JP2017194289A - 放射能分布解析システムおよび放射能分布解析方法 - Google Patents

放射能分布解析システムおよび放射能分布解析方法 Download PDF

Info

Publication number
JP2017194289A
JP2017194289A JP2016083037A JP2016083037A JP2017194289A JP 2017194289 A JP2017194289 A JP 2017194289A JP 2016083037 A JP2016083037 A JP 2016083037A JP 2016083037 A JP2016083037 A JP 2016083037A JP 2017194289 A JP2017194289 A JP 2017194289A
Authority
JP
Japan
Prior art keywords
distribution
radioactivity distribution
radiation detector
radioactivity
dose rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016083037A
Other languages
English (en)
Other versions
JP6677568B2 (ja
Inventor
克宜 上野
Katsunobu Ueno
克宜 上野
孝広 田所
Takahiro Tadokoro
孝広 田所
聡 岡田
Satoshi Okada
聡 岡田
良知 高橋
Yoshitomo Takahashi
良知 高橋
雄一郎 上野
Yuichiro Ueno
雄一郎 上野
靖 名雲
Yasushi Nagumo
靖 名雲
耕一 岡田
Koichi Okada
耕一 岡田
修一 畠山
Shuichi Hatakeyama
修一 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2016083037A priority Critical patent/JP6677568B2/ja
Publication of JP2017194289A publication Critical patent/JP2017194289A/ja
Application granted granted Critical
Publication of JP6677568B2 publication Critical patent/JP6677568B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

【課題】放射性物質取扱施設における作業員の立ち入りが困難で且つ光学カメラ等での目視が困難な環境であっても放射能分布を解析することができる放射能分布解析システムおよび方法を提供する。【解決手段】γ線線量率を計測する放射線検出器101と、線量率を導出する線量率計102と、放射線検出器101を移動させる放射線検出器移動装置104と、放射線検出器101の3次元位置座標を算出する位置算出装置105と、導出された線量率を用いて線量率分布と減衰率を算出し、算出した減衰率を用いて放射能分布中の主要核種を解析し、線量率分布の波形と3次元位置座標と三角関数とを用いて放射線検出器101と主要核種との距離を解析し、複数の線量率分布の測定結果と距離と主要核種と3次元位置座標とを用いて放射能分布を解析する放射能分布解析装置103と、放射能分布を表示する表示装置106とを備えた。【選択図】 図1

Description

本発明は、放射能分布(放射性物質の分布)を導出するための放射能分布解析システムおよび放射能分布解析方法に関する。
特許文献1では、測定の精度を上げ、地表の放射性セシウムの沈着量をより一層精確に測定することを目的として、無人ヘリコプターに搭載された放射線検出器で検出されるガンマ線計数率を、空間線量率の値に換算するための空間線量率換算計数を予め算出し、予め特定された一地点における複数の対地高度とガンマ線計数率との関係から、空気によるガンマ線計数率の減弱係数を予め算出し、無人ヘリコプターに搭載された放射線検出器およびGPSによって、原子力施設近隣を或る対地高度で飛行中の或る時点でのガンマ線計数率と、その時点での位置情報を求め、予め求められている減弱係数を用いてその位置における地表1mの空間線量率を算出し、地表面における放射性セシウムの沈着量を算出することが記載されている。
特許文献2では、放射線取扱作業環境の正確な放射能分布を測定できる放射能3次元測定装置を提供することを目的として、複数の構造物ごとに構造情報を格納する構造DBと、構造物の2次元可視画像を撮影する可視カメラと、撮影方向から入射する放射線強度分布を測定するガンマカメラと、撮影位置記憶部と、複数の可視画像から構造物の形状および位置を算出する構造3次元化部と、複数の可視画像とガンマカメラ画像とを構造物の形状表面の位置での放射線強度に換算する表面放射線分布換算部と、構造物の形状表面での放射線強度とガンマカメラで測定された放射線分布とを比較して同一表面の位置において放射線強度が異なる部位を抽出する表面放射線分布差異部位抽出部と、抽出された部位について放射線発生位置を推定して放射能量に換算する放射能推定部とを備えている放射能3次元測定装置が記載されている。
特開2014−145700号公報 特開2013−108815号公報
放射性物質を取り扱う施設として原子力発電プラントや廃棄物処理施設、加速器施設、放射性物質等管理区域を有する施設などがある。これらの施設の管理区域内において放射性物質の漏えいが発生した場合、迅速に除染を実施するために直ちに放射性物質の分布を確認する必要がある。
放射性物質の漏えいの例として、例えば原子力発電プラント運転中の原子炉格納容器内における放射化した冷却水の漏えいが挙げられる。原子力発電プラント運転中の原子炉格納容器内は線量率が高く、作業員が容易に立ち入れない。このため、万が一上記のような漏えいが発生しても直ちに目視で状況を観察し、その放射能分布を確認することは困難である。上記漏えいが発生した場合の線源としては、放射化した冷却水や、配管や構造材等の放射化金属が考えられる。
また、東京電力(株)福島第一原子力発電所の原子炉建屋や原子炉格納容器、原子炉圧力容器内は、大量に拡散した核分裂生成物によって雰囲気線量率が非常に高く、作業員が立ち入ることは困難である。上記原子炉建屋や原子炉格納容器、原子炉圧力容器における線源としては、溶融燃料や拡散した核分裂生成物、原子炉内の放射化金属等が考えられる。
これらのような目視等で線源状況を容易に観察できず、且つ雰囲気線量率が高い状況においては、放射線検出器と光学カメラを搭載した移動装置を用いて、遠隔操作によってその状況を観察することが考えられる。
しかしながら、このような施設に投入できる移動装置は小型である必要があるため、十分なペイロードを確保することが困難である。したがって、高線量率下で放射線検出器を正常に動作させるために必要な放射線検出器用の遮蔽体や、放射能分布の位置を高精度に把握するためのコリメータを搭載することは困難である。このために放射線検出器では核種分析が困難で、測定可能なパラメータは線量率のみとなる。
更に、観察エリアが蒸気環境あるいは濁水中である場合、目視による周囲の観察が困難となる。この場合、移動装置は移動性を確保できる範囲で移動させ、その位置から放射線検出器のみを吊り降ろしや投てき等の方法を用いて移動させ、任意の位置における出力から放射能分布を推定しなければならない。したがって、放射線検出器の線量率出力とその位置座標という限られた測定値から放射能分布を解析できるシステムおよびその方法が必要である。
上述した特許文献1では、作業員が立ち入れるレベルの線量率環境下での測定を前提としている。放射線検出器においても核種分析が実現可能であるものの、この特許文献1に記載の検出方法では、上述した過酷な測定環境で使用することが困難である。更に、特許文献1には、測定対象となる放射能分布の位置の導出方法に関する記載はない。したがって、この特許文献1に関する構成では、放射線検出器の線量率出力とその位置座標という限られた測定値から放射能分布の解析を実現することは困難である。
また、上述した特許文献2では、ガンマカメラを使用するため、大型の2次元放射線検出器と遮蔽体、ピンホールコリメータが必要となる。このことから移動装置への搭載が困難である。また可視カメラを用いて測定対象を撮像する必要があるが、上述した過酷な測定環境では目視が困難である。したがって、この特許文献2に関する構成では、放射線検出器の線量率出力とその位置座標という限られた測定値から放射能分布の解析を実現することは困難である。
本発明は、放射性物質取扱施設における作業員の立ち入りが困難で且つ光学カメラ等での目視が困難な環境であっても放射能分布を解析することができる放射能分布解析システムおよび放射能分布解析方法を提供する。
上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、放射性物質取扱施設における放射能分布を解析する放射能分布解析システムであって、γ線線量率を計測する放射線検出器と、この放射線検出器の出力から線量率を導出する線量率計と、前記放射線検出器を移動させる移動装置と、前記放射線検出器の3次元位置座標を算出する位置算出部と、前記線量率計で導出された線量率と前記位置算出部で算出された前記3次元位置座標とを用いて、放射能分布を解析する解析部と、この解析部で解析された放射能分布を表示する表示装置とを備え、前記解析部は、前記線量率計で導出された線量率を用いて線量率分布を算出し、この算出した前記線量率分布の減衰率を算出し、算出した減衰率を用いて前記放射能分布中の主要核種を解析し、前記線量率分布の波形と前記3次元位置座標と三角関数とを用いて前記放射線検出器と前記主要核種との距離を解析し、複数の線量率分布の測定結果と前記距離と前記主要核種と前記3次元位置座標とを用いて前記放射能分布を解析することを特徴とする。
本発明によれば、放射性物質取扱施設における作業員の立ち入りが困難で且つ光学カメラ等での目視が困難な環境であっても放射能分布を解析することができる。上記した以外の課題、構成および効果は、以下の実施例の説明により明らかにされる。
本発明の実施例1の放射能分布解析システムの構成の概略を示す図である。 実施例1における線源と放射線検出器の移動方向の延長線とが直交する場合の線量率分布の一例を示す図である。 実施例1における線源と放射線検出器の移動方向の延長線とが直交しない場合の線量率分布の一例を示す図である。 実施例1における放射性物質と放射線検出器との位置関係の一例を示す図である。 実施例1におけるγ線エネルギーが異なる場合の線量率分布を示す図である。 実施例1の放射能分布の解析手順を示すフローチャートである。 実施例1の放射能分布解析システムの適用箇所例を示す図である。 実施例2の放射能分布解析システムの構成の概略を示す図である。 実施例2における高エネルギーベータ線源を有する放射能分布を測定対象とした場合の線量率分布を示す図である。 実施例3の放射能分布解析システムの構成の概略を示す図である。 実施例3における線量率分布の経時変化を示す図である。 実施例4の放射能分布解析システムの構成の概略を示す図である。 実施例5の放射能分布解析システムの構成の概略を示す図である。 実施例5における複数のγ線エネルギー帯による線量率分布を示す図である。 実施例6の放射能分布解析システムの構成の概略を示す図である。 実施例6の放射能分布と放射線検出器との位置関係の一例を示す図である。 実施例6の放射能分布と放射線検出器との位置関係の他の一例を示す図である。 実施例6の放射能分布と放射線検出器との位置関係の他の一例を示す図である。
上述したように、放射性物質を取り扱う施設での作業員の立ち入りが困難で且つ光学カメラ等での目視が困難な環境において、放射線検出器の線量率出力とその位置座標という限られた測定値から放射能分布の解析を実現できれば、原子力プラント運転中の原子炉格納容器内や福島第一原子力発電所の原子炉建屋内において生じた放射能分布を直ちに観測可能となる。
本発明は、そのような困難な環境で、かつ、放射線検出器の線量率出力とその位置座標という限られた測定値しかない状況においても、実機の環境に最適な構成で放射能分布を直ちに解析でき、放射能分布中の主要核種と位置を高精度に解析することができる解析システムに関して種々検討した結果で得た新たな知見に基づいてなされたものである。
以下、本発明に係る放射能分布解析システムおよび放射能分布解析方法の好適な実施例を、図面を参照して、新たな知見の内容を具体的に説明する。
<実施例1>
本発明の放射能分布解析システムおよび放射能分布解析方法の実施例1を、図1乃至図7を用いて説明する。まず、システム構成について図1を用いて説明する。図1に放射能分布解析システムの構成図を示す。
図1に示す実施例1の放射能分布解析システム100は、原子力発電プラントや廃棄物処理施設、加速器施設、放射性物質等管理区域を有する施設などの放射性物質取扱施設における放射能分布を解析するためのシステムであり、放射線検出器101、線量率計102、放射能分布解析装置(解析部)103、放射線検出器移動装置(移動装置)104、位置算出装置(位置算出部)105、表示装置106、第1データベース140を備えている。
放射線検出器101は、設置された箇所の雰囲気γ線線量率を計測する機能を有する検出器である。放射線検出器101で使用されるセンサとしては、電離箱式のガスセンサや蛍光体、半導体式の固体センサなど、一般的なセンサを使用することができる。放射線検出器101で得られた出力は電気ケーブルもしくは光ファイバケーブルで線量率計102に伝送される。
線量率計102は、放射線検出器101で得られた出力から線量率を導出する。線量率計102における出力は線量率と、線量率を収集した時刻となる。
放射線検出器移動装置104は、放射線検出器101を搭載しており、任意の箇所に放射線検出器101を移動させるための装置である。放射線検出器移動装置104は、例えば1対のクローラを備えた小型車両である。なお、クローラを備えた小型車両に限られず、放射線検出器101を移動させることができる任意の移動装置であればよく、例えば車輪を備えた小型の移動体や、動物や昆虫を模した移動体、ドローン等の無人飛行体等とすることが可能である。
位置算出装置105は、放射線検出器移動装置104に搭載された放射線検出器101の3次元位置座標を算出する装置であり、例えばGPSや基準点に対する放射線検出器101の移動距離等を求める装置である。位置算出装置105の出力は3次元位置座標とその位置における時刻となる。
放射能分布解析装置103は、線量率計102と位置算出装置105との出力を収集し、線量率計102で導出された線量率と位置算出装置105で算出された放射線検出器101の3次元位置座標とを用いて、放射能分布を解析する装置である。以下、図2乃至図5を用いて解析方法をより詳細に説明する。
図2および図3に線量率分布の一例を示す。図2は放射能分布が放射線検出器101の進行方向に存在する場合の線量率分布であり、図3は存在しない場合の線量率分布であり、放射能分布が堆積している面を基準として、その面と放射線検出器の距離を横軸とし、その距離における線量率を縦軸に示している。
放射能分布解析装置103では、まず、線量率計102で導出された線量率から線量率分布を算出する。
次に、放射能分布解析装置103は、算出した線量率分布の減衰率を算出する。なお、線量率は、主に立体角と、放射能分布と放射線検出器との間に存在する物質、例えば気中であれば空気、水中であれば水による遮蔽効果によって減衰する。放射能分布と放射線検出器との間に存在する物質は、雰囲気状態を特定することが可能な様々な手段で予め特定しておくことが望まれる。
減衰率は、例えば図2に示すような線量率分布が得られる場合は、線量率をy、放射能分布堆積面と放射線検出器との距離をx、係数をαとすると、指数関数y=αexp(−μx)でフィッティングすることができる。この場合、指数関数の傾きを示すμで減衰率を表現することができる。
一方で、放射能分布が放射線検出器101の進行方向に存在しない場合、図3に示すような線量率分布となる。図3では、図2で示した線量率分布116に加え、交点に存在しない場合の線量率分布117を示す。
線量率分布が線量率分布117のような形状であったと判断される場合、放射能分布解析装置103は、線量率分布に指数関数をフィッティングさせる際に、この指数関数の変数を三角関数に変換してフィッティングを実現する係数を導出する。そして、フィッティングさせて得られた指数関数の傾きから減衰率を算出する。放射能分布解析装置103は、このフィッティングの際には、後述する第1データベース140に記憶された減衰率と照合を行うことで、予め導出した減衰率が想定される範囲であるかを絞り込むことで、フィッティングに要する時間を短縮する。
図3に示すような線量率分布117の場合、立体角の関係から放射能分布堆積面と放射線検出器101との距離が短い領域では減衰率μが小さくなる。この場合には、指数関数の変数xを三角関数に変換する。
図4に放射能性物質の集まり114と放射線検出器101との位置関係の一例を示す。
図4に示すように放射能分布が放射線検出器101の進行方向に存在しない場合、放射能分布堆積面118に放射性物質の集まり114が堆積しており、放射能分布堆積面と放射線検出器101との距離119、放射能分布堆積面における放射能分布の端部と放射線検出器101との距離120、放射能分布の端部と放射線検出器101との距離121にて位置関係を定めることができる。ここで、放射能分布堆積面と放射線検出器101との距離119は位置算出装置105によって既知とする。
このような場合、放射能分布の端部と放射線検出器101との距離121をa、放射能分布堆積面と検出器位置のなす角をθとするとき、フィッティングする指数関数はy=exp(−μx)、指数関数の変数xをx=a・sinθと表現することができる。この三角関数を用いて三角関数のθをパラメータとして線量率分布へフィッティングする。このフィッティングにおいて最適なθを抽出し、最適なθによって指数関数でフィッティングすることで、減衰率μを導出する。
次に、放射能分布解析装置103は、算出した減衰率μを用いて放射能分布中の主要核種を解析する。この際、放射能分布解析装置103は、減衰率μの値から放射能分布における線源の主要なγ線エネルギー帯を算出し、算出したγ線エネルギー帯を用いて放射能分布中の主要核種を解析する。
より具体的には、得られた減衰率μを第1データベース140における減衰率μの範囲(μ<μ<…<μ<…(n=1,2, …))のいずれかに照合させることで、減衰率μに対応するγ線エネルギー帯を算出する。
図5にγ線エネルギーが異なる場合の線量率分布を示す。
図5に示すように、減衰率の大きさは線源と放射線検出器101との距離や遮蔽材が同じ場合にはγ線エネルギーに依存する。したがって高エネルギーγ線による線量率分布122は、中エネルギーγ線による線量率分布123、低エネルギーγ線による線量率分布124と比較して減衰率が低くなる。そこで、得られた減衰率から、γ線エネルギー帯と一致する放射性核種を第1データベース140より抽出し、放射能分布中の主要核種とみなす。
次に、放射能分布解析装置103は、線量率分布の波形と3次元位置座標と三角関数とを用いて放射能分布が堆積している面における放射線検出器101と放射能分布の端との距離を導出し、そこから放射線検出器101と放射能分布との距離を解析する。
ここで、図4に示す放射能分布堆積面における放射能分布の端部と放射線検出器との距離120をbとすると、b=a・cosθと表現することができる。
従って、放射能分布解析装置103は、線量率分布の波形が、図2に示すような放射能分布が放射線検出器101の進行方向に存在する場合の波形であるときはθ=90°であり、距離bはゼロとする。これに対し、図3に示すような放射能分布が放射線検出器101の進行方向に存在しない場合は、b=a・cosθの式をそのまま用いて導出する。
これまでの解析結果から、放射能分布中の主要核種となる放射性核種、および放射能分布と放射線検出器101との距離120の出力が得られる。以上を持ってひとつの測定点における放射能分布解析処理となる。
次に、放射能分布解析装置103は、複数の線量率分布の測定結果と距離と主要核種と3次元位置座標の解析結果を用いて放射能分布を解析する。
具体的には、放射能分布解析装置103は、各測定点における放射性核種の出力と距離120の出力とを重畳する。これにより、放射性物質の放射能分布堆積面における2次元分布と、放射能分布中の主要核種を算出する。この算出結果を表示装置106へ出力し、モニタする。
表示装置106は、放射能分布解析装置103で解析された放射能分布の解析結果が表示されるモニタなどの表示装置である。
第1データベース140は、複数の放射性核種の減衰率μを記憶した放射性核種のデータベースであり、測定環境に存在しうる主要核種を予め抽出したデータを記憶している。記憶している放射性核種としては、例えば、N−16、N−13、F−18、O−19、Co−60、Co−58、Cs−137、Cs−134、Eu−154等が挙げられる。γ線のエネルギー毎に区分すると、高エネルギーγ線を放出する核種としてN−16と設定する場合、中エネルギーγ線放出核種としてはCo−60、O−19、Eu−154が挙げられる。低エネルギーγ線放出核種としてはN−13、F−18、Co−58、Cs−137、Cs−134が挙げられる。
次に、本実施例に係る放射能分布解析方法について図6を参照して説明する。
まず、放射能分布解析システム100は解析を開始する(ステップS301)。
次に、放射線検出器移動装置104によって放射線検出器101を測定点まで移動させる(ステップS302)。
次に、放射能分布解析装置103において線量率分布を測定するか否かを判定する(ステップS303)。測定点が存在するときもしくは更に存在するときは、処理をステップS304に進め、全ての測定点での測定が終了しているときは、処理をステップS317に進める。
次に、放射線検出器101によってγ線線量率を測定し、線量率計102によって線量率を導出する。その後、放射線検出器移動装置104によって放射線検出器101を放射能分布が堆積していると想定される方向へ移動させ、再度放射線検出器101によってγ線線量率を測定し、線量率計102によって線量率を導出する、を複数回繰り返して線量率分布を求める(ステップS304)。
次に、放射能分布解析装置103において先のステップS304で導出した線量率分布と指数関数(ここでは、y=αexp(−μx)を用いる)とのフィッティングを行う(ステップS305)。
次に、放射能分布解析装置103において指数関数y=αexp(−μx)で線量率分布に指数関数がフィッティング可能か否かを判定する(ステップS306)。フィッティング可能であると判定されたときはステップS311に処理を進め、可能でないと判定されたときはステップS307に処理を進める。
ステップS306でフィッティングが可能でないと判定されたときは、次に、放射能分布解析装置103において指数関数を変更し(y=exp(−μx))、指数関数の変数を三角関数(x=a・sinθ)に変換する(ステップS307)。
次に、放射能分布解析装置103において三角関数の係数θをパラメータとして線量率分布と指数関数とのフィッティングを行う(ステップS308)。
次に、放射能分布解析装置103において最適なθを選定する(ステップS309)。
次に、放射能分布解析装置103において最適なθにおける指数関数で線量率分布とのフィッティングを行う(ステップS310)。
次に、放射能分布解析装置103において減衰率μを導出する(ステップS311)。
次に、放射能分布解析装置103においてステップS311で導出した減衰率μを第1データベース140に記憶されている放射性元素ごとの減衰率の範囲(μ、μ、…、μ、…のいずれか)と照合する(ステップS312)。
次に、放射能分布解析装置103においてステップS312での照合において用いた第1データベース140中の減衰率の範囲がステップS311で導出した減衰率μと最も近いか否かを判定する(ステップS313)。最も近い(最接)と判定されたときはステップS314に処理を進め、最接でないときは処理をステップS312に戻し、次の放射性元素ごとの減衰率の範囲との照合を行う。
次に、放射能分布解析装置103においてステップS313で最も近いと判定された減衰率の範囲のγ線エネルギー帯に属するエネルギーのγ線を放出する放射性元素を主要核種として特定するために、第1データベース140に記憶されたデータを用いて照合する(ステップS314)。
次に、放射能分布解析装置103において第1データベース140内の主要核種のγ線エネルギー帯と一致あるいは十分に近いか否かを判定する(ステップS315)。一致あるいは十分に近いと判定されたときは、一致するエネルギー帯を放出する核種を主要核種とみなして処理をステップS316に進める。これに対し十分に近いと判定されなかったときは処理をステップS314に戻し、再度第1データベース140との照合を行い、主要核種を解析する。
次に、放射能分布解析装置103において放射能分布と放射線検出器101との距離を算出する(ステップS316)。その後処理をステップS304に戻す。
全ての測定点での測定が終了して処理がステップS317に進んだときは、次に、放射能分布解析装置103において各測定点における出力を重畳する(ステップS317)。
次に、放射能分布解析装置103において放射能分布の3次元位置と主要核種を算出する(ステップS318)。
次に、放射能分布解析装置103の解析結果を表示装置106へ出力する(ステップS319)。
その後、放射能分布解析システム100は解析を終了する(ステップS320)。
図6のうち、計測工程および線量率分布算出工程はステップS304に相当し、主要核種解析工程はステップS305〜ステップS315に相当し、距離解析工程はステップS316に相当し、放射能分布解析工程はステップS302〜ステップS318に相当する。
図7に、放射能分布解析システム100の適用箇所例を示す。ここでは一例として原子力プラント内における放射性物質の集まり114を解析するための構成図を示す。
図7において、原子炉建屋107内に原子炉格納容器108、原子炉圧力容器109、原子炉再循環系110、原子炉圧力抑制室111、トーラス室112、貫通部113が配置される。
各箇所において放射線検出器101を搭載した放射線検出器移動装置104を投入し、ケーブル115を介して、図1に示した線量率計102、位置算出装置105等の機能を用いて放射能分布を解析する。
次に、本実施例の効果について説明する。
上述した本発明の放射能分布解析システムおよび放射能分布解析方法の実施例1では、放射線検出器101、線量率計102、放射線検出器移動装置104、位置算出装置105、放射能分布解析装置103および表示装置106を備えた放射能分布解析システム100により、線量率分布や、放射能分布とその主要核種とを解析することができる。そのため、放射能分布やその主要核種がどの放射性物質であるかを表示することができる。これらの効果によって、放射性物質を取り扱う施設の作業員の立ち入りが困難で且つ光学カメラ等での目視が困難な環境であっても、放射線検出器の線量率出力とその位置座標という限られた測定値から放射能分布やその主要核種を従来に比べて速やかに観測することが可能となる。
また、放射能分布解析装置103は、線量率分布に指数関数をフィッティングさせて得られた傾きから減衰率μを算出し、減衰率μの値から放射能分布における線源の主要なγ線エネルギー帯を算出し、算出したγ線エネルギー帯を用いて放射能分布中の主要核種を解析することによって、容易に減衰率を導出することができ、また放射能分布の主要核種を解析することができる。これによって、より高い精度をもって放射能分布の主要核種を解析でき、除染等の作業による被ばく低減に貢献することができる。
更に、放射能分布解析装置103は、線量率分布に指数関数をフィッティングさせる際に、この指数関数の変数を三角関数に変換してフィッティングを実現する係数を導出した後に、指数関数をフィッティングさせて得られた傾きから減衰率μを算出することで、高精度に線源の主要なγ線エネルギー帯を算出し、放射能分布の主要核種を解析することが可能となる。これによっても、より高い精度をもって放射能分布の主要核種を高精度に解析でき、除染等の作業による被ばく低減に貢献することができる。
また、放射能分布解析装置103は、三角関数から、放射能分布が堆積している面における放射線検出器101と放射能分布の端との距離を導出することで、放射能分布堆積面における放射線検出器と放射能分布の端部との距離bを導出することが可能となり、光学カメラ等で目視による放射能分布の確認が困難な状況においても、放射能分布の3次元位置をより高い精度で解析することが可能となる。
更に、複数の放射性核種の減衰率μを記憶した第1データベース140を備え、測定された線量率分布とのフィッティングに使用することにより、迅速に放射能分布の解析を実現することができる。これによって、除染等の作業計画の迅速な立案に寄与することができる。
<実施例2>
本発明の放射能分布解析システムおよび放射能分布解析方法の実施例2を図8および図9を用いて説明する。実施例1と同じ構成には同一の符号を示し、説明は省略する。以下の実施例においても同様とする。図8は本実施例の放射能分布解析システムの構成図を示す図である。
図8に示すように、本実施例の放射能分布解析システム100Aは、実施例1の放射能分布解析システム100の放射線検出器101に、ベータ線遮蔽体150を設けたものである。
図9に本実施例の放射能分布解析システム100Aが専ら対象とする、高エネルギーベータ線源を有する放射能分布を測定対象とした場合の線量率分布を示す。
高エネルギーベータ線源(例えばSr−90/Y−90)が放射能分布に含まれている場合、ベータ線による線量率を無視できない場合がある。
図9では、線量率分布155に示すように、放射能分布と放射線検出器101との距離が近い場合、高エネルギーベータ線源の寄与が無視できない。ここで、ベータ線は、高エネルギーといえどもγ線と比較して飛程が短いため、短い距離で十分減衰する。そこで、高エネルギーベータ線源の影響を最小限にするために、放射線検出器101にベータ線遮蔽体150を設ける。このベータ線遮蔽体150の材質はアクリル等の有機物、SUSや銅、アルミニウム等の金属、酸化アルミニウム等のセラミックが用いられる。これらの材料によって形成されたベータ線遮蔽体150を用いて放射線検出器101を覆うことで、ベータ線の影響がほぼない線量率分布116を得ることができる。
その他の構成・動作は前述した実施例1の放射能分布解析システム100と略同じ構成・動作であり、詳細は省略する。
本発明の放射能分布解析システムおよび放射能分布解析方法の実施例2においても、前述した放射能分布解析システムおよび放射能分布解析方法の実施例1とほぼ同様な効果が得られる。
また、放射線検出器101にベータ線遮蔽体150を設けることで、ベータ線寄与の線量率を除去することができるため、高エネルギーベータ線源を含む放射能分布を測定する場合でも、高精度にγ線線量率を測定することができる。これによって、より高精度に放射能分布の解析が可能となり、除染等の作業による被ばく低減により貢献することができるようになる。
<実施例3>
本発明の放射能分布解析システムおよび放射能分布解析方法の実施例3を図10および図11を用いて説明する。図10に本実施例の放射能分布解析システムの構成図を示す。
図10に示す本実施例の放射能分布解析システム100Bは、線量率の経時変化を観測し、線量率の減衰率を算出することで、測定するガンマ線エネルギー帯を放出する線源の半減期を推定するものである。
放射能分布解析装置103Aは、放射線検出器101によって計測された線量率分布の経時変化に基づいて放射能分布中の放射性物質の半減期を推定し、この推定した半減期と減衰率μとを用いて放射能分布中の主要核種を解析する。
図11に線量率分布の経時変化を示す。
図11に示すように、線量率分布116を測定して一定時間経過した後に再度線量率分布を測定すると、図11に示す線量率分布125のように線源の半減期に応じた線量率の減衰が見られる。放射能分布解析装置103Aは、ここで得られた線量率の絶対値の減衰率と経過時間から半減期を推定する。そして線量率分布の減衰率μから得られる主要核種の解析において、推定した半減期情報を加える。
その他の構成・動作は前述した実施例1の放射能分布解析システム100と略同じ構成・動作であり、詳細は省略する。
本発明の放射能分布解析システムおよび放射能分布解析方法の実施例3においても、前述した放射能分布解析システムおよび放射能分布解析方法の実施例1とほぼ同様な効果が得られる。
また、放射線検出器101によって計測された線量率分布の経時変化に基づいて放射能分布中の放射性物質の半減期を推定し、この推定した半減期と減衰率μとを用いて放射能分布中の主要核種を解析することにより、放射能分布に含まれる主要核種の解析精度を更に向上することができ、除染等の作業による被ばく低減により貢献することができる。
<実施例4>
本発明の放射能分布解析システムおよび放射能分布解析方法の実施例4を図12を用いて説明する。図12に本実施例の放射能分布解析システムの構成図を示す。
図12に示すように、本実施例の放射能分布解析システム100Cは、図1に示す放射能分布解析システム100に加えて、放出装置126、検出器回収装置127、移動距離補正装置128を備え、放射能分布解析装置103に替わって放射能分布解析装置103Bを備えるものである。
放射能分布解析システム100Cは、放射線検出器101、線量率計102、放射能分布解析装置103B、放射線検出器移動装置104、位置算出装置105、表示装置106、第1データベース140、放出装置126、検出器回収装置127、移動距離補正装置128を備えている。
放出装置126は、放射線検出器移動装置104に搭載された放射線検出器101を放射線検出器移動装置104からさらに移動させるための装置である。放出装置126は、例えば、放射線検出器101を放射線検出器移動装置104から吊り落としたり、放射線検出器移動装置104から投てきしたりすることで、放射線検出器移動装置104ではアクセスできない領域に放射線検出器101を投入する。
検出器回収装置127は、放射線検出器101と線量率計102とを接続する信号ケーブルや放射線検出器101に備えた引き戻し用ケーブルを巻き取ることで放射線検出器101を放射線検出器移動装置104まで回収するための装置である。
移動距離補正装置128は、放出装置126による放射線検出器101の放出時のケーブル送り出し量および検出器回収装置127によるケーブル回収時のケーブルの巻き戻し量を測定する装置であり、放出装置126によって放出された放射線検出器101の位置情報を補正する。
放射能分布解析装置103Bは、実施例1の放射能分布解析装置103とほぼ同じ機能を有している。更に、移動距離補正装置128で測定された放射線検出器101の回収の際の移動距離を用いて放射線検出器101の3次元位置情報を補正する。
その他の構成・動作は前述した実施例1の放射能分布解析システム100と略同じ構成・動作であり、詳細は省略する。
本発明の放射能分布解析システムおよび放射能分布解析方法の実施例4においても、前述した放射能分布解析システムおよび放射能分布解析方法の実施例1とほぼ同様な効果が得られる。
また、放射線検出器101を放射線検出器移動装置104より放出するための放出装置126と、放出装置126によって放出された放射線検出器101を放射線検出器移動装置104まで回収する検出器回収装置127を備えたことにより、放射線検出器移動装置104でアクセスできないエリアに放射線検出器101を配置することできるため、より広範囲での線量率計測が可能となる。また、放射線検出器移動装置104まで放射線検出器101を回収することができる。これらの効果によって、狭隘部分や低所、高所箇所での線量率分布の計測を繰り返し実施することができ、より広範囲での高精度な放射能分布の解析を実現することができる。
更に、放出装置126によって放出された放射線検出器101の移動距離を測定する移動距離補正装置128を備え、放射能分布解析装置103Bは、移動距離補正装置128で測定された放射線検出器101の移動距離を用いて放射線検出器101の3次元位置情報を補正することで、放射線検出器の位置情報を高精度に補正することができ、より高い精度で放射線検出器101の3次元位置座標を得ることができる。
また、放出装置126は、放射線検出器101を放射線検出器移動装置104から吊り落とすもしくは投てきすることにより、簡易な機構によっても放射線検出器移動装置104でアクセスできないエリアに放射線検出器101を投入することできる。
更に、検出器回収装置127は、放射線検出器101と線量率計102とを接続する信号ケーブルもしくは放射線検出器101に備えた引き戻し用ケーブルを用いて放射線検出器移動装置104まで放射線検出器101を回収することで、放射線検出器101の回収が容易になり、放射線検出器移動装置104の小型化が可能となり、より狭隘な部分へのアクセスが可能となる。
<実施例5>
本発明の放射能分布解析システムおよび放射能分布解析方法の実施例5を図13および図14を用いて説明する。図13に本実施例の放射能分布解析システムの構成図を示す。
図13に示す本実施例の放射能分布解析システム100Dは、複数の指数関数を用いて線量率分布をフィッティングし、2つ以上の減衰率から2つ以上の主要核種を解析(特定)するものである。
放射能分布解析装置103Cは、複数の指数関数を用いて線量率分布をフィッティングし、2以上の減衰率μから2以上の主要核種を解析する。
図14に複数のγ線エネルギー帯による線量率分布を示す。
図14に示すように、異なるγ線エネルギー帯の線源が放射能分布に含まれる場合、線量率分布156は、放射能分布の近傍では低エネルギーγ線の寄与(線量率分布156Aの影響)、遠方では高エネルギーγ線の寄与(線量率分布156Bの影響)が見られる。ここで示した低エネルギーおよび高エネルギーは各々のγ線エネルギーに対する相対的な指標である。
図14のように例えば2つの減衰率を有する線量率分布が観測された場合は、線量率分布156Aに対して指数関数でフィッティングを行い、同様に線量率分布156Bに対して先に用いたのとは異なる指数関数でフィッティングを行うことで、2つの減衰率を導出する。得られた減衰率に基づき、2つ以上の主要核種を解析する。
その他の構成・動作は前述した実施例1の放射能分布解析システム100と略同じ構成・動作であり、詳細は省略する。
本発明の放射能分布解析システムおよび放射能分布解析方法の実施例5においても、前述した放射能分布解析システムおよび放射能分布解析方法の実施例1とほぼ同様な効果が得られる。
また、複数の指数関数を用いて線量率分布をフィッティングし、2以上の減衰率μから2以上の主要核種を解析することにより、高精度の主要核種の解析が可能となる。これによって、除染等の作業による被ばく低減に更に貢献することができるようになる。
なお、ここでは2つの減衰率で説明したが、線量率分布がより複雑である場合は、3つ以上の指数関数を用いて3つ以上の減衰率を用いることができる。
<実施例6>
本発明の放射能分布解析システムおよび放射能分布解析方法の実施例6を図15乃至図18を用いて説明する。図15に本実施例の放射能分布解析システムの構成図を示す。
図15に示す本実施例の放射能分布解析システム100Eは、放射能分布の形状と線量率分布との関係を記憶した第2データベース145を備え、三角関数x=a・sinθよりb=a・cosθを導出することで、放射能分布堆積面における放射線検出器と放射能分布の端部との距離を導出するものである。
図15に示すように、本実施例の放射能分布解析システム100Eは、放射線検出器101、線量率計102、放射能分布解析装置103D、放射線検出器移動装置104、位置算出装置105、表示装置106、第1データベース140に加えて、放射能分布の形状と線量率分布との関係を記憶する第2データベース145を備えている。
放射能分布解析装置103Dは、実施例1の放射能分布解析装置103とほぼ同じ機能を有している。更に、放射能分布解析装置103Dは、第2データベース145に記憶された放射能分布の形状と線量率分布との関係も用いて放射能分布を解析する。
図16に放射能分布と放射線検出器の位置関係の一例を示す。ここでは放射性物質の集まり132をブロック状の形状とする。この場合、線量率分布は、ブロック状の形状に特有のパターンを示す。そこで、本実施例では、放射能分布解析装置103Dは、指数関数や三角関数に加えて、第2データベース145に記憶された様々な放射能分布の形状と線量率分布との関係と得られた線量率分布との照合を行い、ブロック状の形状に特有のパターンであると特定し、その上で放射線検出器101と放射能分布の端との距離を解析する。
図17に放射能分布と放射線検出器の位置関係の他の一例を示す。ここでは放射性物質の集まり133を三角状の形状とする。この場合、線量率分布は、三角状の形状に特有のパターンを示す。そこで、図16に示すようなステップ状の形状による解析方法と同様に、放射能分布解析装置103Dは、指数関数や三角関数に加えて、第2データベース145に記憶された様々な放射能分布の形状と線量率分布との関係と得られた線量率分布との照合を行い、三角状の形状に特有のパターンであると特定し、その上で放射線検出器101と放射能分布の端との距離を解析する。
図18に放射能分布と放射線検出器の位置関係の更に他の一例を示す。ここでは放射性物質の集まり134を半楕円状の形状とする。この場合、線量率分布は、半楕円状の形状に特有のパターンを示す。そこで、図16や図17の場合と同様に、放射能分布解析装置103Dは、指数関数や三角関数に加えて、第2データベース145に記憶された様々な放射能分布の形状と線量率分布との関係と得られた線量率分布との照合を行い、半楕円状の形状に特有のパターンであると特定し、その上で放射線検出器101と放射能分布の端との距離を解析する。
その他の構成・動作は前述した実施例1の放射能分布解析システム100と略同じ構成・動作であり、詳細は省略する。
本発明の放射能分布解析システムおよび放射能分布解析方法の実施例6においても、前述した放射能分布解析システムおよび放射能分布解析方法の実施例1とほぼ同様な効果が得られる。
また、複数の放射能分布の形状と線量分布との関係を予め記憶する第2データベース145を設けることで、放射能分布をより高精度かつ速やかに解析することができる。
<その他>
なお、本発明は、上記の実施例に限定されるものではなく、様々な変形例が含まれる。上記の実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることも可能である。
100,100A,100B,100C,100D,100E…放射能分布解析システム
101…放射線検出器
102…線量率計
103…放射能分布解析装置(解析部)
103A,103B,103C,103D…放射能分布解析装置
104…放射線検出器移動装置(移動装置)
105…位置算出装置(位置算出部)
106…表示装置
107…原子炉建屋
108…原子炉格納容器
109…原子炉圧力容器
110…原子炉再循環系
111…原子炉圧力抑制室
112…トーラス室
113…貫通部
114,132,133,134…放射性物質の集まり
115…ケーブル
116,117,122,123,124,155,156,156A,156B…線量率分布
118…放射能分布堆積面
119…放射能分布堆積面と放射線検出器の距離
120…放射能分布堆積面における放射能分布の端部と放射線検出器との距離
121…放射能分布の端部と放射線検出器との距離
125…一定時間経過後の線量率分布
126…放出装置
127…検出器回収装置
128…移動距離補正装置
140…第1データベース
145…第2データベース
150…ベータ線遮蔽体

Claims (14)

  1. 放射性物質取扱施設における放射能分布を解析する放射能分布解析システムであって、
    γ線線量率を計測する放射線検出器と、
    この放射線検出器の出力から線量率を導出する線量率計と、
    前記放射線検出器を移動させる移動装置と、
    前記放射線検出器の3次元位置座標を算出する位置算出部と、
    前記線量率計で導出された線量率と前記位置算出部で算出された前記3次元位置座標とを用いて、放射能分布を解析する解析部と、
    この解析部で解析された放射能分布を表示する表示装置とを備え、
    前記解析部は、
    前記線量率計で導出された線量率を用いて線量率分布を算出し、
    この算出した前記線量率分布の減衰率を算出し、算出した減衰率を用いて前記放射能分布中の主要核種を解析し、
    前記線量率分布の波形と前記3次元位置座標と三角関数とを用いて前記放射線検出器と前記主要核種との距離を解析し、
    複数の線量率分布の測定結果と前記距離と前記主要核種と前記3次元位置座標とを用いて前記放射能分布を解析する
    ことを特徴とする放射能分布解析システム。
  2. 請求項1に記載の放射能分布解析システムにおいて、
    前記解析部は、
    前記線量率分布に指数関数をフィッティングさせて得られた傾きから前記減衰率を算出し、
    前記減衰率の値から放射能分布における線源の主要なγ線エネルギー帯を算出し、算出したγ線エネルギー体を用いて前記放射能分布中の主要核種を解析する
    ことを特徴とする放射能分布解析システム。
  3. 請求項2に記載の放射能分布解析システムにおいて、
    前記解析部は、
    前記線量率分布に指数関数をフィッティングさせる際に、この指数関数の変数を三角関数に変換して前記フィッティングを実現する係数を導出した後に、前記指数関数をフィッティングさせて得られた傾きから前記減衰率を算出する
    ことを特徴とする放射能分布解析システム。
  4. 請求項3に記載の放射能分布解析システムにおいて、
    前記解析部は、
    前記三角関数を用いて前記放射能分布が堆積している面における前記放射線検出器と前記放射能分布の端との距離を導出する
    ことを特徴とする放射能分布解析システム。
  5. 請求項2に記載の放射能分布解析システムにおいて、
    複数の放射性核種の減衰率を記憶する第1データベースを更に備え、
    前記解析部は、前記フィッティングの際に、前記第1データベースに記憶された減衰率を用いる
    ことを特徴とする放射能分布解析システム。
  6. 請求項1に記載の放射能分布解析システムにおいて、
    前記放射線検出器は、ベータ線遮蔽体を有する
    ことを特徴とする放射能分布解析システム。
  7. 請求項1に記載の放射能分布解析システムにおいて、
    前記解析部は、前記放射線検出器によって計測された線量率分布の経時変化に基づいて前記放射能分布中の放射性物質の半減期を推定し、この推定した半減期と前記減衰率とを用いて前記放射能分布中の主要核種を解析する
    ことを特徴とする放射能分布解析システム。
  8. 請求項1に記載の放射能分布解析システムにおいて、
    前記放射線検出器を前記移動装置より放出するための放出装置と、
    この放出装置によって放出された前記放射線検出器を前記移動装置まで回収する回収装置と、を更に備えた
    ことを特徴とする放射能分布解析システム。
  9. 請求項8に記載の放射能分布解析システムにおいて、
    前記放出装置によって放出された前記放射線検出器の移動距離を測定する移動距離補正装置を更に備え、
    前記解析部は、前記移動距離補正装置で測定された前記放射線検出器の移動距離を用いて前記放射線検出器の3次元位置情報を補正する
    ことを特徴とする放射能分布解析システム。
  10. 請求項8に記載の放射能分布解析システムにおいて、
    前記放出装置は、前記放射線検出器を前記移動装置から吊り落としするもしくは投てきするうち少なくともいずれか一方を行う
    ことを特徴とする放射能分布解析システム。
  11. 請求項8に記載の放射能分布解析システムにおいて、
    前記回収装置は、前記放射線検出器と前記線量率計とを接続する信号ケーブルもしくは前記放射線検出器に備えた引き戻し用ケーブルを用いて前記移動装置まで前記放射線検出器を回収する
    ことを特徴とする放射能分布解析システム。
  12. 請求項1に記載の放射能分布解析システムにおいて、
    前記解析部は、複数の指数関数を用いて前記線量率分布をフィッティングし、2以上の減衰率から2以上の主要核種を解析する
    ことを特徴とする放射能分布解析システム。
  13. 請求項1に記載の放射能分布解析システムにおいて、
    前記放射能分布の形状と前記線量率分布との関係を記憶する第2データベースを更に備え、
    前記解析部は、前記第2データベースに記憶された前記放射能分布の形状と前記線量率分布との関係も用いて前記放射能分布を解析する
    ことを特徴とする放射能分布解析システム。
  14. 放射性物質取扱施設における放射能分布を解析する放射能分布を解析する方法であって、
    放射線検出器によってγ線線量率を計測する計測工程と、
    この計測工程を前記放射線検出器の位置を変えて行い、線量率分布を算出する線量率分布算出工程と、
    算出した前記線量率分布の減衰率を算出し、算出した減衰率を用いて前記放射能分布中の主要核種を解析する主要核種解析工程と、
    前記線量率分布の波形と前記3次元位置座標と三角関数とを用いて前記放射線検出器と前記主要核種との距離を解析する距離解析工程と、
    前記計測工程から前記距離解析工程までを複数回行い、複数の線量率分布の測定結果と前記距離と前記主要核種と前記3次元位置座標とを用いて前記放射能分布を解析する放射能分布解析工程と、と有する
    ことを特徴とする放射能分布解析方法。
JP2016083037A 2016-04-18 2016-04-18 放射能分布解析システムおよび放射能分布解析方法 Active JP6677568B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016083037A JP6677568B2 (ja) 2016-04-18 2016-04-18 放射能分布解析システムおよび放射能分布解析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016083037A JP6677568B2 (ja) 2016-04-18 2016-04-18 放射能分布解析システムおよび放射能分布解析方法

Publications (2)

Publication Number Publication Date
JP2017194289A true JP2017194289A (ja) 2017-10-26
JP6677568B2 JP6677568B2 (ja) 2020-04-08

Family

ID=60155696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016083037A Active JP6677568B2 (ja) 2016-04-18 2016-04-18 放射能分布解析システムおよび放射能分布解析方法

Country Status (1)

Country Link
JP (1) JP6677568B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112414985A (zh) * 2020-11-06 2021-02-26 河南理工大学 一种用于检测药物分布的分析方法及其应用
CN115267873A (zh) * 2022-08-01 2022-11-01 中国核动力研究设计院 一种反应堆沉积源项的测量分析方法、系统、终端及介质
JP7399030B2 (ja) 2020-06-09 2023-12-15 三菱重工業株式会社 線量推定装置、線量推定方法および線量推定プログラム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937480A (ja) * 1982-08-26 1984-02-29 Nuclear Fuel Ind Ltd 波高分布の経時変化分析方法
JPH0688873A (ja) * 1992-09-07 1994-03-29 Hitachi Ltd 放射線線量率分布評価方法及び装置
JP3181739U (ja) * 2012-12-03 2013-02-21 いであ株式会社 曳航式水中放射能測定システム
JP2013242219A (ja) * 2012-05-21 2013-12-05 Takeshi Hirata 放射線測定装置、放射線測定システム、及び放射線測定方法
JP2014145628A (ja) * 2013-01-28 2014-08-14 Mitsubishi Heavy Ind Ltd 放射性物質分布マップ作成システム及び放射性物質分布マップ作成方法
US20150025841A1 (en) * 2011-12-23 2015-01-22 Nuctech Company Limited Method and device for patrol inspecting and positioning a radioactive substance
JP2015526702A (ja) * 2012-06-12 2015-09-10 アンスティテュ ド ラディオプロテクシオン エ ド スルテ ニュクレエール サイトにおいて光子分布をリアルタイムにマッピングする方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937480A (ja) * 1982-08-26 1984-02-29 Nuclear Fuel Ind Ltd 波高分布の経時変化分析方法
JPH0688873A (ja) * 1992-09-07 1994-03-29 Hitachi Ltd 放射線線量率分布評価方法及び装置
US20150025841A1 (en) * 2011-12-23 2015-01-22 Nuctech Company Limited Method and device for patrol inspecting and positioning a radioactive substance
JP2013242219A (ja) * 2012-05-21 2013-12-05 Takeshi Hirata 放射線測定装置、放射線測定システム、及び放射線測定方法
JP2015526702A (ja) * 2012-06-12 2015-09-10 アンスティテュ ド ラディオプロテクシオン エ ド スルテ ニュクレエール サイトにおいて光子分布をリアルタイムにマッピングする方法
JP3181739U (ja) * 2012-12-03 2013-02-21 いであ株式会社 曳航式水中放射能測定システム
JP2014145628A (ja) * 2013-01-28 2014-08-14 Mitsubishi Heavy Ind Ltd 放射性物質分布マップ作成システム及び放射性物質分布マップ作成方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7399030B2 (ja) 2020-06-09 2023-12-15 三菱重工業株式会社 線量推定装置、線量推定方法および線量推定プログラム
CN112414985A (zh) * 2020-11-06 2021-02-26 河南理工大学 一种用于检测药物分布的分析方法及其应用
CN115267873A (zh) * 2022-08-01 2022-11-01 中国核动力研究设计院 一种反应堆沉积源项的测量分析方法、系统、终端及介质
CN115267873B (zh) * 2022-08-01 2024-04-19 中国核动力研究设计院 一种反应堆沉积源项的测量分析方法、系统、终端及介质

Also Published As

Publication number Publication date
JP6677568B2 (ja) 2020-04-08

Similar Documents

Publication Publication Date Title
Sato et al. Radiation imaging using a compact Compton camera mounted on a crawler robot inside reactor buildings of Fukushima Daiichi Nuclear Power Station
US20180284302A1 (en) Aerial cdznte inspection system and inspection method
KR102049518B1 (ko) 감마선 영상과 시각적 광학카메라 영상을 융합하는 영상장치
JP6677568B2 (ja) 放射能分布解析システムおよび放射能分布解析方法
Bukartas et al. A Bayesian method to localize lost gamma sources
KR101682088B1 (ko) 방사선원의 3차원 영상 처리 장치 및 방법
JP2015526702A (ja) サイトにおいて光子分布をリアルタイムにマッピングする方法
Sato et al. Radiation imaging of a highly contaminated filter train inside Fukushima Daiichi Nuclear Power Station unit 2 using an integrated Radiation Imaging System based on a Compton camera
JP6246003B2 (ja) 放射線計測装置及びそれを用いた燃料デブリの有無及び位置測定装置並びに燃料デブリの有無及び位置測定方法
JPS63151884A (ja) 表面線量率の遠隔測定方法および装置
Lee et al. Development of Three-Dimensional Gamma-ray Camera
JP7140658B2 (ja) 放射線計測装置、及び放射線計測方法
Sato Identification of depth location of a radiation source by measurement from only one direction using a Compton camera
JP2018205070A (ja) 放射線計測装置
Stepanov et al. Experience of application of new remote controlled instruments for scanning of distribution of radioactive contamination in rooms with high dose rate
Syarbaini et al. Design and development of carborne survey equipment
Santo et al. Application of remote gamma imaging surveys at the Turkey point PWR reactor facility
CN217060512U (zh) 一种辐射监测系统
Danilovich et al. Radiological Survey of Contaminated Installations of Research Reactor before Dismantling in High Dose Conditions with Complex for Remote Measurements of Radioactivity-12069
JP6285324B2 (ja) 放射線計測装置
Mahé et al. Recent Improvement of Measurement Instrumentation to Supervise Nuclear Operations and to Contribute Input Data to 3D Simulation Code–13289
KR20230120384A (ko) 감마선 영상처리 시스템 및 방법
Hautot et al. Novel real-time 3D radiological mapping solution for ALARA maximization, D&D assessments and radiological management
Martin et al. High-Resolution Aerial Radiation Mapping for Nuclear Decontamination and Decommissioning-17371
Khan et al. A detector system for searching lost g-ray source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200313

R150 Certificate of patent or registration of utility model

Ref document number: 6677568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150