JP2017195669A - Laminated iron core of rotary electric machine and manufacturing machine thereof - Google Patents

Laminated iron core of rotary electric machine and manufacturing machine thereof Download PDF

Info

Publication number
JP2017195669A
JP2017195669A JP2016083298A JP2016083298A JP2017195669A JP 2017195669 A JP2017195669 A JP 2017195669A JP 2016083298 A JP2016083298 A JP 2016083298A JP 2016083298 A JP2016083298 A JP 2016083298A JP 2017195669 A JP2017195669 A JP 2017195669A
Authority
JP
Japan
Prior art keywords
iron core
protrusion
laminated
core member
plate thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016083298A
Other languages
Japanese (ja)
Inventor
秀行 前田
Hideyuki Maeda
秀行 前田
大輔 司城
Daisuke Tsukasaki
大輔 司城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2016083298A priority Critical patent/JP2017195669A/en
Publication of JP2017195669A publication Critical patent/JP2017195669A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Motors, Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laminated iron core of rotary electric machine capable of preventing cogging torque, noise, vibration etc. due to degradation of core accuracy which is generated by accumulated deviation on a plate thickness.SOLUTION: A laminated iron core 10 includes plural steel plates 9, in which the plate thickness is different from each other in both ends in a direction perpendicular to a rolling direction, are laminated after being punched out in a required shape. Each of the steel plates 9 has an identical rolling direction being laminated so that the sides having the larger plate thickness are abutted on each other, and the sides having the smaller plate thickness are abutted on each other. A difference in height at both sides of the laminated iron core 10 is eliminated by interposing an iron core member 11 having a projection 13 at the side with a smaller plate thickness between predetermined number of laminated plainer iron core members 12.SELECTED DRAWING: Figure 2

Description

この発明は、例えばモータ等の回転電機の積層鉄芯に関するものであり、特に積層鉄芯のコア精度の向上を図るものである。   The present invention relates to a laminated iron core of a rotary electric machine such as a motor, for example, and particularly to improve the core accuracy of the laminated iron core.

電磁鋼板は冷間圧延により製造されるが、圧延ロール間の傾きの不一致や弾性変形により、圧延方向に直角な方向の両端部の板厚に差が生じる。板厚の差は数μm程度と小さいが、モータの鉄芯はこのような薄板を複数枚積層するため、板厚の差が累積される。近年のモータは高効率化のために、電磁鋼板の薄板化が進み、積み枚数が増加している。従って、この板厚の差が累積することによりコア精度が悪くなり、コギングトルク、騒音、振動等が発生する要因となっている。   An electromagnetic steel sheet is manufactured by cold rolling, but due to a mismatch in inclination between rolling rolls and elastic deformation, a difference occurs in the thickness of both end portions in a direction perpendicular to the rolling direction. Although the difference in plate thickness is as small as about several μm, since the iron core of the motor stacks a plurality of such thin plates, the difference in plate thickness is accumulated. In recent years, in order to increase the efficiency, motor steel sheets have been made thinner and the number of stacked sheets has increased. Therefore, accumulation of the difference in plate thickness deteriorates the core accuracy, which is a factor in generating cogging torque, noise, vibration, and the like.

特許文献1では、向きを正逆にした2種類の連結ユニット板を打抜き加工し、所定枚数毎に一方の連結ユニット板を180度回転させた状態で他方の連結ユニット板が積層されるようにしたものが開示されている。これにより圧延鋼板の幅方向に沿って生じた板厚偏差が相殺されて均一な積み厚のユニット積層体を得ることができるようになる。   In Patent Document 1, two types of connecting unit plates whose directions are forward and reverse are punched, and the other connecting unit plates are stacked in a state in which one connecting unit plate is rotated 180 degrees for each predetermined number of sheets. Has been disclosed. Thereby, the plate | board thickness deviation produced along the width direction of a rolled steel plate is canceled, and it becomes possible to obtain the unit laminated body of uniform stacking thickness.

特開平9−216020号公報Japanese Patent Laid-Open No. 9-2106020

従来の積層鉄芯は以上のように、180度向きが違う2種類のコアを打ち抜く部位を金型に設け、金型のダイを180度回転させることにより、板厚の偏差方向が反対になる2種類の鋼板を積層することで、板厚の差を相殺するようにしている。したがって複雑な機構が必要となり、更に2種類の形状が正確に一致するように金型を加工する必要が生じ、コストが増大するという問題点があった。   As described above, the conventional laminated iron core is provided with a portion for punching two kinds of cores having different directions by 180 degrees in the mold, and the die thickness direction is reversed by rotating the mold die by 180 degrees. By laminating two types of steel plates, the difference in plate thickness is offset. Therefore, a complicated mechanism is required, and it is necessary to process the mold so that the two types of shapes coincide with each other, resulting in an increase in cost.

この発明は上記のような問題点を解消するためになされたもので、容易にコア精度を向上させることが可能な積層鉄芯およびその製造装置を提供することを目的とするものである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a laminated iron core and a manufacturing apparatus thereof that can easily improve core accuracy.

この発明に係る回転電機の積層鉄芯は、圧延方向に直角な方向の両端部の板厚が異なる鋼板から打ち抜かれた複数の鉄芯部材より形成されるものであって、上記板厚の大きい側同士および小さい側同士が重なるように形成され回転電機の積層鉄芯において、所定枚数積層された平板状の鉄芯部材の間に突起を有する鉄芯部材を介在させることにより、上記積層鉄芯の両側で高さの差が生じないようにしたものである。   A laminated iron core of a rotating electrical machine according to the present invention is formed of a plurality of iron core members punched from steel plates having different thicknesses at both ends in a direction perpendicular to the rolling direction, and the plate thickness is large. In the laminated iron core of the rotating electrical machine formed so that the sides and the small sides overlap with each other, an iron core member having a protrusion is interposed between a predetermined number of laminated plate-like iron core members, thereby the laminated iron core. The difference in height between the two sides is prevented from occurring.

上記のように構成された回転電機の積層鉄芯によれば、所定枚数積層された平板状の鉄芯部材の間に突起を有する鉄芯部材を介在させているので、板厚の違いによるコア精度の悪化を改善することができる。   According to the laminated iron core of the rotating electrical machine configured as described above, since the iron core member having the protrusions is interposed between the flat-plate iron core members laminated in a predetermined number, the core due to the difference in plate thickness The deterioration of accuracy can be improved.

実施の形態1における積層鉄芯を示す斜視図である。FIG. 3 is a perspective view showing a laminated iron core in the first embodiment. 図1におけるA−A線に沿う断面図である。It is sectional drawing which follows the AA line in FIG. 実施の形態1における積層鉄芯の製造工程を示す正面図である。5 is a front view showing a manufacturing process of the laminated iron core in the first embodiment. FIG. 積層鉄芯を打ち抜く金型を示す平面図である。It is a top view which shows the metal mold | die which punches a laminated iron core. 図4におけるB−B線に沿う断面図である。It is sectional drawing which follows the BB line in FIG. 積層鉄芯を打ち抜く別の金型を示す平面図である。It is a top view which shows another metal mold | die which punches a laminated iron core. 積層鉄芯を示す断面図である。It is sectional drawing which shows a laminated iron core. 積層鉄芯を打ち抜く別の金型を示す平面図である。It is a top view which shows another metal mold | die which punches a laminated iron core. 実施の形態2における積層鉄芯を示す断面図である。FIG. 5 is a cross-sectional view showing a laminated iron core in a second embodiment. 実施の形態2における積層鉄芯を打ち抜く金型を示す断面図である。It is sectional drawing which shows the metal mold | die which punches the laminated iron core in Embodiment 2. FIG. 実施の形態3における積層鉄芯を示す断面図である。FIG. 6 is a cross-sectional view showing a laminated iron core in a third embodiment. 実施の形態4における積層鉄芯を示す断面図である。FIG. 10 is a cross-sectional view showing a laminated iron core in a fourth embodiment. 実施の形態4における積層鉄芯を打ち抜く金型を示す平面図である。It is a top view which shows the metal mold | die which punches the laminated iron core in Embodiment 4. FIG.

実施の形態1.
以下実施の形態1について図を参照しながら説明する。図1は実施の形態1における積層鉄芯10の構成を示す斜視図、図2は図1におけるA−A線に沿う断面図である。積層鉄芯10は圧延方向に直角な方向の両端部の板厚が異なる鋼板9を必要な形状に打ち抜いた鉄芯部材11、12をずれないように固定して積層したものである。そして各鋼板9は、圧延方向を一致した状態で積層され、板厚の大きい側同士および、小さい側同士が重なるように積層されている。尚図2において左側が板厚の大きい側であり、右側が板厚の小さい側である。又打ち抜き加工後の鋼板9の固定方法については後述する。鉄芯部材11は鋼板9の板厚の小さい側に突起13を有したものである。鉄芯部材12には突起13がなく、平板状に形成されている。積層鉄芯10は鉄芯部材11、12を所定の枚数毎に交互に積層されている。図2においては鉄芯部材12を3枚積層した後に1枚の鉄芯部材11を積層させ、以後これを繰り返した構造が例示されている。尚図2以外の積層方法であっても良い。そして左側の高さH1と右側の高さH2は同じになるように構成されている。
Embodiment 1 FIG.
The first embodiment will be described below with reference to the drawings. 1 is a perspective view showing a configuration of a laminated iron core 10 according to Embodiment 1, and FIG. 2 is a cross-sectional view taken along line AA in FIG. The laminated iron core 10 is obtained by fixing and laminating iron core members 11 and 12 obtained by punching steel plates 9 having different thicknesses at both ends in a direction perpendicular to the rolling direction into a necessary shape so as not to be displaced. And each steel plate 9 is laminated | stacked in the state in which the rolling direction corresponded, and is laminated | stacked so that the sides with a large board thickness may overlap each other. In FIG. 2, the left side is the side with the larger plate thickness, and the right side is the side with the smaller plate thickness. A method for fixing the steel plate 9 after punching will be described later. The iron core member 11 has a protrusion 13 on the side of the steel plate 9 where the thickness is small. The iron core member 12 has no projection 13 and is formed in a flat plate shape. In the laminated iron core 10, iron core members 11 and 12 are alternately laminated every predetermined number of sheets. FIG. 2 illustrates a structure in which three iron core members 12 are laminated and then one iron core member 11 is laminated, and this is repeated thereafter. A lamination method other than that shown in FIG. The left-side height H1 and the right-side height H2 are configured to be the same.

図3は図1における積層鉄芯10の製造工程を示す正面図である。また図4は積層鉄芯を打ち抜く金型を示す平面図であり、図5は図4におけるB−B線断面図である。図3において、本製造工程においては金型14に加えて、円形状に巻かれた電磁鋼板をほどくアンコイラー15と、鋼板9の巻きぐせを矯正し金型14に供給するレベラーフィーダー16と、圧延方向に直角な方向の板厚を計測する板厚計測装置17及び打ち抜き加工後の鋼板9を巻きとる鋼板巻き取り装置18が備えられている。   FIG. 3 is a front view showing a manufacturing process of the laminated iron core 10 in FIG. 4 is a plan view showing a mold for punching a laminated iron core, and FIG. 5 is a sectional view taken along line BB in FIG. 3, in this manufacturing process, in addition to the mold 14, an uncoiler 15 that unwinds the electromagnetic steel sheet wound in a circular shape, a leveler feeder 16 that corrects the winding of the steel sheet 9 and supplies it to the mold 14, rolling A plate thickness measuring device 17 that measures a plate thickness in a direction perpendicular to the direction and a steel plate winding device 18 that winds the steel plate 9 after punching are provided.

図4および図5において金型14について説明する。金型14は下型19と、ガイドポール20にガイドされて上下方向に移動可能な上型21を有する。上型21には、上型21内を横方向に摺動して移動するピン突出量切替部材22を有し、ピン突出量切替部材22には下型19に対向する面に深さの異なる穴23および穴31が形成されている。ピン部材24は、上型21内を摺動するように貫通しており、バネ部材25によって常時は下型19方向に押しつけられている。ピン部材24の上端26はピン突出量切替部材22の各穴23、31が存在する位置に対応するように配置されている。また下端27が鋼板押え板28を貫通して、鋼板押え板28と下型19の間に配置された鋼板9の所定の位置において突起13を半抜き加工するように配置されている。   The mold 14 will be described with reference to FIGS. The mold 14 has a lower mold 19 and an upper mold 21 that is guided by a guide pole 20 and can move in the vertical direction. The upper die 21 has a pin protrusion amount switching member 22 that slides and moves in the horizontal direction within the upper die 21, and the pin protrusion amount switching member 22 has a different depth on the surface facing the lower die 19. A hole 23 and a hole 31 are formed. The pin member 24 penetrates the upper die 21 so as to slide, and is always pressed against the lower die 19 by the spring member 25. The upper end 26 of the pin member 24 is arranged so as to correspond to the position where the holes 23 and 31 of the pin protrusion amount switching member 22 exist. Further, the lower end 27 penetrates the steel plate pressing plate 28 and is arranged so as to half-cut the protrusion 13 at a predetermined position of the steel plate 9 arranged between the steel plate pressing plate 28 and the lower mold 19.

次に上記のように構成される積層鉄芯10の製造方法について説明する。まず鋼板9をレベラーフィーダー16により巻きぐせを矯正し送りだす。次に板厚計測装置17によって鋼板9の圧延方向に直角な方向の板厚を計測する。図示しない演算装置にて板厚の計測結果に基づいて積層鉄芯10の両側で板厚の差が生じないような突起13を有する鉄芯部材11と突起の無い鉄芯部材12の数を演算する。演算結果に基づいて突起13を半抜き加工により形成する。そして図示しない打ち抜き加工金型により鋼板9を必要な形状に打ち抜いて鉄芯部材11、12を形成する。   Next, the manufacturing method of the laminated iron core 10 comprised as mentioned above is demonstrated. First, the steel plate 9 is sent out with the leveler feeder 16 correcting the winding. Next, the plate thickness measuring device 17 measures the plate thickness in the direction perpendicular to the rolling direction of the steel plate 9. The number of iron core members 11 having protrusions 13 and iron core members 12 having no protrusions is calculated based on the measurement results of the sheet thicknesses by a not-shown arithmetic unit based on the measurement results of the thicknesses of the laminated iron cores 10. To do. On the basis of the calculation result, the protrusion 13 is formed by half blanking. And the steel core members 11 and 12 are formed by punching the steel plate 9 into a necessary shape by a punching die (not shown).

また打ち抜き後、鉄芯部材11、12の固定を行う。どのような固定方法を用いても良い。たとえば金型14内にレーザ溶接装置を組み込んで、鉄芯部材11、12の外側から溶接で固定しても良い。又金型14から取り出した後に整列させて溶接で固定しても良い。更に接着剤やワニスなどの樹脂を鋼板の間に塗布して固定しても良い。この場合も金型で打ち抜く前に接着剤を塗布して打ち抜き金型内で積層する方法と、金型から打ち抜いた後に別装置にて1枚1枚接着剤を塗布して積層する方法などがある。   Moreover, after punching, the iron core members 11 and 12 are fixed. Any fixing method may be used. For example, a laser welding apparatus may be incorporated in the mold 14 and fixed by welding from the outside of the iron core members 11 and 12. Moreover, after taking out from the metal mold | die 14, you may align and fix by welding. Further, a resin such as an adhesive or varnish may be applied and fixed between the steel plates. Also in this case, there are a method of applying an adhesive before punching with a mold and laminating in the punching mold, a method of punching out from the mold and laminating by applying an adhesive one by one with a separate apparatus, etc. is there.

次に、図4、図5に基づいて金型14の動作を説明する。鋼板9が供給されると、ピン突出量切替部材22は、突起13を形成する場合にはピン突出量切替部材22の穴23がピン部材24の対応位置に移動する。図示しない機構により鋼板押え板28を下降させ、鋼板9を下型19の上面に押しつける。そして上型21を下降させる。ピン部材24の下端27が下型19の上面に載置されている鋼板9の上面に接触する。さらに上型21を下降させると、バネ部材25が上型21からの押付け力により収縮し、ピン部材24の上端26がピン突出量切替部材22の穴23内に入り、上端26の先端が穴23の底面に接触する。この時ピン部材24の下端27には上端26を介して上型21の押付け力が直接かかるようになり、その力により鋼板9に突起13が形成される。   Next, the operation of the mold 14 will be described with reference to FIGS. When the steel plate 9 is supplied, the pin protrusion amount switching member 22 moves the hole 23 of the pin protrusion amount switching member 22 to the corresponding position of the pin member 24 when the protrusion 13 is formed. The steel plate pressing plate 28 is lowered by a mechanism (not shown), and the steel plate 9 is pressed against the upper surface of the lower mold 19. Then, the upper mold 21 is lowered. The lower end 27 of the pin member 24 contacts the upper surface of the steel plate 9 placed on the upper surface of the lower mold 19. When the upper die 21 is further lowered, the spring member 25 contracts due to the pressing force from the upper die 21, the upper end 26 of the pin member 24 enters the hole 23 of the pin protrusion amount switching member 22, and the tip of the upper end 26 is the hole. 23 is in contact with the bottom surface. At this time, the pressing force of the upper die 21 is directly applied to the lower end 27 of the pin member 24 via the upper end 26, and the projection 13 is formed on the steel plate 9 by the force.

また突起13を形成しない場合には、ピン突出量切替部材22の穴31がピン部材24の対応位置に移動する。そして上記と同様に図示しない機構により鋼板押え板28を下降させ、鋼板9を下型19の上面に押しつける。そして上型21を下降させ、バネ部材25が押付け力により収縮し、ピン部材24の上端26がピン突出量切替部材22の穴31内に入る。しかしこの場合穴31の深さは穴23よりも深く、ピン部材24の上端26は穴31の底面とは接触しない。従って鋼板9には上型21の押付け力が鋼板9には伝わらず、鋼板9に突起13は形成されない。鋼板9にはバネ部材25の収縮分の押付け力がかかるが、バネ部材25の力は鋼板9を変形させない程度に設定されているため、突起13は形成されない。   When the protrusion 13 is not formed, the hole 31 of the pin protrusion amount switching member 22 moves to the corresponding position of the pin member 24. Similarly to the above, the steel plate presser plate 28 is lowered by a mechanism (not shown), and the steel plate 9 is pressed against the upper surface of the lower mold 19. Then, the upper die 21 is lowered, the spring member 25 contracts due to the pressing force, and the upper end 26 of the pin member 24 enters the hole 31 of the pin protrusion amount switching member 22. However, in this case, the depth of the hole 31 is deeper than that of the hole 23, and the upper end 26 of the pin member 24 does not contact the bottom surface of the hole 31. Therefore, the pressing force of the upper die 21 is not transmitted to the steel plate 9 on the steel plate 9, and the protrusion 13 is not formed on the steel plate 9. Although a pressing force corresponding to the contraction of the spring member 25 is applied to the steel plate 9, the projection 13 is not formed because the force of the spring member 25 is set to such an extent that the steel plate 9 is not deformed.

次に圧延方向に直角な方向において板厚の異なる鋼板9を積層した積層鉄芯10に発生するコア精度の悪化に対処するため、突起13を用いて調整する方法について説明する。鋼板押え板28の下側の面からのピン部材24の下端27の突出量によって、突起13の高さh(図2参照)は変化する。板厚計測装置17によって計測した圧延方向に直角な方向の1枚の板厚の偏差量Δtと突起13の高さhが同じになる場合は、突起13を形成した鉄芯部材11のみを積層すればコア精度を改善することができる。しかし板厚の偏差量Δtは変動するため、突起13の高さhとは一致することは少ない。板厚の偏差量Δtと突起13の高さhの差異が大きいほど、コア精度の改善効果は小さくなってしまう。また板厚の偏差量Δtは数μm程度であるため、突起13の高さhを偏差量Δtに合わせて精度よく形成することは難易度が高く、通常板厚の偏差量Δtよりも突起13の高さhの方が高くなる。   Next, a method of adjusting using the protrusions 13 will be described in order to cope with the deterioration of the core accuracy generated in the laminated iron core 10 in which the steel plates 9 having different thicknesses are laminated in the direction perpendicular to the rolling direction. The height h of the protrusion 13 (see FIG. 2) varies depending on the amount of protrusion of the lower end 27 of the pin member 24 from the lower surface of the steel plate pressing plate 28. When the deviation amount Δt of one sheet thickness in the direction perpendicular to the rolling direction measured by the sheet thickness measuring device 17 and the height h of the protrusion 13 are the same, only the iron core member 11 on which the protrusion 13 is formed is laminated. If so, the core accuracy can be improved. However, since the deviation amount Δt of the plate thickness fluctuates, it rarely coincides with the height h of the protrusion 13. The greater the difference between the thickness deviation Δt and the height h of the protrusion 13, the smaller the effect of improving the core accuracy. Further, since the deviation amount Δt of the plate thickness is about several μm, it is difficult to accurately form the height h of the protrusion 13 in accordance with the deviation amount Δt, and the protrusion 13 is larger than the deviation amount Δt of the normal plate thickness. The height h becomes higher.

そこで1枚の板厚の偏差量Δtと突起13の高さhに応じて、突起13を有する鉄芯部材11と突起を有しない鉄芯部材12のそれぞれの枚数を調整して、n枚分の鋼板の板厚の偏差の合計量nΔtと突起13の高さhができるだけ一致するように、鉄芯部材11と鉄芯部材12の組み合わせ枚数を調整する。このようにすることで板厚の偏差量Δtを相殺し、コア精度の向上を図ることができる。また板厚の偏差の合計量nΔtと突起13の高さhを一致させることが望ましいが、少しずれていても効果を有するので、経済性などの他の要因と合せて選定する。   Therefore, the number of iron core members 11 having protrusions 13 and the number of iron core members 12 having no protrusions are adjusted in accordance with the deviation amount Δt of one sheet thickness and the height h of the protrusions 13 to obtain n sheets. The total number of combinations of the iron core member 11 and the iron core member 12 is adjusted so that the total thickness deviation nΔt of the steel plates and the height h of the protrusions 13 match as much as possible. By doing so, the deviation amount Δt of the plate thickness can be canceled and the core accuracy can be improved. In addition, it is desirable that the total amount nΔt of thickness deviations and the height h of the projections 13 be matched, but even if they are slightly deviated, the effect is obtained, so selection is made in combination with other factors such as economy.

これまでの説明では、板厚の薄い側は全ての鋼板9において同じ側で発生する場合について説明したが、鋼板9によっては板厚の薄い側が反対側になる場合もある。板厚の薄い側が異なる2つの鋼板9に対応するためには、ピン部材24を両端部に一つずつ、計2つ配置するような金型構造にし、板厚の計測結果に基づいて、ピン部材24を切り替えて用いればよい。更に調整の自由度を高める装置構成として、ピン突出量切替部材22に深さの異なる穴23を複数用意して、板厚の偏差量Δtに応じて切り替えて打ち抜くこともできる。偏差量が小さい場合には、深さが深い穴を用い、また偏差量が大きい場合には深さが浅い穴を用いて調整を行う。   In the description so far, the case where the thin plate side is generated on the same side in all the steel plates 9 has been described. However, depending on the steel plate 9, the thin plate side may be the opposite side. In order to correspond to two steel plates 9 with different thicknesses, a pin structure is formed in which two pin members 24 are arranged, one at each end, and two pins are arranged. The member 24 may be used by switching. As a device configuration that further increases the degree of freedom of adjustment, a plurality of holes 23 having different depths can be prepared in the pin protrusion amount switching member 22 and can be switched and punched according to the thickness deviation amount Δt. When the deviation amount is small, adjustment is performed using a deep hole, and when the deviation amount is large, adjustment is performed using a shallow hole.

更に他の調整方法について以下説明する。図6は積層鉄芯を打ち抜く別の金型を示す平面図である。上型21内にあるピン部材24を図に示すように、圧延方向に直角な方向に複数配置することで、突起13を設ける箇所の多様性を図ることができる。例えば図7に示すように、圧延方向に直角な方向において、鋼板9の内側に突起13を設けると、その位置での偏差量は小さいため、突起13を有する鉄芯部材11の枚数を少なくすることができる。逆に外側に突起13を設けると、その位置での偏差量は大きいため突起13を有する鉄芯部材の11の枚数が多くなる。このようにすることで調整方法の自由度を高めることができる。ここで突起13の形状としては、円柱状や半球状及びV字形状等様々な形状が考えられ、安定して形成できるのであれば、どのような突起形状でも良い。   Still another adjustment method will be described below. FIG. 6 is a plan view showing another mold for punching a laminated iron core. As shown in the figure, by arranging a plurality of pin members 24 in the upper die 21 in a direction perpendicular to the rolling direction, diversity of locations where the protrusions 13 are provided can be achieved. For example, as shown in FIG. 7, when the protrusion 13 is provided on the inner side of the steel plate 9 in a direction perpendicular to the rolling direction, the amount of deviation at that position is small, so the number of iron core members 11 having the protrusion 13 is reduced. be able to. On the contrary, when the protrusions 13 are provided on the outer side, the deviation amount at the position is large, so that the number of the iron core members 11 having the protrusions 13 is increased. By doing in this way, the freedom degree of the adjustment method can be raised. Here, as the shape of the protrusion 13, various shapes such as a columnar shape, a hemispherical shape, and a V-shape are conceivable, and any protrusion shape may be used as long as it can be stably formed.

上記のように実施の形態1によれば、図2に示すように、突起を有しない鉄芯部材12を数枚積層したものの間に、板厚の小さい側に高さhの突起13を有する鉄芯部材11を介在させるようにしている。従って鉄芯部材12のみを積層した場合には板厚の大きい側と小さい側で差ができるのに対し、図2に示すように、鉄芯部材11を介在した場所に隙間Dを形成することにより、積層厚みの差を調整することができ、積層厚みH1とH2の厚みを同じにすることができるため、コア精度を向上することができる。尚図2において黒塗りされている部分が隙間を示している。   As described above, according to the first embodiment, as shown in FIG. 2, the protrusion 13 having the height h is provided on the side where the plate thickness is small, between several laminated iron core members 12 having no protrusion. The iron core member 11 is interposed. Therefore, when only the iron core member 12 is laminated, a difference can be made between the thick side and the small side, whereas a gap D is formed at a place where the iron core member 11 is interposed as shown in FIG. Thus, the difference in the laminated thickness can be adjusted, and the laminated thicknesses H1 and H2 can be made the same, so that the core accuracy can be improved. In FIG. 2, black portions indicate gaps.

本実施の形態では、鉄芯部材毎に圧延方向には突起13の個数が1個存在する場合について説明したが、圧延方向に複数個の突起13を設けても良い。複数個の突起13の深さを均一に製作することができれば、各鉄芯部材を複数点で保持できるようになるので、圧延方向のコア精度を高めることができる。ただしピン突出量切替部材22やピン部材24はある程度の大きさを持つため、小さな形状の鉄芯部材を形成する場合には、複数個を配置することができない場合がある。そこでたとえば図8に示すように、突起13を形成するための2つのステージ100、101を設け、それぞれにピン部材24を配置すれば良い。ただし金型14のサイズが大きくなることでコストが増加することがあり、又突起13の高さを均一に加工する工夫が必要になる。以上より必要なコア精度と投資可能な設備費の観点から適合する条件を選定するとよい。   In the present embodiment, the case where there is one protrusion 13 in the rolling direction for each iron core member has been described, but a plurality of protrusions 13 may be provided in the rolling direction. If the depths of the plurality of protrusions 13 can be manufactured uniformly, each iron core member can be held at a plurality of points, so that the core accuracy in the rolling direction can be increased. However, since the pin protrusion amount switching member 22 and the pin member 24 have a certain size, when a small-sized iron core member is formed, a plurality of pins may not be arranged. Therefore, for example, as shown in FIG. 8, two stages 100 and 101 for forming the protrusion 13 may be provided, and the pin member 24 may be disposed on each of them. However, the increase in the size of the mold 14 may increase the cost, and a device for processing the height of the protrusion 13 uniformly is required. From the above, it is better to select suitable conditions from the viewpoint of necessary core accuracy and investable equipment costs.

実施の形態2.
図9は実施の形態2における積層鉄芯を示す断面図であり、実施の形態1における図2に相当する図である。鉄芯部材32には、鋼板の板厚の小さい側に突起(第1の突起)33を設けると共に、鋼板の板厚の大きい側に突起(第2の突起)34を設け、突起33の高さは突起34の高さよりも大きくなっている。積層鉄芯10は、鉄芯部材32と所定枚数積層された突起のない鉄芯部材12を交互に積層したものである。
Embodiment 2. FIG.
FIG. 9 is a cross-sectional view showing the laminated iron core in the second embodiment, and corresponds to FIG. 2 in the first embodiment. The iron core member 32 is provided with a projection (first projection) 33 on the side of the steel plate having a small thickness and a projection (second projection) 34 on the side of the steel plate having a large thickness. The height is larger than the height of the protrusion 34. The laminated iron core 10 is obtained by alternately laminating iron core members 32 and a predetermined number of iron core members 12 without protrusions.

図10は実施の形態2による金型14を示す断面図である。金型の基本構造は実施の形態1と同じであり、下型19とガイドポール20にガイドされた上型21を有し、上型21内を横方向に摺動して移動するピン突出量切替部材22を設け、バネ部材25によって下型19方向に押さえ付けられるピン部材24を有している。ピン部材24の上端26はピン突出量切替部材22の各穴が存在する位置に対応するように配置されている。また下端27が鋼板押え板28を貫通して、鋼板押え板28と下型19の間に配置された鋼板9の所定の位置に突起13を半抜き加工する。   FIG. 10 is a cross-sectional view showing a mold 14 according to the second embodiment. The basic structure of the mold is the same as that of the first embodiment, and has a lower mold 19 and an upper mold 21 guided by a guide pole 20, and a protruding amount of a pin that moves by sliding in the upper mold 21 in the lateral direction. A switching member 22 is provided, and a pin member 24 that is pressed in the direction of the lower mold 19 by a spring member 25 is provided. The upper end 26 of the pin member 24 is disposed so as to correspond to the position where each hole of the pin protrusion amount switching member 22 exists. Further, the lower end 27 penetrates the steel plate pressing plate 28, and the protrusion 13 is half-punched at a predetermined position of the steel plate 9 disposed between the steel plate pressing plate 28 and the lower mold 19.

実施の形態1との相違点としては、ピン部材24が圧延方向に直角な方向に2箇所設けられている点が異なる。またピン突出量切替部材22は突起33に対応する穴51と突起34に対応する穴52を有し、穴31の数もピン部材24の増加分だけ増加している。尚穴52の深さは穴51の深さよりも大きい。またピン突出量切替部材22やピン部材24はある程度の大きさを持つため、小さな鉄芯部材を作成する場合には、複数個のピン部材24を配置することができない場合がある。この場合は突起13を形成するステージを2つに分け、それぞれにピン部材24を配置すれば良いが金型自体が大きくなるデメリットを有する。   The difference from the first embodiment is that two pin members 24 are provided in a direction perpendicular to the rolling direction. Further, the pin protrusion amount switching member 22 has a hole 51 corresponding to the protrusion 33 and a hole 52 corresponding to the protrusion 34, and the number of holes 31 is increased by the increase of the pin member 24. The depth of the hole 52 is larger than the depth of the hole 51. Further, since the pin protrusion amount switching member 22 and the pin member 24 have a certain size, there are cases where a plurality of pin members 24 cannot be arranged when a small iron core member is created. In this case, the stage for forming the protrusion 13 may be divided into two, and the pin member 24 may be disposed on each of the stages. However, there is a disadvantage that the mold itself becomes large.

突起33および突起34を形成する際には、二つのピン部材24の上端26に対応する位置に、ピン突出量切替部材22の穴51、52を移動する。また突起33、34を形成しない場合には、穴31を対応位置に移動する。穴31の深さは深く、ピン部材24の上端26は穴31の底面とは接触しない。従って上型21の押付け力が鋼板9には伝わらず、鋼板9に突起33、34は形成されない。
以上のようにピン突出量切替部材22を動かすことで、突起33、34のある鉄芯部材32と突起のない鉄芯部材12を製作し、板厚の偏差量を相殺するように鉄芯部材32と鉄芯部材12を組み合わせて積層する。
When forming the protrusions 33 and 34, the holes 51 and 52 of the pin protrusion amount switching member 22 are moved to positions corresponding to the upper ends 26 of the two pin members 24. When the projections 33 and 34 are not formed, the hole 31 is moved to the corresponding position. The depth of the hole 31 is deep, and the upper end 26 of the pin member 24 does not contact the bottom surface of the hole 31. Therefore, the pressing force of the upper die 21 is not transmitted to the steel plate 9, and the protrusions 33 and 34 are not formed on the steel plate 9.
By moving the pin protrusion amount switching member 22 as described above, the iron core member 32 with the protrusions 33 and 34 and the iron core member 12 without the protrusion are manufactured, and the iron core member so as to offset the deviation amount of the plate thickness. 32 and the iron core member 12 are combined and laminated.

上記のように実施の形態2によれば、突起のない鉄芯部材12を数枚積層したものの間に板厚が薄い側には高さの高い突起33が設けられ、板厚が厚い側には高さの低い突起34が設けられた鉄芯部材32を介在させるようにしたものである。従って鉄芯部材12のみを積層した場合には板厚の大きい側と小さい側で差ができるのに対し、本実施形態では鉄芯部材32を介在した場所に隙間Eが形成されることにより、積層厚みの差を調整し、全体として両端間で高さの差がなくなるので、コア精度を向上することができる。
又突起33、34の差の分だけ鋼板の板厚の偏差量が微調整され、全体としての高さを同じにすることができるため、実施の形態1の場合より更に微調整が可能となり、コア精度を向上することができる。また実施の形態2では、突起を有する鉄芯部材32と突起の無い鉄芯部材12を所定の枚数毎に交互に積層したが、鉄芯部材32のみを積層しても同一の効果を得ることができる。
As described above, according to the second embodiment, the protrusion 33 having a high height is provided on the side where the plate thickness is thin between the several laminated iron core members 12 having no protrusion, and the plate on the side where the plate thickness is thick. Is an iron core member 32 provided with a projection 34 having a low height. Therefore, when only the iron core member 12 is laminated, a difference can be made between the large thickness side and the small thickness side, whereas in the present embodiment, the gap E is formed at the place where the iron core member 32 is interposed. The difference in stacking thickness is adjusted, and as a whole there is no difference in height between both ends, so that the core accuracy can be improved.
Further, the amount of deviation of the thickness of the steel sheet is finely adjusted by the difference between the protrusions 33 and 34, and the overall height can be made the same, so that further fine adjustment is possible than in the case of the first embodiment. Core accuracy can be improved. In the second embodiment, the iron core member 32 having protrusions and the iron core member 12 without protrusions are alternately laminated every predetermined number. However, even if only the iron core members 32 are laminated, the same effect can be obtained. Can do.

実施の形態3.
図11は実施の形態3における積層鉄芯10を示す断面図であり、実施の形態1における図2に相当する図である。鉄芯部材(第3の鉄芯部材)35には、鋼板の板厚の小さい側に突起(第3の突起)63を設け、鉄芯部材(第4の鉄芯部材)36には鋼板の板厚の大きい側に突起(第4の突起)64を設けている。突起63の高さは突起64の高さよりも大きい。積層鉄芯10は、突起のない鉄芯部材12を所定の枚数積層したものの間に鉄芯部材35、36を介在させたものである。
Embodiment 3 FIG.
FIG. 11 is a cross-sectional view showing laminated iron core 10 according to the third embodiment, and corresponds to FIG. 2 according to the first embodiment. The iron core member (third iron core member) 35 is provided with a protrusion (third protrusion) 63 on the side where the plate thickness of the steel plate is small, and the iron core member (fourth iron core member) 36 is made of a steel plate. A protrusion (fourth protrusion) 64 is provided on the thicker side. The height of the protrusion 63 is larger than the height of the protrusion 64. The laminated iron core 10 is obtained by interposing iron core members 35 and 36 between a predetermined number of laminated iron core members 12 without protrusions.

このような本実施形態によれば、突起のない鉄芯部材12を所定数積層し、この間に板厚が薄い側に高さの高い突起63を設けた鉄芯部材35と、板厚が厚い側に高さの低い突起64を設けた鉄芯部材36を介在させるようにしている。従って鉄芯部材12のみを積層した場合には板厚の大きい側と小さい側で差ができるのに対し、鉄芯部材35を介在させた場所に隙間Fを形成し、鉄芯部材36を介在させた場所に隙間Gを形成させることができる。これにより高さの違う隙間F、Gを組み合わせることで積層厚みの差を調整し、両端側において積層厚みを同じにすることができるため、コア精度を向上させることができる。   According to this embodiment, the iron core member 35 without a protrusion is stacked in a predetermined number, and the iron core member 35 provided with the protrusion 63 having a high height on the side where the plate thickness is thin, and the plate thickness is thick. An iron core member 36 provided with a protrusion 64 having a low height on the side is interposed. Accordingly, when only the iron core member 12 is laminated, a difference can be made between the thick side and the small side, whereas a gap F is formed at the place where the iron core member 35 is interposed, and the iron core member 36 is interposed. The gap G can be formed in the place where it was made to. Thus, by combining the gaps F and G having different heights, the difference in stacking thickness can be adjusted and the stacking thickness can be made the same at both ends, so that the core accuracy can be improved.

更に実施の形態2では2つの突起が1枚の鉄芯部材に設けられているので、2つの突起の高さの差×枚数が偏差量に正確に一致するようになるよう突起の加工精度が要求されるのに対し、実施の形態3では、左右の突起の個数を自由に変えることができるため、突起の加工状態に合わせて、左右の突起の個数の組み合わせを調整することができ、突起の加工精度が実施の形態2に比べて低く済むという効果がある。尚実施の形態3において金型の構成は図10に示された構成と同じでも良く、あるいは図8に示すようにステージを別に別に分けても良い。   Further, in the second embodiment, since the two protrusions are provided on one iron core member, the processing accuracy of the protrusions is adjusted so that the height difference × number of the two protrusions exactly matches the deviation amount. In contrast, in the third embodiment, since the number of left and right protrusions can be freely changed, the combination of the number of left and right protrusions can be adjusted according to the processing state of the protrusion. There is an effect that the machining accuracy is lower than that of the second embodiment. In the third embodiment, the configuration of the mold may be the same as the configuration shown in FIG. 10, or the stage may be divided separately as shown in FIG.

実施の形態4.
図12は実施の形態4における積層鉄芯10を示す断面図であり、実施の形態1における図2に相当する図である。鉄芯部材(第5の鉄芯部材)41は鋼板9の板厚の小さい側に突起(第5の突起)42を有している。鉄芯部材41の積層方向下側には鉄芯部材(第6の鉄芯部材)43が配置され、突起42に対応する位置に突起42よりも直径が大きな突起(第6の突起)44を有している。そしてその下には鉄芯部材(第7の鉄芯部材)45が設けられ、突起42および突起44に対応する位置に突起44よりも直径が大きな穴46を有する。
Embodiment 4 FIG.
FIG. 12 is a cross-sectional view showing laminated iron core 10 according to the fourth embodiment, and corresponds to FIG. 2 according to the first embodiment. The iron core member (fifth iron core member) 41 has a protrusion (fifth protrusion) 42 on the side of the steel plate 9 where the plate thickness is small. An iron core member (sixth iron core member) 43 is disposed below the iron core member 41 in the stacking direction, and a protrusion (sixth protrusion) 44 having a diameter larger than that of the protrusion 42 is provided at a position corresponding to the protrusion 42. Have. Below that, an iron core member (seventh iron core member) 45 is provided, and has a projection 46 and a hole 46 having a diameter larger than that of the projection 44 at a position corresponding to the projection 44.

また鉄芯部材41、43、45の他には突起の無い平板状の鉄芯部材12が用いられる。なお突起42の高さh3は突起44の高さh4よりも大きいため、鉄芯部材41と鉄芯部材43の間には高さの差の分だけ隙間Gが発生する。又穴46の深さは突起44の高さh4よりも大きい。そして鉄芯部材41と鉄芯部材43と鉄芯部材45が合わさることにより鉄芯部材50を形成している。鉄芯部材50は鉄芯部材41と鉄芯部材43の突起の高さの差の分だけ突起のある側の高さが高くなる。積層鉄芯10は組合せ鉄芯部材50と鉄芯部材12を所定の枚数積層したものである。   In addition to the iron core members 41, 43, 45, a flat iron core member 12 having no protrusion is used. Since the height h3 of the protrusion 42 is larger than the height h4 of the protrusion 44, a gap G is generated between the iron core member 41 and the iron core member 43 by the height difference. The depth of the hole 46 is larger than the height h4 of the protrusion 44. The iron core member 41 is formed by combining the iron core member 41, the iron core member 43, and the iron core member 45. The iron core member 50 has a height on the side where the protrusions are increased by the difference in height between the protrusions of the iron core member 41 and the iron core member 43. The laminated iron core 10 is obtained by laminating a predetermined number of combination iron core members 50 and iron core members 12.

図13は実施の形態4による金型を示す平面図である。金型の基本構造は実施の形態1と同じである。本実施形態においては突起を加工するピン部材24を有する2つのステージ401、402が設けられ、更に図示しない穴46を打ち抜くステージが設けられている。それぞれのステージにて鋼板9に突起42、突起44、穴46を形成し、図示しない打ち抜き加工金型によりそれぞれの位置で鋼板9を打ち抜いて、鉄芯部材41、43、45を形成し、組合せ鉄芯部材50を形成する。   FIG. 13 is a plan view showing a mold according to the fourth embodiment. The basic structure of the mold is the same as in the first embodiment. In the present embodiment, two stages 401 and 402 having a pin member 24 for processing a protrusion are provided, and a stage for punching a hole 46 (not shown) is further provided. Protrusions 42, protrusions 44, and holes 46 are formed in the steel plate 9 at each stage, and the steel plate 9 is punched out at each position by a punching die (not shown) to form iron core members 41, 43, and 45. The iron core member 50 is formed.

このような実施の形態4によれば、穴46が設けられた鉄芯部材45の上に、穴46よりも小さな直径の突起44を有する鉄芯部材43を配置し、鉄芯部材43の上に突起44よりも小さな直径の突起42を有する鉄芯部材41を配置し、更に突起42の高さは突起44よりも高くした組合せ鉄芯部材50を形成する。そして所定枚数積層された突起のない鉄芯部材12の間に鉄芯部材50を介在させるようにしているので、鉄芯部材12のみを積層した場合には、鉄芯部材の両端部で板厚の大きい側と小さい側が発生するのに対し、本実施形態では、板厚が小さい側において積層厚みが高くなった組合せ鉄芯部材50が介在しているので、隙間Gを発生させることができる。従って積層厚みの差を調整し、鉄芯部材の両側で積層厚みを同じにすることができるため、コア精度を向上することができる。   According to the fourth embodiment, the iron core member 43 having the projection 44 having a diameter smaller than that of the hole 46 is disposed on the iron core member 45 provided with the hole 46. An iron core member 41 having a protrusion 42 having a diameter smaller than that of the protrusion 44 is disposed on the protrusion 42, and a combined iron core member 50 having a height higher than that of the protrusion 44 is formed. And since the iron core member 50 is interposed between the iron core members 12 having no protrusions and a predetermined number of layers, when only the iron core member 12 is laminated, the plate thickness at both ends of the iron core member. On the other hand, a large side and a small side are generated, whereas in this embodiment, the combination iron core member 50 having an increased laminated thickness is interposed on the side where the plate thickness is small, and therefore the gap G can be generated. Therefore, since the difference in the laminated thickness can be adjusted and the laminated thickness can be made the same on both sides of the iron core member, the core accuracy can be improved.

また実施の形態4では、組合せ鉄芯部材50と突起の無い鉄芯部材12を所定の枚数毎に交互に積層したが、板厚の偏差量を相殺するように突起42と突起44の高さを決めれば、鉄芯部材50のみを積層しても同一の効果を得ることができる。
また鉄芯部材同士をかしめにより結合させて、かしめの高さを変えて板厚の違いを調整する方法もあるが、絶縁被膜で覆われていない部位同士が接触し、渦電流が発生して、回転電機の効率を低下させるおそれがある。本実施形態では突起42と突起44および穴46の直径をそれぞれ接触しないように設定するため、絶縁被膜で覆われていない部位同士が接触せず、回転電機の効率の低下量を小さくできる効果を有する。
尚本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
In the fourth embodiment, the combination iron core members 50 and the iron core members 12 having no protrusions are alternately stacked every predetermined number. However, the heights of the protrusions 42 and the protrusions 44 are offset so as to cancel out the deviation of the plate thickness. If only the iron core member 50 is laminated, the same effect can be obtained.
There is also a method of adjusting the difference in sheet thickness by caulking the iron core members and changing the caulking height, but the parts not covered with the insulating coating are in contact with each other, and eddy current is generated. There is a risk of reducing the efficiency of the rotating electrical machine. In this embodiment, since the diameters of the protrusions 42, the protrusions 44, and the holes 46 are set so as not to contact each other, the portions that are not covered with the insulating coating do not contact each other, and the effect of reducing the reduction in efficiency of the rotating electrical machine can be achieved. Have.
It should be noted that the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be appropriately modified or omitted.

9 鋼板、10 積層鉄芯、11,12,35,36,41,43,45 鉄芯部材、13,33,34,42,44 突起、14 金型、17 板厚計測装置、46 穴。   9 Steel plate, 10 Laminated iron core, 11, 12, 35, 36, 41, 43, 45 Iron core member, 13, 33, 34, 42, 44 Protrusion, 14 Mold, 17 Plate thickness measuring device, 46 holes.

Claims (6)

圧延方向に直角な方向の両端部の板厚が異なる鋼板から打ち抜かれた複数の鉄芯部材より形成されるものであって、上記板厚の大きい側同士および小さい側同士が重なるように形成される回転電機の積層鉄芯において、
所定枚数積層された平板状の鉄芯部材の間に突起を有する鉄芯部材を介在させることにより、上記積層鉄芯の両側で高さの差が生じないようにすることを特徴とする回転電機の積層鉄芯。
It is formed from a plurality of iron core members punched from steel plates having different thicknesses at both ends in a direction perpendicular to the rolling direction, and is formed so that the large side and the small side overlap each other. In the laminated iron core of
A rotating electric machine characterized in that a difference in height is prevented from occurring on both sides of the laminated iron core by interposing an iron core member having a protrusion between flat iron core members laminated in a predetermined number. Laminated iron core.
上記板厚の小さい側に上記突起を設けたことを特徴とする請求項1記載の回転電機の積層鉄芯。 2. The laminated iron core for a rotating electrical machine according to claim 1, wherein the protrusion is provided on the side having a small plate thickness. 上記板厚の小さい側に第1の突起を設けるとともに上記板厚の大きい側に第2の突起を設け、上記第1の突起の高さは上記第2の突起の高さよりも大きいことを特徴とする請求項1記載の回転電機の積層鉄芯。 A first protrusion is provided on the small thickness side and a second protrusion is provided on the large thickness side, and the height of the first protrusion is greater than the height of the second protrusion. A laminated iron core for a rotating electrical machine according to claim 1. 上記板厚の小さい側に第3の突起を設けた第3の鉄芯部材と、上記板厚の大きい側に第4の突起を設けた第4の鉄芯部材を介在させ、上記第3の突起の高さは上記第4の突起の高さよりも大きいことを特徴とする請求項1記載の回転電機の積層鉄芯。 A third iron core member having a third protrusion provided on the side having a small plate thickness and a fourth iron core member having a fourth protrusion provided on the side having a large plate thickness are interposed, and the third iron member is interposed. The laminated iron core for a rotating electrical machine according to claim 1, wherein a height of the protrusion is larger than a height of the fourth protrusion. 上記板厚の小さい側に第5の突起が設けられた第5の鉄芯部材と、
上記第5の鉄芯部材の積層方向下側に配置されるとともに上記第5の突起よりも直径が大きくかつ高さの小さい第6の突起が上記第5の突起に対応する位置に設けられた第6の鉄芯部材と、
上記第6の鉄芯部材の積層方向下側に配置されるとともに上記第6の突起よりも直径が大きな穴が上記第6の突起に対応する位置に設けられた第7の鉄芯部材と、
平板状の上記鉄芯部材を備えたことを特徴とする請求項1記載の回転電機の積層鉄芯。
A fifth iron core member provided with a fifth protrusion on the side having the smaller plate thickness;
A sixth projection that is disposed on the lower side in the stacking direction of the fifth iron core member and has a diameter larger than that of the fifth projection and smaller in height is provided at a position corresponding to the fifth projection. A sixth iron core member;
A seventh iron core member disposed on the lower side in the stacking direction of the sixth iron core member and having a hole having a diameter larger than that of the sixth protrusion at a position corresponding to the sixth protrusion;
The laminated iron core for a rotating electrical machine according to claim 1, further comprising a flat iron core member.
請求項1から請求項5のいずれか1項に記載の回転電機の積層鉄芯の製造装置であって、
上記鋼板の圧延方向に直角な方向の板厚を計測する板厚計測装置と、
上記板厚計測装置による上記板厚の計測結果に基づいて上記突起を有する上記鉄芯部材と平板状の上記鉄芯部材の数を演算する演算装置と、
上記演算装置による演算結果に基づいて上記突起を半抜き加工により形成する金型と、
上記鋼板を打ち抜いて上記鉄芯部材を形成する打ち抜き加工金型を備えたことを特徴とする回転電機の積層鉄芯の製造装置。
A laminated iron core manufacturing apparatus for a rotating electrical machine according to any one of claims 1 to 5,
A plate thickness measuring device for measuring a plate thickness in a direction perpendicular to the rolling direction of the steel plate;
An arithmetic device for calculating the number of the iron core member having the protrusion and the flat iron core member based on the measurement result of the plate thickness by the plate thickness measuring device;
A mold for forming the protrusions by half punching based on a calculation result by the calculation device;
An apparatus for manufacturing a laminated iron core for a rotating electrical machine, comprising a punching die for punching the steel plate to form the iron core member.
JP2016083298A 2016-04-19 2016-04-19 Laminated iron core of rotary electric machine and manufacturing machine thereof Pending JP2017195669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016083298A JP2017195669A (en) 2016-04-19 2016-04-19 Laminated iron core of rotary electric machine and manufacturing machine thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016083298A JP2017195669A (en) 2016-04-19 2016-04-19 Laminated iron core of rotary electric machine and manufacturing machine thereof

Publications (1)

Publication Number Publication Date
JP2017195669A true JP2017195669A (en) 2017-10-26

Family

ID=60155634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016083298A Pending JP2017195669A (en) 2016-04-19 2016-04-19 Laminated iron core of rotary electric machine and manufacturing machine thereof

Country Status (1)

Country Link
JP (1) JP2017195669A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109787437A (en) * 2018-12-24 2019-05-21 三门峡宏鑫有色金属有限公司 A kind of high speed rotor of motor iron core manufacturing process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109787437A (en) * 2018-12-24 2019-05-21 三门峡宏鑫有色金属有限公司 A kind of high speed rotor of motor iron core manufacturing process
CN109787437B (en) * 2018-12-24 2021-01-22 三门峡宏鑫新材料科技有限公司 Manufacturing process of high-speed motor rotor core

Similar Documents

Publication Publication Date Title
US10109417B2 (en) Laminated iron core and method of manufacturing laminated iron core with caulking protrusion
JPWO2011077830A1 (en) Laminated core, electric motor provided with the laminated core, and laminated core manufacturing method
JP2007159300A (en) Stator of rotary electric machine
JP2011172441A (en) Motor core and assembling method thereof
US10355574B2 (en) Linear motor and linear motor manufacturing method
JP2017038453A (en) Laminated core, manufacturing method thereof, and punch for caulk formation used therefor
JP6323030B2 (en) Rotor
JP5893904B2 (en) Laminated iron core and method for manufacturing the same
JPWO2017195249A1 (en) Stator iron core and motor having the stator iron core
JP2007228664A (en) Layered iron core
JP3749490B2 (en) Laminated iron core and method for manufacturing the same
JP5814304B2 (en) Laminated iron core manufacturing apparatus and laminated iron core manufacturing method
JP2013135543A (en) Laminated core
JP2007221927A (en) Stator core of rotating electric machine and method of manufacturing same
JP2017195669A (en) Laminated iron core of rotary electric machine and manufacturing machine thereof
KR20130124564A (en) Core winding method and stator
JP2010233436A (en) Motor
CN107222067B (en) Method and apparatus for manufacturing laminated core
JP2012243902A (en) Edgewise coil and manufacturing method therefor
CN114389413A (en) Method and apparatus for manufacturing core member, and method for manufacturing split laminated core
JPWO2017094525A1 (en) Stator, motor, and stator manufacturing method
KR102620775B1 (en) Laminated core and manufacturing apparatus and method for the same
JP4001294B2 (en) Laminated iron core and method for manufacturing the same
JP4841867B2 (en) Solenoid manufacturing method
KR102008893B1 (en) Apparatus for manufacturing laminated core and method for manufacturing laminated core