WO2017094525A1 - Stator, motor, and method for manufacturing stator - Google Patents

Stator, motor, and method for manufacturing stator Download PDF

Info

Publication number
WO2017094525A1
WO2017094525A1 PCT/JP2016/084210 JP2016084210W WO2017094525A1 WO 2017094525 A1 WO2017094525 A1 WO 2017094525A1 JP 2016084210 W JP2016084210 W JP 2016084210W WO 2017094525 A1 WO2017094525 A1 WO 2017094525A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
stator core
circumferential
core
width
Prior art date
Application number
PCT/JP2016/084210
Other languages
French (fr)
Japanese (ja)
Inventor
良樹 河合
智哉 上田
祐輔 牧野
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201680069585.XA priority Critical patent/CN108292867B/en
Priority to JP2017553771A priority patent/JP6806081B2/en
Publication of WO2017094525A1 publication Critical patent/WO2017094525A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines

Definitions

  • the present invention relates to a stator, a motor, and a method for manufacturing a stator.
  • an electric motor having a plurality of core members arranged in an annular shape around the axis of the rotor output shaft is known.
  • the core member of the electric motor in Patent Document 1 is composed of a laminated steel plate in which electromagnetic steel plates are laminated along the radial direction of the stator.
  • the circumferential end of the core member is constituted by the circumferential ends of the plurality of electromagnetic steel plates.
  • Patent Document 1 for example, the flange portion of the insulator is provided with a connecting means for connecting the core members to each other in the circumferential direction.
  • a connecting means for connecting the core members to each other in the circumferential direction.
  • one aspect of the present invention provides a stator having a structure capable of improving the arrangement accuracy of a plurality of stator cores while suppressing an increase in size, and a motor including such a stator. Is one of the purposes.
  • Another object of the present invention is to provide a stator manufacturing method capable of improving the arrangement accuracy of a plurality of stator cores while suppressing an increase in size.
  • a stator is a stator that is axially opposed to a rotor that rotates about a central axis that extends in the vertical direction and a gap, and a plurality of stator cores that are arranged along a circumferential direction, A coil wound around the stator core, an insulator at least part of which is located between the stator core and the coil, and a resin part at least part of which is located between the stator cores adjacent in the circumferential direction are provided.
  • the stator core has a configuration in which a plurality of electromagnetic steel plates are laminated in the radial direction.
  • the stator core includes a core columnar portion extending in the axial direction and around which a coil is wound, and a plate-like flange portion extending in the circumferential direction connected to the axial end portion of the core columnar portion.
  • the flange portion has an enlarged portion whose circumferential width increases from the radially inner side toward the radially outer side, and an equal width portion having the substantially same circumferential width and extending in the radial direction.
  • the equal width portion has a configuration in which a plurality of electromagnetic steel sheets having substantially the same circumferential width are stacked in the radial direction.
  • the resin part is a resin main body part at least partially located between the flange parts adjacent to each other in the circumferential direction, and a constant width part of the stator core that is recessed in the axial direction from the axial end surface of the resin main body part and adjacent in the circumferential direction. And a first recess located between them.
  • a motor includes the above-described stator, a rotor that is axially opposed to the stator via a gap, and a shaft that rotatably supports the rotor.
  • a method for manufacturing a stator according to one aspect of the present invention is a method for manufacturing a stator that is axially opposed to a rotor that rotates about a central axis that extends in the up-down direction, with a gap therebetween.
  • the stator core includes a core columnar portion that extends in the axial direction and is wound with a coil, and a plate-like flange portion that is connected to the axial end of the core columnar portion and extends in the radial direction.
  • the flange portion has an enlarged portion whose circumferential width increases from the radially inner side toward the radially outer side, and an equal width portion having the substantially same circumferential width and extending in the radial direction.
  • the equal width portion has a configuration in which a plurality of electromagnetic steel sheets having substantially the same circumferential width in the flange portion are stacked in the radial direction.
  • the stator core is positioned in the circumferential direction by bringing the equal width portion into contact with the first positioning member disposed in the mold.
  • a stator having a structure capable of improving the arrangement accuracy of a plurality of stator cores while suppressing an increase in size, and a motor including such a stator are provided. Moreover, according to one aspect of the present invention, there is provided a method for manufacturing a stator capable of improving the arrangement accuracy of a plurality of stator cores while suppressing an increase in size.
  • FIG. 1 is a cross-sectional view showing the motor of this embodiment.
  • FIG. 2 is a perspective view showing the stator of the present embodiment.
  • FIG. 3 is a perspective view showing the stator core of the present embodiment.
  • FIG. 4 is a view showing the stator core of the present embodiment and is a cross-sectional view taken along the line IV-IV in FIG.
  • FIG. 5 is a perspective view of the stator of this embodiment as viewed from below.
  • FIG. 6 is a cross-sectional view showing a portion of the stator of the present embodiment.
  • FIG. 7 is a flowchart showing a procedure in the stator manufacturing method of the present embodiment.
  • FIG. 8 is a diagram illustrating an installation process in the stator manufacturing method of the present embodiment.
  • FIG. 9 is a cross-sectional view showing a stator core which is another example of the present embodiment.
  • extending in the axial direction includes not only the case of extending in the axial direction but also the case of extending in a direction inclined by less than 45 ° with respect to the axial direction.
  • “Extending in the radial direction” includes not only strictly extending in the radial direction, that is, in a direction perpendicular to the axial direction, but also extending in a direction inclined by less than 45 ° with respect to the radial direction. .
  • the motor 10 of this embodiment shown in FIG. 1 is an axial gap type motor.
  • the motor 10 includes a housing 11, a shaft 20, rotors 31 and 32, a stator 40, an upper bearing 51, and a lower bearing 52.
  • the shaft 20 is disposed around the central axis J.
  • the shaft 20 supports the rotors 31 and 32 in a rotatable manner.
  • the rotors 31 and 32 rotate around a central axis J that extends in the vertical direction.
  • the rotors 31 and 32 face the stator 40 in the axial direction through a gap.
  • the rotors 31 and 32 have rotor magnets 33 and 35 that face the stator 40 in the axial direction. Only one of the rotors 31 and 32 may be provided.
  • the stator 40 is positioned between the rotor 31 and the rotor 32 in the axial direction.
  • the stator 40 is opposed to the rotors 31 and 32 in the axial direction through a gap.
  • the stator 40 includes a plurality of stator cores 41, a plurality of coils 42, an insulator 43, a resin portion 46, a bearing holder 44, and a cover 45.
  • the stator 40 may be provided so as to face either of the rotors 31 and 32 in the axial direction.
  • the plurality of stator cores 41 are arranged along the circumferential direction.
  • the number of stator cores 41 is not particularly limited. In FIG. 2, twelve stator cores 41 are provided.
  • the stator core 41 has a substantially fan shape that extends in the circumferential direction from the radially inner side to the radially outer side when viewed in the axial direction.
  • the stator core 41 has a configuration in which a plurality of electromagnetic steel plates 41a are laminated in the radial direction.
  • the electromagnetic steel plate 41a is a substantially H-shaped flat plate as viewed in the radial direction.
  • the radial end surface of the electromagnetic steel plate 41a is substantially orthogonal to the radial direction passing through the center in the circumferential direction of the stator core 41 when viewed in the axial direction. Both end surfaces in the circumferential direction of the electromagnetic steel plate 41a are substantially parallel to the radial direction passing through the center in the circumferential direction of the electromagnetic steel plate 41a.
  • the electromagnetic steel plate 41a has a stator core recess 41e that is recessed in a direction orthogonal to the radial direction.
  • the stator core recess 41 e is recessed in the axial direction.
  • the stator core recess 41e is provided at both axial ends of the electromagnetic steel plate 41a.
  • the internal shape of the stator core recess 41e is rectangular when viewed in the radial direction.
  • the stator core recess 41e may be recessed in any direction as long as the direction is orthogonal to the radial direction. Further, the stator core recess 41e may be recessed in the circumferential direction.
  • the stator core 41 has a core columnar portion 41b that extends in the axial direction and is wound with a coil 42, and a plate-like flange portion 41c that is connected to the axial end of the core columnar portion 41b and extends in the circumferential direction.
  • the flange portion 41c extends from the axial end portion of the core columnar portion 41b to both sides in the circumferential direction.
  • the flange portions 41c are provided at both axial ends of the core columnar portion 41b.
  • the flange portion 41c has an enlarged portion 47b and a uniform width portion 47a.
  • the enlarged portion 47b is a portion whose circumferential width increases from the radially inner side toward the radially outer side. That is, in the plurality of electromagnetic steel plates 41a constituting the enlarged portion 47b, the electromagnetic steel plate 41a located on the radially outer side has a larger circumferential width in the flange portion 41c than the electromagnetic steel plate 41a located on the radially inner side.
  • both ends in the circumferential direction of the electromagnetic steel sheet 41a are parallel to the radial direction passing through the center in the circumferential direction of the electromagnetic steel sheet 41a. Therefore, the electromagnetic steel plates 41a having different circumferential widths in the flange portion 41c are laminated in the radial direction, so that both circumferential ends of the enlarged portion 47b are stepped.
  • the “circumferential width” is a dimension in a direction perpendicular to the radial direction when viewed in the axial direction.
  • the “direction orthogonal to the radial direction” includes a direction orthogonal to the radial direction passing through the center of the circumferential direction of a certain target.
  • the circumferential width of the stator core 41 includes the dimension of the stator core 41 in a direction orthogonal to the radial direction passing through the center in the circumferential direction of the stator core 41 when viewed in the axial direction.
  • the equal width portion 47a is a portion that has the same circumferential width in the stator core 41 and extends in the radial direction.
  • the equal width portion 47a extends radially outward from the radially outer end of the enlarged portion 47b.
  • the equal width portion 47a is configured such that a plurality of electromagnetic steel plates 41a having substantially the same circumferential width in the flange portion 41c are stacked in the radial direction.
  • the equal width part 47a is located on the radially outer side than the enlarged part 47b. Therefore, compared to the case where the equal width portion 47a is provided at the center in the radial direction of the flange portion 41c, the shape of the stator core 41 can be easily made a shape having excellent magnetic characteristics.
  • the circumferential width of the equal width portion 47a is larger than the circumferential width of the electromagnetic steel plate 41a located at the radially outer end of the enlarged portion 47b.
  • the difference between the circumferential width of the equal width portion 47a and the circumferential width of the electromagnetic steel plate 41a located at the radially outer end of the enlarged portion 47b is the circumferential width of the electromagnetic steel plates 41a adjacent in the radial direction in the enlarged portion 47b. It is about the same as the difference.
  • the number of electromagnetic steel plates 41a constituting the equal width portion 47a is three.
  • the number of electromagnetic steel plates 41a constituting the equal width portion 47a may be two, or four or more.
  • the shapes of the plurality of electromagnetic steel plates 41a constituting the equal width portion 47a are the same as each other.
  • the shape of the some electromagnetic steel plate 41a which comprises the equal width part 47a may mutually differ.
  • the circumferential widths of the plurality of electromagnetic steel plates 41a may be different from each other in the core columnar portion 41b.
  • the circumferential end surface of the equal width portion 47a is a substantially flat surface in which the circumferential end surfaces of the plurality of electromagnetic steel plates 41a are continuously formed.
  • the flange surface 41 h that is a surface facing the rotors 31 and 32 in the flange portion 41 c includes a main body surface 41 g and a step surface 41 f.
  • the flange surface 41 h is an axial end surface of the stator core 41.
  • the step surface 41f is recessed closer to the core columnar portion 41b in the axial direction than the main body surface 41g. That is, the axial end surface of the stator core 41 has a step surface 41f that is recessed toward the coil 42 (core columnar portion 41b) in the axial direction.
  • the step surface 41f is provided on both sides in the circumferential direction of the main body surface 41g.
  • the step surface 41f is located at both circumferential ends of the flange surface 41h. Therefore, as the rotors 31 and 32 rotate, the surface on which the rotor magnets 33 and 35 face changes in the order of the step surface 41f, the main body surface 41g, and the step surface 41f in one stator core 41. As a result, the axial distance between the rotor magnets 33 and 35 and the flange surface 41h is reduced by changing from the step surface 41f to the main body surface 41g, and is increased by changing from the main body surface 41g to the step surface 41f.
  • the waveform of the counter electromotive voltage generated in the motor 10 can be made closer to a sine wave. Further, the cogging torque of the motor 10 can be reduced. Thereby, the magnetic characteristics of the motor 10 can be improved.
  • the step surface 41f extends from the radially inner end of the flange surface 41h to the radially outer end.
  • the step surface 41f is a substantially flat surface in which the axial end surfaces of the plurality of electromagnetic steel plates 41a are continuously formed.
  • the circumferential width of the step surface 41f is substantially the same over the entire radial direction.
  • the main body surface 41g is located at the center in the circumferential direction of the flange surface 41h. As shown in FIGS. 2 and 5, the main body surfaces 41 g on both sides in the axial direction are exposed from the resin portion 46 to the outside of the stator 40. Thereby, when forming the resin part 46 using the metal mold
  • the main body surface 41g may not be exposed to the outside of the stator 40. In this case, the main body surface 41g may be covered with a part of the resin portion 46.
  • the circumferential width of the portion of the main body surface 41g located at the enlarged portion 47b increases from the radially inner side toward the radially outer side.
  • a portion of the main body surface 41g located in the equal width portion 47a has a circumferential width that is substantially the same over the entire radial direction, and extends in the radial direction.
  • the circumferential width of the main body surface 41g changes in the same manner as the circumferential width of the flange portion 41c along the radial direction.
  • the magnetic characteristic of the stator core 41 can be made suitable according to a radial direction position. This configuration can be adopted by making the circumferential width of the step surface 41f substantially the same over the entire radial direction.
  • the stator core 41 has a groove portion 47c that is configured by a plurality of stator core concave portions 41e and extends in the radial direction. Therefore, it is possible to employ a method of laminating a plurality of electromagnetic steel plates 41a in the radial direction while positioning the electromagnetic steel plates 41a by the stator core recesses 41e. Thereby, the electromagnetic steel plates 41a can be stacked with high accuracy, and the stator core 41 can be manufactured with high accuracy. Therefore, the circumferential end surface of the equal width portion 47a can be configured with high accuracy, and the placement accuracy of the stator core 41 can be further improved when a method for manufacturing the stator 40 described later is used.
  • the groove portion 47c extends from the radially inner end of the flange portion 41c to the radially outer end.
  • the groove portion 47 c is recessed in the axial direction from the axial end surface of the stator core 41. More specifically, the groove 47c is recessed from the main body surface 41g toward the core columnar portion 41b.
  • the groove portion 47c is provided on both axial end surfaces of the stator core 41.
  • the groove portion 47c is located at the center of the flange portion 41c in the circumferential direction.
  • the groove part 47c may be provided in the core columnar part 41b.
  • the groove portion 47c is recessed in the circumferential direction from the circumferential end surface of the core columnar portion 41b.
  • the stator core recessed part 41e which comprises the groove part 47c is dented in the circumferential direction, and is provided in the part which comprises the core columnar part 41b in the electromagnetic steel plate 41a.
  • the circumferential width of the core columnar portion 41b changes in the same manner as the circumferential width of the flange portion 41c. That is, the core columnar portion 41b includes an enlarged columnar portion 49b whose circumferential width increases from the radially inner side to the radially outer side, and an equal-width columnar portion 49a that has substantially the same circumferential width and extends in the radial direction. Have.
  • the radial position of the enlarged columnar portion 49b is the same as the radial position of the enlarged portion 47b.
  • the radial position of the equal width columnar portion 49a is the same as the radial position of the equal width portion 47a.
  • the radial position of the enlarged columnar portion 49b and the radial position of the enlarged portion 47b may be shifted in the radial direction.
  • the radial position of the equal width columnar portion 49a and the radial position of the equal width portion 47a may be shifted in the radial direction.
  • the change in the circumferential width of the core columnar portion 41b may be different from the change in the circumferential width of the flange portion 41c.
  • the circumferential width of the core columnar portion 41b may be substantially the same over the entire radial direction, or may increase as it goes from the radially inner side to the radially outer side over the entire radial direction.
  • the coil 42 is wound around the stator core 41. More specifically, the coil 42 is wound around the core columnar portion 41 b via the insulator 43. That is, at least a part of the insulator 43 is located between the stator core 41 and the coil 42.
  • the bearing holder 44 has a cylindrical shape extending in the axial direction about the central axis J.
  • An upper bearing 51 is held inside the bearing holder 44 in the radial direction.
  • the cover 45 has an annular shape that surrounds the radially outer sides of the plurality of stator cores 41.
  • the resin portion 46 is located between the stator cores 41 adjacent in the circumferential direction.
  • the resin portion 46 connects the plurality of stator cores 41, the bearing holder 44, and the cover 45.
  • the resin part 46 includes an inner annular part 46b, an outer annular part 46c, and a resin main body part 46a.
  • the inner annular portion 46 b is an annular portion located between the bearing holder 44 and the stator core 41 in the resin portion 46 in the radial direction.
  • the outer annular portion 46 c is an annular portion located on the radially outer side of the stator core 41 in the resin portion 46.
  • the resin main body portion 46 a is a portion located between the stator cores 41 adjacent to each other in the circumferential direction in the resin portion 46. Further, at least a part of the resin main body 46a is located between the flanges 41c adjacent in the circumferential direction. As shown in FIG. 5, the radially inner end of the resin main body 46a is connected to the inner annular portion 46b. A radially outer end of the resin main body 46a is connected to the outer annular portion 46c. As shown in FIG. 6, the resin main body 46a includes a portion located between the flange portions 41c adjacent in the circumferential direction and a portion located between the core columnar portions 41b adjacent in the circumferential direction. .
  • the main body portion end surface 46d which is the axial end surface of the resin main body portion 46a, is at the same position as the main body surface 41g in the axial direction.
  • the resin portion 46 has a first recess 48a and a second recess 48b.
  • the first recess 48 a and the second recess 48 b are provided on the lower surface 40 b of the stator 40.
  • the first recess 48a is recessed in the axial direction from the main body end face 46d. More specifically, the first recess 48a is recessed above the main body end surface 46d.
  • the first recess 48 a is located between the equal width portions 47 a of the stator core 41 adjacent in the circumferential direction. Therefore, the stator core 41 can be accurately arranged in the circumferential direction by adopting a method for manufacturing the stator 40 of the present embodiment described later.
  • the first recesses 48 a are respectively provided between the equal width portions 47 a of the stator cores 41 adjacent in the circumferential direction.
  • the plurality of first recesses 48a are equally arranged along the circumferential direction.
  • the outer shape of the first recess 48a viewed in the axial direction is not particularly limited, and may be a polygonal shape or a circular shape. In FIG. 5, the outer shape of the first recess 48a viewed in the axial direction is trapezoidal.
  • the circumferential width of the first recess 48a increases from the radially inner side toward the radially outer side.
  • the surface on the one circumferential side (+ ⁇ side) of the inner surface of the first recess 48a is substantially parallel to the equal width portion 47a of the stator core 41 located on the one circumferential side (+ ⁇ side) of the first recess 48a.
  • the surface on the other circumferential side ( ⁇ side) of the inner surface of the first recess 48a is substantially parallel to the equal width portion 47a of the stator core 41 located on the other circumferential side ( ⁇ side) of the first recess 48a. is there.
  • At least a part of the equal width portion 47a is exposed in the first recess 48a. More specifically, at least a part of the circumferential end surface of the equal width portion 47a is exposed in the first recess 48a. In addition, the equal width part 47a does not need to be exposed in the 1st recessed part 48a. In this case, the circumferential end surface of the equal width portion 47 a is covered with a part of the resin portion 46.
  • the bottom surface of the first recess 48a is in a position shallower than the region where the coil 42 is disposed in the axial direction. Therefore, it is possible to prevent the first recess 48a from reaching the coil 42 and the coil 42 from being exposed in the first recess 48a.
  • the bottom surface of the first recess 48a is at a position shallower than the axial end surface on the core columnar portion 41b side (upper side) of the lower flange portion 41c. That is, the height position in the axial direction of the bottom surface of the first recess 48a is located below the upper surface in the axial direction of the lower flange portion 41c.
  • the second recess 48b is recessed in the axial direction from the main body end face 46d.
  • the second recess 48b is located in the inner annular portion 46b. At least a part of the second recess 48 b is located on the radially inner side of the radially inner end of the stator core 41.
  • the entire second recess 48 b is located on the radially inner side of the radially inner end of the stator core 41. Therefore, the stator core 41 can be accurately arranged in the radial direction by employing a method for manufacturing the stator 40 of the present embodiment, which will be described later.
  • the radially inner end of the stator core 41 is the radially inner end of the flange portion 41c.
  • the second recess 48b is provided each time the stator core 41 is disposed.
  • the plurality of second recesses 48b are evenly arranged in the circumferential direction.
  • the second recess 48b is located on the inner side in the radial direction than the first recess 48a.
  • the circumferential position of the second recess 48b is between the first recesses 48a adjacent in the circumferential direction.
  • the second recess 48 b is provided one by one every time the stator core 41 is disposed, but the present invention is not limited to this. Two or more second recesses 48b may be provided each time the stator core 41 is disposed.
  • the outer shape of the second recess 48b viewed in the axial direction is not particularly limited, and may be a polygonal shape or a circular shape. In FIG. 5, the shape of the second recess 48b viewed in the axial direction is circular. Although illustration is omitted, at least a part of the radially inner end of the stator core 41 is exposed in the second recess 48b. More specifically, at least a part of the radially inner end surface of the flange portion 41c is exposed in the second recess 48b. Note that at least a part of the radially inner end of the stator core 41 may not be exposed in the second recess 48b. In this case, the radially inner end surface of the flange portion 41 c is covered with a part of the resin portion 46.
  • a part of the resin portion 46 is disposed on the axial end surface of the stator core 41. Specifically, a part of the resin portion 46 is disposed on the step surface 41f. Therefore, the stator core 41 is pressed from both sides in the axial direction by a part of the resin portion 46. Therefore, it is possible to suppress the stator core 41 from moving in the axial direction with respect to the resin portion 46. Thereby, the stator core 41 and the resin part 46 can be fixed more firmly.
  • the stator core 41 can be accurately arranged in the axial direction while fixing the stator core 41 and the resin portion 46 firmly.
  • a part of the resin part 46 is disposed in the groove part 47c.
  • a part of the resin part 46 is filled in the entire groove part 47c.
  • the method for manufacturing the stator 40 of the present embodiment includes a stator core forming step S1, a coil mounting step S2, an arrangement step S3, and a resin molding step S4.
  • the stator core formation step S1 is a step of forming a plurality of stator cores 41 by laminating a plurality of electromagnetic steel plates 41a in the radial direction. A part of the strip-shaped electromagnetic steel sheet is punched out by press working to form a plurality of electromagnetic steel sheets 41a.
  • the electromagnetic steel sheets 41a are stacked while aligning the positions of the electromagnetic steel sheets 41a by fitting a jig into the stator core recess 41e. Therefore, the plurality of electromagnetic steel plates 41a can be accurately stacked.
  • the method for fixing the electromagnetic steel sheets 41a is not particularly limited.
  • the coil mounting step S2 is a step of mounting the coil 42 on the stator core 41. After the insulator 43 is mounted on the core columnar portion 41 b, a conductive wire is wound around the core columnar portion 41 b from above the insulator 43 to form the coil 42.
  • the arrangement step S3 is a step of arranging a plurality of stator cores 41 in the mold D along the circumferential direction.
  • the mold D is, for example, a cylindrical shape.
  • a first positioning member P1 and a second positioning member P2 are arranged.
  • the first positioning member P1 and the second positioning member P2 are fixed to the bottom surface Da of the mold D.
  • a plurality of first positioning members P1 are provided along the circumferential direction.
  • a plurality of second positioning members P2 are provided along the circumferential direction.
  • the second positioning member P2 is located on the radially inner side than the first positioning member P1.
  • the circumferential position of the second positioning member P2 is between the first positioning members P1 adjacent to each other in the circumferential direction.
  • the shape of the first positioning member P1 viewed in the axial direction is a trapezoid.
  • the shape of the second positioning member P2 viewed in the axial direction is circular.
  • the stator core 41 is disposed in the mold D in a state where the main body surface 41g of the lower flange portion 41c is in contact with the bottom surface Da.
  • the equal width portion 47a is brought into contact with the first positioning member P1 arranged in the mold D, and the stator core 41 is positioned in the circumferential direction.
  • the flange portion When the flange portion is composed only of the enlarged portion, for example, the enlarged portion is positioned by contacting the positioning member. However, since the circumferential end of the enlarged portion is stepped, it is difficult to accurately position the stator core. In addition, the contact between the positioning member and the stator core tends to be unstable, and when the resin is poured into the mold, the stator core may move due to the pressure of the resin. Therefore, it is difficult to arrange the stator core with high accuracy. In order to deal with this problem, it is conceivable to provide a structure for positioning the insulator. In that case, however, the insulator is likely to be enlarged and the stator is enlarged.
  • the equal width portion 47a has a configuration in which a plurality of electromagnetic steel plates 41a having substantially the same width in the circumferential direction are stacked. Therefore, as described above, the circumferential end surface of the equal width portion 47a is substantially the same. It is a flat surface. Thereby, the stator core 41 can be accurately positioned in the circumferential direction by bringing the equal width portion 47a into contact with the first positioning member P1. Moreover, since the 1st positioning member P1 and the stator core 41 can be made to contact stably, it can suppress that the stator core 41 moves with the pressure of resin.
  • the stator core 41 with the equal width portion 47a, the stator core 41 having a configuration in which the electromagnetic steel plates 41a are laminated in the radial direction can be accurately arranged in the circumferential direction. Moreover, since the additional structure for performing positioning does not arise, the enlargement of the stator 40 can be suppressed.
  • the flange portion is composed only of the enlarged portion, it is necessary to make all the shapes of the electromagnetic steel plates constituting the stator core different. Therefore, for example, it is necessary to prepare a die for punching by pressing for each electromagnetic steel sheet, and the manufacturing cost of the stator core tends to increase.
  • the plurality of electromagnetic steel plates 41a constituting the equal width portion 47a can have the same shape. Therefore, it is possible to manufacture a plurality of electromagnetic steel plates 41a constituting the equal width portion 47a by stamping with the same die. Thereby, since the flange part 41c has the equal width part 47a, the number of the mold
  • both ends in the circumferential direction of the equal width portion 47a are in contact with the first positioning members P1 located on both sides in the circumferential direction of the equal width portion 47a.
  • the stator core 41 can be positioned in the circumferential direction by sandwiching the stator core 41 by the two first positioning members P1. Therefore, it is possible to suppress the stator core 41 from moving in the circumferential direction.
  • the equal width portion 47a is located on the radially outer side than the enlarged portion 47b, it is easy to increase the circumferential width of the equal width portion 47a.
  • variety of the part pinched by the 1st positioning member P1 in the flange part 41c becomes large.
  • the stator core 41 can be more stably sandwiched by the first positioning member P1, and thus the stator core 41 can be further suppressed from moving in the circumferential direction. Both circumferential ends of the first positioning member P1 are in contact with the equal width portions 47a of the adjacent stator cores 41, respectively.
  • the second positioning member P2 arranged in the mold D contacts the radially inner end of the stator core 41. Therefore, in the mold D, the stator core 41 is positioned in the radial direction. More specifically, the radially inner end of the flange portion 41c contacts the second positioning member P2, and the stator core 41 is positioned in the radial direction.
  • the bearing holder 44 and the cover 45 are also arranged in the mold D.
  • a positioning member that contacts the radially outer end of the stator core 41 may be provided separately from the first positioning member P1 and the second positioning member P2.
  • Resin molding step S4 is a step in which molten resin is poured into the mold D to form a resin portion 46 located at least partially between the stator cores 41 adjacent in the circumferential direction.
  • the first recess 48a is formed by the first positioning member P1 arranged in the mold D. Therefore, the outer shape of the first recess 48a viewed in the axial direction is the same as the outer shape of the first positioning member P1 viewed in the axial direction.
  • the stator 40 of this embodiment is provided with the resin part 46 which has the 1st recessed part 48a, in the arrangement
  • the shape of the first positioning member P1 used in the placement step S3 increases from the radially inner side to the radially outer side. It becomes a shape.
  • the manufacturing method which makes the equal width part 47a of the stator core 41 adjacent to the circumferential direction respectively contact the circumferential direction both ends of one 1st positioning member P1 is employable. Therefore, the number of first positioning members P1 used in the arrangement step S3 can be reduced, and the manufacturing cost of the stator 40 can be reduced.
  • the resin does not enter between the first positioning member P1 and the equal width portion 47a. Therefore, the portion of the equal width portion 47a that has been in contact with the first positioning member P1 is exposed in the first recess 48a formed in the resin molding step S4.
  • a manufacturing method in which the first positioning member P1 and the equal width portion 47a are brought into contact with each other in the placement step S3 can be employed. . As a result, the stator 40 having a better positioning accuracy of the stator core 41 can be obtained.
  • the second recess 48b is formed by the second positioning member P2 disposed in the mold D.
  • the outer shape of the second recess 48b viewed in the axial direction is the same as the outer shape of the second positioning member P2 viewed in the axial direction.
  • the stator 40 of this embodiment is provided with the resin part 46 which has the 2nd recessed part 48b, in the arrangement
  • the second positioning member P2 and the stator core 41 come into contact with each other with high accuracy, the resin does not enter between the second positioning member P2 and the stator core 41. Therefore, the portion of the stator core 41 that has been in contact with the second positioning member P2 is exposed in the second recess 48b formed in the resin molding step S4. As described above, in the configuration in which at least a part of the radial inner end of the stator core 41 is exposed in the second recess 48b, the second positioning member P2 and the radial inner end of the stator core 41 are accurately contacted in the placement step S3. A manufacturing method can be adopted. As a result, the stator 40 having a better positioning accuracy of the stator core 41 can be obtained.
  • the present invention is not limited to the above-described embodiment, and other configurations can be adopted.
  • the same configurations as those described above may be omitted by appropriately attaching the same reference numerals.
  • the stator core 41 may have a shape like the stator core 141 shown in FIG.
  • the core columnar portion 141 b has a stepped portion 149 a that decreases in the circumferential width from the radially inner side toward the radially outer side at the radially outer end.
  • the stepped portion 149a is a step formed by laminating the electromagnetic steel plates 141a on the radially outer side of the equal width columnar portion 49a.
  • the circumferential width of the core columnar portion 141b in the electromagnetic steel sheet 141a is smaller than the circumferential width of the equal width columnar portion 49a.
  • the corner portion at the radially outer end of the core columnar portion interferes with the configuration in which the stepped portion 149a is not provided.
  • the outer diameter of the coil becomes large. Therefore, there has been a problem that the stator is enlarged in the radial direction.
  • the stepped portion 149a the conductive wire is wound along the outer shape of the core columnar portion 141b, and the bulging of the conductive wire can be suppressed. Therefore, it can suppress that the outer diameter of the coil 42 becomes large, and can suppress that the stator 40 enlarges to radial direction as a result.
  • the flange portion 141c has a flange step portion 149b that decreases in the circumferential width from the radially inner side toward the radially outer side at the radially outer end.
  • the flange step portion 149b is a step formed by laminating the electromagnetic steel plates 141a on the radially outer side than the equal width portion 47a.
  • the circumferential width of the flange portion 141c in the electromagnetic steel plate 141a is smaller than the circumferential width of the equal width portion 47a.
  • the circumferential width of the electromagnetic steel plate 141a is smaller than the electromagnetic steel plate 41a constituting the equal width portion 47a in both the core columnar portion 141b and the flange portion 141c.
  • the shape of the electromagnetic steel plate 141a can be made the same as any one of the electromagnetic steel plates 41a constituting the enlarged portion 47b. Therefore, it is not necessary to separately prepare a die for punching the electromagnetic steel sheet 141a by press working, and it is possible to suppress an increase in the manufacturing cost of the stator core 141.
  • the first recess 48a and the second recess 48b may be provided on the upper surface 40a of the stator 40, or may be provided on both the upper surface 40a and the lower surface 40b. Further, the second recess 48b may be an annular shape surrounding the central axis J. In this case, only one annular second positioning member is provided in the arrangement step S3, and each stator core 41 is positioned in the radial direction by one second positioning member.
  • the equal width portion 47a may be provided at any position of the flange portion 41c in the radial direction.
  • the equal width portion 47a may be located at the radially inner end of the flange portion 41c, or may be located at the radial center of the flange portion 41c.
  • variety of the core columnar part 41b may be the same over the whole radial direction.
  • the motor 10 described above is a shaft rotation type motor in which the rotors 31 and 32 are fixed to the shaft 20, it is not limited thereto.
  • the motor to which the present invention is applied may be a fixed shaft type motor to which a shaft is fixed.

Abstract

In a stator according to one aspect of the present invention, a stator core is configured such that a plurality of electromagnetic steel sheets are laminated in the radial direction. The stator core has: a core columnar part extending in the axial direction, a coil being wound around the core columnar part; and a sheet-form flange part connected to an axial-direction end of the core columnar part, the flange part extending in the circumferential direction. The flange part has a widening part in which the circumferential-direction width increases from the radially inward side toward the radially outward side, and a radially extending fixed-width part of substantially fixed circumferential-direction width. The fixed-width part is configured such that a plurality of electromagnetic steel sheets of substantially fixed circumferential-direction width are laminated in the radial direction in the flange part. A plastic part has: a plastic body part, at least a portion of which being positioned between circumferentially adjacent flange parts; and a first recess part indented in the axial direction beyond the axial-direction end surface of the plastic body part and positioned between circumferentially adjacent fixed-width parts of the stator core.

Description

ステータ、モータ、およびステータの製造方法Stator, motor, and stator manufacturing method
 本発明は、ステータ、モータ、ステータの製造方法に関する。 The present invention relates to a stator, a motor, and a method for manufacturing a stator.
 従来、ロータ出力軸の軸線を中心に環状に配置される複数のコアメンバーを有する電動機が知られている。例えば、特許文献1における電動機のコアメンバーは、電磁鋼板をステータの半径方向に沿って積層した積層鋼板で構成される。 Conventionally, an electric motor having a plurality of core members arranged in an annular shape around the axis of the rotor output shaft is known. For example, the core member of the electric motor in Patent Document 1 is composed of a laminated steel plate in which electromagnetic steel plates are laminated along the radial direction of the stator.
日本国公開公報第2011-114993号公報Japanese Publication No. 2011-114993
 電磁鋼板をステータの半径方向に沿って積層するコアメンバーでは、コアメンバーの周方向端部は、複数の電磁鋼板の周方向端部によって構成される。ここで、コアメンバーの周方向端部を精度よく形成することが困難となる。そのため、コアメンバーの周方向端部を基準としてコアメンバーが位置決めされる場合、コアメンバーの配置精度が低下する問題があった。コアメンバーの周方向または半径方向の位置決めがばらつくと、トルクリップルが増加し、モータの振動の原因となる。 In the core member in which the electromagnetic steel plates are laminated along the radial direction of the stator, the circumferential end of the core member is constituted by the circumferential ends of the plurality of electromagnetic steel plates. Here, it becomes difficult to accurately form the circumferential end of the core member. Therefore, when a core member is positioned on the basis of the circumferential direction edge part of a core member, there existed a problem that the arrangement | positioning precision of a core member fell. If the positioning of the core member in the circumferential direction or the radial direction varies, torque ripple increases and causes vibration of the motor.
 これに対して、例えば、特許文献1では、インシュレータのフランジ部には、コアメンバー同士を周方向に相互に連結するための連結手段が設けられている。しかし、この場合では、インシュレータが大型化しやすいため、ステータが大型化する問題があった。 On the other hand, in Patent Document 1, for example, the flange portion of the insulator is provided with a connecting means for connecting the core members to each other in the circumferential direction. However, in this case, there is a problem that the size of the stator is increased because the insulator is easily increased in size.
 上記問題点に鑑みて、本発明の一つの態様は、大型化することを抑制しつつ、複数のステータコアの配置精度を向上できる構造を有するステータ、およびそのようなステータを備えるモータを提供することを目的の一つとする。また、大型化することを抑制しつつ、複数のステータコアの配置精度を向上できるステータの製造方法を提供することを目的の一つとする。 In view of the above problems, one aspect of the present invention provides a stator having a structure capable of improving the arrangement accuracy of a plurality of stator cores while suppressing an increase in size, and a motor including such a stator. Is one of the purposes. Another object of the present invention is to provide a stator manufacturing method capable of improving the arrangement accuracy of a plurality of stator cores while suppressing an increase in size.
 本発明の一つの態様のステータは、上下方向に延びる中心軸を中心として回転するロータと隙間を介して軸方向に対向するステータであって、周方向に沿って配置される複数のステータコアと、ステータコアに巻き回されるコイルと、少なくとも一部がステータコアとコイルとの間に位置するインシュレータと、少なくとも一部が周方向に隣り合うステータコア同士の間に位置する樹脂部と、を備える。ステータコアは、複数の電磁鋼板が径方向に積層される構成である。ステータコアは、軸方向に延びコイルが巻き回されるコア柱状部と、コア柱状部の軸方向端部に接続され周方向に延びる板状のフランジ部と、を有する。フランジ部は、周方向幅が径方向内側から径方向外側に向かうに従って大きくなる拡大部と、周方向幅が略同じであり径方向に延びる等幅部と、を有する。等幅部は、周方向幅が略同じである複数の電磁鋼板が径方向に積層される構成である。樹脂部は、少なくとも一部が周方向に隣り合うフランジ部同士の間に位置する樹脂本体部と、樹脂本体部の軸方向端面よりも軸方向に窪み、周方向に隣り合うステータコアの等幅部同士の間に位置する第1凹部と、を有する。 A stator according to one aspect of the present invention is a stator that is axially opposed to a rotor that rotates about a central axis that extends in the vertical direction and a gap, and a plurality of stator cores that are arranged along a circumferential direction, A coil wound around the stator core, an insulator at least part of which is located between the stator core and the coil, and a resin part at least part of which is located between the stator cores adjacent in the circumferential direction are provided. The stator core has a configuration in which a plurality of electromagnetic steel plates are laminated in the radial direction. The stator core includes a core columnar portion extending in the axial direction and around which a coil is wound, and a plate-like flange portion extending in the circumferential direction connected to the axial end portion of the core columnar portion. The flange portion has an enlarged portion whose circumferential width increases from the radially inner side toward the radially outer side, and an equal width portion having the substantially same circumferential width and extending in the radial direction. The equal width portion has a configuration in which a plurality of electromagnetic steel sheets having substantially the same circumferential width are stacked in the radial direction. The resin part is a resin main body part at least partially located between the flange parts adjacent to each other in the circumferential direction, and a constant width part of the stator core that is recessed in the axial direction from the axial end surface of the resin main body part and adjacent in the circumferential direction. And a first recess located between them.
 本発明の一つの態様のモータは、上記のステータと、ステータと隙間を介して軸方向に対向するロータと、ロータを回転可能に支持するシャフトと、を備える。 A motor according to one aspect of the present invention includes the above-described stator, a rotor that is axially opposed to the stator via a gap, and a shaft that rotatably supports the rotor.
 本発明の一つの態様のステータの製造方法は、上下方向に延びる中心軸を中心として回転するロータと隙間を介して軸方向に対向するステータの製造方法であって、複数の電磁鋼板を径方向に積層して複数のステータコアを形成する工程S1と、ステータコアにコイルを装着する工程S2と、金型内に複数のステータコアを周方向に沿って配置する工程S3と、金型内に溶融した樹脂を流し込み、少なくとも一部が周方向に隣り合うステータコア同士の間に位置する樹脂部を形成する工程S4と、を含む。ステータコアは、軸方向に延びコイルが巻き回されるコア柱状部と、コア柱状部の軸方向端部に接続され径方向に延びる板状のフランジ部と、を有する。フランジ部は、周方向幅が径方向内側から径方向外側に向かうに従って大きくなる拡大部と、周方向幅が略同じであり径方向に延びる等幅部と、を有する。等幅部は、フランジ部において周方向幅が略同じである複数の電磁鋼板が径方向に積層される構成である。工程S3において、金型内に配置された第1位置決め部材に等幅部を接触させて、ステータコアを周方向に位置決めする。 A method for manufacturing a stator according to one aspect of the present invention is a method for manufacturing a stator that is axially opposed to a rotor that rotates about a central axis that extends in the up-down direction, with a gap therebetween. A step S1 of forming a plurality of stator cores by stacking, a step S2 of attaching a coil to the stator core, a step S3 of arranging a plurality of stator cores in the circumferential direction in the mold, and a resin melted in the mold And forming a resin portion located at least partially between the stator cores adjacent in the circumferential direction. The stator core includes a core columnar portion that extends in the axial direction and is wound with a coil, and a plate-like flange portion that is connected to the axial end of the core columnar portion and extends in the radial direction. The flange portion has an enlarged portion whose circumferential width increases from the radially inner side toward the radially outer side, and an equal width portion having the substantially same circumferential width and extending in the radial direction. The equal width portion has a configuration in which a plurality of electromagnetic steel sheets having substantially the same circumferential width in the flange portion are stacked in the radial direction. In step S3, the stator core is positioned in the circumferential direction by bringing the equal width portion into contact with the first positioning member disposed in the mold.
 本発明の一つの態様によれば、大型化することを抑制しつつ、複数のステータコアの配置精度を向上できる構造を有するステータ、およびそのようなステータを備えるモータが提供される。また、本発明の一つの態様によれば、大型化することを抑制しつつ、複数のステータコアの配置精度を向上できるステータの製造方法が提供される。 According to one aspect of the present invention, a stator having a structure capable of improving the arrangement accuracy of a plurality of stator cores while suppressing an increase in size, and a motor including such a stator are provided. Moreover, according to one aspect of the present invention, there is provided a method for manufacturing a stator capable of improving the arrangement accuracy of a plurality of stator cores while suppressing an increase in size.
図1は、本実施形態のモータを示す断面図である。FIG. 1 is a cross-sectional view showing the motor of this embodiment. 図2は、本実施形態のステータを示す斜視図である。FIG. 2 is a perspective view showing the stator of the present embodiment. 図3は、本実施形態のステータコアを示す斜視図である。FIG. 3 is a perspective view showing the stator core of the present embodiment. 図4は、本実施形態のステータコアを示す図であって、図3におけるIV-IV断面図である。FIG. 4 is a view showing the stator core of the present embodiment and is a cross-sectional view taken along the line IV-IV in FIG. 図5は、本実施形態のステータを下側から視た斜視図である。FIG. 5 is a perspective view of the stator of this embodiment as viewed from below. 図6は、本実施形態のステータの部分を示す断面図である。FIG. 6 is a cross-sectional view showing a portion of the stator of the present embodiment. 図7は、本実施形態のステータの製造方法における手順を示すフローチャートである。FIG. 7 is a flowchart showing a procedure in the stator manufacturing method of the present embodiment. 図8は、本実施形態のステータの製造方法における設置工程を示す図である。FIG. 8 is a diagram illustrating an installation process in the stator manufacturing method of the present embodiment. 図9は、本実施形態の他の一例であるステータコアを示す断面図である。FIG. 9 is a cross-sectional view showing a stator core which is another example of the present embodiment.
 以下、図面を参照しながら、本発明の実施形態に係るモータについて説明する。以下の説明においては、図1の中心軸Jの延びる方向を上下方向とする。図1における中心軸Jの軸方向の上側を単に「上側」と呼び、下側を単に「下側」と呼ぶ。なお、上下方向は、単に説明のために用いられる名称であって、実際の位置関係や方向を限定しない。また、中心軸Jに平行な方向を単に「軸方向」と呼び、中心軸Jを中心とする径方向を単に「径方向」と呼び、中心軸Jを中心とする周方向を単に「周方向」と呼ぶ。 Hereinafter, a motor according to an embodiment of the present invention will be described with reference to the drawings. In the following description, the direction in which the central axis J in FIG. The upper side in the axial direction of the central axis J in FIG. 1 is simply referred to as “upper side”, and the lower side is simply referred to as “lower side”. The vertical direction is simply a name used for explanation, and does not limit the actual positional relationship or direction. In addition, a direction parallel to the central axis J is simply referred to as “axial direction”, a radial direction around the central axis J is simply referred to as “radial direction”, and a circumferential direction around the central axis J is simply referred to as “circumferential direction”. "
 本明細書において、軸方向に延びる、とは、厳密に軸方向に延びる場合に加えて、軸方向に対して、45°未満の範囲で傾いた方向に延びる場合も含む。径方向に延びる、とは、厳密に径方向、すなわち、軸方向に対して垂直な方向に延びる場合に加えて、径方向に対して、45°未満の範囲で傾いた方向に延びる場合も含む。 In this specification, “extending in the axial direction” includes not only the case of extending in the axial direction but also the case of extending in a direction inclined by less than 45 ° with respect to the axial direction. “Extending in the radial direction” includes not only strictly extending in the radial direction, that is, in a direction perpendicular to the axial direction, but also extending in a direction inclined by less than 45 ° with respect to the radial direction. .
 図1に示す本実施形態のモータ10は、アキシャルギャップ型のモータである。モータ10は、ハウジング11と、シャフト20と、ロータ31,32と、ステータ40と、上側ベアリング51と、下側ベアリング52と、を備える。シャフト20は、中心軸Jを中心として配置される。シャフト20は、ロータ31,32を回転可能に支持する。ロータ31,32は、上下方向に延びる中心軸Jを中心として回転する。ロータ31,32は、ステータ40と隙間を介して軸方向に対向する。ロータ31,32は、ステータ40と軸方向に対向するロータマグネット33,35を有する。なお、ロータ31,32は、いずれか一方のみが設けられてもよい。 The motor 10 of this embodiment shown in FIG. 1 is an axial gap type motor. The motor 10 includes a housing 11, a shaft 20, rotors 31 and 32, a stator 40, an upper bearing 51, and a lower bearing 52. The shaft 20 is disposed around the central axis J. The shaft 20 supports the rotors 31 and 32 in a rotatable manner. The rotors 31 and 32 rotate around a central axis J that extends in the vertical direction. The rotors 31 and 32 face the stator 40 in the axial direction through a gap. The rotors 31 and 32 have rotor magnets 33 and 35 that face the stator 40 in the axial direction. Only one of the rotors 31 and 32 may be provided.
 ステータ40は、ロータ31とロータ32との軸方向の間に位置する。ステータ40は、ロータ31,32と隙間を介して軸方向に対向する。図1および図2に示すように、ステータ40は、複数のステータコア41と、複数のコイル42と、インシュレータ43と、樹脂部46と、ベアリングホルダ44と、カバー45と、を備える。なお、ステータ40は、ロータ31,32のいずれかと軸方向に対向して設けられればよい。 The stator 40 is positioned between the rotor 31 and the rotor 32 in the axial direction. The stator 40 is opposed to the rotors 31 and 32 in the axial direction through a gap. As shown in FIGS. 1 and 2, the stator 40 includes a plurality of stator cores 41, a plurality of coils 42, an insulator 43, a resin portion 46, a bearing holder 44, and a cover 45. The stator 40 may be provided so as to face either of the rotors 31 and 32 in the axial direction.
 図2に示すように、複数のステータコア41は、周方向に沿って配置される。ステータコア41の数は、特に限定されない。図2では、ステータコア41は、12個設けられる。ステータコア41は、軸方向に視て、径方向内側から径方向外側に向かって周方向に拡がる略扇形状である。 As shown in FIG. 2, the plurality of stator cores 41 are arranged along the circumferential direction. The number of stator cores 41 is not particularly limited. In FIG. 2, twelve stator cores 41 are provided. The stator core 41 has a substantially fan shape that extends in the circumferential direction from the radially inner side to the radially outer side when viewed in the axial direction.
 図3に示すように、ステータコア41は、複数の電磁鋼板41aが径方向に積層される構成である。電磁鋼板41aは、径方向に視て、略H形の平板である。電磁鋼板41aの径方向端面は、軸方向に視てステータコア41の周方向の中心を通る径方向と略直交する。電磁鋼板41aの周方向両端面は、電磁鋼板41aの周方向の中心を通る径方向と略平行である。 As shown in FIG. 3, the stator core 41 has a configuration in which a plurality of electromagnetic steel plates 41a are laminated in the radial direction. The electromagnetic steel plate 41a is a substantially H-shaped flat plate as viewed in the radial direction. The radial end surface of the electromagnetic steel plate 41a is substantially orthogonal to the radial direction passing through the center in the circumferential direction of the stator core 41 when viewed in the axial direction. Both end surfaces in the circumferential direction of the electromagnetic steel plate 41a are substantially parallel to the radial direction passing through the center in the circumferential direction of the electromagnetic steel plate 41a.
 電磁鋼板41aは、径方向と直交する方向に窪むステータコア凹部41eを有する。図3では、ステータコア凹部41eは、軸方向に窪む。ステータコア凹部41eは、電磁鋼板41aの軸方向両端に設けられる。ステータコア凹部41eの内部の形状は、径方向に視て、矩形状である。なお、ステータコア凹部41eは、径方向と直交する方向であれば、いずれの方向に窪んでもよい。また、ステータコア凹部41eは、周方向に窪んでもよい。 The electromagnetic steel plate 41a has a stator core recess 41e that is recessed in a direction orthogonal to the radial direction. In FIG. 3, the stator core recess 41 e is recessed in the axial direction. The stator core recess 41e is provided at both axial ends of the electromagnetic steel plate 41a. The internal shape of the stator core recess 41e is rectangular when viewed in the radial direction. The stator core recess 41e may be recessed in any direction as long as the direction is orthogonal to the radial direction. Further, the stator core recess 41e may be recessed in the circumferential direction.
 ステータコア41は、軸方向に延びコイル42が巻き回されるコア柱状部41bと、コア柱状部41bの軸方向端部に接続され周方向に延びる板状のフランジ部41cと、を有する。フランジ部41cは、コア柱状部41bの軸方向端部から周方向両側に延びる。フランジ部41cは、コア柱状部41bの軸方向両端にそれぞれ設けられる。 The stator core 41 has a core columnar portion 41b that extends in the axial direction and is wound with a coil 42, and a plate-like flange portion 41c that is connected to the axial end of the core columnar portion 41b and extends in the circumferential direction. The flange portion 41c extends from the axial end portion of the core columnar portion 41b to both sides in the circumferential direction. The flange portions 41c are provided at both axial ends of the core columnar portion 41b.
 図3および図4に示すように、フランジ部41cは、拡大部47bと、等幅部47aと、を有する。拡大部47bは、周方向幅が径方向内側から径方向外側に向かうに従って大きくなる部分である。すなわち、拡大部47bを構成する複数の電磁鋼板41aにおいて、径方向内側に位置する電磁鋼板41aよりも径方向外側に位置する電磁鋼板41aの方が、フランジ部41cにおいて周方向幅が大きい。上述したように、電磁鋼板41aの周方向両端は、電磁鋼板41aの周方向の中心を通る径方向と平行である。そのため、フランジ部41cにおいて周方向幅が異なる電磁鋼板41aが径方向に積層されることで、拡大部47bの周方向両端は階段状となる。 3 and 4, the flange portion 41c has an enlarged portion 47b and a uniform width portion 47a. The enlarged portion 47b is a portion whose circumferential width increases from the radially inner side toward the radially outer side. That is, in the plurality of electromagnetic steel plates 41a constituting the enlarged portion 47b, the electromagnetic steel plate 41a located on the radially outer side has a larger circumferential width in the flange portion 41c than the electromagnetic steel plate 41a located on the radially inner side. As described above, both ends in the circumferential direction of the electromagnetic steel sheet 41a are parallel to the radial direction passing through the center in the circumferential direction of the electromagnetic steel sheet 41a. Therefore, the electromagnetic steel plates 41a having different circumferential widths in the flange portion 41c are laminated in the radial direction, so that both circumferential ends of the enlarged portion 47b are stepped.
 なお、本明細書において、「周方向幅」とは、軸方向に視て、径方向と直交する方向の寸法である。また、「径方向と直交する方向」とは、ある対象の周方向の中心を通る径方向と直交する方向を含む。一例として、ステータコア41の周方向幅は、軸方向に視てステータコア41の周方向の中心を通る径方向と直交する方向におけるステータコア41の寸法を含む。 In the present specification, the “circumferential width” is a dimension in a direction perpendicular to the radial direction when viewed in the axial direction. The “direction orthogonal to the radial direction” includes a direction orthogonal to the radial direction passing through the center of the circumferential direction of a certain target. As an example, the circumferential width of the stator core 41 includes the dimension of the stator core 41 in a direction orthogonal to the radial direction passing through the center in the circumferential direction of the stator core 41 when viewed in the axial direction.
 等幅部47aは、ステータコア41における周方向幅が略同じであり径方向に延びる部分である。等幅部47aは、拡大部47bの径方向外端から径方向外側に延びる。等幅部47aは、フランジ部41cにおいて周方向幅が略同じである複数の電磁鋼板41aが径方向に積層される構成である。等幅部47aは、拡大部47bよりも径方向外側に位置する。そのため、等幅部47aがフランジ部41cの径方向の中央に設けられる場合に比べて、ステータコア41の形状を磁気特性に優れた形状としやすい。 The equal width portion 47a is a portion that has the same circumferential width in the stator core 41 and extends in the radial direction. The equal width portion 47a extends radially outward from the radially outer end of the enlarged portion 47b. The equal width portion 47a is configured such that a plurality of electromagnetic steel plates 41a having substantially the same circumferential width in the flange portion 41c are stacked in the radial direction. The equal width part 47a is located on the radially outer side than the enlarged part 47b. Therefore, compared to the case where the equal width portion 47a is provided at the center in the radial direction of the flange portion 41c, the shape of the stator core 41 can be easily made a shape having excellent magnetic characteristics.
 等幅部47aの周方向幅は、拡大部47bの径方向外端に位置する電磁鋼板41aの周方向幅よりも大きい。等幅部47aの周方向幅と拡大部47bの径方向外端に位置する電磁鋼板41aの周方向幅との差は、拡大部47bにおいて径方向に隣り合う電磁鋼板41a同士の周方向幅の差と同程度である。 The circumferential width of the equal width portion 47a is larger than the circumferential width of the electromagnetic steel plate 41a located at the radially outer end of the enlarged portion 47b. The difference between the circumferential width of the equal width portion 47a and the circumferential width of the electromagnetic steel plate 41a located at the radially outer end of the enlarged portion 47b is the circumferential width of the electromagnetic steel plates 41a adjacent in the radial direction in the enlarged portion 47b. It is about the same as the difference.
 図3および図4では、等幅部47aを構成する電磁鋼板41aの枚数は、3枚である。等幅部47aを構成する電磁鋼板41aの枚数は、2枚であってもよいし、4枚以上であってもよい。等幅部47aを構成する複数の電磁鋼板41aの形状は、互いに同じである。なお、等幅部47aを構成する複数の電磁鋼板41aの形状は、互いに異なっていてもよい。この場合、コア柱状部41bにおいて複数の電磁鋼板41aの周方向幅が互いに異なってもよい。等幅部47aの周方向端面は、複数の電磁鋼板41aの周方向端面が連続して構成される略平坦な面である。 3 and 4, the number of electromagnetic steel plates 41a constituting the equal width portion 47a is three. The number of electromagnetic steel plates 41a constituting the equal width portion 47a may be two, or four or more. The shapes of the plurality of electromagnetic steel plates 41a constituting the equal width portion 47a are the same as each other. In addition, the shape of the some electromagnetic steel plate 41a which comprises the equal width part 47a may mutually differ. In this case, the circumferential widths of the plurality of electromagnetic steel plates 41a may be different from each other in the core columnar portion 41b. The circumferential end surface of the equal width portion 47a is a substantially flat surface in which the circumferential end surfaces of the plurality of electromagnetic steel plates 41a are continuously formed.
 図3に示すように、フランジ部41cにおいてロータ31,32と対向する面であるフランジ面41hは、本体面41gと、段差面41fと、を含む。フランジ面41hは、ステータコア41の軸方向端面である。段差面41fは、本体面41gよりも軸方向のコア柱状部41b側に窪む。すなわち、ステータコア41の軸方向端面は、軸方向においてコイル42側(コア柱状部41b側)に窪む段差面41fを有する。 As shown in FIG. 3, the flange surface 41 h that is a surface facing the rotors 31 and 32 in the flange portion 41 c includes a main body surface 41 g and a step surface 41 f. The flange surface 41 h is an axial end surface of the stator core 41. The step surface 41f is recessed closer to the core columnar portion 41b in the axial direction than the main body surface 41g. That is, the axial end surface of the stator core 41 has a step surface 41f that is recessed toward the coil 42 (core columnar portion 41b) in the axial direction.
 段差面41fは、本体面41gの周方向両側に設けられる。段差面41fは、フランジ面41hの周方向両端に位置する。そのため、ロータ31,32の回転に伴ってロータマグネット33,35が対向する面は、1つのステータコア41において、段差面41f、本体面41g、段差面41fの順に変化する。これにより、ロータマグネット33,35とフランジ面41hとの軸方向距離が、段差面41fから本体面41gに移り変わることで小さくなり、本体面41gから段差面41fに移り変わることで大きくなる。ロータマグネット33,35とフランジ面41hとの軸方向距離がこのように変化することで、モータ10に生じる逆起電圧の波形を正弦波に近づけることができる。また、モータ10のコギングトルクを低減することができる。これにより、モータ10の磁気特性を向上させることができる。 The step surface 41f is provided on both sides in the circumferential direction of the main body surface 41g. The step surface 41f is located at both circumferential ends of the flange surface 41h. Therefore, as the rotors 31 and 32 rotate, the surface on which the rotor magnets 33 and 35 face changes in the order of the step surface 41f, the main body surface 41g, and the step surface 41f in one stator core 41. As a result, the axial distance between the rotor magnets 33 and 35 and the flange surface 41h is reduced by changing from the step surface 41f to the main body surface 41g, and is increased by changing from the main body surface 41g to the step surface 41f. By changing the axial distance between the rotor magnets 33 and 35 and the flange surface 41h in this way, the waveform of the counter electromotive voltage generated in the motor 10 can be made closer to a sine wave. Further, the cogging torque of the motor 10 can be reduced. Thereby, the magnetic characteristics of the motor 10 can be improved.
 段差面41fは、フランジ面41hの径方向内端から径方向外端まで延びる。段差面41fは、複数の電磁鋼板41aの軸方向端面が連続して構成される略平坦な面である。段差面41fの周方向幅は、径方向の全体に亘って略同じである。 The step surface 41f extends from the radially inner end of the flange surface 41h to the radially outer end. The step surface 41f is a substantially flat surface in which the axial end surfaces of the plurality of electromagnetic steel plates 41a are continuously formed. The circumferential width of the step surface 41f is substantially the same over the entire radial direction.
 本体面41gは、フランジ面41hの周方向の中央に位置する。図2および図5に示すように、軸方向両側の本体面41gは、それぞれ樹脂部46からステータ40の外部に露出する。これにより、金型Dを用いて樹脂部46を形成する際に、金型Dの底面Daに本体面41gを接触させた状態でステータコア41を金型D内に配置できる。したがって、ステータコア41を軸方向に精度よく配置することができる。なお、本体面41gは、ステータ40の外部に露出しなくてもよい。この場合においては、本体面41gは樹脂部46の一部に覆われてもよい。 The main body surface 41g is located at the center in the circumferential direction of the flange surface 41h. As shown in FIGS. 2 and 5, the main body surfaces 41 g on both sides in the axial direction are exposed from the resin portion 46 to the outside of the stator 40. Thereby, when forming the resin part 46 using the metal mold | die D, the stator core 41 can be arrange | positioned in the metal mold | die D in the state which made the main body surface 41g contact the bottom face Da of the metal mold | die D. FIG. Therefore, the stator core 41 can be accurately arranged in the axial direction. The main body surface 41g may not be exposed to the outside of the stator 40. In this case, the main body surface 41g may be covered with a part of the resin portion 46.
 本体面41gのうち拡大部47bに位置する部分の周方向幅は、径方向内側から径方向外側に向かうに従って大きくなる。本体面41gのうち等幅部47aに位置する部分は、周方向幅が径方向の全体に亘って略同じであり、径方向に延びる。このように、本体面41gの周方向幅は、径方向に沿って、フランジ部41cの周方向幅と同様に変化する。これにより、ステータコア41の磁気特性を径方向位置に応じて好適にすることができる。この構成は、段差面41fの周方向幅を径方向の全体に亘って略同じとすることで採用できる。 The circumferential width of the portion of the main body surface 41g located at the enlarged portion 47b increases from the radially inner side toward the radially outer side. A portion of the main body surface 41g located in the equal width portion 47a has a circumferential width that is substantially the same over the entire radial direction, and extends in the radial direction. Thus, the circumferential width of the main body surface 41g changes in the same manner as the circumferential width of the flange portion 41c along the radial direction. Thereby, the magnetic characteristic of the stator core 41 can be made suitable according to a radial direction position. This configuration can be adopted by making the circumferential width of the step surface 41f substantially the same over the entire radial direction.
 ステータコア41は、複数のステータコア凹部41eによって構成され径方向に延びる溝部47cを有する。そのため、電磁鋼板41aをステータコア凹部41eによって位置決めしつつ、複数の電磁鋼板41aを径方向に積層する方法を採用できる。これにより、電磁鋼板41aを精度よく積層することができ、ステータコア41を精度よく製造することができる。したがって、等幅部47aの周方向端面を精度よく構成することができ、後述するステータ40の製造方法を用いた際に、ステータコア41の配置精度をより向上できる。 The stator core 41 has a groove portion 47c that is configured by a plurality of stator core concave portions 41e and extends in the radial direction. Therefore, it is possible to employ a method of laminating a plurality of electromagnetic steel plates 41a in the radial direction while positioning the electromagnetic steel plates 41a by the stator core recesses 41e. Thereby, the electromagnetic steel plates 41a can be stacked with high accuracy, and the stator core 41 can be manufactured with high accuracy. Therefore, the circumferential end surface of the equal width portion 47a can be configured with high accuracy, and the placement accuracy of the stator core 41 can be further improved when a method for manufacturing the stator 40 described later is used.
 溝部47cは、フランジ部41cの径方向内端から径方向外端まで延びる。溝部47cは、ステータコア41の軸方向端面から軸方向に窪む。より詳細には、溝部47cは、本体面41gから、コア柱状部41b側に窪む。本実施形態においては、ステータコア凹部41eが電磁鋼板41aの軸方向両端面に設けられるため、溝部47cは、ステータコア41の軸方向両端面に設けられる。溝部47cは、周方向において、フランジ部41cの中心に位置する。 The groove portion 47c extends from the radially inner end of the flange portion 41c to the radially outer end. The groove portion 47 c is recessed in the axial direction from the axial end surface of the stator core 41. More specifically, the groove 47c is recessed from the main body surface 41g toward the core columnar portion 41b. In the present embodiment, since the stator core concave portion 41e is provided on both axial end surfaces of the electromagnetic steel plate 41a, the groove portion 47c is provided on both axial end surfaces of the stator core 41. The groove portion 47c is located at the center of the flange portion 41c in the circumferential direction.
 なお、溝部47cは、コア柱状部41bに設けられてもよい。この場合、溝部47cは、コア柱状部41bの周方向端面から周方向に窪む。また、溝部47cを構成するステータコア凹部41eは、周方向に窪み、電磁鋼板41aにおけるコア柱状部41bを構成する部分に設けられる。 In addition, the groove part 47c may be provided in the core columnar part 41b. In this case, the groove portion 47c is recessed in the circumferential direction from the circumferential end surface of the core columnar portion 41b. Moreover, the stator core recessed part 41e which comprises the groove part 47c is dented in the circumferential direction, and is provided in the part which comprises the core columnar part 41b in the electromagnetic steel plate 41a.
 図4に示すように、コア柱状部41bの周方向幅はフランジ部41cの周方向幅と同様に変化する。すなわち、コア柱状部41bは、周方向幅が径方向内側から径方向外側に向かうに従って大きくなる拡大柱状部49bと、周方向幅が略同じであり径方向に延びる等幅柱状部49aと、を有する。拡大柱状部49bの径方向位置は、拡大部47bの径方向位置と同じである。等幅柱状部49aの径方向位置は、等幅部47aの径方向位置と同じである。この構成により、ステータコア41の磁気特性を径方向位置に応じて好適にすることができる。 As shown in FIG. 4, the circumferential width of the core columnar portion 41b changes in the same manner as the circumferential width of the flange portion 41c. That is, the core columnar portion 41b includes an enlarged columnar portion 49b whose circumferential width increases from the radially inner side to the radially outer side, and an equal-width columnar portion 49a that has substantially the same circumferential width and extends in the radial direction. Have. The radial position of the enlarged columnar portion 49b is the same as the radial position of the enlarged portion 47b. The radial position of the equal width columnar portion 49a is the same as the radial position of the equal width portion 47a. With this configuration, the magnetic characteristics of the stator core 41 can be made suitable according to the radial position.
 なお、拡大柱状部49bの径方向位置と拡大部47bの径方向位置とは、径方向にずれていてもよい。等幅柱状部49aの径方向位置と等幅部47aの径方向位置とは、径方向にずれていてもよい。また、コア柱状部41bの周方向幅の変化は、フランジ部41cの周方向幅の変化と異なってもよい。コア柱状部41bの周方向幅は、径方向全体に亘って略同じであってもよいし、径方向全体に亘って径方向内側から径方向外側に向かうに従って大きくなってもよい。 The radial position of the enlarged columnar portion 49b and the radial position of the enlarged portion 47b may be shifted in the radial direction. The radial position of the equal width columnar portion 49a and the radial position of the equal width portion 47a may be shifted in the radial direction. Further, the change in the circumferential width of the core columnar portion 41b may be different from the change in the circumferential width of the flange portion 41c. The circumferential width of the core columnar portion 41b may be substantially the same over the entire radial direction, or may increase as it goes from the radially inner side to the radially outer side over the entire radial direction.
 図1に示すように、コイル42は、ステータコア41に巻き回される。より詳細には、コイル42は、インシュレータ43を介してコア柱状部41bに巻き回される。すなわち、インシュレータ43の少なくとも一部は、ステータコア41とコイル42との間に位置する。 As shown in FIG. 1, the coil 42 is wound around the stator core 41. More specifically, the coil 42 is wound around the core columnar portion 41 b via the insulator 43. That is, at least a part of the insulator 43 is located between the stator core 41 and the coil 42.
 図1および図2に示すように、ベアリングホルダ44は、中心軸Jを中心として軸方向に延びる円筒状である。ベアリングホルダ44の径方向内側には、上側ベアリング51が保持される。カバー45は、複数のステータコア41の径方向外側を囲む環状である。 As shown in FIGS. 1 and 2, the bearing holder 44 has a cylindrical shape extending in the axial direction about the central axis J. An upper bearing 51 is held inside the bearing holder 44 in the radial direction. The cover 45 has an annular shape that surrounds the radially outer sides of the plurality of stator cores 41.
 図2に示すように、樹脂部46は、少なくとも一部が周方向に隣り合うステータコア41同士の間に位置する。樹脂部46は、複数のステータコア41とベアリングホルダ44とカバー45とを連結する。樹脂部46は、内側環状部46bと、外側環状部46cと、樹脂本体部46aと、を有する。内側環状部46bは、樹脂部46におけるベアリングホルダ44とステータコア41との径方向の間に位置する環状の部分である。外側環状部46cは、樹脂部46におけるステータコア41の径方向外側に位置する環状の部分である。 As shown in FIG. 2, at least a part of the resin portion 46 is located between the stator cores 41 adjacent in the circumferential direction. The resin portion 46 connects the plurality of stator cores 41, the bearing holder 44, and the cover 45. The resin part 46 includes an inner annular part 46b, an outer annular part 46c, and a resin main body part 46a. The inner annular portion 46 b is an annular portion located between the bearing holder 44 and the stator core 41 in the resin portion 46 in the radial direction. The outer annular portion 46 c is an annular portion located on the radially outer side of the stator core 41 in the resin portion 46.
 図5および図6に示すように、樹脂本体部46aは、樹脂部46における周方向に隣り合うステータコア41同士の間に位置する部分である。また、樹脂本体部46aの少なくとも一部は、周方向に隣り合うフランジ部41c同士の間に位置する。図5に示すように、樹脂本体部46aの径方向内端は、内側環状部46bに接続される。樹脂本体部46aの径方向外端は、外側環状部46cに接続される。図6に示すように、樹脂本体部46aは、周方向に隣り合うフランジ部41c同士の間に位置する部分と、周方向に隣り合うコア柱状部41b同士の間に位置する部分と、を含む。樹脂本体部46aの軸方向端面である本体部端面46dは、本体面41gと軸方向において同じ位置にある。 As shown in FIG. 5 and FIG. 6, the resin main body portion 46 a is a portion located between the stator cores 41 adjacent to each other in the circumferential direction in the resin portion 46. Further, at least a part of the resin main body 46a is located between the flanges 41c adjacent in the circumferential direction. As shown in FIG. 5, the radially inner end of the resin main body 46a is connected to the inner annular portion 46b. A radially outer end of the resin main body 46a is connected to the outer annular portion 46c. As shown in FIG. 6, the resin main body 46a includes a portion located between the flange portions 41c adjacent in the circumferential direction and a portion located between the core columnar portions 41b adjacent in the circumferential direction. . The main body portion end surface 46d, which is the axial end surface of the resin main body portion 46a, is at the same position as the main body surface 41g in the axial direction.
 図5に示すように、樹脂部46は、第1凹部48aと、第2凹部48bと、を有する。本実施形態において第1凹部48aおよび第2凹部48bは、ステータ40の下面40bに設けられる。図6に示すように、第1凹部48aは、本体部端面46dよりも軸方向に窪む。より詳細には、第1凹部48aは、本体部端面46dよりも上側に窪む。図5および図6に示すように、第1凹部48aは、周方向に隣り合うステータコア41の等幅部47a同士の間に位置する。そのため、後述する本実施形態のステータ40の製造方法を採用して、ステータコア41を周方向に精度よく配置できる。 As shown in FIG. 5, the resin portion 46 has a first recess 48a and a second recess 48b. In the present embodiment, the first recess 48 a and the second recess 48 b are provided on the lower surface 40 b of the stator 40. As shown in FIG. 6, the first recess 48a is recessed in the axial direction from the main body end face 46d. More specifically, the first recess 48a is recessed above the main body end surface 46d. As shown in FIGS. 5 and 6, the first recess 48 a is located between the equal width portions 47 a of the stator core 41 adjacent in the circumferential direction. Therefore, the stator core 41 can be accurately arranged in the circumferential direction by adopting a method for manufacturing the stator 40 of the present embodiment described later.
 図5に示すように、第1凹部48aは、周方向に隣り合うステータコア41の等幅部47a同士の間ごとにそれぞれ設けられる。複数の第1凹部48aは、周方向に沿って均等に配置される。 As shown in FIG. 5, the first recesses 48 a are respectively provided between the equal width portions 47 a of the stator cores 41 adjacent in the circumferential direction. The plurality of first recesses 48a are equally arranged along the circumferential direction.
 第1凹部48aの軸方向に視た外形は、特に限定されず、多角形状であっても、円形状であってもよい。図5では、第1凹部48aの軸方向に視た外形は、台形状である。第1凹部48aの周方向幅は、径方向内側から径方向外側に向かうに従って大きくなる。第1凹部48aの内側面のうち周方向一方側(+θ側)の面は、第1凹部48aの周方向一方側(+θ側)に位置するステータコア41の等幅部47aと略平行である。第1凹部48aの内側面のうち周方向他方側(-θ側)の面は、第1凹部48aの周方向他方側(-θ側)に位置するステータコア41の等幅部47aと略平行である。 The outer shape of the first recess 48a viewed in the axial direction is not particularly limited, and may be a polygonal shape or a circular shape. In FIG. 5, the outer shape of the first recess 48a viewed in the axial direction is trapezoidal. The circumferential width of the first recess 48a increases from the radially inner side toward the radially outer side. The surface on the one circumferential side (+ θ side) of the inner surface of the first recess 48a is substantially parallel to the equal width portion 47a of the stator core 41 located on the one circumferential side (+ θ side) of the first recess 48a. The surface on the other circumferential side (−θ side) of the inner surface of the first recess 48a is substantially parallel to the equal width portion 47a of the stator core 41 located on the other circumferential side (−θ side) of the first recess 48a. is there.
 等幅部47aの少なくとも一部は、第1凹部48a内に露出する。より詳細には、等幅部47aの周方向端面の少なくとも一部は、第1凹部48a内に露出する。なお、等幅部47aは、第1凹部48a内に露出しなくてもよい。この場合、等幅部47aの周方向端面は、樹脂部46の一部に覆われる。 At least a part of the equal width portion 47a is exposed in the first recess 48a. More specifically, at least a part of the circumferential end surface of the equal width portion 47a is exposed in the first recess 48a. In addition, the equal width part 47a does not need to be exposed in the 1st recessed part 48a. In this case, the circumferential end surface of the equal width portion 47 a is covered with a part of the resin portion 46.
 図6に示すように、第1凹部48aの底面は、軸方向において、コイル42が配置される領域よりも浅い位置にある。そのため、第1凹部48aがコイル42に到達せず、コイル42が第1凹部48a内に露出することを抑制できる。第1凹部48aの底面は、下側のフランジ部41cにおけるコア柱状部41b側(上側)の軸方向端面よりも浅い位置にある。すなわち、第1凹部48aの底面の軸方向における高さ位置は、下側のフランジ部41cの軸方向上面よりも、下側に位置する。 As shown in FIG. 6, the bottom surface of the first recess 48a is in a position shallower than the region where the coil 42 is disposed in the axial direction. Therefore, it is possible to prevent the first recess 48a from reaching the coil 42 and the coil 42 from being exposed in the first recess 48a. The bottom surface of the first recess 48a is at a position shallower than the axial end surface on the core columnar portion 41b side (upper side) of the lower flange portion 41c. That is, the height position in the axial direction of the bottom surface of the first recess 48a is located below the upper surface in the axial direction of the lower flange portion 41c.
 図5に示すように、第2凹部48bは、本体部端面46dよりも軸方向に窪む。第2凹部48bは、内側環状部46bに位置する。第2凹部48bの少なくとも一部は、ステータコア41の径方向内端の径方向内側に位置する。図5では、第2凹部48bの全体が、ステータコア41の径方向内端の径方向内側に位置する。そのため、後述する本実施形態のステータ40の製造方法を採用して、ステータコア41を径方向に精度よく配置できる。ステータコア41の径方向内端は、フランジ部41cの径方向内端である。 As shown in FIG. 5, the second recess 48b is recessed in the axial direction from the main body end face 46d. The second recess 48b is located in the inner annular portion 46b. At least a part of the second recess 48 b is located on the radially inner side of the radially inner end of the stator core 41. In FIG. 5, the entire second recess 48 b is located on the radially inner side of the radially inner end of the stator core 41. Therefore, the stator core 41 can be accurately arranged in the radial direction by employing a method for manufacturing the stator 40 of the present embodiment, which will be described later. The radially inner end of the stator core 41 is the radially inner end of the flange portion 41c.
 第2凹部48bは、ステータコア41が配置されるごとにそれぞれ設けられる。複数の第2凹部48bは、周方向に均等に配置される。第2凹部48bは、第1凹部48aよりも径方向内側に位置する。第2凹部48bの周方向位置は、周方向に隣り合う第1凹部48a同士の間である。なお、図5では、第2凹部48bは、ステータコア41が配置されるごとに1つずつ設けられているが、これに限られない。第2凹部48bは、ステータコア41が配置されるごとに、2つ以上ずつ設けられてもよい。 The second recess 48b is provided each time the stator core 41 is disposed. The plurality of second recesses 48b are evenly arranged in the circumferential direction. The second recess 48b is located on the inner side in the radial direction than the first recess 48a. The circumferential position of the second recess 48b is between the first recesses 48a adjacent in the circumferential direction. In FIG. 5, the second recess 48 b is provided one by one every time the stator core 41 is disposed, but the present invention is not limited to this. Two or more second recesses 48b may be provided each time the stator core 41 is disposed.
 第2凹部48bの軸方向に視た外形は、特に限定されず、多角形状であっても、円形状であってもよい。図5では、第2凹部48bの軸方向に視た形状は、円形状である。図示は省略するが、ステータコア41の径方向内端の少なくとも一部は、第2凹部48b内に露出する。より詳細には、フランジ部41cの径方向内端面の少なくとも一部が、第2凹部48b内に露出する。なお、ステータコア41の径方向内端の少なくとも一部は、第2凹部48b内に露出しなくてもよい。この場合、フランジ部41cの径方向内端面は、樹脂部46の一部に覆われる。 The outer shape of the second recess 48b viewed in the axial direction is not particularly limited, and may be a polygonal shape or a circular shape. In FIG. 5, the shape of the second recess 48b viewed in the axial direction is circular. Although illustration is omitted, at least a part of the radially inner end of the stator core 41 is exposed in the second recess 48b. More specifically, at least a part of the radially inner end surface of the flange portion 41c is exposed in the second recess 48b. Note that at least a part of the radially inner end of the stator core 41 may not be exposed in the second recess 48b. In this case, the radially inner end surface of the flange portion 41 c is covered with a part of the resin portion 46.
 図6に示すように、樹脂部46の一部は、ステータコア41の軸方向端面に配置される。具体的には、段差面41fには、樹脂部46の一部が配置される。そのため、樹脂部46の一部によってステータコア41が軸方向両側から押さえられる。したがって、ステータコア41が樹脂部46に対して軸方向に移動することを抑制できる。これにより、ステータコア41と樹脂部46とをより強固に固定できる。 As shown in FIG. 6, a part of the resin portion 46 is disposed on the axial end surface of the stator core 41. Specifically, a part of the resin portion 46 is disposed on the step surface 41f. Therefore, the stator core 41 is pressed from both sides in the axial direction by a part of the resin portion 46. Therefore, it is possible to suppress the stator core 41 from moving in the axial direction with respect to the resin portion 46. Thereby, the stator core 41 and the resin part 46 can be fixed more firmly.
 本実施形態においては、段差面41fが設けられることで、段差面41fに樹脂部46の一部を配置しつつ、本体面41gを露出させることができる。これにより、ステータコア41と樹脂部46との固定を強固にしつつ、ステータコア41を軸方向に精度よく配置できる。 In the present embodiment, by providing the step surface 41f, it is possible to expose the main body surface 41g while disposing a part of the resin portion 46 on the step surface 41f. Thereby, the stator core 41 can be accurately arranged in the axial direction while fixing the stator core 41 and the resin portion 46 firmly.
 樹脂部46の一部は、溝部47c内に配置される。本実施形態においては、溝部47c内全体に樹脂部46の一部が充填される。 A part of the resin part 46 is disposed in the groove part 47c. In the present embodiment, a part of the resin part 46 is filled in the entire groove part 47c.
 図7に示すように、本実施形態のステータ40の製造方法は、ステータコア形成工程S1と、コイル装着工程S2と、配置工程S3と、樹脂成型工程S4と、を含む。ステータコア形成工程S1は、複数の電磁鋼板41aを径方向に積層して複数のステータコア41を形成する工程である。帯状の電磁鋼板の一部をプレス加工によって打ち抜いて、複数の電磁鋼板41aを形成する。ステータコア凹部41eに治具を嵌め合わせる等によって電磁鋼板41aの位置を合わせつつ、電磁鋼板41aを積層する。そのため、複数の電磁鋼板41aを精度よく積層できる。電磁鋼板41a同士の固定方法は特に限定されない。 As shown in FIG. 7, the method for manufacturing the stator 40 of the present embodiment includes a stator core forming step S1, a coil mounting step S2, an arrangement step S3, and a resin molding step S4. The stator core formation step S1 is a step of forming a plurality of stator cores 41 by laminating a plurality of electromagnetic steel plates 41a in the radial direction. A part of the strip-shaped electromagnetic steel sheet is punched out by press working to form a plurality of electromagnetic steel sheets 41a. The electromagnetic steel sheets 41a are stacked while aligning the positions of the electromagnetic steel sheets 41a by fitting a jig into the stator core recess 41e. Therefore, the plurality of electromagnetic steel plates 41a can be accurately stacked. The method for fixing the electromagnetic steel sheets 41a is not particularly limited.
 コイル装着工程S2は、ステータコア41にコイル42を装着する工程である。コア柱状部41bにインシュレータ43を装着した後、インシュレータ43の上からコア柱状部41bの周囲に導電線を巻き付け、コイル42を形成する。 The coil mounting step S2 is a step of mounting the coil 42 on the stator core 41. After the insulator 43 is mounted on the core columnar portion 41 b, a conductive wire is wound around the core columnar portion 41 b from above the insulator 43 to form the coil 42.
 図8に示すように、配置工程S3は、金型D内に複数のステータコア41を周方向に沿って配置する工程である。金型Dは、例えば、円筒状である。金型D内には、第1位置決め部材P1と、第2位置決め部材P2と、が配置される。第1位置決め部材P1および第2位置決め部材P2は、金型Dの底面Daに固定される。第1位置決め部材P1は、周方向に沿って複数設けられる。第2位置決め部材P2は、周方向に沿って複数設けられる。第2位置決め部材P2は、第1位置決め部材P1よりも径方向内側に位置する。第2位置決め部材P2の周方向位置は、周方向に隣り合う第1位置決め部材P1同士の間である。第1位置決め部材P1の軸方向に視た形状は、台形状である。第2位置決め部材P2の軸方向に視た形状は、円形状である。 As shown in FIG. 8, the arrangement step S3 is a step of arranging a plurality of stator cores 41 in the mold D along the circumferential direction. The mold D is, for example, a cylindrical shape. In the mold D, a first positioning member P1 and a second positioning member P2 are arranged. The first positioning member P1 and the second positioning member P2 are fixed to the bottom surface Da of the mold D. A plurality of first positioning members P1 are provided along the circumferential direction. A plurality of second positioning members P2 are provided along the circumferential direction. The second positioning member P2 is located on the radially inner side than the first positioning member P1. The circumferential position of the second positioning member P2 is between the first positioning members P1 adjacent to each other in the circumferential direction. The shape of the first positioning member P1 viewed in the axial direction is a trapezoid. The shape of the second positioning member P2 viewed in the axial direction is circular.
 ステータコア41は、下側のフランジ部41cの本体面41gが底面Daと接触した状態で、金型D内に配置される。配置工程S3においては、金型D内に配置された第1位置決め部材P1に等幅部47aを接触させて、ステータコア41を周方向に位置決めする。 The stator core 41 is disposed in the mold D in a state where the main body surface 41g of the lower flange portion 41c is in contact with the bottom surface Da. In the arranging step S3, the equal width portion 47a is brought into contact with the first positioning member P1 arranged in the mold D, and the stator core 41 is positioned in the circumferential direction.
 フランジ部が拡大部のみで構成される場合、例えば拡大部を位置決め部材に接触させて位置決めする。しかし、拡大部の周方向端部は階段状であるため、ステータコアを精度よく位置決めすることが難しい。また、位置決め部材とステータコアとの接触が不安定となりやすく、金型に樹脂が流し込まれた際に、樹脂の圧力でステータコアが移動する場合がある。そのため、ステータコアを精度よく配置することが困難であった。この問題に対して、インシュレータに位置決めを行う構造を設けることが考えられるが、その場合にはインシュレータが大型化しやすく、ステータが大型化する問題があった。 When the flange portion is composed only of the enlarged portion, for example, the enlarged portion is positioned by contacting the positioning member. However, since the circumferential end of the enlarged portion is stepped, it is difficult to accurately position the stator core. In addition, the contact between the positioning member and the stator core tends to be unstable, and when the resin is poured into the mold, the stator core may move due to the pressure of the resin. Therefore, it is difficult to arrange the stator core with high accuracy. In order to deal with this problem, it is conceivable to provide a structure for positioning the insulator. In that case, however, the insulator is likely to be enlarged and the stator is enlarged.
 これらの問題に対して、等幅部47aは、周方向幅が略同じである複数の電磁鋼板41aが積層される構成であるため、上述したように等幅部47aの周方向端面は、略平坦な面である。これにより、等幅部47aを第1位置決め部材P1に接触させることで、ステータコア41を周方向に精度よく位置決めできる。また、第1位置決め部材P1とステータコア41とを安定して接触させることができるため、ステータコア41が樹脂の圧力によって動くことを抑制できる。したがって、ステータコア41に等幅部47aを設けることによって、電磁鋼板41aが径方向に積層された構成であるステータコア41を周方向に精度よく配置することができる。また、位置決めを行うための追加の構造が生じないため、ステータ40の大型化を抑制することができる。 For these problems, the equal width portion 47a has a configuration in which a plurality of electromagnetic steel plates 41a having substantially the same width in the circumferential direction are stacked. Therefore, as described above, the circumferential end surface of the equal width portion 47a is substantially the same. It is a flat surface. Thereby, the stator core 41 can be accurately positioned in the circumferential direction by bringing the equal width portion 47a into contact with the first positioning member P1. Moreover, since the 1st positioning member P1 and the stator core 41 can be made to contact stably, it can suppress that the stator core 41 moves with the pressure of resin. Therefore, by providing the stator core 41 with the equal width portion 47a, the stator core 41 having a configuration in which the electromagnetic steel plates 41a are laminated in the radial direction can be accurately arranged in the circumferential direction. Moreover, since the additional structure for performing positioning does not arise, the enlargement of the stator 40 can be suppressed.
 また、フランジ部が拡大部のみで構成される場合、ステータコアを構成する電磁鋼板の形状をすべて異ならせる必要がある。そのため、例えば電磁鋼板ごとにプレス加工で打ち抜く型を用意する必要があり、ステータコアの製造コストが高くなりやすい。これに対して、等幅部47aを構成する複数の電磁鋼板41aは、互いに同一の形状とすることが可能である。そのため、等幅部47aを構成する複数の電磁鋼板41aを、同一の型によってプレス加工で打ち抜いて製造することができる。これにより、フランジ部41cが等幅部47aを有することで、電磁鋼板41aを打ち抜く型の数を少なくすることができ、ステータコア41の製造コストを小さくできる。 Also, when the flange portion is composed only of the enlarged portion, it is necessary to make all the shapes of the electromagnetic steel plates constituting the stator core different. Therefore, for example, it is necessary to prepare a die for punching by pressing for each electromagnetic steel sheet, and the manufacturing cost of the stator core tends to increase. On the other hand, the plurality of electromagnetic steel plates 41a constituting the equal width portion 47a can have the same shape. Therefore, it is possible to manufacture a plurality of electromagnetic steel plates 41a constituting the equal width portion 47a by stamping with the same die. Thereby, since the flange part 41c has the equal width part 47a, the number of the mold | die which punches the electromagnetic steel plate 41a can be decreased, and the manufacturing cost of the stator core 41 can be made small.
 図8では、等幅部47aの周方向両端が、等幅部47aの周方向両側にそれぞれ位置する第1位置決め部材P1と接触する。これにより、2つの第1位置決め部材P1がステータコア41を挟持することによって、ステータコア41を周方向に位置決めできる。したがって、ステータコア41が周方向に移動することを抑制できる。また、本実施形態では等幅部47aは拡大部47bよりも径方向外側に位置するため、等幅部47aの周方向幅を大きくしやすい。これにより、フランジ部41cにおける第1位置決め部材P1によって挟持される部分の周方向幅が大きくなる。したがって、本実施形態は、第1位置決め部材P1によってステータコア41をより安定して挟持することができるため、ステータコア41が周方向に移動することをより抑制できる。第1位置決め部材P1の周方向両端は、それぞれ隣り合うステータコア41の等幅部47aと接触する。 In FIG. 8, both ends in the circumferential direction of the equal width portion 47a are in contact with the first positioning members P1 located on both sides in the circumferential direction of the equal width portion 47a. Thereby, the stator core 41 can be positioned in the circumferential direction by sandwiching the stator core 41 by the two first positioning members P1. Therefore, it is possible to suppress the stator core 41 from moving in the circumferential direction. In the present embodiment, since the equal width portion 47a is located on the radially outer side than the enlarged portion 47b, it is easy to increase the circumferential width of the equal width portion 47a. Thereby, the circumferential direction width | variety of the part pinched by the 1st positioning member P1 in the flange part 41c becomes large. Therefore, in the present embodiment, the stator core 41 can be more stably sandwiched by the first positioning member P1, and thus the stator core 41 can be further suppressed from moving in the circumferential direction. Both circumferential ends of the first positioning member P1 are in contact with the equal width portions 47a of the adjacent stator cores 41, respectively.
 配置工程S3においては、金型D内に配置された第2位置決め部材P2がステータコア41の径方向内端に接触する。そのため、金型D内において、ステータコア41は径方向に位置決めされる。より詳細には、フランジ部41cの径方向内端が第2位置決め部材P2に接触し、ステータコア41が径方向に位置決めされる。配置工程S3においては、ベアリングホルダ44およびカバー45も金型D内に配置する。なお、配置工程S3においては、ステータコア41の径方向外端と接触する位置決め部材を、第1位置決め部材P1および第2位置決め部材P2とは別に設けてもよい。 In the arranging step S3, the second positioning member P2 arranged in the mold D contacts the radially inner end of the stator core 41. Therefore, in the mold D, the stator core 41 is positioned in the radial direction. More specifically, the radially inner end of the flange portion 41c contacts the second positioning member P2, and the stator core 41 is positioned in the radial direction. In the arrangement step S3, the bearing holder 44 and the cover 45 are also arranged in the mold D. In the placement step S3, a positioning member that contacts the radially outer end of the stator core 41 may be provided separately from the first positioning member P1 and the second positioning member P2.
 樹脂成型工程S4は、金型D内に溶融した樹脂を流し込み、少なくとも一部が周方向に隣り合うステータコア41同士の間に位置する樹脂部46を形成する工程である。樹脂成型工程S4においては、金型D内に配置された第1位置決め部材P1によって、第1凹部48aが形成される。そのため、第1凹部48aの軸方向に視た外形は、第1位置決め部材P1の軸方向に視た外形と同じである。このように、本実施形態のステータ40は、第1凹部48aを有する樹脂部46を備えるため、配置工程S3において、ステータコア41を、第1位置決め部材P1を用いて位置決めする上述の製造方法を採用できる。したがって、ステータコア41が周方向に沿って精度よく配置されたステータ40が得られる。 Resin molding step S4 is a step in which molten resin is poured into the mold D to form a resin portion 46 located at least partially between the stator cores 41 adjacent in the circumferential direction. In the resin molding step S4, the first recess 48a is formed by the first positioning member P1 arranged in the mold D. Therefore, the outer shape of the first recess 48a viewed in the axial direction is the same as the outer shape of the first positioning member P1 viewed in the axial direction. Thus, since the stator 40 of this embodiment is provided with the resin part 46 which has the 1st recessed part 48a, in the arrangement | positioning process S3, the above-mentioned manufacturing method which positions the stator core 41 using the 1st positioning member P1 is employ | adopted. it can. Therefore, the stator 40 in which the stator core 41 is accurately arranged along the circumferential direction is obtained.
 また、第1凹部48aの周方向幅は径方向内側から径方向外側に向かうに従って大きくなるため、配置工程S3において用いる第1位置決め部材P1の形状が径方向内側から径方向外側に向かうに従って大きくなる形状となる。これにより、1つの第1位置決め部材P1の周方向両端に、それぞれ周方向に隣り合うステータコア41の等幅部47aを接触させる製造方法を採用できる。したがって、配置工程S3において用いる第1位置決め部材P1の数を少なくすることができ、ステータ40の製造コストを小さくできる。 Further, since the circumferential width of the first recess 48a increases from the radially inner side to the radially outer side, the shape of the first positioning member P1 used in the placement step S3 increases from the radially inner side to the radially outer side. It becomes a shape. Thereby, the manufacturing method which makes the equal width part 47a of the stator core 41 adjacent to the circumferential direction respectively contact the circumferential direction both ends of one 1st positioning member P1 is employable. Therefore, the number of first positioning members P1 used in the arrangement step S3 can be reduced, and the manufacturing cost of the stator 40 can be reduced.
 配置工程S3において、第1位置決め部材P1と等幅部47aとが精度よく接触する場合、第1位置決め部材P1と等幅部47aとの間には樹脂が入り込まない。そのため、樹脂成型工程S4において形成された第1凹部48a内には、等幅部47aにおける第1位置決め部材P1と接触していた部分が露出する。このように、第1凹部48a内に等幅部47aの少なくとも一部が露出する構成の場合、配置工程S3において第1位置決め部材P1と等幅部47aとを精度よく接触させる製造方法を採用できる。そのため、ステータコア41の配置精度がより優れたステータ40が得られる。 In the placement step S3, when the first positioning member P1 and the equal width portion 47a come into contact with each other with high accuracy, the resin does not enter between the first positioning member P1 and the equal width portion 47a. Therefore, the portion of the equal width portion 47a that has been in contact with the first positioning member P1 is exposed in the first recess 48a formed in the resin molding step S4. As described above, in a case where at least a part of the equal width portion 47a is exposed in the first recess 48a, a manufacturing method in which the first positioning member P1 and the equal width portion 47a are brought into contact with each other in the placement step S3 can be employed. . As a result, the stator 40 having a better positioning accuracy of the stator core 41 can be obtained.
 なお、第1位置決め部材P1と等幅部47aとの接触する精度が比較的低い場合、第1位置決め部材P1と等幅部47aとの間には、わずかに樹脂が入り込む場合がある。この場合、第1凹部48a内には等幅部47aが露出しない場合がある。しかし、この場合であっても、本実施形態は、第1位置決め部材P1によって、ステータコア41を十分に精度よく位置決めすることができる。 In addition, when the precision with which the 1st positioning member P1 and the equal width part 47a contact is comparatively low, resin may enter between the 1st positioning member P1 and the equal width part 47a slightly. In this case, the equal width portion 47a may not be exposed in the first recess 48a. However, even in this case, in the present embodiment, the stator core 41 can be positioned with sufficient accuracy by the first positioning member P1.
 樹脂成型工程S4においては、金型D内に配置された第2位置決め部材P2によって、第2凹部48bが形成される。第2凹部48bの軸方向に視た外形は、第2位置決め部材P2の軸方向に視た外形と同じである。このように、本実施形態のステータ40は、第2凹部48bを有する樹脂部46を備えるため、配置工程S3において、ステータコア41を、第2位置決め部材P2を用いて位置決めする上述の製造方法を採用できる。したがって、ステータコア41が径方向に精度よく位置決めされたステータ40が得られる。 In the resin molding step S4, the second recess 48b is formed by the second positioning member P2 disposed in the mold D. The outer shape of the second recess 48b viewed in the axial direction is the same as the outer shape of the second positioning member P2 viewed in the axial direction. Thus, since the stator 40 of this embodiment is provided with the resin part 46 which has the 2nd recessed part 48b, in the arrangement | positioning process S3, the above-mentioned manufacturing method which positions the stator core 41 using the 2nd positioning member P2 is employ | adopted. it can. Therefore, the stator 40 in which the stator core 41 is accurately positioned in the radial direction is obtained.
 配置工程S3において、第2位置決め部材P2とステータコア41とが精度よく接触する場合、第2位置決め部材P2とステータコア41との間には樹脂が入り込まない。そのため、樹脂成型工程S4において形成された第2凹部48b内には、ステータコア41における第2位置決め部材P2と接触していた部分が露出する。このように、第2凹部48b内にステータコア41の径方向内端の少なくとも一部が露出する構成の場合、配置工程S3において第2位置決め部材P2とステータコア41の径方向内端とを精度よく接触させる製造方法を採用できる。そのため、ステータコア41の配置精度がより優れたステータ40が得られる。 In the placement step S3, when the second positioning member P2 and the stator core 41 come into contact with each other with high accuracy, the resin does not enter between the second positioning member P2 and the stator core 41. Therefore, the portion of the stator core 41 that has been in contact with the second positioning member P2 is exposed in the second recess 48b formed in the resin molding step S4. As described above, in the configuration in which at least a part of the radial inner end of the stator core 41 is exposed in the second recess 48b, the second positioning member P2 and the radial inner end of the stator core 41 are accurately contacted in the placement step S3. A manufacturing method can be adopted. As a result, the stator 40 having a better positioning accuracy of the stator core 41 can be obtained.
 本発明は上述の実施形態に限られず、他の構成を採用することもできる。以下の説明において上記説明と同様の構成については、適宜同一の符号を付す等により説明を省略する場合がある。 The present invention is not limited to the above-described embodiment, and other configurations can be adopted. In the following description, the same configurations as those described above may be omitted by appropriately attaching the same reference numerals.
 ステータコア41は、図9に示すステータコア141のような形状であってもよい。図9に示すように、コア柱状部141bは、径方向外端において径方向内側から径方向外側に向かって周方向幅が小さくなる段差部149aを有する。段差部149aは、等幅柱状部49aよりも径方向外側に電磁鋼板141aが積層されることで構成される段差である。電磁鋼板141aにおけるコア柱状部141bの周方向幅は、等幅柱状部49aの周方向幅よりも小さい。例えば、コア柱状部にインシュレータを介してコイルの導電線を巻く際、段差部149aが設けられない構成では、コア柱状部の径方向外端の角部が干渉するため、導電線が巻き膨れして、コイルの外径が大きくなる問題がある。そのため、ステータが径方向に大型化する問題があった。これに対して、段差部149aが設けられることで、導電線がコア柱状部141bの外形に沿って巻き回され、導電線の巻き膨れを抑制できる。したがって、コイル42の外径が大きくなることを抑制でき、結果としてステータ40が径方向に大型化することを抑制できる。 The stator core 41 may have a shape like the stator core 141 shown in FIG. As shown in FIG. 9, the core columnar portion 141 b has a stepped portion 149 a that decreases in the circumferential width from the radially inner side toward the radially outer side at the radially outer end. The stepped portion 149a is a step formed by laminating the electromagnetic steel plates 141a on the radially outer side of the equal width columnar portion 49a. The circumferential width of the core columnar portion 141b in the electromagnetic steel sheet 141a is smaller than the circumferential width of the equal width columnar portion 49a. For example, when the conductive wire of the coil is wound around the core columnar portion via an insulator, the corner portion at the radially outer end of the core columnar portion interferes with the configuration in which the stepped portion 149a is not provided. Thus, there is a problem that the outer diameter of the coil becomes large. Therefore, there has been a problem that the stator is enlarged in the radial direction. On the other hand, by providing the stepped portion 149a, the conductive wire is wound along the outer shape of the core columnar portion 141b, and the bulging of the conductive wire can be suppressed. Therefore, it can suppress that the outer diameter of the coil 42 becomes large, and can suppress that the stator 40 enlarges to radial direction as a result.
 フランジ部141cは、径方向外端において径方向内側から径方向外側に向かって周方向幅が小さくなるフランジ段差部149bを有する。フランジ段差部149bは、等幅部47aよりも径方向外側に電磁鋼板141aが積層されることで構成される段差である。電磁鋼板141aにおけるフランジ部141cの周方向幅は、等幅部47aの周方向幅よりも小さい。このように、電磁鋼板141aの周方向幅は、コア柱状部141bおよびフランジ部141cの両方において、等幅部47aを構成する電磁鋼板41aよりも小さい。本実施形態は、電磁鋼板141aの形状を、拡大部47bを構成する電磁鋼板41aのうちのいずれかの形状と同一にできる。したがって、電磁鋼板141aをプレス加工で打ち抜くための型を別途用意する必要がなく、ステータコア141の製造コストが大きくなることを抑制できる。 The flange portion 141c has a flange step portion 149b that decreases in the circumferential width from the radially inner side toward the radially outer side at the radially outer end. The flange step portion 149b is a step formed by laminating the electromagnetic steel plates 141a on the radially outer side than the equal width portion 47a. The circumferential width of the flange portion 141c in the electromagnetic steel plate 141a is smaller than the circumferential width of the equal width portion 47a. Thus, the circumferential width of the electromagnetic steel plate 141a is smaller than the electromagnetic steel plate 41a constituting the equal width portion 47a in both the core columnar portion 141b and the flange portion 141c. In the present embodiment, the shape of the electromagnetic steel plate 141a can be made the same as any one of the electromagnetic steel plates 41a constituting the enlarged portion 47b. Therefore, it is not necessary to separately prepare a die for punching the electromagnetic steel sheet 141a by press working, and it is possible to suppress an increase in the manufacturing cost of the stator core 141.
 また、第1凹部48aおよび第2凹部48bは、ステータ40の上面40aに設けられてもよいし、上面40aおよび下面40bの両方に設けられてもよい。また、第2凹部48bは、中心軸Jを囲む環状であってもよい。この場合、配置工程S3においては環状の第2位置決め部材が1つのみ設けられ、各ステータコア41は、1つの第2位置決め部材によって径方向に位置決めされる。 The first recess 48a and the second recess 48b may be provided on the upper surface 40a of the stator 40, or may be provided on both the upper surface 40a and the lower surface 40b. Further, the second recess 48b may be an annular shape surrounding the central axis J. In this case, only one annular second positioning member is provided in the arrangement step S3, and each stator core 41 is positioned in the radial direction by one second positioning member.
 また、等幅部47aは、径方向において、フランジ部41cのいずれの位置に設けられてもよい。等幅部47aは、フランジ部41cの径方向内端に位置してもよいし、フランジ部41cの径方向の中央に位置してもよい。また、コア柱状部41bの周方向幅は、径方向の全体に亘って同じであってもよい。 Further, the equal width portion 47a may be provided at any position of the flange portion 41c in the radial direction. The equal width portion 47a may be located at the radially inner end of the flange portion 41c, or may be located at the radial center of the flange portion 41c. Moreover, the circumferential direction width | variety of the core columnar part 41b may be the same over the whole radial direction.
 また、上述したモータ10は、シャフト20にロータ31,32が固定された軸回転型のモータとしたが、これに限られない。本発明が適用されるモータは、シャフトが固定される軸固定型のモータであってもよい。 Further, although the motor 10 described above is a shaft rotation type motor in which the rotors 31 and 32 are fixed to the shaft 20, it is not limited thereto. The motor to which the present invention is applied may be a fixed shaft type motor to which a shaft is fixed.
 上記の各構成は、相互に矛盾しない範囲内において、適宜組み合わせることができる。 The above configurations can be appropriately combined within a range that does not contradict each other.
 10…モータ、20…シャフト、31,32…ロータ、40…ステータ、41,141…ステータコア、41a,141a…電磁鋼板、41b,141b…コア柱状部、41c,141c…フランジ部、41e…ステータコア凹部、41f…段差面、42…コイル、43…インシュレータ、46…樹脂部、46a…樹脂本体部、47a…等幅部、47b…拡大部、47c…溝部、48a…第1凹部、149a…段差部、D…金型、Da…底面、J…中心軸、P1…第1位置決め部材、P2…第2位置決め部材、S1…ステータコア形成工程(工程S1)、S2…コイル装着工程(工程S2)、S3…配置工程(工程S3)、S4…樹脂成型工程(工程S4) DESCRIPTION OF SYMBOLS 10 ... Motor, 20 ... Shaft, 31, 32 ... Rotor, 40 ... Stator, 41, 141 ... Stator core, 41a, 141a ... Electromagnetic steel plate, 41b, 141b ... Core columnar part, 41c, 141c ... Flange part, 41e ... Stator core recessed part , 41f ... step surface, 42 ... coil, 43 ... insulator, 46 ... resin part, 46a ... resin body part, 47a ... uniform width part, 47b ... enlarged part, 47c ... groove part, 48a ... first recess, 149a ... step part , D ... mold, Da ... bottom surface, J ... central axis, P1 ... first positioning member, P2 ... second positioning member, S1 ... stator core forming step (step S1), S2 ... coil mounting step (step S2), S3 ... Placement process (process S3), S4 ... Resin molding process (process S4)

Claims (13)

  1.  上下方向に延びる中心軸を中心として回転するロータと隙間を介して軸方向に対向するステータであって、
     周方向に沿って配置される複数のステータコアと、
     前記ステータコアに巻き回されるコイルと、
     少なくとも一部が前記ステータコアと前記コイルとの間に位置するインシュレータと、
     少なくとも一部が周方向に隣り合う前記ステータコア同士の間に位置する樹脂部と、
     を備え、
     前記ステータコアは、複数の電磁鋼板が径方向に積層される構成であり、
     前記ステータコアは、軸方向に延び前記コイルが巻き回されるコア柱状部と、前記コア柱状部の軸方向端部に接続され周方向に延びる板状のフランジ部と、を有し、
     前記フランジ部は、周方向幅が径方向内側から径方向外側に向かうに従って大きくなる拡大部と、周方向幅が略同じであり径方向に延びる等幅部と、を有し、
     前記等幅部は、前記フランジ部において周方向幅が略同じである複数の前記電磁鋼板が径方向に積層される構成であり、
     前記樹脂部は、
     少なくとも一部が周方向に隣り合う前記フランジ部同士の間に位置する樹脂本体部と、
     前記樹脂本体部の軸方向端面よりも軸方向に窪み、周方向に隣り合う前記ステータコアの前記等幅部同士の間に位置する第1凹部と、
     を有する、ステータ。
    A stator that is axially opposed to a rotor that rotates about a central axis that extends in the vertical direction and a gap,
    A plurality of stator cores arranged along the circumferential direction;
    A coil wound around the stator core;
    An insulator located at least partially between the stator core and the coil;
    A resin portion located between the stator cores at least partially adjacent in the circumferential direction;
    With
    The stator core has a configuration in which a plurality of electromagnetic steel plates are laminated in a radial direction,
    The stator core includes a core columnar portion that extends in the axial direction and around which the coil is wound, and a plate-like flange portion that is connected to an axial end of the core columnar portion and extends in the circumferential direction,
    The flange portion has an enlarged portion in which the circumferential width increases from the radially inner side toward the radially outer side, and an equal width portion having substantially the same circumferential width and extending in the radial direction,
    The equal width portion is a configuration in which a plurality of the electromagnetic steel sheets having substantially the same circumferential width in the flange portion are laminated in a radial direction,
    The resin part is
    A resin main body located at least partially between the flanges adjacent in the circumferential direction;
    A first recess that is recessed in the axial direction from the axial end surface of the resin main body and located between the equal width portions of the stator core adjacent in the circumferential direction;
    Having a stator.
  2.  前記等幅部の少なくとも一部は、前記第1凹部内に露出する、請求項1に記載のステータ。 2. The stator according to claim 1, wherein at least part of the equal width portion is exposed in the first recess.
  3.  前記第1凹部の周方向幅は、径方向内側から径方向外側に向かうに従って大きくなる、請求項2に記載のステータ。 The stator according to claim 2, wherein a circumferential width of the first recess increases from a radially inner side toward a radially outer side.
  4.  前記等幅部は、前記拡大部よりも径方向外側に位置する、請求項3に記載のステータ。 4. The stator according to claim 3, wherein the equal-width portion is located on a radially outer side than the enlarged portion.
  5.  前記電磁鋼板は、径方向と直交する方向に窪むステータコア凹部を有し、
     前記ステータコアは、複数の前記ステータコア凹部によって構成され径方向に延びる溝部を有する、請求項1に記載のステータ。
    The electromagnetic steel sheet has a stator core recess recessed in a direction orthogonal to the radial direction,
    The stator according to claim 1, wherein the stator core includes a groove portion that is configured by a plurality of the stator core concave portions and extends in a radial direction.
  6.  前記樹脂部は、前記樹脂本体部の軸方向端面よりも軸方向に窪む第2凹部を有し、
     前記第2凹部の少なくとも一部は、前記ステータコアの径方向内端の径方向内側に位置する、請求項1に記載のステータ。
    The resin part has a second recess that is recessed in the axial direction from the axial end surface of the resin body part,
    2. The stator according to claim 1, wherein at least a part of the second recess is located on a radially inner side of a radially inner end of the stator core.
  7.  前記ステータコアの径方向内端の少なくとも一部は、前記第2凹部内に露出する、請求項6に記載のステータ。 The stator according to claim 6, wherein at least a part of a radially inner end of the stator core is exposed in the second recess.
  8.  前記コア柱状部は、径方向外端において径方向内側から径方向外側に向かって周方向幅が小さくなる段差部を有する、請求項1に記載のステータ。 2. The stator according to claim 1, wherein the core columnar portion has a stepped portion having a circumferential width that decreases from a radially inner side toward a radially outer side at a radially outer end.
  9.  前記ステータコアの軸方向端面は、軸方向において前記コイル側に窪む段差面を有し、
     前記段差面には、前記樹脂部の一部が配置される、請求項1に記載のステータ。
    The axial end surface of the stator core has a step surface that is recessed toward the coil in the axial direction,
    The stator according to claim 1, wherein a part of the resin portion is disposed on the step surface.
  10.  前記第1凹部の底面は、軸方向において、前記コイルが配置される領域よりも浅い位置にある、請求項1に記載のステータ。 2. The stator according to claim 1, wherein a bottom surface of the first recess is in a position shallower than a region where the coil is disposed in the axial direction.
  11.  請求項1から10のいずれか一項に記載のステータと、
     前記ステータと隙間を介して軸方向に対向するロータと、
     前記ロータを回転可能に支持するシャフトと、
     を備える、モータ。
    The stator according to any one of claims 1 to 10,
    A rotor facing the stator in the axial direction through a gap;
    A shaft that rotatably supports the rotor;
    Comprising a motor.
  12.  上下方向に延びる中心軸を中心として回転するロータと隙間を介して軸方向に対向するステータの製造方法であって、
     複数の電磁鋼板を径方向に積層して複数のステータコアを形成する工程S1と、
     前記ステータコアにコイルを装着する工程S2と、
     金型内に複数の前記ステータコアを周方向に沿って配置する工程S3と、
     前記金型内に溶融した樹脂を流し込み、少なくとも一部が周方向に隣り合う前記ステータコア同士の間に位置する樹脂部を形成する工程S4と、
     を含み、
     前記ステータコアは、軸方向に延び前記コイルが巻き回されるコア柱状部と、前記コア柱状部の軸方向端部に接続され径方向に延びる板状のフランジ部と、を有し、
     前記フランジ部は、周方向幅が径方向内側から径方向外側に向かうに従って大きくなる拡大部と、周方向幅が略同じであり径方向に延びる等幅部と、を有し、
     前記等幅部は、前記フランジ部において周方向幅が略同じである複数の前記電磁鋼板が径方向に積層される構成であり、
     前記工程S3においては、前記金型内に配置された第1位置決め部材に前記等幅部を接触させて、前記ステータコアを周方向に位置決めする、ステータの製造方法。
    A method of manufacturing a stator that is axially opposed to a rotor that rotates about a central axis that extends in the vertical direction and a gap,
    A step S1 of laminating a plurality of electromagnetic steel sheets in the radial direction to form a plurality of stator cores;
    A step S2 of attaching a coil to the stator core;
    A step S3 of arranging a plurality of stator cores in the mold along the circumferential direction;
    Step S4 of pouring molten resin into the mold and forming a resin portion located between the stator cores at least partially adjacent in the circumferential direction;
    Including
    The stator core includes a core columnar portion that extends in the axial direction and around which the coil is wound, and a plate-shaped flange portion that is connected to an axial end of the core columnar portion and extends in the radial direction,
    The flange portion has an enlarged portion in which the circumferential width increases from the radially inner side toward the radially outer side, and an equal width portion having substantially the same circumferential width and extending in the radial direction,
    The equal width portion is a configuration in which a plurality of the electromagnetic steel sheets having substantially the same circumferential width in the flange portion are laminated in a radial direction,
    In the step S3, a stator manufacturing method in which the equal width portion is brought into contact with a first positioning member disposed in the mold to position the stator core in the circumferential direction.
  13.  前記工程S3においては、前記金型内に配置された第2位置決め部材に前記ステータコアの径方向内端を接触させて、前記ステータコアを径方向に位置決めする、請求項12に記載のステータの製造方法。 The stator manufacturing method according to claim 12, wherein in step S <b> 3, a radial inner end of the stator core is brought into contact with a second positioning member disposed in the mold to position the stator core in the radial direction. .
PCT/JP2016/084210 2015-12-01 2016-11-18 Stator, motor, and method for manufacturing stator WO2017094525A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680069585.XA CN108292867B (en) 2015-12-01 2016-11-18 Stator, motor, and method for manufacturing stator
JP2017553771A JP6806081B2 (en) 2015-12-01 2016-11-18 Stator, motor, and how to manufacture the stator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-234748 2015-12-01
JP2015234748 2015-12-01

Publications (1)

Publication Number Publication Date
WO2017094525A1 true WO2017094525A1 (en) 2017-06-08

Family

ID=58797185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084210 WO2017094525A1 (en) 2015-12-01 2016-11-18 Stator, motor, and method for manufacturing stator

Country Status (3)

Country Link
JP (1) JP6806081B2 (en)
CN (1) CN108292867B (en)
WO (1) WO2017094525A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11742709B2 (en) 2020-04-24 2023-08-29 Seiko Epson Corporation Axial gap motor having a void portion provided for the increased torque of said motor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112018976A (en) * 2019-05-29 2020-12-01 日本电产高科电机株式会社 Rotor and method for manufacturing rotor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003047070A1 (en) * 2001-11-29 2003-06-05 Yamaha Hatsudoki Kabushiki Kaisha Axial gap type dynamo-electric machine
JP2007028855A (en) * 2005-07-20 2007-02-01 Yamaha Motor Co Ltd Rotary electric machine and electric wheelchair
JP2009142141A (en) * 2007-11-15 2009-06-25 Daikin Ind Ltd Teeth, magnetic core for armature and method of manufacturing the same, armature, rotary electric machine, and compressor
JP2015186366A (en) * 2014-03-25 2015-10-22 マツダ株式会社 axial gap type rotary electric machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8680736B2 (en) * 2008-11-10 2014-03-25 Hitachi Industrial Equipment Systems Co., Ltd. Armature core, motor using same, and axial gap electrical rotating machine using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003047070A1 (en) * 2001-11-29 2003-06-05 Yamaha Hatsudoki Kabushiki Kaisha Axial gap type dynamo-electric machine
JP2007028855A (en) * 2005-07-20 2007-02-01 Yamaha Motor Co Ltd Rotary electric machine and electric wheelchair
JP2009142141A (en) * 2007-11-15 2009-06-25 Daikin Ind Ltd Teeth, magnetic core for armature and method of manufacturing the same, armature, rotary electric machine, and compressor
JP2015186366A (en) * 2014-03-25 2015-10-22 マツダ株式会社 axial gap type rotary electric machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11742709B2 (en) 2020-04-24 2023-08-29 Seiko Epson Corporation Axial gap motor having a void portion provided for the increased torque of said motor

Also Published As

Publication number Publication date
CN108292867B (en) 2020-02-07
JP6806081B2 (en) 2021-01-06
CN108292867A (en) 2018-07-17
JPWO2017094525A1 (en) 2018-09-20

Similar Documents

Publication Publication Date Title
JP5040988B2 (en) Stator and motor provided with the stator
JP6303978B2 (en) Rotating electric machine stator
JP5859112B2 (en) Rotating electric machine armature and method of manufacturing rotating electric machine armature
US10985637B2 (en) Laminated core manufacturing method
JP2011193689A (en) Method of manufacturing armature core
JP5804269B2 (en) motor
JP6723348B2 (en) Stator core and electric motor equipped with the stator core
JP2007028799A (en) Production method for core
WO2017094525A1 (en) Stator, motor, and method for manufacturing stator
CN106030984B (en) Stator of rotating electric machine and method for manufacturing same
JP2014100016A (en) Stator
JP2008206318A (en) Armature insulator and armature
JP2015167454A (en) Method of manufacturing armature core for dynamo-electric machine
JP5659770B2 (en) Rotating electric machine core and method of manufacturing rotating electric machine core
JP2014204495A (en) Rotary electric machine and manufacturing method thereof
JP6091409B2 (en) Rotor core and method of manufacturing rotor core
JP2013121225A (en) Resolver
WO2015053070A1 (en) Stator core for dynamo-electric machine
JP5317228B2 (en) Rotating electric machine
JPWO2019235071A1 (en) Rotating machine stator and rotating machine
JP2015149894A (en) Manufacturing method for laminated iron core, and laminated iron core manufactured by the same
JP2014079059A (en) Stator of motor and manufacturing method of the same
CN111480281B (en) Electromagnetic steel sheet, rotor core, rotor, and motor
JP5518353B2 (en) Stator structure and rotating electric machine using the same
JP2021044885A (en) Manufacturing method of laminated iron core, manufacturing method of electrical machine, manufacturing apparatus of laminated iron core, and electrical machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870463

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017553771

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870463

Country of ref document: EP

Kind code of ref document: A1