limit of decay of the nuclide, and (3) isotope can be used. The problem is that it can only be used under certain facilities. The method of using a fluorescent substance as a label is (1)
Non-specific adsorption during washing removal of unreacted fluorescent labeling substances is a problem; (2) fluorescence may weaken due to interaction with other molecules under fluorescent conditions; (3) absorption spectra and fluorescence spectra. (4) It is difficult to simplify the equipment; (4) it is difficult to simplify the equipment;
5) There is a problem that the fluorescence emission time is limited. Methods using luminescent substances as labels include (1) the reagents used are often expensive; (2) when bioluminescence is used,
Since two types of enzymes are used, it is expensive and the operation is complicated, and (3) the luminescence time is relatively short. On the other hand, the method using an enzyme as a label does not have the above-mentioned problems, but rather (1) the reagent is cheap;
2) The measurement device is simple, (3) Color development continues for a relatively long time as time passes, so if non-specific adsorption is eliminated, higher sensitivity can be expected, and (4) It is safe to handle. .

【0008】このように酵素標識法は他の標識法と比較
し、経済性、操作性、安全性の面で有用であることがわ
かる。また、感度の面でも放射性標識法に比較してそれ
以上の高感度(amol以下)を達成したとの報告もあ
る〔石川栄治,病体生理, Vol. 3, No. 
8 (1984:8) pp654−660〕。
[0008] As described above, the enzyme labeling method is found to be useful in terms of economy, operability, and safety compared to other labeling methods. In addition, there are reports that it has achieved higher sensitivity (less than amol) compared to radiolabeling methods [Eiji Ishikawa, Pathophysiology, Vol. 3. No.
8 (1984:8) pp654-660].

【0009】一方、リポソームを免疫測定法に利用しよ
うとする試みがいくつか見られる。例えば、一次抗体を
固相に固定していない、いわゆる均一溶液系(homo
geneoussystem、一次抗体を固相に固定し
た場合の heterogeneous system
 と区別して用いられる) でのサンドイッチ法 [文
献:(1)特開昭60−138466号公報、(2)特
開昭61−269070号公報、(3)特開昭63−1
18658号公報] 、および固相に固定した一次抗体
に対して試料中の抗原と試薬としてのリポソーム標識抗
原の間で競争的に結合させ、未反応リポソーム試薬を除
去したあと、結合リポソームのみを破壊し定量するコン
ペティティブ法(Competitive Immun
oassay 法)[J.P.O. Connell,
 Clin. Chem., 31, 1424 (1
985)] が知られている。このサンドイッチ法とコ
ンペティティブ法を比較すると、一般的に低濃度の抗原
領域でサンドイッチ法の方がノイズが少なく高感度であ
ると考えられており、一方、原理的に2種類の抗体でサ
ンドイッチできない抗原、つまり抗体認識部位が唯一の
低分子抗原であるハプテンの場合にはコンペティティブ
法が用いられている。
On the other hand, several attempts have been made to utilize liposomes in immunoassays. For example, in a so-called homogeneous solution system (homogenous solution system) in which the primary antibody is not immobilized on a solid phase,
genetic system, heterogeneous system when the primary antibody is immobilized on a solid phase
sandwich method [Literatures: (1) JP-A-60-138466, (2) JP-A-61-269070, (3) JP-A-63-1
18658], and the antigen in the sample and the liposome-labeled antigen as a reagent are competitively bound to the primary antibody immobilized on a solid phase, and after removing the unreacted liposome reagent, only the bound liposomes are destroyed. Competitive Immunization Method
oasay method) [J. P. O. Connell,
Clin. Chem. , 31, 1424 (1
985)] is known. Comparing the sandwich method and the competitive method, the sandwich method is generally considered to be more sensitive with less noise in low-concentration antigen regions; In other words, in the case of haptens where the only antibody recognition site is a low-molecular antigen, a competitive method is used.

【0010】0010

【発明が解決しようとする課題】このように酵素標識を
利用したサンドイッチ法は、一般に優れた方法ではある
が、検出感度においていまだ充分ではなく、また検出に
要する時間が長いという問題が指摘されている。例えば
、現在、食品に混入した病原性細菌等の検出には、例え
ばサルモネラ菌の場合を例に挙げれば、細菌の鞭毛の蛋
白に対するモノクローナル抗体またはポリクローナル抗
体を用いてサンドイッチ−ELISA法で細菌の検出を
行っている。しかし、一試験当たりの細菌数は約10の
4〜5乗個であり、この時の検出方法は、第一に前処理
として食品からの抽出液を栄養培地で一晩培養し、次に
スクリーニング用の培地で感染細菌群をさらに一晩培養
する方法である。この方法では、検査結果がでるまでに
約二日を要し、迅速な検査とは言えない。
[Problems to be Solved by the Invention] Although the sandwich method using enzyme labels is generally an excellent method, it has been pointed out that the detection sensitivity is still insufficient and the time required for detection is long. There is. For example, currently, in the case of Salmonella, for example, the detection of pathogenic bacteria in foods is carried out using a sandwich-ELISA method using monoclonal or polyclonal antibodies against bacterial flagellar proteins. Is going. However, the number of bacteria per test is approximately 10 to the 4th to 5th power, and the detection method at this time is to first culture the extract from the food overnight in a nutrient medium as a pretreatment, and then to screen. In this method, the infected bacterial group is further cultured overnight in a suitable medium. With this method, it takes about two days to get test results, so it cannot be called a quick test.

【0011】従って、検査時間をより短縮できるような
測定法の開発が望まれている。このためには抗原検出感
度を上げる必要があり、ただ一晩の前培養で汚染細菌の
検出が可能となることが要望されている。同様のことが
感染性の病原菌である GroupA, B 連鎖球菌
等の検出においても要望されていることであり、高感度
化による検査時間の短縮は当業界の課題となっているの
が実情である。
[0011]Therefore, it is desired to develop a measurement method that can further shorten the inspection time. For this purpose, it is necessary to increase antigen detection sensitivity, and it is desired that contaminating bacteria can be detected with just one night of preculture. The same thing is required for the detection of infectious pathogens such as Group A and B Streptococcus, and the reality is that reducing testing time by increasing sensitivity is an issue in this industry. .

【0012】また、前記のようにリポソームを用いたサ
ンドイッチ法が知られているが、これらは前記のように
いずれもいわゆる均一溶液系のものであり、補体を用い
てリポソームを破壊しているので、■37℃での補体活
性化を行わなければならないこと、■用いている補体溶
液(血清)中のコンタミによるノイズの発生、■反応時
間の長さ、■補体の不安定さと、4℃に保存しなければ
ならないという問題点が指摘されており、この方法もい
まだ充分な方法ではない。
[0012] Furthermore, as mentioned above, sandwich methods using liposomes are known, but as mentioned above, these are all so-called homogeneous solution systems, and the liposomes are destroyed using complement. Therefore, ■ complement activation must be performed at 37°C, ■ generation of noise due to contamination in the complement solution (serum) used, ■ length of reaction time, ■ instability of complement. However, it has been pointed out that this method has the problem of having to be stored at 4°C, and this method is still not satisfactory.

【0013】[0013]

【課題を解決するための手段】本発明者らは、前記のよ
うな課題に鑑み、新規でかつ従来と同様もしくはそれ以
上に高い検出感度を有するサンドイッチ法を達成するた
め、酵素分子を封入し二次抗体を表面に結合した免疫リ
ポソームを用いる方法に着目し、研究を重ねた。その結
果、抗原の低濃度領域で従来法以上に高感度な検出が可
能な方法を見出し、本発明を完成するに至った。
[Means for Solving the Problems] In view of the above-mentioned problems, the present inventors encapsulated enzyme molecules in order to achieve a novel sandwich method with detection sensitivity as high as or higher than conventional methods. We focused on a method using immunoliposomes with secondary antibodies bound to the surface, and conducted repeated research. As a result, they discovered a method that allows detection with higher sensitivity than conventional methods in the low antigen concentration range, and completed the present invention.

【0014】即ち、本発明の要旨は、固相に固定化した
一次抗体と、検出素子を封入したリポソーム表面に二次
抗体を結合した免疫リポソームとの間で検査対象となる
抗原を挟んで捕獲し、形成した免疫複合体のリポソーム
を破壊することにより、放出された検出素子を測定する
ことを特徴とする抗原の免疫分析法に関する。
That is, the gist of the present invention is to capture an antigen to be tested by sandwiching it between a primary antibody immobilized on a solid phase and an immunoliposome in which a secondary antibody is bound to the surface of the liposome encapsulating a detection element. The present invention also relates to an immunoassay method for antigens, which is characterized in that the liposomes of the formed immune complexes are destroyed and the released detection elements are measured.

【0015】前記のような均一溶液系でリポソームを用
いた従来法と比較し、本発明のサンドイッチ法では、一
次抗体が固相に固定化されており、かつ二次抗体はリポ
ソーム表面に結合して免疫リポソームを形成しており、
更にリポソーム中に酵素等の検出素子が含有されている
点である。本発明では、特に検出素子が抗体に直接結合
したものでなくリポソーム中に封入されているので、一
次抗体と二次抗体の間で抗原をサンドイッチ状に結合さ
せた後、未反応の免疫リポソームを洗浄操作で除き、サ
ンドイッチを形成して残った二次抗体が結合したリポソ
ームのみを破壊し、検出素子を放出させ、この検出素子
を測定することにより抗原量を知る方法である。
[0015] Compared to the conventional method using liposomes in a homogeneous solution system as described above, in the sandwich method of the present invention, the primary antibody is immobilized on a solid phase, and the secondary antibody is bound to the surface of the liposome. to form immunoliposomes,
Furthermore, the liposome contains a detection element such as an enzyme. In the present invention, in particular, since the detection element is not directly bound to the antibody but encapsulated in the liposome, the antigen is bound between the primary antibody and the secondary antibody in a sandwich manner, and then the unreacted immunoliposome is removed. In this method, only the liposomes bound to the secondary antibodies that remain after forming a sandwich after being removed by a washing operation are destroyed, a detection element is released, and the amount of antigen is determined by measuring this detection element.

【0016】このように前記の従来法では一次抗体はリ
ポソーム上に固定化されており、免疫複合体形成はリポ
ソーム表面で生じるので、リポソーム破壊後の流出物質
による反応は分散しているリポソームを含む溶液中で均
一に生じるものと考えられている。これに対して、本発
明の方法では一次抗体がプラスチック等の固相に固定化
されているので、リポソーム破壊後の発色反応等は固相
表面を中心に生じるものと考えられる。従って、本発明
の方法の長所は極微量な溶液でも発色しやすい点にある
。また、一次抗体の吸着量は固相表面積に比例するので
、従来法のリポソーム上に一次抗体を結合する場合には
、リポソームの不安定さ故に結合量が限られるが、本発
明の方法の場合には固相表面に多量に一次抗体を吸着さ
せることができる。また、固相表面状態を質、量的に変
化させる工夫により更に高感度化を実現することも可能
である。
[0016] In this way, in the conventional method described above, the primary antibody is immobilized on the liposome, and the immune complex formation occurs on the liposome surface, so the reaction by the effluent material after liposome destruction involves the dispersed liposomes. It is thought that it occurs uniformly in solution. On the other hand, in the method of the present invention, since the primary antibody is immobilized on a solid phase such as plastic, it is thought that the color reaction after liposome disruption occurs mainly on the surface of the solid phase. Therefore, the advantage of the method of the present invention is that it is easy to develop color even in a very small amount of solution. In addition, since the amount of primary antibody adsorbed is proportional to the surface area of the solid phase, when binding the primary antibody onto liposomes using conventional methods, the amount of binding is limited due to the instability of the liposomes, but in the case of the method of the present invention, A large amount of primary antibody can be adsorbed onto the solid phase surface. Further, it is also possible to achieve even higher sensitivity by changing the solid phase surface state qualitatively and quantitatively.

【0017】本発明の方法で使用する固相としては、一
次抗体を固定し得る通常使用される材質であればいずれ
でもよい。例えばポリスチレンチューブ、マイクロウェ
ル、ビーズ、パーチクル、パデル、ファイバーなどのプ
ラスチック表面、天然繊維膜、合成高分子膜等が例示さ
れる。
The solid phase used in the method of the present invention may be any commonly used material that can immobilize the primary antibody. Examples include plastic surfaces such as polystyrene tubes, microwells, beads, particles, padels, and fibers, natural fiber membranes, and synthetic polymer membranes.

【0018】本発明の方法で使用する検出素子としては
、抗原抗体反応に影響を与えず、反応物が存在しても検
出可能な物質であればよいが、低分子物質や膜との相互
作用が強く膜から任意に漏れ出るものは好ましくない。 また、検出素子そのものか、又は化学反応によって生ず
る生成物が高い分光学的特性を持ち、二次情報として高
感度に検出できる生成物を生成できる化合物であれば特
に制限されない。例えば、酵素、抗体、補酵素、酵素基
質、ペプチドまたは配糖体などの生理活性物質、蛍光物
質、色素、および薬剤などが挙げられる。酵素としては
例えば Horseradish Peroxidas
e, Alkaline Phosphatase,β
−Galactosidase, Glucose O
xidase,Glucose−6−Phosphat
aseが、抗体としては例えばビオチン化抗体、アビジ
ン化抗体等の標識抗体が、補酵素としては例えばNAD
、NAD(P)H、FAD、ビオチン、FMN及びアス
コルビン酸等が、酵素基質としては例えばp−nito
rophenyl phosphate, o−phe
nylene diamine, o−nitorop
henyl phosphate 等が、ペプチドとし
ては例えばアビジン、レクチン、プロテインA、細胞表
面抗原等が、配糖体としては例えばジゴキシン、ジゴキ
シゲニン、cAMP、ATP、グルコース誘導体等が、
蛍光物質としては例えばFITC、Calcein、R
hodamine(isothiocyanate),
 Umbelliferone等が、色素としては例え
ばLuminol, p−lodophenol,ac
ridium ester等が、および薬剤としては例
えばAmpicillin, Penicillin,
 Chloramphenicol 等が例示される。 検出素子としてはこれらの中でも特に酵素が基質に対す
る多様性と情報の増幅性の点で好ましく、例えば Ho
rseradish Peroxidase が好まし
い。
[0018] The detection element used in the method of the present invention may be any substance that does not affect the antigen-antibody reaction and can be detected even if a reactant is present. It is not preferable to have a strong amount of water that leaks out of the membrane arbitrarily. Further, there is no particular restriction as long as the detection element itself or the product produced by a chemical reaction has high spectroscopic properties and can produce a product that can be detected with high sensitivity as secondary information. Examples include enzymes, antibodies, coenzymes, enzyme substrates, physiologically active substances such as peptides or glycosides, fluorescent substances, dyes, and drugs. Examples of enzymes include Horseradish Peroxidas
e, Alkaline Phosphatase, β
-Galactosidase, Glucose O
xidase, Glucose-6-Phosphat
As an antibody, a labeled antibody such as a biotinylated antibody or an avidinized antibody can be used, and a coenzyme can be, for example, NAD.
, NAD(P)H, FAD, biotin, FMN, ascorbic acid, etc., and enzyme substrates such as p-nito
rophenyl phosphate, o-phe
nylene diamine, o-nitrop
peptides such as avidin, lectin, protein A, cell surface antigens, etc., and glycosides such as digoxin, digoxigenin, cAMP, ATP, glucose derivatives, etc.
Examples of fluorescent substances include FITC, Calcein, R
hodamine (isothiocyanate),
Examples of dyes include Luminol, p-lodophenol, ac
ridium ester, etc., and drugs such as Ampicillin, Penicillin,
Examples include Chloramphenicol. Among these, enzymes are particularly preferred as detection elements in terms of substrate diversity and information amplification; for example, Ho
rseradish peroxidase is preferred.

【0019】一次抗体および二次抗体は検出抗原に対し
てサンドイッチ様に結合できる抗体であれば特に制限は
ない。例えば一次抗体と二次抗体が、それぞれ異なるエ
ピトープを認識するモノクローナル抗体である組合せ、
この抗原のポリクローナル抗体である組合せあるいはモ
ノクローナル抗体およびポリクローナル抗体の組合せで
あってもよい。本発明の方法では一次、二次抗体ともに
ポリクローナル(Affinityカラムで精製された
)抗体であることが好ましい。
The primary antibody and secondary antibody are not particularly limited as long as they can bind to the detection antigen in a sandwich-like manner. For example, a combination in which the primary antibody and secondary antibody are monoclonal antibodies that recognize different epitopes,
It may be a combination of polyclonal antibodies or a combination of monoclonal and polyclonal antibodies to this antigen. In the method of the present invention, both the primary and secondary antibodies are preferably polyclonal (purified using an affinity column).

【0020】リポソームは、リポソームの製造のために
採られる通常の方法により容易に得られ、得られたリポ
ソームに特に制限はない。例えば、Dimyristo
yl Phosphatidyl Choline (
DMPC), Dilauroyl Phosphat
idyl Ethanolamine (DLPE),
 Dicetylphosphate (DCP) 等
のリン脂質を使用した、径約0.05〜0.2μmのリ
ポソームが使用可能である。特に、DMPC、DLPE
、DCPを構成リン脂質とし、リポソーム径が約0.1
μmのものが好ましい。
[0020] Liposomes can be easily obtained by conventional methods for producing liposomes, and there are no particular limitations on the liposomes obtained. For example, Dimyristo
yl Phosphatidyl Choline (
DMPC), Dilauroyl Phosphat
idyl Ethanolamine (DLPE),
Liposomes using phospholipids such as Dicetylphosphate (DCP) and having a diameter of about 0.05 to 0.2 μm can be used. In particular, DMPC, DLPE
, DCP is the constituent phospholipid, and the liposome diameter is approximately 0.1
Preferably, the thickness is μm.

【0021】リポソーム中に検出素子を封入する方法と
しては各種脂質分子を溶解した有機溶媒中に酵素水溶液
をサスペンジョンさせ、次いで室温、減圧下で有機溶媒
を蒸発させゾル状の脂質膜を形成させる方法(逆相蒸発
法)がよく、この後超音波処理により均一なリポソーム
粒子を形成させる方法が例示される。このようにして作
成したリポソームは、リン脂質1〜10万分子、好まし
くは約5〜10万分子からなり、内部には約100分子
、好ましくは約10分子の検出素子が含まれている。
[0021] A method for encapsulating a detection element in a liposome is to suspend an enzyme aqueous solution in an organic solvent in which various lipid molecules are dissolved, and then evaporate the organic solvent at room temperature and under reduced pressure to form a sol-like lipid film. (reverse phase evaporation method) is preferred, and a method of forming uniform liposome particles by subsequent ultrasonication is exemplified. The liposome thus prepared consists of 10,000 to 100,000 molecules of phospholipid, preferably about 50,000 to 100,000 molecules, and contains about 100 molecules, preferably about 10 molecules of detection elements inside.

【0022】リポソームの表面に二次抗体を結合した免
疫リポソームは、ペプチドの一般的な製造方法で製造さ
れる。例えば水溶性のカップリング試薬、例えばカルボ
ジイミド、N−hydroxysuccinimidy
l 3−(2−pyridyldithio)prop
ionate (SPDP)等を媒介とし、リポソーム
構成リン脂質のアミノ基と、二次抗体分子中のカルボキ
シル基の間でペプチド結合させることによって、免疫リ
ポソームを得ることができる。このようにして作成した
免疫リポソームは、リポソーム1個あたりその表面には
1〜10分子、好ましくは約5分子の二次抗体が結合し
ている。
[0022] Immunoliposomes having a secondary antibody bound to the surface of the liposomes are produced by a general method for producing peptides. For example, water-soluble coupling reagents such as carbodiimides, N-hydroxysuccinimidy
l 3-(2-pyridyldithio)prop
Immunoliposomes can be obtained by creating a peptide bond between the amino group of the liposome-constituting phospholipid and the carboxyl group in the secondary antibody molecule using ionate (SPDP) or the like. In the thus prepared immunoliposome, 1 to 10 molecules, preferably about 5 molecules of secondary antibody are bound to the surface of each liposome.

【0023】複合体形成後に、リポソームを破壊する方
法としては、一般的なリポソームの破壊方法である非イ
オン界面活性剤の使用、例えば TritonX−10
0, Tween 80 [(1) Anzai, K
., Chem. Pharm. Bull., 28
 (1980) 1762, (2)G. Eytan
, FEBSLetters, 57 (1975) 
121−125]、イオン系界面活性剤の使用、例えば
コール酸ナトリウム [Javier Ruiz, B
iochimica et Biophysica, 
Acta, 937 (1988) 127−134]
を用いることができる。また、本発明者はこれらの破壊
方法とは別に既にホスフォリパーゼ A2 (PLA2
)が本組成のリポソームを効率よく破壊し、封入した検
出素子の失活を起こさないことを見出しており(特願平
2−336363)、PLA2を用いることもできる。
[0023] After the complex formation, the liposomes are destroyed using a nonionic surfactant, which is a general liposome destruction method, such as Triton X-10.
0, Tween 80 [(1) Anzai, K
.. , Chem. Pharm. Bull. , 28
(1980) 1762, (2) G. Eytan
, FEBS Letters, 57 (1975)
121-125], the use of ionic surfactants, e.g. sodium cholate [Javier Ruiz, B.
iochimica et Biophysica,
Acta, 937 (1988) 127-134]
can be used. In addition, the present inventor has already developed phospholipase A2 (PLA2) apart from these methods of destruction.
) has been found to efficiently destroy liposomes of this composition without causing deactivation of the encapsulated detection element (Japanese Patent Application No. 2-336363), and PLA2 can also be used.

【0024】リポソームを破壊することによって放出さ
れた検出素子の検出方法としては、酵素の場合には各種
基質を加え生成する反応生成物を分光学的に検出するこ
とで、抗体の場合には標識抗体の標識に起因する情報を
分光学的に検出することで、補酵素の場合にはアポ酵素
との反応で生ずる酵素の活性測定を行うことで、酵素基
質の場合には酵素基質と反応する酵素を加えることで、
反応生成物を分光学的に検出することで、ペプチドの場
合にはペプチドと反応する抗体に対して標識された同一
のペプチド化合物と競争反応させた後、標識物質を分光
学的に検出することで、配糖体の場合には酵素反応や抗
体に対する競争反応を行わせた後、生成物を分光学的に
検出することで、蛍光物質の場合には反応物が発する蛍
光を測定することで、色素の場合には酵素反応生成物や
発光物質を分光学的に測定することで、および薬剤の場
合には薬剤そのもののもつ分光学特性を測定することで
検出される。
[0024] In the case of enzymes, various substrates are added and the reaction products produced are detected spectroscopically, and in the case of antibodies, the detection elements released by the destruction of liposomes are detected using a label. By spectroscopically detecting the information resulting from the antibody label, in the case of a coenzyme, the activity of the enzyme generated by the reaction with the apoenzyme is measured, and in the case of an enzyme substrate, the activity of the enzyme generated by the reaction with the enzyme substrate can be measured. By adding enzymes,
By spectroscopically detecting the reaction product, in the case of a peptide, the labeled substance is detected spectroscopically after the antibody that reacts with the peptide undergoes a competitive reaction with the same labeled peptide compound. In the case of glycosides, the product is detected spectroscopically after an enzymatic reaction or competitive reaction with antibodies, and in the case of fluorescent substances, it is done by measuring the fluorescence emitted by the reactant. In the case of dyes, it is detected by spectroscopically measuring enzymatic reaction products or luminescent substances, and in the case of drugs, it is detected by measuring the spectroscopic characteristics of the drug itself.

【0025】本発明の方法において、検出対象となる抗
原は、二つ以上の抗体認識部位をもついわゆる多価抗原
であれば、特に制限されることはなく、例えば一般にこ
のような抗原としては、血液、尿、食品、廃液等の成分
で、例えば生体の恒常維持に不可欠な血中ホルモン、病
原性細菌、癌原性ウィルス由来のタンパク質、食品中の
汚染細菌および廃液中の特定化合物等が挙げられる。
[0025] In the method of the present invention, the antigen to be detected is not particularly limited as long as it is a so-called multivalent antigen having two or more antibody recognition sites. Components of blood, urine, food, waste fluids, etc., such as blood hormones essential for maintaining the homeostasis of living organisms, pathogenic bacteria, proteins derived from oncogenic viruses, contaminated bacteria in food, and specific compounds in waste fluids. It will be done.

【0026】本発明での抗原の抗体との反応様式は特に
制限はないが、例えば(1)抗原を一次抗体と反応させ
た後、二次抗体と反応させる二段階からなる方法、(2
)一次抗体存在下に抗原と二次抗体とを同時に反応させ
る一段階からなる方法または(3)二次抗体と抗原を反
応させた後、一次抗体と反応させる二段階からなる方法
のいずれでもよい。
[0026] There are no particular limitations on the manner in which the antigen reacts with the antibody in the present invention; for example, (1) a two-step method in which the antigen is reacted with a primary antibody and then reacted with a secondary antibody;
) Either a one-step method in which an antigen and a secondary antibody are reacted simultaneously in the presence of a primary antibody, or (3) a two-step method in which a secondary antibody is reacted with an antigen and then reacted with a primary antibody. .

【0027】以下、HRPを検出素子として用いた場合
を例として説明する。即ち、HRP酵素を封入し、Di
myristoyl Phosphatidyl Ch
oline (DMPC), Dilauroyl P
hosphatidyl Ethanolamine 
(DLPE), Dicetylphosphate 
(DCP) 等を構成脂質とする径約0.1μmのリポ
ソームを形成させ、免疫リポソームの調製に用いる。免
疫リポソームの調製は、水溶性のカップリング試薬であ
るカルボジイミドを媒介とし、リポソーム構成リン脂質
の一つであるDLPEのアミノ基と、抗原、マウスIg
Gに特異的な抗体であるヤギ産生の抗マウスIgG(二
次抗体)タンパク質の有するカルボキシル基の間でペプ
チド結合を形成させることにより、リポソーム表面上に
ヤギ抗マウスIgG抗体を結合させる。このようにして
調製した免疫リポソームは、リン脂質約5〜10万分子
からなり、内部には、約10分子のHRP酵素が取り込
まれており、表面には約5分子の抗マウスIgGを結合
している。
The case where HRP is used as a detection element will be explained below as an example. That is, HRP enzyme is encapsulated and Di
myristoyl Phosphatidyl Ch
oline (DMPC), Dilauroyl P
Hosphatidyl Ethanolamine
(DLPE), Dicetylphosphate
(DCP) etc. as a constituent lipid, liposomes with a diameter of about 0.1 μm are formed and used for preparing immunoliposomes. The preparation of immunoliposomes is carried out by using carbodiimide, which is a water-soluble coupling reagent, to combine the amino group of DLPE, which is one of the liposome-constituting phospholipids, with the antigen and mouse Ig.
A goat anti-mouse IgG antibody is bound onto the liposome surface by forming a peptide bond between the carboxyl groups of a goat-produced anti-mouse IgG (secondary antibody) protein, which is a specific antibody for G. The immunoliposome prepared in this way consists of approximately 50,000 to 100,000 molecules of phospholipid, has approximately 10 molecules of HRP enzyme incorporated inside it, and has approximately 5 molecules of anti-mouse IgG bound to the surface. ing.

【0028】このようにして得られた免疫リポソームを
用いての本発明の方法の実施は、96穴のポリスチレン
製マイクロウェルにポリクローナルな抗マウスIgGを
塗布したものを一次抗体として用い、抗原としてAff
inityColumn 精製のマウスIgGを用いる
。二次抗体としての免疫リポソームを用いたサンドイッ
チ反応は、約10の8乗から9乗分子の免疫リポソーム
を用いて反応させる。また反応後のリポソームの破壊に
は、リン酸緩衝液(pH7.2) に溶かした牛膵臓由
来のホスフォリパーゼ A2 (PLA2)を2uni
ts (U) 用いることができる。
[0028] The method of the present invention using the immunoliposomes thus obtained is carried out using 96-well polystyrene microwells coated with polyclonal anti-mouse IgG as the primary antibody, and Aff as the antigen.
inityColumn Purified mouse IgG is used. In the sandwich reaction using immunoliposomes as secondary antibodies, immunoliposomes having molecules of about 10 to the 8th power to the 9th power are used for the reaction. To destroy the liposomes after the reaction, 2 uni of bovine pancreatic phospholipase A2 (PLA2) dissolved in phosphate buffer (pH 7.2) was added.
ts (U) can be used.

【0029】未反応な免疫リポソームの洗浄による除去
は、クエン酸緩衝液で行う。一次抗体に捕獲された抗原
に対する免疫リポソームを用いたサンドイッチ反応の結
果生じた免疫複合体の検出は、免疫リポソームの破壊に
伴い放出されたHRP酵素の酵素活性の測定により行う
ことができる。このELISA法における酵素活性の測
定は、未反応の免疫リポソームを洗浄したマイクロウェ
ルに、2UのPLA2溶液と大過剰の酵素基質〔H2 
O2 とtetramethyl benzidine
 (TMB)の混合溶液〕を加え、時間の経過と共に6
50nmの吸光度を、または酸を用いて反応を停止させ
た後450nmの吸光度を測定することで行うことがで
きる。
[0029] Unreacted immunoliposomes are removed by washing with a citrate buffer. Detection of immune complexes generated as a result of sandwich reactions using immunoliposomes against antigens captured by primary antibodies can be performed by measuring the enzymatic activity of HRP enzyme released upon destruction of immunoliposomes. To measure enzyme activity using this ELISA method, 2U of PLA2 solution and a large excess of enzyme substrate [H2
O2 and tetramethyl benzidine
(TMB) mixed solution] was added, and as time passed, 6
This can be done by measuring the absorbance at 50 nm, or by measuring the absorbance at 450 nm after stopping the reaction using an acid.

【0030】[0030]

【実施例】以下、実施例により本発明をさらに詳しく説
明するが、本発明はこれら実施例により何等限定される
ものではない。 免疫リポソームの調製 (1)HRP酵素封入リポソームの調製リン脂質として
DMPC、DLPE、DCPの各13.0、5.0 、
1.0mg をクロロホルム:ジエチルエーテル=2:
1容積の混合溶液3.0mlに溶解した。次に得られた
溶液に1.2mlのHRP酵素溶液(1.0mg/ml
HEPES緩衝液、pH7.2)を加え、完全なw/o
型のエマルジョンを形成させ、このエマルジョン溶液を
減圧下でロータリーエバポレーターを用い、有機溶媒の
臭いが完全になくなるまで溶媒を蒸発させた。この後 
Bath 型の超音波発信機で約3分間、次いで Pr
obe型 (TOMY, UD−201) で約70秒
間超音波処理を行った。生成したHRP酵素封入リポソ
ームを分子量6万の分子篩膜を用いてろ過と洗浄を数回
繰り返し(5000 rpm×40分で4〜5回)、ろ
液にHRP酵素活性がほぼなくなるのを確かめた(HR
P酵素活性測定で、大過剰の基質を添加した数分後の6
50nmの吸光度が 0.05 付近である)。次に、
HEPES緩衝液で平衡化したセファロース 4B カ
ラム(41.0 ×1.6 cm) にかけ、void
 volume 付近に流出するリポソーム画分を分取
した。
EXAMPLES The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these Examples in any way. Preparation of immunoliposomes (1) Preparation of HRP enzyme-encapsulated liposomes: DMPC, DLPE, DCP, 13.0, 5.0, respectively, as phospholipids;
1.0mg of chloroform:diethyl ether=2:
It was dissolved in 1 volume of 3.0 ml of the mixed solution. Next, add 1.2 ml of HRP enzyme solution (1.0 mg/ml) to the obtained solution.
HEPES buffer, pH 7.2) and completely w/o
A mold emulsion was formed, and the solvent was evaporated from the emulsion solution under reduced pressure using a rotary evaporator until the odor of the organic solvent was completely eliminated. After this
Bath type ultrasonic transmitter for about 3 minutes, then Pr
Ultrasonication was performed for about 70 seconds using an obe type (TOMY, UD-201). The generated HRP enzyme-encapsulated liposomes were filtered and washed several times using a molecular sieve membrane with a molecular weight of 60,000 (4 to 5 times at 5000 rpm x 40 minutes), and it was confirmed that the filtrate had almost no HRP enzyme activity ( HR
6 minutes after adding a large excess of substrate when measuring P enzyme activity.
The absorbance at 50 nm is around 0.05). next,
Apply to a Sepharose 4B column (41.0 × 1.6 cm) equilibrated with HEPES buffer, and
The liposome fraction flowing out near the volume was collected.

【0031】(2)HRP酵素封入リポソームの確認酵
素封入リポソームの確認は、セファロース 4B カラ
ムの流出画分を各々HEPES緩衝液で10倍に希釈し
、希釈リポソーム溶液0.5 μlを、各々50μlの
HEPES緩衝液を含むマイクロウェルに分注した。次
に10μlの0.1%デオキシコール酸ナトリウム(S
DC)水溶液をマイクロウェルに加え、約1分後に50
μlのH2 O2 −TMB基質溶液(KPL 505
07600, TMB Microwell Pero
xidase Substrate System)を
加え、さらに1分後に650nmの吸光度をマイクロプ
レートリーダー(MOLECULAR DEVICES
, M−Vmax) で測定した。この時の吸光度の値
と、同一のリポソーム試料を0.1%SDCを加えない
で酵素活性を測定した時の吸光度の値と比較し、0.1
%SDC処理した後の吸光度の値が、処理しない場合に
比較し高い場合は、SDCによりリポソームの破壊と放
出された封入酵素による活性化が起きていると判断され
た。このようにしてSDCにより活性化される画分は酵
素封入リポソームを含むと判定した。同様に、カラム流
出画分の280nmにおける吸光度の測定、Bartl
ett法によるリン脂質の定量も行った。また、リポソ
ームの粒径はレーザー粒径解析装置(OTSUKA E
LECTRONICS, LPA−3100) を利用
して行い、約0.1μmであった。
(2) Confirmation of HRP enzyme-encapsulated liposomes To confirm enzyme-encapsulated liposomes, dilute each effluent fraction of the Sepharose 4B column 10 times with HEPES buffer, add 0.5 μl of the diluted liposome solution to 50 μl of each Aliquoted into microwells containing HEPES buffer. Next, 10 μl of 0.1% sodium deoxycholate (S
DC) aqueous solution was added to the microwell, and after about 1 minute, 50
μl of H2O2-TMB substrate solution (KPL 505
07600, TMB Microwell Pero
xidase Substrate System) was added, and after another minute, the absorbance at 650 nm was measured using a microplate reader (Molecular Devices).
, M-Vmax). The absorbance value at this time was compared with the absorbance value when enzyme activity was measured using the same liposome sample without adding 0.1% SDC.
If the absorbance value after treatment with %SDC was higher than that without treatment, it was determined that the liposomes were destroyed by SDC and activated by the released encapsulated enzyme. It was thus determined that the fraction activated by SDC contained enzyme-encapsulated liposomes. Similarly, measuring the absorbance at 280 nm of the column effluent fraction, Bartl
Phospholipids were also quantified by the ett method. In addition, the particle size of liposomes was measured using a laser particle size analyzer (OTSUKA E).
LECTRONICS, LPA-3100), and the diameter was about 0.1 μm.

【0032】(3)免疫リポソームの調製と確認(1)
で調製し精製したHRP封入リポソーム溶液0.2ml
に、2.6mgのヤギ抗マウスIgGとHEPES緩衝
液を加え、pH4.8のHEPES緩衝溶液1.5ml
に調製した。室温で静かに攪拌しながら、20mg(/
mlHEPES緩衝液)の1−エチル−3−(3−ジメ
チルアミノプロピル)カルボジイミド・塩酸塩(EDC
)溶液を滴下させ、1.5時間反応させた。この後、p
H7.2に調整し、分子量6.0万の分子篩を用いて(
5000rpm×30分)破壊されたリポソーム由来の
酵素および沈澱物を除き、残りのリポソーム溶液をHE
PES緩衝液で平衡化したセファロース4Bカラムにか
け、流出画分の酵素活性を上記(2)と同様な方法で測
定した。
(3) Preparation and confirmation of immunoliposomes (1)
0.2 ml of HRP-encapsulated liposome solution prepared and purified by
Add 2.6 mg of goat anti-mouse IgG and HEPES buffer to 1.5 ml of HEPES buffer at pH 4.8.
It was prepared as follows. While stirring gently at room temperature, add 20 mg (/
1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC
) The solution was added dropwise and reacted for 1.5 hours. After this, p
Adjust to H7.2 and use a molecular sieve with a molecular weight of 60,000 (
5000 rpm x 30 minutes) Remove the enzyme and precipitate derived from the destroyed liposomes, and heat the remaining liposome solution with HE.
It was applied to a Sepharose 4B column equilibrated with PES buffer, and the enzyme activity of the effluent fraction was measured in the same manner as in (2) above.

【0033】封入酵素ユニットは標準HRP酵素を用い
た検量線からの酵素活性で求め、結合IgG数は Lo
wry法によるタンパク定量より推定し、リポソーム当
たり、約5個であった。免疫リポソームの確認における
破壊と酵素活性の測定は、酵素封入リポソームの酵素活
性測定とほぼ同様に行ったが、0.1%SDCの代わり
に、約2.0U/5μlの牛膵臓由来のPLA2を用い
てリポソーム膜を破壊した後、酵素基質を加え、活性測
定を行った。なお、このようにして調製、精製された酵
素を封入した免疫リポソームは2〜3日以内に実験に用
いられ、それ以上経過したものは使用されなかった。
[0033] The encapsulated enzyme unit was determined by the enzyme activity from the calibration curve using standard HRP enzyme, and the number of bound IgG was determined by Lo
Estimated from protein quantification using the wry method, the number was about 5 per liposome. Destruction and measurement of enzyme activity in confirmation of immune liposomes were carried out in almost the same way as enzyme activity measurement of enzyme-encapsulated liposomes, but instead of 0.1% SDC, approximately 2.0U/5μl of PLA2 derived from bovine pancreas was used. After destroying the liposome membrane using the enzyme, an enzyme substrate was added and the activity was measured. The immunoliposomes encapsulating the enzyme prepared and purified in this way were used in experiments within 2 to 3 days, and those that were used beyond that time were not used.

【0034】一次抗体の調製(ヤギ抗マウスIgGのマ
イクロウェルへの塗布) 炭酸緩衝液pH9.5で調製した各0.25、0.5、
1.0、2.0、4.0μg/50μlのポリクローナ
ルヤギ抗マウスIgG溶液を、96穴のポリスチレンチ
ューブに各2列ずつ右端から左端方向へ濃度の高い順に
それぞれのウェルに分注した。ただし、最も左の2列に
は緩衝液のみ加えた。マイクロウェルをミキサー (T
AIYO MICRO MIXER,大洋科学工業) 
で混合し、室温で6時間放置した後、吸引で溶液を除い
た。次に各ウェルに100μlの1.0% Bovin
e Serum Albumin (BSA) 水溶液
を加えて、1時間放置した後溶液を捨て、さらに0.1
% Tween 20 −生理的食塩含リン酸緩衝液(
PBS溶液)で3回洗浄した。洗浄には、マイクロプレ
ート用洗浄装置(IntiCorp., INTIWA
SH Immunoassay Washer) を用
いた。このようにしてできた各濃度のヤギ抗マウスIg
G塗布マイクロウェルは、一次抗体として使用されるま
で1.5日以上湿度30%以下で保存された。
Preparation of primary antibodies (applying goat anti-mouse IgG to microwells) 0.25, 0.5, and 0.5, respectively, prepared with carbonate buffer pH 9.5
Polyclonal goat anti-mouse IgG solutions of 1.0, 2.0, and 4.0 μg/50 μl were dispensed into each well of a 96-well polystyrene tube in two rows in descending order of concentration from the right end to the left end. However, only the buffer solution was added to the leftmost two columns. Place the microwell in a mixer (T
AIYO MICRO MIXER, Taiyo Kagaku Kogyo)
After mixing at room temperature for 6 hours, the solution was removed by suction. Then add 100 μl of 1.0% Bovin to each well.
e Add Serum Albumin (BSA) aqueous solution, leave it for 1 hour, throw away the solution, and add 0.1
% Tween 20 - Physiological saline phosphate buffer (
Washed three times with PBS solution). For washing, a microplate washing device (IntiCorp., INTIWA
SH Immunoassay Washer) was used. Goat anti-mouse Ig prepared in this way at various concentrations
The G-coated microwells were stored at a humidity of 30% or less for more than 1.5 days until used as a primary antibody.

【0035】実施例1 二次抗体として免疫リポソームを用いたサンドイッチ−
ELISA 法による抗原マウスIgGの検出一次抗体
として前記の方法により得られた4μgのヤギ抗マウス
IgGポリクローナル抗体を用い、抗原として各2.0
、4.0、6.0μgのマウスIgGを用い、二次抗体
として前記の方法により得られた30μlの免疫リポソ
ームを用い、サンドイッチ−ELISA 法を行った。 即ち、以下の手順に従って行った。先に調製したヤギ抗
マウスIgG塗布マイクロウェルに、抗原として前もっ
てPBS溶液に透析されたアフィニティーカラム精製マ
ウスIgG(ZYMED LABORATORIES,
 INC. Mouse IgG 02−6502) 
を2.0,4.0,6.0μg加え、PBS緩衝液で5
0μlに調製した。マイクロプレートミキサーで穏やか
に攪拌しながら約20分間で抗原を吸着させた。この後
、0.1% Tween−PBS溶液で2回洗浄し、次
に30μlの免疫リポソーム溶液とPBS緩衝液を加え
、50μlに調製した。最初数分は穏やかに攪拌し、そ
の後約20分間静置させた。20分後、クエン酸緩衝液
、pH6.9で3回洗浄した。次いで、50μlのPB
S溶液および2.5U/5μlのPLA2溶液を加え、
さらに約1分後に100μlのHRP酵素基質溶液を加
え、10分間隔で650nmの吸光度を測定した。 また反応の停止には、3Nリン酸50μlを反応溶液に
加え、450nmの吸光度を測定した。
Example 1 Sandwich using immunoliposomes as secondary antibodies
Detection of antigen mouse IgG by ELISA method Using 4 μg of goat anti-mouse IgG polyclonal antibody obtained by the above method as the primary antibody, 2.0 μg of each as the antigen
, 4.0, and 6.0 μg of mouse IgG, and 30 μl of immunoliposomes obtained by the above method as a secondary antibody, sandwich-ELISA was performed. That is, the following procedure was followed. Affinity column-purified mouse IgG (ZYMED LABORATORIES,
INC. Mouse IgG 02-6502)
Add 2.0, 4.0, 6.0 μg of
The volume was adjusted to 0 μl. The antigen was adsorbed for about 20 minutes while being gently stirred with a microplate mixer. Thereafter, the plate was washed twice with 0.1% Tween-PBS solution, and then 30 μl of immunoliposome solution and PBS buffer were added to prepare a total volume of 50 μl. The mixture was stirred gently for the first few minutes, and then allowed to stand for about 20 minutes. After 20 minutes, it was washed three times with citrate buffer, pH 6.9. Then 50 μl of PB
Add S solution and 2.5 U/5 μl of PLA2 solution,
After about 1 minute, 100 μl of HRP enzyme substrate solution was added, and the absorbance at 650 nm was measured at 10 minute intervals. To stop the reaction, 50 μl of 3N phosphoric acid was added to the reaction solution, and the absorbance at 450 nm was measured.

【0036】得られた結果を図1に示すが、図中の各点
は抗原の存在しない場合に二次抗体として加えた免疫リ
ポソームの抗原非特異的吸着に起因する酵素活性値(N
SB値)を、各濃度の抗原を用いて活性測定したときの
酵素活性値から差し引き計算した値である。一回の実験
で各点は、少なくとも4データ以上の平均値とした。N
SB値は、多くとも650nmの吸光度で<0.09値
までとした。その結果、図1に示すように抗原濃度に依
存して直線的な吸光度変化を示しており、抗原量に依存
して免疫リポソームが二次抗体の働きをしていることが
判明した。このことから本発明の方法は従来法と同様な
抗原検出法として有効であることが判明した。
The obtained results are shown in FIG. 1, and each point in the figure represents the enzyme activity value (N
SB value) is calculated by subtracting the enzyme activity value when the activity is measured using each concentration of antigen. In one experiment, each point was taken as the average value of at least four data points. N
SB values were at most <0.09 at absorbance at 650 nm. As a result, as shown in FIG. 1, the absorbance showed a linear change depending on the antigen concentration, indicating that the immunoliposome acted as a secondary antibody depending on the antigen amount. From this, it was found that the method of the present invention is effective as an antigen detection method similar to the conventional method.

【0037】実施例2 免疫リポソームを用いた本発明の方法と酵素を直接標識
した二次抗体を用いた従来法との比較 サンドイッチ−ELISA 法において、抗原濃度の低
い領域で、(A)二次抗体として免疫リポソームを用い
た場合、(B)直接HRP酵素で標識した二次抗体を用
いた場合の抗原検出感度の比較を行った。即ち、(A)
は実施例1とほぼ同様の方法により行ない、一次抗体量
は、2.0μgの抗マウスIgG、免疫リポソーム量は
10μl(約2〜5×109 個のリポソーム分子数)
、PLA2量は2.0Uであり、酵素反応時間は、80
分間であった。一方、(B)は二次抗体としてHRP酵
素で直接標識した抗体を用い、50μl(約2×109
 個の標識抗体分子数)の標識抗体を加え(A)の場合
と同時間反応させた。洗浄法は、(A)の場合は、クエ
ン酸緩衝液、(B)の場合は、0.1% Tween−
PBSであった。その結果を図2に示すが、本発明の方
法である(A)では0.2μg付近までの低抗原濃度領
域で従来法以上に抗原検出感度が高いことが判明した。
Example 2 Comparison of the method of the present invention using immunoliposomes and the conventional method using a secondary antibody directly labeled with an enzyme In the sandwich-ELISA method, (A) secondary A comparison was made of antigen detection sensitivity when immunoliposomes were used as the antibody and (B) when a secondary antibody directly labeled with HRP enzyme was used. That is, (A)
was carried out in the same manner as in Example 1, the amount of primary antibody was 2.0 μg of anti-mouse IgG, and the amount of immunoliposome was 10 μl (approximately 2 to 5 x 109 liposome molecules).
, the amount of PLA2 was 2.0 U, and the enzyme reaction time was 80
It was a minute. On the other hand, in (B), an antibody directly labeled with HRP enzyme was used as the secondary antibody, and 50 μl (approximately 2 x 109
(number of labeled antibody molecules) were added and allowed to react for the same time as in (A). The washing method was citrate buffer for (A) and 0.1% Tween- for (B).
It was PBS. The results are shown in FIG. 2, and it was found that the method (A) of the present invention had higher antigen detection sensitivity than the conventional method in the low antigen concentration region of around 0.2 μg.

【0038】[0038]

【発明の効果】本発明の方法により免疫リポソームを用
いたサンドイッチ反応を行い、抗原の検出感度を酵素反
応を用いて測定したところ、従来法の酵素を直接標識し
た二次抗体を用いた場合の酵素活性測定値に比較して、
低濃度領域、特に pmol から fmol 付近の
抗原濃度において本発明の免疫リポソームを用いた方法
の方が高い酵素活性値(約2〜5倍)が得られた。
[Effects of the Invention] A sandwich reaction using immunoliposomes was performed using the method of the present invention, and the antigen detection sensitivity was measured using an enzyme reaction. Compared to enzyme activity measurements,
In the low concentration range, particularly at antigen concentrations around pmol to fmol, the method using the immunoliposome of the present invention yielded higher enzyme activity values (approximately 2 to 5 times).

【0039】このように本発明の方法は、低濃度領域で
の抗原の検出が可能であり、従来のサンドイッチ法に比
較し、同等もしくはそれ以上に抗原検出感度の高い方法
である。このことは、前記のような細菌検査等において
従来よりサンドイッチ−ELISA法が応用されている
が、本発明の方法がこれらの検査等において充分に応用
できることを示しており、しかも高感度であるので汚染
細菌などの前培養のみで検出が可能となり、検査時間の
短縮化を図ることができる。
[0039] As described above, the method of the present invention is capable of detecting an antigen in a low concentration range, and is a method with a high antigen detection sensitivity equivalent to or higher than that of the conventional sandwich method. This shows that the sandwich ELISA method has been applied in the past for the above-mentioned bacterial tests, etc., but the method of the present invention can be fully applied to these tests, etc., and is highly sensitive. Detection of contaminating bacteria and the like can be performed only by pre-culturing, and testing time can be shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1は実施例1におけるサンドイッチ−ELI
SA 法の結果を示した図である。
FIG. 1 shows sandwich-ELI in Example 1.
It is a figure showing the result of SA method.

【図2】図2は実施例2におけるサンドイッチ−ELI
SA 法の結果を示した図である。
FIG. 2 shows sandwich-ELI in Example 2.
It is a figure showing the result of SA method.

【符号の説明】[Explanation of symbols]

(A)・・・二次抗体として免疫リポソームを用いた場
合 (B)・・・直接HRP酵素で標識した二次抗体を用い
た場合
(A)...When immunoliposomes are used as the secondary antibody (B)...When a secondary antibody directly labeled with HRP enzyme is used

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  固相に固定化した一次抗体と、検出素
子を封入したリポソーム表面に二次抗体を結合した免疫
リポソームとの間で検出対象となる抗原を挟んで捕獲し
、形成した免疫複合体のリポソームを破壊することによ
り、放出された検出素子を測定することを特徴とする抗
原の免疫分析法。
Claim 1: An immune complex formed by sandwiching and capturing an antigen to be detected between a primary antibody immobilized on a solid phase and an immunoliposome in which a secondary antibody is bound to the surface of the liposome encapsulating a detection element. An antigen immunoassay method characterized by measuring the detection element released by destroying liposomes in the body.
【請求項2】  請求項1記載の検出素子が酵素、抗体
、補酵素、酵素基質、ペプチドまたは配糖体などの生理
活性物質、蛍光物質、色素、または薬剤のいずれかであ
る請求項1記載の免疫分析法。
2. The detection element according to claim 1 is any one of a biologically active substance such as an enzyme, an antibody, a coenzyme, an enzyme substrate, a peptide or a glycoside, a fluorescent substance, a dye, or a drug. immunoassay method.
【請求項3】  請求項2記載の検出素子としての酵素
が、Horseradish Peroxidaseで
ある請求項2記載の免疫分析法。
3. The immunoassay method according to claim 2, wherein the enzyme as the detection element according to claim 2 is Horseradish Peroxidase.
【請求項4】  請求項1記載の一次抗体および二次抗
体が、検出対象となる抗原の異なるエピトープを認識す
るモノクローナル抗体または該抗原に対するポリクロー
ナル抗体である請求項1記載の免疫分析法。
4. The immunoassay method according to claim 1, wherein the primary antibody and secondary antibody according to claim 1 are monoclonal antibodies that recognize different epitopes of the antigen to be detected or polyclonal antibodies directed against the antigen.
【請求項5】  抗原と抗体の反応様式が、(1)抗原
を一次抗体と反応させた後、二次抗体と反応させる二段
階からなる方法、(2)一次抗体存在下に抗原と二次抗
体とを同時に反応させる一段階からなる方法、または(
3)二次抗体と抗原を反応させた後、一次抗体と反応さ
せる二段階からなる方法のいずれかである請求項1記載
の免疫分析法。
5. The reaction mode of the antigen and antibody consists of (1) a two-step method in which the antigen is reacted with a primary antibody and then reacted with a secondary antibody; (2) a method in which the antigen and the secondary antibody are reacted in the presence of the primary antibody; A one-step method of simultaneously reacting with antibodies, or (
3) The immunoassay method according to claim 1, which is a two-step method in which the secondary antibody is reacted with the antigen and then the antigen is reacted with the primary antibody.
JP9314591A 1991-03-30 1991-03-30 Analyzing method for immunity of antigen Pending JPH04303770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9314591A JPH04303770A (en) 1991-03-30 1991-03-30 Analyzing method for immunity of antigen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9314591A JPH04303770A (en) 1991-03-30 1991-03-30 Analyzing method for immunity of antigen

Publications (1)

Publication Number Publication Date
JPH04303770A true JPH04303770A (en) 1992-10-27

Family

ID=14074368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9314591A Pending JPH04303770A (en) 1991-03-30 1991-03-30 Analyzing method for immunity of antigen

Country Status (1)

Country Link
JP (1) JPH04303770A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351662A (en) * 2004-06-08 2005-12-22 Toshiba Corp Carrier for immunity analysis and immunity analysis method using same
WO2017195758A1 (en) * 2016-05-10 2017-11-16 国立大学法人信州大学 Photocleavable microcapsule, sensor employing same, and method of measuring substance to be measured employing same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61250558A (en) * 1985-04-30 1986-11-07 Toshiba Corp Immunological assaying method
JPS61269070A (en) * 1984-12-13 1986-11-28 Nitsusui Seiyaku Kk Quantitative analysis of antigen
JPS61277062A (en) * 1985-05-31 1986-12-08 Hitachi Ltd Immunological assay and reagent used therein
JPS62242856A (en) * 1986-03-26 1987-10-23 シンテツクス(ユ−・エス・エイ)インコ−ポレイテツド Liquid single reagent for measurement
JPS63120256A (en) * 1986-11-07 1988-05-24 Toshiba Corp Reagent for immunoassay
JPS63158461A (en) * 1986-12-23 1988-07-01 Toshiba Corp Reagent for immunoassay
JPS63179254A (en) * 1987-01-20 1988-07-23 Nitsusui Seiyaku Kk Method for quantitative determination of antigen
JPS6459070A (en) * 1987-08-28 1989-03-06 Toshiba Corp Immunoassay method
JPH01500848A (en) * 1985-06-11 1989-03-23 ユニバ−シティ・オブ・テネシ−・リサ−チ・コ−ポレ−ション Immunoliposome quantification - methods and materials
JPH03206963A (en) * 1990-01-09 1991-09-10 Toshiba Corp Immunoassay
JPH03206962A (en) * 1990-01-09 1991-09-10 Toshiba Corp Immunoassay

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61269070A (en) * 1984-12-13 1986-11-28 Nitsusui Seiyaku Kk Quantitative analysis of antigen
JPS61250558A (en) * 1985-04-30 1986-11-07 Toshiba Corp Immunological assaying method
JPS61277062A (en) * 1985-05-31 1986-12-08 Hitachi Ltd Immunological assay and reagent used therein
JPH01500848A (en) * 1985-06-11 1989-03-23 ユニバ−シティ・オブ・テネシ−・リサ−チ・コ−ポレ−ション Immunoliposome quantification - methods and materials
JPS62242856A (en) * 1986-03-26 1987-10-23 シンテツクス(ユ−・エス・エイ)インコ−ポレイテツド Liquid single reagent for measurement
JPS63120256A (en) * 1986-11-07 1988-05-24 Toshiba Corp Reagent for immunoassay
JPS63158461A (en) * 1986-12-23 1988-07-01 Toshiba Corp Reagent for immunoassay
JPS63179254A (en) * 1987-01-20 1988-07-23 Nitsusui Seiyaku Kk Method for quantitative determination of antigen
JPS6459070A (en) * 1987-08-28 1989-03-06 Toshiba Corp Immunoassay method
JPH03206963A (en) * 1990-01-09 1991-09-10 Toshiba Corp Immunoassay
JPH03206962A (en) * 1990-01-09 1991-09-10 Toshiba Corp Immunoassay

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351662A (en) * 2004-06-08 2005-12-22 Toshiba Corp Carrier for immunity analysis and immunity analysis method using same
WO2017195758A1 (en) * 2016-05-10 2017-11-16 国立大学法人信州大学 Photocleavable microcapsule, sensor employing same, and method of measuring substance to be measured employing same
JP2017203665A (en) * 2016-05-10 2017-11-16 国立大学法人信州大学 Photocleavable microcapsules, sensor using the same and a measuring method of substance to be measured using the same

Similar Documents

Publication Publication Date Title
CA1264662A (en) Immunoliposome assay - methods and products
Bora et al. Covalent immobilization of proteins onto photoactivated polystyrene microtiter plates for enzyme-linked immunosorbent assay procedures
EP0124352A2 (en) Protected binding assay
JPH01227061A (en) Ion trapping immunoassay method and apparatus
US5225328A (en) Stable alkaline phosphatase compositions with color enhancement and their use in assays
JPH06503886A (en) Test method and its reagent kit
JPS62501645A (en) Solid phase diffusion test method
US20200326338A1 (en) Detection agent for bioassay and signal amplification method using same
Singh et al. Liposomes in immunodiagnostics
EP0124366B1 (en) Method of measuring biological ligands
US5210040A (en) Process for coupling antibodies or antibody fragments to liposomes
US7541197B2 (en) Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including protein markers, pathogens and cellular debris
JPH06109734A (en) Measuring method for antigen
JPH04303770A (en) Analyzing method for immunity of antigen
JPH0580052A (en) Apparatus and method for measuring substance in vivo
US4971916A (en) Liposome based homogeneous immunoassay for diagnostic tests
EP0488195B1 (en) Chemiluminescence immunoassay
AU620554B2 (en) Liposome based homogeneous immunoassay for diagnostic tests
JP2672151B2 (en) Enzyme immunoassay using magnetic substance
WO2008018631A1 (en) Liposome complex, liposome array, and method for detection of analyte
JP5137880B2 (en) Method for producing dry particles with immobilized binding substance
EP1596198B1 (en) METHOD OF MEASURING OXIDIZED LDL-beta2-GPI-CRP COMPLEX
JPH0544626B2 (en)
KR100508335B1 (en) Rapid Detection Method of Escherichia Coli O157:H7 Using a Combined IMS and LIA procedure
WO1987004795A1 (en) Immunoliposome assay - methods and products