JP2017191825A - Processing method of wafer - Google Patents

Processing method of wafer Download PDF

Info

Publication number
JP2017191825A
JP2017191825A JP2016079413A JP2016079413A JP2017191825A JP 2017191825 A JP2017191825 A JP 2017191825A JP 2016079413 A JP2016079413 A JP 2016079413A JP 2016079413 A JP2016079413 A JP 2016079413A JP 2017191825 A JP2017191825 A JP 2017191825A
Authority
JP
Japan
Prior art keywords
modified layer
wafer
forming step
laser beam
layer forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016079413A
Other languages
Japanese (ja)
Other versions
JP6640005B2 (en
Inventor
テウ ベ
Teu Bae
テウ ベ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to JP2016079413A priority Critical patent/JP6640005B2/en
Priority to TW106106385A priority patent/TWI732824B/en
Priority to KR1020170042995A priority patent/KR102250209B1/en
Priority to CN201710228155.4A priority patent/CN107293516B/en
Publication of JP2017191825A publication Critical patent/JP2017191825A/en
Application granted granted Critical
Publication of JP6640005B2 publication Critical patent/JP6640005B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components

Abstract

PROBLEM TO BE SOLVED: To prevent a corner of a device from being caused a chip, or a calf near the corner from being meandered.SOLUTION: A processing method of a wafer, includes: a first modified layer forming step and a second modified layer forming step. In the first modified layer forming step or the second modified layer forming step, or both of the first modified layer forming step and the second modified layer forming step, a modified layer M formed in an inner part of a wafer W is formed in a complex manner by at least one or more induction modified layer Mi that inducts the growth of a crack from a modified layer M to a front surface Wa of the wafer W in each one division scheduled line and at least one or more adjustment modified layer Ma that adjusts the growth of the crack from the modified layer M to the front surface Wa of the wafer W. Therefore, since the crack generated by the induction modified layer Mi from the modified layer M is inducted to the front surface Wa side of the wafer W and the growth level of the crack to the front surface Wa by the adjustment modified layer Ma, the wafer W can be preferably divided into an individual device.SELECTED DRAWING: Figure 3

Description

本発明は、ウエーハを個々のチップに分割するウエーハの分割方法に関する。   The present invention relates to a wafer dividing method for dividing a wafer into individual chips.

ウエーハの内部に改質層を形成し、その後研削すると同時にデバイスチップ化する加工において、研削時に個片化されたデバイスが動いてデバイス同士が接触してデバイスのコーナーに欠けが発生するという問題があった。かかる問題は、デバイスが個片化されたときに動いてしまうことに起因している。そのため、改質層から表面に至るクラックの成長具合を調整して個片化のタイミングを調整するために、改質層を形成するためのレーザー光線を破線状にウエーハの内部に照射するという加工方法がある(例えば、下記の特許文献1を参照)。   In the process of forming a modified layer inside the wafer, and then grinding into device chips at the same time as grinding, there is a problem that the separated devices move during grinding and the devices come into contact with each other to cause chipping at the corners of the device. there were. This problem is due to the fact that the device moves when it is singulated. Therefore, in order to adjust the timing of singulation by adjusting the growth of cracks from the modified layer to the surface, a processing method of irradiating the inside of the wafer with a laser beam for forming the modified layer in a broken line shape (For example, see Patent Document 1 below).

特開2014−33163号公報JP 2014-33163 A

しかし、近年においては、電気的特性向上のために、結晶方位が分割予定ラインに対して45°の角度を有するシリコンウエーハなどが多く使用されており、シリコンウエーハの内部にレーザー光線を照射して改質層を破線状に形成すると、デバイスのコーナー付近でカーフが蛇行してしまう。これは、破線状に改質層を形成したため、改質層から表面に至るクラックが分割予定ラインに沿って順調に成長できなかったためであると考えられる。   However, in recent years, silicon wafers and the like whose crystal orientation is at an angle of 45 ° with respect to the line to be divided have been used in order to improve electrical characteristics, and the silicon wafer is modified by irradiating it with a laser beam. If the material layer is formed in a broken line shape, the kerf will meander near the corner of the device. This is presumably because cracks from the modified layer to the surface could not grow smoothly along the planned dividing line because the modified layer was formed in a broken line shape.

本発明は、上記の事情にかんがみてなされたもので、改質層を形成した後に研削して個々のデバイスに分割する加工において、デバイスのコーナーに欠けが発生したり、コーナー付近のカーフが蛇行したりするのを防ぐことを目的とする。   The present invention has been made in view of the above circumstances, and in the process of forming a modified layer and then grinding and dividing into individual devices, chipping occurs in the corners of the device, and the kerf near the corners meanders. The purpose is to prevent it.

本発明は、表面に所定の方向に延びる複数の第1の分割予定ラインと該複数の第1の分割予定ラインと交差して形成された複数の第2の分割予定ラインとによって区画された複数の領域にデバイスが形成されたウエーハを、該第1の分割予定ラインおよび該第2の分割予定ラインに沿って分割するウエーハの加工方法であって、ウエーハの表面側に保護部材を貼着する保護部材貼着工程と、該保護部材貼着工程の後、該保護部材側を保持し、ウエーハに対して透過性を有する波長のレーザー光線をウエーハの裏面側から集光点をウエーハの内部に位置付けて該第1の分割予定ラインに沿って照射し、ウエーハの内部に該第1の分割予定ラインに沿って第1の改質層を形成する第1の改質層形成工程と、ウエーハに対して透過性を有する波長のレーザー光線をウエーハの裏面側から集光点をウエーハの内部に位置付けて該第2の分割予定ラインに沿って照射し、ウエーハの内部に該第2の分割予定ラインに沿って第2の改質層を形成する第2の改質層形成工程と、該第1の改質層形成工程および該第2の改質層形成工程を実施した後、該保護部材側を保持してウエーハの裏面から研削手段により研削し仕上げ厚さへと薄化するとともに研削動作により該改質層を起点としてウエーハの表面に至るクラックを該分割予定ラインに沿って成長させ、ウエーハを個々のデバイスに分割する分割工程と、を備え、該第1の改質層形成工程においてもしくは該第2の改質層形成工程において又は該第1の改質層形成工程および該第2の改質層形成工程の両工程において、該改質層は、1つの分割予定ラインにつき、該改質層からウエーハの表面に至るクラックの成長を誘導する少なくとも1つ以上の誘導改質層と、該改質層からウエーハの表面に至るクラックの成長を調整するための少なくとも1つ以上の調整改質層と、で複合的に形成されることを特徴とする。   In the present invention, a plurality of divisions defined on the surface by a plurality of first division lines extending in a predetermined direction and a plurality of second division lines formed intersecting with the plurality of first division lines. A method of processing a wafer in which a wafer having a device formed in the region is divided along the first scheduled dividing line and the second scheduled dividing line, and a protective member is attached to the surface side of the wafer. After the protective member attaching step and the protective member attaching step, the protective member side is held, and a laser beam having a wavelength that is transparent to the wafer is positioned from the back side of the wafer to the focusing point inside the wafer. A first modified layer forming step of irradiating the wafer along the first planned division line and forming a first modified layer along the first planned division line inside the wafer; Of wavelength with transparency The laser beam is irradiated from the back surface side of the wafer at the condensing point inside the wafer and irradiated along the second planned dividing line, and the second modification is performed inside the wafer along the second planned dividing line. After performing the second modified layer forming step for forming the layer, the first modified layer forming step, and the second modified layer forming step, the protective member side is held and the wafer is separated from the back surface of the wafer. Dividing by dividing the wafer into individual devices by grinding by means of grinding and thinning to the finished thickness, and by the grinding operation, cracks reaching the surface of the wafer starting from the modified layer are grown along the planned dividing line. A step, in the first modified layer forming step, in the second modified layer forming step, or in both the first modified layer forming step and the second modified layer forming step. The modified layer is divided into one segment At least one induction modified layer for inducing the growth of cracks from the modified layer to the surface of the wafer, and at least for adjusting the growth of cracks from the modified layer to the surface of the wafer. It is characterized in that it is formed in combination with one or more adjustment / modification layers.

上記調整改質層は、所定の間隔を設けて各デバイスの1辺に対して少なくとも1回レーザー光線の照射を停止することで、ウエーハの内部に所定の間隔を隔てた非改質層領域を有することを特徴とする。   The adjustment modified layer has a non-modified layer region at a predetermined interval inside the wafer by stopping irradiation of the laser beam at least once with respect to one side of each device with a predetermined interval. It is characterized by that.

上記誘導改質層は、上記非改質層領域よりも短い所定の間隔を設けて、各デバイスの1辺に対して少なくとも1回レーザー光線の照射を停止することで、ウエーハの内部に所定の間隔を隔てて該非改質層領域よりも小さい非改質層領域を有することを特徴とする。   The induction modified layer has a predetermined interval inside the wafer by stopping the irradiation of the laser beam at least once with respect to one side of each device by providing a predetermined interval shorter than the non-modified layer region. And having a non-modified layer region smaller than the non-modified layer region.

本発明にかかるウエーハの加工方法は、ウエーハの表面側に保護部材を貼着する保護部材貼着工程と、ウエーハの内部に第1の分割予定ラインに沿って第1の改質層を形成する第1の改質層形成工程と、ウエーハの内部に第2の分割予定ラインに沿って第2の改質層を形成する第2の改質層形成工程と、研削動作により改質層を起点としてウエーハの表面に至るクラックを分割予定ラインに沿って成長させ、ウエーハを個々のデバイスに分割する分割工程とを備え、第1の改質層形成工程においてもしくは第2の改質層形成工程において又は第1の改質層形成工程および第2の改質層形成工程の両工程において、ウエーハの内部に形成される改質層は、1つの分割予定ラインにつき、改質層からウエーハの表面に至るクラックの成長を誘導する少なくとも1つ以上の誘導改質層と、改質層からウエーハの表面に至るクラックの成長を調整するための少なくとも1つ以上の調整改質層と、で複合的に形成されるため、誘導改質層により改質層から発生したクラックがウエーハの表面側へ誘導されるとともに、調整改質層により表面に至るクラックの成長具合が調整されるため、ウエーハを個々のデバイスに分割する際にデバイスチップのコーナーに欠けが生じたりコーナー付近のカーフに蛇行が生じたりするのを防ぐことができる。   In the wafer processing method according to the present invention, a protective member adhering step for adhering a protective member to the front surface side of the wafer, and a first modified layer is formed along the first division line inside the wafer. The first modified layer forming step, the second modified layer forming step for forming the second modified layer along the second division line inside the wafer, and the modified layer as a starting point by the grinding operation In the first modified layer forming step or in the second modified layer forming step, and the step of growing the cracks reaching the surface of the wafer along the planned dividing line and dividing the wafer into individual devices. Alternatively, in both the first modified layer forming step and the second modified layer forming step, the modified layer formed inside the wafer is transferred from the modified layer to the surface of the wafer for each division line. Induces crack growth Since at least one induction modified layer and at least one adjustment modified layer for adjusting the growth of cracks from the modified layer to the surface of the wafer are formed in combination, the induction modified layer is formed. Cracks generated from the modified layer are guided to the surface side of the wafer by the quality layer, and the growth of cracks reaching the surface is adjusted by the modified layer, so that when dividing the wafer into individual devices It is possible to prevent chipping at the corner of the chip and meandering at the kerf near the corner.

上記調整改質層は、所定の間隔を設けて各デバイスの1辺に対して少なくとも1回レーザー光線の照射を停止することで、ウエーハの内部に所定の間隔を隔てた非改質層領域を有するため、ウエーハの分割時に非改質層領域からクラックが生じず、隣り合うデバイスが接触しないようにデバイスの個片化されるタイミングが調整されるため、デバイスのコーナーに欠けが発生したり、コーナー付近のカーフが蛇行したりするのを効果的に防止することができる。   The adjustment modified layer has a non-modified layer region at a predetermined interval inside the wafer by stopping irradiation of the laser beam at least once with respect to one side of each device with a predetermined interval. Therefore, when the wafer is divided, cracks do not occur in the non-modified layer region, and the timing of device separation is adjusted so that adjacent devices do not come into contact with each other. It is possible to effectively prevent the nearby kerf from meandering.

上記誘導改質層は、上記非改質層領域よりも短い所定の間隔を設けて、各デバイスの1辺に対して少なくとも1回レーザー光線の照射を停止することで、ウエーハの内部に所定の間隔を隔てて該非改質層領域よりも小さい非改質層領域を有するため、かかる小さい非改質層領域からクラックが誘導されず、ウエーハの分割時にデバイスの動きを制限して、デバイスのコーナーに欠けが発生したり、コーナー付近のカーフが蛇行したりするのをより効果的に防止することができる。   The induction modified layer has a predetermined interval inside the wafer by stopping the irradiation of the laser beam at least once with respect to one side of each device by providing a predetermined interval shorter than the non-modified layer region. Since the non-modified layer region is smaller than the non-modified layer region, cracks are not induced from the small non-modified layer region, and the movement of the device is limited at the corner of the device by dividing the wafer. It is possible to more effectively prevent the chipping and the kerf near the corner from meandering.

保護部材貼着工程を示す斜視図である。It is a perspective view which shows a protection member sticking process. 改質層形成工程を示す一部拡大断面図である。It is a partially expanded sectional view which shows a modified layer formation process. 改質層形成工程によって、ウエーハの内部に1つ以上の誘導改質層と1つ以上の調整改質層が形成された状態を示す一部拡大断面図である。It is a partially expanded sectional view which shows the state in which one or more induction | guidance | derivation modification layers and one or more adjustment modification layers were formed in the inside of a wafer by the modification layer formation process. 分割工程を示す一部拡大断面図である。It is a partially expanded sectional view which shows a division | segmentation process. (a)は、エキスパンド工程の実施前の状態を示す断面図である。(b)は、エキスパンド工程により各デバイスの間隔が拡張された状態を示す断面図である。(A) is sectional drawing which shows the state before implementation of an expanding process. (B) is sectional drawing which shows the state by which the space | interval of each device was expanded by the expanding process. 改質層形成工程の第1の変形例を示す一部拡大断面図である。It is a partially expanded sectional view which shows the 1st modification of a modified layer formation process. 改質層形成工程の第2の変形例を示す一部拡大断面図である。It is a partially expanded sectional view which shows the 2nd modification of a modified layer formation process.

図1に示すウエーハWは、円形板状の基板を有する被加工物の一例である。ウエーハWの表面Waには、所定の方向として例えば第1方向に延びる複数の第1の分割予定ラインS1と複数の第1の分割予定ラインS1と交差する第2方向に延びる複数の第2の分割予定ラインS2とによって区画された複数の領域にデバイスDが形成されている。一方、ウエーハWの表面Waと反対側にある面は、研削が施される裏面Wbとなっている。ウエーハWは、例えば、結晶方位が第1の分割予定ラインS1および第2の分割予定ラインS2の延在方向に対して45°の角度を有して形成されたシリコンウエーハであり、その外周には結晶方位に対して45°の方向に向くノッチNが形成されている。以下では、ウエーハWを、個々のデバイスDに分割するウエーハの加工方法について説明する。   A wafer W shown in FIG. 1 is an example of a workpiece having a circular plate-like substrate. On the surface Wa of the wafer W, for example, a plurality of first division lines S1 extending in the first direction as a predetermined direction and a plurality of second areas extending in the second direction intersecting the plurality of first division lines S1. A device D is formed in a plurality of regions partitioned by the planned division line S2. On the other hand, the surface on the side opposite to the front surface Wa of the wafer W is a back surface Wb on which grinding is performed. The wafer W is, for example, a silicon wafer having a crystal orientation formed at an angle of 45 ° with respect to the extending direction of the first planned division line S1 and the second planned division line S2, and is formed on the outer periphery thereof. Has a notch N oriented in a direction of 45 ° with respect to the crystal orientation. Hereinafter, a wafer processing method for dividing the wafer W into the individual devices D will be described.

(1)保護部材貼着工程
図1に示すように、ウエーハWの表面Wa側に保護部材1を貼着する。保護部材1は、少なくともウエーハWと略同径に形成されている。ウエーハWの表面Waの全面が保護部材1によって覆われると、各デバイスDが保護される。保護部材1の材質は、特に限定されず、少なくとも粘着性を有していればよい。
(1) Protection member sticking process As shown in Drawing 1, protection member 1 is stuck on the surface Wa side of wafer W. The protection member 1 is formed at least approximately the same diameter as the wafer W. When the entire surface Wa of the wafer W is covered with the protection member 1, each device D is protected. The material of the protective member 1 is not particularly limited as long as it has at least adhesiveness.

(2)テープ貼着工程
図2に示すように、拡張可能なテープTを環状のフレームFの下部に貼り付けるとともにテープTをウエーハWに貼着されている保護部材1の全面に貼着する。これにより、ウエーハWは、裏面Wb側が上向きに露出した状態でフレームFと一体となって形成される。
(2) Tape Affixing Step As shown in FIG. 2, the expandable tape T is affixed to the lower part of the annular frame F and the tape T is affixed to the entire surface of the protective member 1 affixed to the wafer W. . Thereby, the wafer W is formed integrally with the frame F with the back surface Wb side exposed upward.

(3)改質層形成工程
改質層形成工程は、第1の改質層形成工程と第2の改質層形成工程とに分けられて実施される。本実施形態では、第1の改質層形成工程を実施した後に第2の改質層形成工程を実施する場合について説明する。なお、第2の改質層形成工程を実施した後に第1の改質層形成工程を実施してもよい。
(3) Modified layer forming step The modified layer forming step is divided into a first modified layer forming step and a second modified layer forming step. In the present embodiment, a case will be described in which the second modified layer forming step is performed after the first modified layer forming step is performed. In addition, you may implement a 1st modified layer formation process after implementing a 2nd modified layer formation process.

(3−1)第1の改質層形成工程
保護部材貼着工程及びテープ貼着工程を実施した後、保護部材1側を回転可能な保持テーブル10で保持し、保持テーブル10の上方側に配置されたレーザー光線照射手段20を用いてウエーハWの内部に第1の分割予定ラインS1に沿って改質層M(第1の改質層m1)を形成する。保持テーブル10の上面は、吸引源からの吸引作用を受けてウエーハWを吸引保持する保持面11となっている。保持テーブル10には、図示していないが、保持テーブル10とレーザー光線照射手段20とを鉛直方向(Z軸方向)と直交する水平方向(X軸方向およびY軸方向)に相対移動させる移動手段が接続されている。
(3-1) 1st modified layer formation process After implementing a protection member sticking process and a tape sticking process, the protection member 1 side is hold | maintained with the holding table 10 which can rotate, and the upper side of the holding table 10 The modified layer M (first modified layer m1) is formed in the wafer W along the first scheduled division line S1 using the laser beam irradiation means 20 arranged. The upper surface of the holding table 10 is a holding surface 11 that sucks and holds the wafer W by receiving a suction action from a suction source. Although not shown in the figure, the holding table 10 has moving means for relatively moving the holding table 10 and the laser beam irradiation means 20 in the horizontal direction (X-axis direction and Y-axis direction) perpendicular to the vertical direction (Z-axis direction). It is connected.

レーザー光線照射手段20は、ウエーハWに対して透過性を有する波長のレーザー光線LBを発振する発振器21と、レーザー光線LBを集光するための集光器22と、レーザー光線の出力を調整するための出力調整器とを少なくとも備えている。レーザー光線照射手段20は、Z軸方向に移動可能となっており、集光器22をZ軸方向に移動させてレーザー光線LBの集光位置を調整することができる。   The laser beam irradiation means 20 includes an oscillator 21 that oscillates a laser beam LB having a wavelength that is transmissive to the wafer W, a condenser 22 that collects the laser beam LB, and an output adjustment that adjusts the output of the laser beam. At least. The laser beam irradiation means 20 is movable in the Z-axis direction, and the condensing position of the laser beam LB can be adjusted by moving the condenser 22 in the Z-axis direction.

第1の改質層m1をウエーハWの内部に形成するときは、テープTを下向きにして、保持テーブル10の保持面11にウエーハWを載置し、ウエーハWの裏面Wbを上向きにさせ、吸引源の吸引力によって保持テーブル10の保持面11で保護部材1側を吸引保持する。レーザー光線照射手段20は、集光器22をウエーハWに接近するZ軸方向に下降させ、レーザー光線LBの集光点Pを所望の位置に調整する。続いて、例えば移動手段によって保持テーブル10をX軸方向に移動させることにより、レーザー光線照射手段20と保持テーブル10とを相対的にウエーハWの裏面Wbに対して平行な方向(X軸方向)に移動させつつ、発振器21からウエーハWに対して透過性を有する波長のレーザー光線LBをウエーハWの裏面Wb側から第1の分割予定ラインS1に沿って破線状に照射して、ウエーハWの内部に第1の改質層m1を形成する。すべての第1の分割予定ラインS1に沿ってレーザー光線LBを照射して第1の改質層m1を形成したら、第1の改質層形成工程が完了する。   When the first modified layer m1 is formed inside the wafer W, the wafer W is placed on the holding surface 11 of the holding table 10 with the tape T facing downward, and the back surface Wb of the wafer W is faced upward. The protective member 1 side is sucked and held by the holding surface 11 of the holding table 10 by the suction force of the suction source. The laser beam application means 20 lowers the condenser 22 in the Z-axis direction approaching the wafer W, and adjusts the condensing point P of the laser beam LB to a desired position. Subsequently, for example, by moving the holding table 10 in the X-axis direction by a moving means, the laser beam irradiation means 20 and the holding table 10 are relatively parallel to the back surface Wb of the wafer W (X-axis direction). While moving, the laser beam LB having a wavelength that is transmissive to the wafer W from the oscillator 21 is irradiated from the back surface Wb side of the wafer W in a broken line shape along the first divisional line S1 to enter the inside of the wafer W. A first modified layer m1 is formed. When the first modified layer m1 is formed by irradiating the laser beam LB along all the first division planned lines S1, the first modified layer forming step is completed.

(3−2)第2の改質層形成工程
次いで、レーザー光線照射手段20を用いてウエーハWの内部に第2の分割予定ラインS2に沿って改質層M(第2の改質層m2)を形成する。具体的には、保持テーブル10が回転し、図1に示したウエーハWを90°回転させることにより、第2方向に向いている第2の分割予定ラインS2を例えばX軸方向に向かせる。レーザー光線照射手段20は、集光器22をウエーハWに接近するZ軸方向に下降させ、レーザー光線LBの集光点Pを所望の位置に調整する。続いて、例えば保持テーブル10をX軸方向に移動させることにより、レーザー光線照射手段20と保持テーブル10とを相対的にウエーハWの裏面Wbに対して平行な方向(X軸方向)に移動させつつ、レーザー光線照射手段20がウエーハWに対して透過性を有する波長のレーザー光線LBをウエーハWの裏面Wb側から第2の分割予定ラインS2に沿って破線状に照射して、ウエーハWの内部に第2の改質層m2を形成する。全ての第2の分割予定ラインS2に沿ってレーザー光線LBを照射して第2の改質層m2を形成したら、第2の改質層形成工程が完了する。
(3-2) Second Modified Layer Formation Step Next, the modified layer M (second modified layer m2) is formed inside the wafer W using the laser beam irradiation means 20 along the second scheduled division line S2. Form. Specifically, the holding table 10 is rotated, and the wafer W shown in FIG. 1 is rotated by 90 °, whereby the second scheduled division line S2 facing in the second direction is directed in the X-axis direction, for example. The laser beam application means 20 lowers the condenser 22 in the Z-axis direction approaching the wafer W, and adjusts the condensing point P of the laser beam LB to a desired position. Subsequently, for example, by moving the holding table 10 in the X-axis direction, the laser beam irradiation means 20 and the holding table 10 are relatively moved in a direction parallel to the back surface Wb of the wafer W (X-axis direction). The laser beam irradiating means 20 irradiates a laser beam LB having a wavelength that is transmissive to the wafer W from the back surface Wb side of the wafer W along the second division line S2 in a broken line shape. Two modified layers m2 are formed. When the second modified layer m2 is formed by irradiating the laser beam LB along all the second scheduled division lines S2, the second modified layer forming step is completed.

改質層M(第1の改質層m1および第2の改質層m2)は、レーザー光線LBの照射によってウエーハWの内部の強度や物理的な特性が変化した領域である。改質層Mは、図2の部分拡大図に示すように、集光点Pの上方側に形成され、改質層Mの上端と下端との間の幅tは、例えば20〜30μm程度となっている。   The modified layer M (the first modified layer m1 and the second modified layer m2) is a region where the internal strength and physical characteristics of the wafer W are changed by the irradiation with the laser beam LB. As shown in the partially enlarged view of FIG. 2, the modified layer M is formed above the condensing point P, and the width t between the upper end and the lower end of the modified layer M is, for example, about 20 to 30 μm. It has become.

ここで、第1の改質層形成工程においてもしくは第2の改質層形成工程において又は第1の改質層形成工程および第2の改質層形成工程の両工程を実施する際、ウエーハWの内部に形成される改質層M(第1の改質層m1および第2の改質層m2)は、図3に示すように、1つの分割予定ラインにつき、改質層MからウエーハWの表面Waに至るクラックの成長を誘導する少なくとも1つ以上の誘導改質層Miと、改質層MからウエーハWの表面Waに至るクラックの成長を調整するための少なくとも1つ以上の調整改質層Maと、で複合的に形成される。図示の例における改質層Mは、ウエーハWの表面Wa側に最も近い位置に形成された1層の誘導改質層Miと、誘導改質層Miの上に形成された2層の調整改質層Maとにより構成される。   Here, in performing the first modified layer forming step, the second modified layer forming step, or when performing both the first modified layer forming step and the second modified layer forming step, the wafer W As shown in FIG. 3, the modified layer M (the first modified layer m1 and the second modified layer m2) formed in the interior of the wafer is separated from the modified layer M to the wafer W with respect to one division planned line. At least one induction modified layer Mi for inducing the growth of cracks reaching the surface Wa of the wafer, and at least one adjustment for adjusting the growth of cracks from the modified layer M to the surface Wa of the wafer W. And a composite layer Ma. In the illustrated example, the modified layer M includes a single induction modified layer Mi formed at a position closest to the surface Wa side of the wafer W, and two layers of modified modified layers formed on the induced modified layer Mi. It is comprised by the quality layer Ma.

ウエーハWの内部に誘導改質層Miを形成する際、レーザー光線照射手段20は、集光器22の位置をずらして、より表面Wa側にレーザー光線LBの集光点Pを位置付けた状態でレーザー光線LBを照射することにより誘導改質層Miを形成するとよい。誘導改質層Miの数や厚みは特に限定されるものではない。したがって、ウエーハWの厚み等に応じて誘導改質層Miの数や厚みを設定するとよい。図3の例では、誘導改質層Miは、ウエーハWの表面Wa側に最も近い位置に形成されているが、この位置に限られない。もっとも、本実施形態に示すように、改質層Mは、後の分割工程により研削され除去される高さ位置6に形成するとよい。   When the induction modified layer Mi is formed inside the wafer W, the laser beam irradiation means 20 shifts the position of the condenser 22, and the laser beam LB in a state where the condensing point P of the laser beam LB is further positioned on the surface Wa side. It is good to form the induction | guidance | derivation modification layer Mi by irradiating. The number and thickness of the induction modification layers Mi are not particularly limited. Therefore, the number and thickness of the induction modified layers Mi may be set according to the thickness of the wafer W and the like. In the example of FIG. 3, the induction modification layer Mi is formed at a position closest to the surface Wa side of the wafer W, but is not limited to this position. However, as shown in the present embodiment, the modified layer M is preferably formed at a height position 6 that is ground and removed in a subsequent dividing step.

また、ウエーハWの内部に調整改質層Maを形成する際、レーザー光線照射手段20は、集光器22の位置をさらに上方側にずらして、表面Wa側から裏面Wb側へと均等な間隔をあけてレーザー光線LBを段階的に照射することにより、2層の調整改質層Maを形成する。このとき、レーザー光線照射手段20は、所定の間隔H1を設けて図1に示した各デバイスDの1辺に対して少なくとも1回レーザー光線LBの照射を停止するように制御される。具体的には、レーザー光線照射手段20は、第1の分割予定ラインS1もしくは第2の分割予定ラインS2または第1の分割予定ラインS1および第2の分割予定ラインS2の双方において所定の間隔H1を設けた部分にレーザー光線LBを照射せず、所定の間隔H1以外の領域にレーザー光線LBを照射する。こうして形成された調整改質層Maは、ウエーハWの内部に所定の間隔H1を隔てた非改質層領域2を有しており、レーザー光線LBが照射された部分の強度が低下している。非改質層領域2は、ウエーハWの内部の強度が低下しておらず、後の分割時にクラックが生じない領域である。調整改質層Maの数や厚みについても特に限定されない。   Further, when the adjustment / modification layer Ma is formed inside the wafer W, the laser beam irradiation means 20 shifts the position of the condenser 22 further upward so that a uniform interval is provided from the front surface Wa side to the rear surface Wb side. Two layers of the modified layer Ma are formed by irradiating the laser beam LB stepwise. At this time, the laser beam irradiation means 20 is controlled so as to stop the irradiation of the laser beam LB at least once for one side of each device D shown in FIG. Specifically, the laser beam irradiation means 20 sets a predetermined interval H1 in the first division planned line S1, the second division planned line S2, or both the first division planned line S1 and the second division planned line S2. The laser beam LB is irradiated to a region other than the predetermined interval H1 without irradiating the provided portion with the laser beam LB. The adjustment modified layer Ma thus formed has the unmodified layer region 2 with a predetermined interval H1 inside the wafer W, and the intensity of the portion irradiated with the laser beam LB is reduced. The non-modified layer region 2 is a region where the internal strength of the wafer W is not lowered and cracks do not occur during subsequent division. There is no particular limitation on the number and thickness of the adjustment modified layers Ma.

(4)分割工程
第1の改質層形成工程および第2の改質層形成工程を実施した後、図4に示すように、保護部材1側を回転可能なチャックテーブル40で保持して、ウエーハWの裏面Wbから研削手段30により研削し仕上げ厚さ100へと薄化するとともに研削動作により改質層Mを起点としてウエーハWの表面Waに至るクラックを分割予定ラインに沿って成長させ、ウエーハWを個々のデバイスDに分割する。チャックテーブル40は、例えばポーラス部材により形成される保持部41を備え、その上面がウエーハWを吸引保持する保持面42となっている。保持面42には、図示しない吸引源が接続されている。研削手段30は、鉛直方向の軸心を有するスピンドル31と、スピンドル31の下部に装着された研削ホイール32と、研削ホイール32の下部にリング状に固着された研削砥石33とを備え、研削ホイール32を回転させながら、全体が昇降可能となっている。
(4) Dividing Step After performing the first modified layer forming step and the second modified layer forming step, as shown in FIG. 4, the protective member 1 side is held by a rotatable chuck table 40, Grinding from the back surface Wb of the wafer W by the grinding means 30 to reduce the finish thickness to 100, and growing a crack reaching the surface Wa of the wafer W from the modified layer M as a starting point by the grinding operation along the division line. The wafer W is divided into individual devices D. The chuck table 40 includes a holding portion 41 formed of, for example, a porous member, and an upper surface thereof serves as a holding surface 42 that sucks and holds the wafer W. A suction source (not shown) is connected to the holding surface 42. The grinding means 30 includes a spindle 31 having a vertical axis, a grinding wheel 32 attached to the lower part of the spindle 31, and a grinding wheel 33 fixed in a ring shape to the lower part of the grinding wheel 32. The whole can be moved up and down while rotating 32.

図4に示すように、テープT側をチャックテーブル40で保持してウエーハWの裏面Wbを上向きにさせ、チャックテーブル40を回転させる。研削手段30は、研削ホイール32を例えば矢印A方向に回転させつつ、所定の研削送り速度で下降させ、研削砥石33でウエーハWの裏面Wbを押圧しながら所定の仕上げ厚さ100に至るまで研削してウエーハWを薄化する。かかる研削動作により改質層Mを起点としてウエーハWの表面Waに至るクラックを第1の分割予定ラインS1及び第2の分割予定ラインS2に沿って成長させる。すなわち、改質層Mが形成された位置からクラックが発生すると、図3に示した誘導改質層Miによって、表面Wa側に向けてクラックが誘導される。また、調整改質層Maの非改質層領域2からクラックが生じず、改質層Mから表面Waに至るクラックの成長具合が調整されて、デバイスDが個片化されるタイミングが調整される。そのため、薄化にともなってウエーハWが個々のデバイスDに分割されるときに、隣接するデバイスDが接触して破損することが防止される。   As shown in FIG. 4, the tape T side is held by the chuck table 40, the back surface Wb of the wafer W is turned upward, and the chuck table 40 is rotated. The grinding means 30 lowers the grinding wheel 32 at a predetermined grinding feed speed while rotating the grinding wheel 32 in the direction of the arrow A, for example, and grinds to the predetermined finish thickness 100 while pressing the back surface Wb of the wafer W with the grinding wheel 33. Then, the wafer W is thinned. By this grinding operation, a crack reaching the surface Wa of the wafer W starting from the modified layer M is grown along the first scheduled division line S1 and the second scheduled division line S2. That is, when a crack is generated from the position where the modified layer M is formed, the crack is induced toward the surface Wa side by the induced modified layer Mi shown in FIG. Further, no cracks are generated from the non-modified layer region 2 of the adjusted modified layer Ma, the crack growth from the modified layer M to the surface Wa is adjusted, and the timing at which the device D is singulated is adjusted. The Therefore, when the wafer W is divided into individual devices D as the thickness is reduced, the adjacent devices D are prevented from coming into contact with each other and being damaged.

(5)エキスパンド工程
分割工程を実施した後、図5に示すように、テープ拡張手段50によって、分割された個々のデバイスDの間隔を拡げる。テープ拡張手段50は、図5(a)に示すように、ウエーハWを支持する支持テーブル51と、支持テーブル51の外周側に配設されフレームFが載置されるフレーム載置台52と、フレーム載置台52に載置されたフレームFをクランプするクランプ部53と、フレーム載置台52の下部に連結されフレーム載置台52を上下方向に昇降させる昇降手段54とを備える。昇降手段54は、シリンダ54aと、シリンダ54aにより昇降駆動されるピストン54bとにより構成され、ピストン54bが上下に移動することにより、フレーム載置台52を昇降させることができる。
(5) Expanding Step After performing the dividing step, as shown in FIG. 5, the interval between the divided individual devices D is expanded by the tape expanding means 50. As shown in FIG. 5A, the tape extending means 50 includes a support table 51 that supports the wafer W, a frame mounting table 52 that is disposed on the outer peripheral side of the support table 51 and on which the frame F is mounted, A clamp unit 53 that clamps the frame F placed on the mounting table 52, and an elevating means 54 that is connected to the lower part of the frame mounting table 52 and moves the frame mounting table 52 up and down. The elevating means 54 includes a cylinder 54a and a piston 54b driven up and down by the cylinder 54a. The frame mounting table 52 can be raised and lowered by moving the piston 54b up and down.

ウエーハWを拡張する際には、支持テーブル51に保護部材1側を載置するとともに、フレーム載置台52にフレームFを載置する。その後、クランプ部53がフレームFの上部を押さえて動かないように固定する。次いで、図5(b)に示すように、ピストン54bが下方に移動しフレーム載置台52を下降させ、支持テーブル51に対して相対的にフレーム載置台52を下降させる。これにより、テープT及び保護部材1が放射状に拡張され、ウエーハWに対して放射方向の外力が付与され、各デバイスDの間隔が拡がり各デバイスDの間に隙間5が形成される。そして、各デバイスDは、搬送手段等によってピックアップされ、所望の搬送先に搬送される。   When extending the wafer W, the protective member 1 side is placed on the support table 51 and the frame F is placed on the frame placing table 52. Then, the clamp part 53 presses the upper part of the frame F and fixes it so as not to move. Next, as shown in FIG. 5B, the piston 54 b moves downward, lowers the frame mounting table 52, and lowers the frame mounting table 52 relative to the support table 51. As a result, the tape T and the protective member 1 are radially expanded, an external force in the radial direction is applied to the wafer W, the distance between the devices D is expanded, and a gap 5 is formed between the devices D. Then, each device D is picked up by a transport means or the like and transported to a desired transport destination.

このように、本発明にかかるウエーハの加工方法では、第1の改質層形成工程においてもしくは該第2の改質層形成工程において又は該第1の改質層形成工程および該第2の改質層形成工程の両工程において、ウエーハWの内部に形成される改質層Mは、1つの分割予定ラインにつき、改質層MからウエーハWの表面Waに至るクラックの成長を誘導する少なくとも1つ以上の誘導改質層Miと、改質層MからウエーハWの表面Waに至るクラックの成長を調整するための少なくとも1つ以上の調整改質層Maと、で複合的に形成されるため、誘導改質層Miにより改質層Mから発生したクラックがウエーハWの表面Wa側へ誘導されるとともに、調整改質層Maにより表面Waに至るクラックの成長具合が調整されるため、ウエーハWを個々のデバイスDに分割する際にデバイスチップのコーナーに欠けが生じたりコーナー付近のカーフに蛇行が生じたりするのを防ぐことができる。また、調整改質層Maが、所定の間隔H1を隔てた非改質層領域2を有しているため、分割工程を実施するときに、非改質層領域2によって、隣り合うデバイスDが接触しないようにデバイスDの個片化されるタイミングが調整されるため、デバイスDのコーナーに欠けが発生したりコーナー付近のカーフが蛇行したりするのを効果的に防止することができる。   Thus, in the wafer processing method according to the present invention, in the first modified layer forming step or in the second modified layer forming step, or in the first modified layer forming step and the second modified layer. In both steps of the quality layer forming step, the modified layer M formed inside the wafer W has at least one that induces the growth of cracks from the modified layer M to the surface Wa of the wafer W with respect to one division planned line. Since the two or more induction-modified layers Mi and at least one adjustment-modified layer Ma for adjusting the growth of cracks from the modification layer M to the surface Wa of the wafer W are formed in a composite manner. The cracks generated from the modified layer M by the induction modified layer Mi are induced to the surface Wa side of the wafer W, and the growth of cracks reaching the surface Wa is adjusted by the adjustment modified layer Ma. The It is possible to prevent meandering kerf near the corner or caused lack of the device chip corner of that or generated upon the division into devices D. Further, since the adjustment modified layer Ma has the non-modified layer region 2 separated by a predetermined interval H1, when the dividing step is performed, the adjacent device D is placed by the non-modified layer region 2. Since the timing at which the device D is separated into pieces is adjusted so as not to contact, it is possible to effectively prevent the corner of the device D from being chipped or the kerf near the corner from meandering.

図6に示す改質層M1(第1の改質層m1および第2の改質層m2)は、改質層形成工程の第1の変形例によってウエーハW1の内部に形成されたものである。改質層M1は、上記同様に、第1の改質層形成工程および第2の改質層形成工程を行うことで、ウエーハW1の表面Wa側に最も近い位置に形成された1層の誘導改質層Mi2と、誘導改質層Mi2の上に形成された2層の調整改質層Maとにより構成される。   The modified layer M1 (first modified layer m1 and second modified layer m2) shown in FIG. 6 is formed inside the wafer W1 by the first modification of the modified layer forming step. . Similarly to the above, the modified layer M1 is a single layer induction formed at a position closest to the surface Wa side of the wafer W1 by performing the first modified layer forming step and the second modified layer forming step. The modification layer Mi2 and the two adjustment modification layers Ma formed on the induction modification layer Mi2.

ウエーハW1の内部に誘導改質層Mi2を形成する際、レーザー光線照射手段20は、集光器22の位置をずらして、より表面Wa側にレーザー光線LBの集光点Pを位置付けた状態で、調整改質層Maの非改質層領域2よりも短い所定の間隔H2を設けて、各デバイスDの1辺に対して少なくとも1回レーザー光線LBの照射を停止するように制御される。具体的には、レーザー光線照射手段20は、図1に示した第1の分割予定ラインS1もしくは第2の分割予定ラインS2または第1の分割予定ラインS1および第2の分割予定ラインS2の双方において所定の間隔H2を設けた部分にレーザー光線LBを照射せず、所定の間隔H2以外の領域にレーザー光線LBを照射する。こうして形成された誘導改質層Mi2は、ウエーハW1の内部に所定の間隔H2を隔てて非改質層領域2よりも小さい非改質層領域3を有し、レーザー光線LBが照射された部分の強度が低下している。非改質層領域3は、非改質層領域2と同様、分割時にクラックが生じない領域である。   When the induction modified layer Mi2 is formed inside the wafer W1, the laser beam irradiation means 20 adjusts by shifting the position of the condenser 22 and positioning the condensing point P of the laser beam LB on the surface Wa side. Control is performed to stop irradiation of the laser beam LB at least once for one side of each device D by providing a predetermined interval H2 shorter than the non-modified layer region 2 of the modified layer Ma. Specifically, the laser beam irradiating means 20 is used in the first scheduled division line S1 or the second scheduled division line S2 shown in FIG. 1 or in both the first scheduled division line S1 and the second scheduled division line S2. The laser beam LB is irradiated to the area other than the predetermined interval H2 without irradiating the portion provided with the predetermined interval H2 with the laser beam LB. The induction modified layer Mi2 thus formed has a non-modified layer region 3 smaller than the non-modified layer region 2 with a predetermined interval H2 inside the wafer W1, and is a portion irradiated with the laser beam LB. The strength has decreased. The non-modified layer region 3 is a region where cracks do not occur when divided, as with the non-modified layer region 2.

改質層形成工程の第1の変形例を実施した後、上記同様の分割工程に進み、研削動作により改質層M1を起点としてウエーハW1の表面Waに至るクラックを第1の分割予定ラインS1及び第2の分割予定ラインS2に沿って成長させる。すなわち、改質層M1が形成された位置からクラックが発生すると、誘導改質層Mi2によって、表面Wa側に向けてクラックが誘導される。また、調整改質層Maの非改質層領域2および誘導改質層Mi2の非改質層領域3からクラックが生じず、隣り合うデバイスDが接触しないようにデバイスDの個片化されるタイミングが調整されて、ウエーハW1を個々のデバイスDに分割することができる。このように、改質層M1では、誘導改質層Mi2が、調整改質層Maの非改質層領域2よりも小さい非改質層領域3を有するため、ウエーハW1の分割時に、小さい非改質層領域3からもクラックがウエーハW1の表面Waに誘導されないため、個片化されるデバイスDの動きを制限することができ、デバイスDのコーナーに欠けが発生したり、コーナー付近のカーフが蛇行したりするのをより効果的に防止することができる。   After carrying out the first modification of the modified layer forming process, the process proceeds to the same dividing process as described above, and cracks reaching the surface Wa of the wafer W1 from the modified layer M1 as a starting point by the grinding operation are processed in the first divided line S1. And it grows along 2nd division | segmentation scheduled line S2. That is, when a crack is generated from the position where the modified layer M1 is formed, the induced modified layer Mi2 induces the crack toward the surface Wa side. In addition, the device D is separated so that no cracks are generated from the non-modified layer region 2 of the adjustment modified layer Ma and the non-modified layer region 3 of the induction modified layer Mi2, and the adjacent devices D do not contact each other. The timing can be adjusted to divide the wafer W1 into individual devices D. As described above, in the modified layer M1, the induction modified layer Mi2 has the non-modified layer region 3 smaller than the non-modified layer region 2 of the adjustment modified layer Ma. Since cracks are not induced on the surface Wa of the wafer W1 from the modified layer region 3 as well, the movement of the device D to be separated can be restricted, and the corner of the device D may be chipped or the kerf near the corner may be generated. Can be more effectively prevented from meandering.

図7に示す改質層M2(第1の改質層m1および第2の改質層m2)は、改質層形成工程の第2の変形例によってウエーハW2の内部に形成されたものである。改質層M2は、上記同様に、第1の改質層形成工程および第2の改質層形成工程を行うことで、ウエーハW2の表面Wa側に最も近い位置に形成された1層の誘導改質層Mi2と、誘導改質層Mi2の上に形成され所定の間隔が異なる2層の調整改質層Ma,Ma2とにより構成される。誘導改質層Mi2,調整改質層Maの構成は、上記の第1の変形例と同様である。   The modified layer M2 (first modified layer m1 and second modified layer m2) shown in FIG. 7 is formed inside the wafer W2 by the second modification of the modified layer forming step. . Similarly to the above, the modified layer M2 is a single layer induction formed in the position closest to the surface Wa side of the wafer W2 by performing the first modified layer forming step and the second modified layer forming step. The reforming layer Mi2 and the two adjustment reforming layers Ma and Ma2 formed on the induction reforming layer Mi2 and having a predetermined interval are different. The configurations of the induction modification layer Mi2 and the adjustment modification layer Ma are the same as those in the first modified example.

ウエーハW2の内部に調整改質層Ma2を形成する際、レーザー光線照射手段20は、非改質層領域3よりも長く、かつ非改質層領域2よりも短い所定の間隔H3を設けて、各デバイスDの1辺に対して少なくとも1回レーザー光線LBの照射を停止するように制御される。具体的には、レーザー光線照射手段20は、図1に示した第1の分割予定ラインS1もしくは第2の分割予定ラインS2または第1の分割予定ラインS1および第2の分割予定ラインS2の双方において所定の間隔H3を設けた部分にレーザー光線LBを照射せず、所定の間隔H2以外の領域にレーザー光線LBを照射する。調整改質層Ma2は、ウエーハW2の内部に所定の間隔H3を隔てて非改質層領域3よりも大きく、かつ非改質層領域2よりも小さい非改質層領域4を有し、レーザー光線LBが照射された部分の強度が低下している。   When forming the adjustment modified layer Ma2 inside the wafer W2, the laser beam irradiation means 20 is provided with a predetermined interval H3 longer than the non-modified layer region 3 and shorter than the non-modified layer region 2, Control is performed to stop the irradiation of the laser beam LB at least once for one side of the device D. Specifically, the laser beam irradiating means 20 is used in the first scheduled division line S1 or the second scheduled division line S2 shown in FIG. 1 or in both the first scheduled division line S1 and the second scheduled division line S2. The laser beam LB is irradiated to the region other than the predetermined interval H2 without irradiating the laser beam LB to the portion provided with the predetermined interval H3. The adjustment modified layer Ma2 has a non-modified layer region 4 that is larger than the non-modified layer region 3 and smaller than the non-modified layer region 2 with a predetermined interval H3 inside the wafer W2, and includes a laser beam. The intensity of the portion irradiated with LB is reduced.

改質層形成工程の第2の変形例を実施した後、上記同様の分割工程に進み、研削動作により改質層M2を起点としてウエーハW2の表面Waに至るクラックを第1の分割予定ラインS1及び第2の分割予定ラインS2に沿って成長させる。すなわち、改質層M2が形成された位置からクラックが発生すると、誘導改質層Mi2によって、表面Wa側に向けてクラックが誘導される。また、非改質層領域2,3および4からクラックが生じず、デバイスDの個片化されるタイミングが調整されるため、ウエーハW2を個々のデバイスDに分割できる。このように、改質層M2は、ウエーハW2の裏面Wbから表面Waにかけてレーザー光線LBを照射しない領域を段階的に非改質層領域2,4及び3の順に小さく構成したため、個片化されるデバイスDの動きを制限することができ、デバイスDのコーナーに欠けが発生したり、欠けた部分が蛇行したりするのを防止することができる。   After carrying out the second modification of the modified layer forming process, the process proceeds to the same dividing process as described above, and cracks reaching the surface Wa of the wafer W2 from the modified layer M2 as a starting point by the grinding operation are divided into the first scheduled dividing line S1. And it grows along 2nd division | segmentation scheduled line S2. That is, when a crack is generated from the position where the modified layer M2 is formed, the crack is induced toward the surface Wa by the induction modified layer Mi2. Further, no cracks are generated from the non-modified layer regions 2, 3, and 4, and the timing at which the device D is separated is adjusted, so that the wafer W 2 can be divided into individual devices D. In this way, the modified layer M2 is divided into individual pieces because the region not irradiated with the laser beam LB from the back surface Wb to the front surface Wa of the wafer W2 is gradually reduced in the order of the non-modified layer regions 2, 4 and 3. The movement of the device D can be restricted, and the occurrence of chipping at the corner of the device D or the meandering of the chipped portion can be prevented.

本実施形態に示す改質層形成工程で用いるレーザー照射条件としては、例えば光源、波長、出力、保持テーブル10の送り速度及びレーザー光線LBを照射しない所定の間隔H1〜H3の幅などが挙げられる。分割予定ライン毎に設定される所定の間隔H1〜H3は、一定の間隔でなくてもよい。ウエーハWの中央部分が外周部分に比べて動きにくく未分割領域が発生しやすいため、例えば中央部分の領域においては所定の間隔H1〜H3の幅を狭く設定するとよい。分割工程で用いる研削条件としては、例えば研削砥石33の種類、研削送り速度、チャックテーブル40の回転速度等が挙げられる。なお、レーザー照射条件及び研削条件は、ウエーハWの厚みや材質等に応じて適宜調整して組み合わせるとよい。   Examples of the laser irradiation conditions used in the modified layer forming step shown in the present embodiment include a light source, a wavelength, an output, a feed rate of the holding table 10, and a width of a predetermined interval H1 to H3 where the laser beam LB is not irradiated. The predetermined intervals H <b> 1 to H <b> 3 set for each division-scheduled line may not be constant intervals. Since the central portion of the wafer W is less likely to move than the outer peripheral portion and an undivided region is likely to occur, for example, the width of the predetermined intervals H1 to H3 may be set narrow in the central portion region. Examples of the grinding conditions used in the dividing step include the type of grinding wheel 33, the grinding feed speed, the rotational speed of the chuck table 40, and the like. The laser irradiation conditions and the grinding conditions may be adjusted and combined as appropriate according to the thickness and material of the wafer W.

1:保護部材 2,3,4:非改質層領域 5:隙間 6:高さ位置
10:保持テーブル 11:保持面 20:レーザー光線照射手段 21:発振器
22:集光器
30:研削手段 31:スピンドル 32:研削ホイール 33:研削砥石
40:チャックテーブル 41:保持部 42:保持面
50:テープ拡張手段 51:支持テーブル 52:フレーム載置台 53:クランプ部
54:昇降手段 54a:シリンダ 54b:ピストン
W,W1,W2:ウエーハ Wa:表面 Wb:裏面 D:デバイス
S1:第1の分割予定ライン S2:第2の分割予定ライン
M,M1,M2:改質層 m1:第1の改質層 m2:第2の改質層
Mi,Mi2:誘導改質層 Ma,Ma2:調整改質層 H1,H2,H3:所定の間隔
1: protective member 2, 3, 4: unmodified layer region 5: gap 6: height position 10: holding table 11: holding surface 20: laser beam irradiation means 21: oscillator 22: condenser 30: grinding means 31: Spindle 32: Grinding wheel 33: Grinding wheel 40: Chuck table 41: Holding part 42: Holding surface 50: Tape expanding means 51: Support table 52: Frame mounting table 53: Clamping part 54: Lifting means 54a: Cylinder 54b: Piston W , W1, W2: Wafer Wa: Front surface Wb: Back surface D: Device S1: First division planned line S2: Second division planned line M, M1, M2: Modified layer m1: First modified layer m2: Second modified layer Mi, Mi2: induction modified layer Ma, Ma2: adjusted modified layer H1, H2, H3: predetermined intervals

Claims (3)

表面に所定の方向に延びる複数の第1の分割予定ラインと該複数の第1の分割予定ラインと交差して形成された複数の第2の分割予定ラインとによって区画された複数の領域にデバイスが形成されたウエーハを、該第1の分割予定ラインおよび該第2の分割予定ラインに沿って分割するウエーハの加工方法であって、
ウエーハの表面側に保護部材を貼着する保護部材貼着工程と、
該保護部材貼着工程の後、該保護部材側を保持し、ウエーハに対して透過性を有する波長のレーザー光線をウエーハの裏面側から集光点をウエーハの内部に位置付けて該第1の分割予定ラインに沿って照射し、ウエーハの内部に該第1の分割予定ラインに沿って第1の改質層を形成する第1の改質層形成工程と、
ウエーハに対して透過性を有する波長のレーザー光線をウエーハの裏面側から集光点をウエーハの内部に位置付けて該第2の分割予定ラインに沿って照射し、ウエーハの内部に該第2の分割予定ラインに沿って第2の改質層を形成する第2の改質層形成工程と、
該第1の改質層形成工程および該第2の改質層形成工程を実施した後、該保護部材側を保持してウエーハの裏面から研削手段により研削し仕上げ厚さへと薄化するとともに研削動作により該改質層を起点としてウエーハの表面に至るクラックを該分割予定ラインに沿って成長させ、ウエーハを個々のデバイスに分割する分割工程と、を備え、
該第1の改質層形成工程においてもしくは該第2の改質層形成工程において又は該第1の改質層形成工程および該第2の改質層形成工程の両工程において、
該改質層は、1つの分割予定ラインにつき、該改質層からウエーハの表面に至るクラックの成長を誘導する少なくとも1つ以上の誘導改質層と、該改質層からウエーハの表面に至るクラックの成長を調整するための少なくとも1つ以上の調整改質層と、で複合的に形成されることを特徴とするウエーハの加工方法。
Device in a plurality of regions defined by a plurality of first division lines extending in a predetermined direction on the surface and a plurality of second division lines formed intersecting with the plurality of first division lines Is a wafer processing method for dividing the wafer formed along the first division line and the second division line,
A protective member attaching step for attaching a protective member to the surface side of the wafer;
After the protective member attaching step, the first splitting schedule is performed by holding the protective member side and positioning a laser beam having a wavelength that is transmissive to the wafer from the back side of the wafer with the focusing point inside the wafer. A first modified layer forming step of irradiating along a line and forming a first modified layer along the first division line inside the wafer;
A laser beam having a wavelength that is transmissive to the wafer is irradiated from the back side of the wafer at the focal point inside the wafer along the second division line, and the second division is scheduled inside the wafer. A second modified layer forming step of forming a second modified layer along the line;
After carrying out the first modified layer forming step and the second modified layer forming step, the protective member side is held and ground from the back surface of the wafer by a grinding means to reduce to a finished thickness. A splitting step of growing a crack reaching the surface of the wafer from the modified layer as a starting point by a grinding operation along the planned dividing line, and dividing the wafer into individual devices, and
In the first modified layer forming step or in the second modified layer forming step or in both the first modified layer forming step and the second modified layer forming step,
The modified layer reaches at least one or more induction modified layers for inducing growth of cracks from the modified layer to the surface of the wafer, and from the modified layer to the surface of the wafer for each division line. A method of processing a wafer, wherein the wafer is formed in a composite manner with at least one modified layer for adjusting crack growth.
前記調整改質層は、所定の間隔を設けて各デバイスの1辺に対して少なくとも1回レーザー光線の照射を停止することで、ウエーハの内部に所定の間隔を隔てた非改質層領域を有することを特徴とする請求項1に記載のウエーハの加工方法。   The adjustment modified layer has a non-modified layer region with a predetermined interval inside the wafer by stopping irradiation of the laser beam at least once with respect to one side of each device with a predetermined interval. The wafer processing method according to claim 1. 前記誘導改質層は、前記非改質層領域よりも短い所定の間隔を設けて、各デバイスの1辺に対して少なくとも1回レーザー光線の照射を停止することで、ウエーハの内部に所定の間隔を隔てて該非改質層領域よりも小さい非改質層領域を有することを特徴とする請求項2に記載のウエーハの加工方法。   The induction modified layer has a predetermined interval shorter than that of the non-modified layer region, and stops irradiation of the laser beam at least once with respect to one side of each device. 3. The wafer processing method according to claim 2, further comprising a non-modified layer region that is smaller than the non-modified layer region with a gap therebetween.
JP2016079413A 2016-04-12 2016-04-12 Wafer processing method Active JP6640005B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016079413A JP6640005B2 (en) 2016-04-12 2016-04-12 Wafer processing method
TW106106385A TWI732824B (en) 2016-04-12 2017-02-24 Wafer processing method
KR1020170042995A KR102250209B1 (en) 2016-04-12 2017-04-03 Wafer processing method
CN201710228155.4A CN107293516B (en) 2016-04-12 2017-04-10 Method for processing wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016079413A JP6640005B2 (en) 2016-04-12 2016-04-12 Wafer processing method

Publications (2)

Publication Number Publication Date
JP2017191825A true JP2017191825A (en) 2017-10-19
JP6640005B2 JP6640005B2 (en) 2020-02-05

Family

ID=60085358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016079413A Active JP6640005B2 (en) 2016-04-12 2016-04-12 Wafer processing method

Country Status (4)

Country Link
JP (1) JP6640005B2 (en)
KR (1) KR102250209B1 (en)
CN (1) CN107293516B (en)
TW (1) TWI732824B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190066571A (en) * 2017-12-05 2019-06-13 가부시기가이샤 디스코 Wafer processing method
WO2019176589A1 (en) * 2018-03-14 2019-09-19 東京エレクトロン株式会社 Substrate processing system, substrate processing method, and computer storage medium
JP2020017592A (en) * 2018-07-24 2020-01-30 株式会社ディスコ Wafer division method
JP2020027924A (en) * 2018-08-17 2020-02-20 キオクシア株式会社 Manufacturing method of semiconductor device
US11450578B2 (en) 2018-04-27 2022-09-20 Tokyo Electron Limited Substrate processing system and substrate processing method
US11450523B2 (en) 2018-04-27 2022-09-20 Tokyo Electron Limited Substrate processing system with eccentricity detection device and substrate processing method
JP7233816B2 (en) 2019-02-19 2023-03-07 株式会社ディスコ Wafer processing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10388526B1 (en) * 2018-04-20 2019-08-20 Semiconductor Components Industries, Llc Semiconductor wafer thinning systems and related methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003817A (en) * 2008-06-19 2010-01-07 Tokyo Seimitsu Co Ltd Laser dicing method, and laser dicing device
JP2011041966A (en) * 2009-08-21 2011-03-03 Hamamatsu Photonics Kk Laser machining method and chip
JP2014011445A (en) * 2012-07-03 2014-01-20 Disco Abrasive Syst Ltd Wafer processing method
JP2014078556A (en) * 2012-10-09 2014-05-01 Disco Abrasive Syst Ltd Wafer processing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165850A (en) 2005-11-16 2007-06-28 Denso Corp Wafer, and dividing method thereof
JP5394172B2 (en) 2009-09-03 2014-01-22 株式会社ディスコ Processing method
JP5625522B2 (en) 2010-06-16 2014-11-19 豊田合成株式会社 Laser processing method
JP6039217B2 (en) 2011-11-18 2016-12-07 浜松ホトニクス株式会社 Laser processing method
JP6053381B2 (en) 2012-08-06 2016-12-27 株式会社ディスコ Wafer dividing method
JP6189066B2 (en) * 2013-03-27 2017-08-30 株式会社ディスコ Wafer processing method
JP6301726B2 (en) 2014-05-07 2018-03-28 株式会社ディスコ Optical device processing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003817A (en) * 2008-06-19 2010-01-07 Tokyo Seimitsu Co Ltd Laser dicing method, and laser dicing device
JP2011041966A (en) * 2009-08-21 2011-03-03 Hamamatsu Photonics Kk Laser machining method and chip
JP2014011445A (en) * 2012-07-03 2014-01-20 Disco Abrasive Syst Ltd Wafer processing method
JP2014078556A (en) * 2012-10-09 2014-05-01 Disco Abrasive Syst Ltd Wafer processing method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102611268B1 (en) 2017-12-05 2023-12-06 가부시기가이샤 디스코 Wafer processing method
KR20190066571A (en) * 2017-12-05 2019-06-13 가부시기가이샤 디스코 Wafer processing method
JP7058320B2 (en) 2018-03-14 2022-04-21 東京エレクトロン株式会社 Board processing system, board processing method and computer storage medium
WO2019176589A1 (en) * 2018-03-14 2019-09-19 東京エレクトロン株式会社 Substrate processing system, substrate processing method, and computer storage medium
CN111819662B (en) * 2018-03-14 2024-03-26 东京毅力科创株式会社 Substrate processing system, substrate processing method, and computer storage medium
US11752576B2 (en) 2018-03-14 2023-09-12 Tokyo Electron Limited Substrate processing system for removing peripheral portion of substrate, substrate processing method and computer readable recording medium thereof
CN111819662A (en) * 2018-03-14 2020-10-23 东京毅力科创株式会社 Substrate processing system, substrate processing method, and computer storage medium
JPWO2019176589A1 (en) * 2018-03-14 2021-02-12 東京エレクトロン株式会社 Board processing system, board processing method and computer storage medium
US11450523B2 (en) 2018-04-27 2022-09-20 Tokyo Electron Limited Substrate processing system with eccentricity detection device and substrate processing method
US11450578B2 (en) 2018-04-27 2022-09-20 Tokyo Electron Limited Substrate processing system and substrate processing method
JP7088768B2 (en) 2018-07-24 2022-06-21 株式会社ディスコ Wafer division method
CN110783184B (en) * 2018-07-24 2023-09-26 株式会社迪思科 Wafer dividing method
CN110783184A (en) * 2018-07-24 2020-02-11 株式会社迪思科 Method for dividing wafer
JP2020017592A (en) * 2018-07-24 2020-01-30 株式会社ディスコ Wafer division method
JP7118804B2 (en) 2018-08-17 2022-08-16 キオクシア株式会社 Semiconductor device manufacturing method
US10892191B2 (en) 2018-08-17 2021-01-12 Toshiba Memory Corporation Method of manufacturing a semiconductor device
JP2020027924A (en) * 2018-08-17 2020-02-20 キオクシア株式会社 Manufacturing method of semiconductor device
JP7233816B2 (en) 2019-02-19 2023-03-07 株式会社ディスコ Wafer processing method

Also Published As

Publication number Publication date
JP6640005B2 (en) 2020-02-05
KR102250209B1 (en) 2021-05-07
TW201737329A (en) 2017-10-16
TWI732824B (en) 2021-07-11
CN107293516A (en) 2017-10-24
KR20170116954A (en) 2017-10-20
CN107293516B (en) 2022-02-11

Similar Documents

Publication Publication Date Title
JP6640005B2 (en) Wafer processing method
CN107877011B (en) Method for producing SiC wafer
KR102196934B1 (en) Wafer processing method
US8486806B2 (en) Method for machining wafers by cutting partway through a peripheral surplus region to form break starting points
TW201603130A (en) Wafer processing method
KR102519860B1 (en) Wafer processing method
JP2014078556A (en) Wafer processing method
TWI692017B (en) Processing method of single crystal substrate
JP6844992B2 (en) Wafer processing method
TWI703623B (en) Processing method of optical element wafer
JP6523882B2 (en) Wafer processing method
US20150357224A1 (en) Wafer processing method
TWI757277B (en) Wafer processing method
JP2018186153A (en) Wafer production method
TW201715595A (en) Wafer processing method
TW201707127A (en) Processing method of single crystal substrate
TWI798471B (en) Wafer Processing Method
TW202300265A (en) processing method
TWI793331B (en) Chamfer processing method
KR20190120701A (en) Processing method of a wafer
JP6634300B2 (en) Wafer processing method
TWI831925B (en) Wafer processing methods
JP2018014450A (en) Wafer processing method
JP7016264B2 (en) How to divide the wafer
JP2019201176A (en) Method for forming device chip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191225

R150 Certificate of patent or registration of utility model

Ref document number: 6640005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250