JP2017188243A - Insulation wire and manufacturing method therefor - Google Patents

Insulation wire and manufacturing method therefor Download PDF

Info

Publication number
JP2017188243A
JP2017188243A JP2016074957A JP2016074957A JP2017188243A JP 2017188243 A JP2017188243 A JP 2017188243A JP 2016074957 A JP2016074957 A JP 2016074957A JP 2016074957 A JP2016074957 A JP 2016074957A JP 2017188243 A JP2017188243 A JP 2017188243A
Authority
JP
Japan
Prior art keywords
wire
insulated wire
electrodeposition coating
mass
coating composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016074957A
Other languages
Japanese (ja)
Inventor
山本 哲也
Tetsuya Yamamoto
哲也 山本
桂子 芦田
Keiko Ashida
桂子 芦田
研 林井
Ken HAYASHII
研 林井
豊和 長門
Toyokazu Nagato
豊和 長門
上林 裕之
Hiroyuki Kamibayashi
裕之 上林
賢治 川村
Kenji Kawamura
賢治 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2016074957A priority Critical patent/JP2017188243A/en
Priority to TW106110151A priority patent/TW201807094A/en
Priority to PCT/JP2017/012558 priority patent/WO2017175624A1/en
Publication of JP2017188243A publication Critical patent/JP2017188243A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Insulated Conductors (AREA)
  • Organic Insulating Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an insulation wire excellent in adhesiveness to a conductor of a resin insulation layer and external damage resistance.SOLUTION: An insulation wire 10 has a conductor 11 and a resin insulation layer 12 formed from a polyamide-imide resin coating an outer peripheral surface thereof. Exposure rate of the conductor 11 at a part having a predetermined width with length from a breaking point of 4 mm on a side surface view after the insulation wire is subjected to a drastic elongation test based on JISC3216-3:2011 is 7% or less. Young modulus of the resin insulation layer 12 calculated by a microhardness tester is 9.0×10N/mmor more.SELECTED DRAWING: Figure 1A

Description

本発明は、絶縁電線及びその製造方法に関する。   The present invention relates to an insulated wire and a method for manufacturing the same.

導線を樹脂絶縁層で被覆して絶縁電線を製造することは公知である。特許文献1〜3には、導線を、樹脂を溶剤に溶解させた塗料に浸漬して引き上げた後、導線に塗料を焼き付けて樹脂絶縁層を形成する絶縁電線の製造方法が開示されている。また、特許文献1及び2には、樹脂絶縁層をポリアミドイミド樹脂で形成することが開示されている。   It is known to manufacture an insulated wire by covering a conductive wire with a resin insulating layer. Patent Documents 1 to 3 disclose a method of manufacturing an insulated wire in which a conductive wire is dipped in a paint in which a resin is dissolved in a solvent and pulled up, and then the paint is baked on the conductive wire to form a resin insulating layer. Patent Documents 1 and 2 disclose that the resin insulating layer is formed of a polyamideimide resin.

特開平5−242738号公報JP-A-5-242738 特開昭59−35319号公報JP 59-35319 A 特開2000−169918号公報JP 2000-169918 A

本発明の課題は、導線への樹脂絶縁層の密着性が優れると共に、耐外傷性が優れる絶縁電線及びその製造方法を提供することである。   The subject of this invention is providing the insulated wire which is excellent in the adhesiveness of the resin insulation layer to a conducting wire, and excellent in damage resistance, and its manufacturing method.

本発明の絶縁電線は、導線と、前記導線の外周面を被覆するポリアミドイミド樹脂で形成された樹脂絶縁層とを備えるものであって、前記絶縁電線をJISC3216−3:2011に基づいて急激伸張試験した後の側面視での破断点から長さ4mmの所定幅の部分における前記導線の露出率が7%以下であり、且つ微小硬度計により求められる前記樹脂絶縁層のヤング率が9.0×10N/mm以上である。 The insulated wire of the present invention comprises a conducting wire and a resin insulating layer formed of a polyamide-imide resin covering the outer peripheral surface of the conducting wire, and the insulated wire is rapidly stretched based on JISC3216-3: 2011. The exposure rate of the conducting wire in a portion having a predetermined width of 4 mm from the breaking point in a side view after the test is 7% or less, and the Young's modulus of the resin insulating layer determined by a microhardness meter is 9.0. × 10 3 N / mm 2 or more.

本発明の絶縁電線の製造方法は、導線をO/W型分散液の電着塗料組成物に連続的に通して電着塗装することにより前記導線の外周面を樹脂絶縁層で被覆するものであって、前記電着塗料組成物は、ポリアミドイミド樹脂と、非プロトン性極性溶媒と、水と、を含むと共に固形分濃度が2〜4質量%であり、且つ前記非プロトン性極性溶媒の含有量が10〜20質量%である。   The method for producing an insulated wire according to the present invention is to coat the outer peripheral surface of the conducting wire with a resin insulation layer by continuously conducting the electrode through an electrodeposition coating composition of an O / W dispersion and applying the electrodeposition. The electrodeposition coating composition contains a polyamideimide resin, an aprotic polar solvent, and water, and has a solid content concentration of 2 to 4% by mass, and contains the aprotic polar solvent. The amount is 10 to 20% by mass.

本発明によれば、急激伸張試験した後の導線の露出率が7%以下であり、且つ樹脂絶縁層のヤング率が9.0×10N/mm以上であるので、導線への樹脂絶縁層の優れた密着性と共に、優れた耐外傷性を得ることができる。 According to the present invention, since the exposure rate of the conducting wire after the rapid extension test is 7% or less and the Young's modulus of the resin insulating layer is 9.0 × 10 3 N / mm 2 or more, the resin to the conducting wire In addition to the excellent adhesion of the insulating layer, it is possible to obtain excellent trauma resistance.

実施形態に係る絶縁電線の斜視図である。It is a perspective view of the insulated wire which concerns on embodiment. 実施形態に係る他の絶縁電線の斜視図である。It is a perspective view of the other insulated wire which concerns on embodiment. 絶縁電線の製造方法の工程順を示す図である。It is a figure which shows the process order of the manufacturing method of an insulated wire. コイル絶縁破壊電圧値の測定方法を示す説明図である。It is explanatory drawing which shows the measuring method of a coil dielectric breakdown voltage value. 樹脂絶縁層の熱機械分析(TMA)における温度とプローブの変位量との関係を示すグラフである。It is a graph which shows the relationship between the temperature in the thermomechanical analysis (TMA) of a resin insulating layer, and the displacement amount of a probe. 平角導線の露出率の測定方法を説明するための写真である。It is a photograph for demonstrating the measuring method of the exposure rate of a flat conducting wire. 電着塗料組成物の固形分濃度と樹脂絶縁層の各部分の厚さとの関係を示すグラフである(元電着塗料組成物の固形分濃度6質量%)。It is a graph which shows the relationship between the solid content density | concentration of an electrodeposition coating composition, and the thickness of each part of a resin insulation layer (solid content concentration of 6 mass% of an original electrodeposition coating composition). 電着塗料組成物の固形分濃度と樹脂絶縁層の各部分の厚さとの関係を示すグラフである(元電着塗料組成物の固形分濃度10質量%)。It is a graph which shows the relationship between the solid content density | concentration of an electrodeposition coating composition, and the thickness of each part of a resin insulation layer (solid content concentration of 10 mass% of an original electrodeposition coating composition). 電着塗料組成物の固形分濃度と絶縁破壊電圧との関係を示すグラフである。It is a graph which shows the relationship between the solid content density | concentration of an electrodeposition coating composition, and a dielectric breakdown voltage. 電着塗料組成物の非プロトン性極性溶媒の含有量と被膜凹み及びピンホールの数との関係を示すグラフである。It is a graph which shows the relationship between content of the aprotic polar solvent of an electrodeposition coating composition, and a film dent and the number of pinholes. 電着塗料組成物の塩基性中和剤の含有量と被膜凹み及びピンホールの数との関係を示すグラフである(線速30m/min)。It is a graph which shows the relationship between content of the basic neutralizing agent of an electrodeposition coating composition, a film dent, and the number of pinholes (linear speed 30m / min). 電着塗料組成物の塩基性中和剤の含有量と被膜凹み及びピンホールの数との関係を示すグラフである(線速25m/min)。It is a graph which shows the relationship between content of the basic neutralizing agent of an electrodeposition coating composition, a film dent, and the number of pinholes (linear velocity 25m / min). 電着塗料組成物の塩基性中和剤の含有量と被膜凹み及びピンホールの数との関係を示すグラフである(線速35m/min)。It is a graph which shows the relationship between content of the basic neutralizing agent of an electrodeposition coating composition, a film dent, and the number of pinholes (linear speed 35m / min).

以下、実施形態について詳細に説明する。   Hereinafter, embodiments will be described in detail.

図1A及び1Bは実施形態に係る絶縁電線10を示す。実施形態に係る絶縁電線10は、図1Aに示すように上下面及び両側面が平坦面に形成された断面形状が扁平な矩形のものであっても、また、図1Bに示すように上下面が平坦面に形成され且つ両側面が外側に膨出した曲面に形成された断面形状が扁平なものであっても、どちらでもよい。これらの実施形態に係る絶縁電線10は、例えば、電気・電子機器分野における電子基板上に実装されるコイル、ノイズフィルタ、インダクタ、リアクトル等に用いられるものである。   1A and 1B show an insulated wire 10 according to an embodiment. The insulated wire 10 according to the embodiment has a flat rectangular shape in which the upper and lower surfaces and both side surfaces are formed flat as shown in FIG. 1A, and the upper and lower surfaces as shown in FIG. 1B. The cross-sectional shape formed in the curved surface which is formed in the flat surface and the both side surfaces bulged outside may be either flat. The insulated wire 10 according to these embodiments is used for, for example, a coil, a noise filter, an inductor, a reactor, and the like mounted on an electronic substrate in the field of electric / electronic equipment.

実施形態に係る絶縁電線10は、扁平な断面形状を有する平角導線11と、その外周面を被覆する樹脂絶縁層12とを備えている。   The insulated wire 10 according to the embodiment includes a flat conducting wire 11 having a flat cross-sectional shape and a resin insulating layer 12 covering the outer peripheral surface thereof.

平角導線11は、例えば純度4N以上の高純度銅で形成されている。平角導線11の厚さは例えば0.02〜1mm、及び幅は例えば0.2〜4.0mmである。   The flat conducting wire 11 is made of, for example, high purity copper having a purity of 4N or higher. The flat conductor 11 has a thickness of, for example, 0.02 to 1 mm, and a width of, for example, 0.2 to 4.0 mm.

樹脂絶縁層12は、ポリアミドイミド樹脂で形成されている。樹脂絶縁層12は、単一処理層で構成されていることが好ましい。樹脂絶縁層12の厚さは、好ましくは1.5μm以上、より好ましくは3μm以上であり、また、好ましくは10μm以下、より好ましくは5μm以下である。樹脂絶縁層12の厚さにおいて、通常、長辺中央対応部分12a及び長辺端対応部分12bが相対的に厚く、次いで角対応部分12c、短辺対応部分12dが相対的に薄く形成されるが、それらの部分間の厚さの差が小さく、樹脂絶縁層12の厚さの均一性が高いことが好ましい。それらの部分間の厚さの差は、好ましくは3μm以下、より好ましくは2μm以下である。   The resin insulating layer 12 is made of a polyamideimide resin. The resin insulating layer 12 is preferably composed of a single treatment layer. The thickness of the resin insulating layer 12 is preferably 1.5 μm or more, more preferably 3 μm or more, and preferably 10 μm or less, more preferably 5 μm or less. In the thickness of the resin insulating layer 12, the long side center corresponding part 12a and the long side end corresponding part 12b are usually relatively thick, and then the corner corresponding part 12c and the short side corresponding part 12d are relatively thin. The difference in thickness between these portions is preferably small, and the thickness uniformity of the resin insulating layer 12 is preferably high. The difference in thickness between these parts is preferably 3 μm or less, more preferably 2 μm or less.

樹脂絶縁層12のヤング率は9.0×10N/mm以上であり、優れた耐外傷性を得る観点から、好ましくは1.0×10N/mm以上である。樹脂絶縁層12のヤング率は、微小硬度計により求められる。具体的には、押し込み荷重を制御しながら錐形状(例えば三角錐形状或いは円錐形状)の圧子で樹脂絶縁層12を押し込み、そのときの押し込み荷重に対する押し込み深さの関数をプロットし、それに基づいてヤング率を算出する。なお、錐状の拡がり角度は例えば100°及び115°である。 The Young's modulus of the resin insulating layer 12 is 9.0 × 10 3 N / mm 2 or more, and is preferably 1.0 × 10 4 N / mm 2 or more from the viewpoint of obtaining excellent damage resistance. The Young's modulus of the resin insulating layer 12 is obtained by a micro hardness meter. Specifically, while controlling the indentation load, the resin insulating layer 12 is indented with a cone-shaped (for example, triangular pyramid or cone-shaped) indenter, and a function of the indentation depth against the indentation load is plotted. Calculate Young's modulus. Note that the conical spreading angles are, for example, 100 ° and 115 °.

樹脂絶縁層12における被膜凹みの数は少ないことが好ましく、1.5m当たり好ましくは5個以下、より好ましくは1個以下、最も好ましくは0個である。樹脂絶縁層12におけるピンホールの数も少ないことが好ましく、5m当たり好ましくは10個以下、より好ましくは5個以下、最も好ましくは0個である。   The number of coating recesses in the resin insulating layer 12 is preferably small, and is preferably 5 or less, more preferably 1 or less, and most preferably 0 per 1.5 m. The number of pinholes in the resin insulating layer 12 is also preferably small, preferably 10 or less per 5 m, more preferably 5 or less, and most preferably 0.

実施形態に係る絶縁電線10をJIS C3216−3:2011「巻線試験方法−第3部:機械的特性」に基づいて急激伸張試験した後の側面視での破断点から長さ4mmの所定幅(絶縁電線10の外径にもよるが例えば中央の1mm)の部分における平角導線11の露出率は7%以下であり、平角導線11への樹脂絶縁層12の優れた密着性を得る観点から、好ましくは5%以下、より好ましくは3%以下、最も好ましくは0%である。「急激伸張試験」については、JISC3216−3:2011の「5 可とう性及び密着性」の「5.3 急激伸長試験」に規定されている。また、露出率は、破断した絶縁電線10の先端部分のマイクロスコープによる側面画像の画像処理により求められる。具体的には、側面画像を白色領域と着色領域との単純二値化し、そのうちの白色領域の面積割合を平角導線11の露出率とする。なお、単純二値化の際の閾値は、側面画像を確認して平角導線11が白色となるように設定する。また、側面画像において平角導線11と樹脂絶縁層12との色調分離が困難な場合には、側面画像における平角導線11の露出領域を白色に着色してもよい。   The insulated wire 10 according to the embodiment has a predetermined width of 4 mm from the breaking point in a side view after a rapid extension test based on JIS C3216-3: 2011 “winding test method—part 3: mechanical properties” From the viewpoint of obtaining excellent adhesion of the resin insulation layer 12 to the flat conducting wire 11, the exposure rate of the flat conducting wire 11 in the portion (which depends on the outer diameter of the insulated wire 10, for example, 1 mm in the center) is 7% or less. , Preferably 5% or less, more preferably 3% or less, and most preferably 0%. The “rapid extension test” is defined in “5.3 Rapid extension test” of “5 Flexibility and adhesion” of JIS C3216-3: 2011. Further, the exposure rate is obtained by image processing of a side image using a microscope at the tip of the broken insulated wire 10. Specifically, the side image is simply binarized into a white area and a colored area, and the area ratio of the white area is used as the exposure rate of the flat wire 11. The threshold for simple binarization is set so that the rectangular conducting wire 11 turns white after confirming the side image. Further, when it is difficult to separate the color tone of the flat conducting wire 11 and the resin insulating layer 12 in the side image, the exposed area of the flat conducting wire 11 in the side image may be colored white.

実施形態に係る絶縁電線10の絶縁破壊電圧は、好ましくは0.3V以上、より好ましくは0.5V以上である。この絶縁破壊電圧は、後述の実施例の試験評価2に記載した方法で測定される。   The dielectric breakdown voltage of the insulated wire 10 according to the embodiment is preferably 0.3 V or higher, more preferably 0.5 V or higher. This dielectric breakdown voltage is measured by the method described in Test Evaluation 2 of Examples described later.

実施形態に係る絶縁電線10の樹脂絶縁層12にへら状或いは針状プローブを25mNの力で押し当てて10℃/minの速度で昇温させる熱機械分析(TMA)において、温度とプローブの変位量との関係における変位量の拡大開始点での温度を軟化開始温度とすると、軟化開始温度は、好ましくは250℃以上、より好ましくは260℃以上であり、また、好ましくは400℃以下、より好ましくは350℃以下である。なお、軟化開始温度は、温度とプローブの変位量との関係を示すグラフに基づいて、低温度領域における略水平直線と変位量が拡大する温度領域における変位量拡大直線との交点として求めることができる。また、軟化開始温度は、温度とプローブの変位量との関係の曲線を微分して求めても求めることができる。   In thermomechanical analysis (TMA) in which a spatula or needle probe is pressed against the resin insulation layer 12 of the insulated wire 10 according to the embodiment with a force of 25 mN and the temperature is increased at a rate of 10 ° C./min, the temperature and the displacement of the probe When the temperature at the expansion start point of the displacement amount in relation to the amount is the softening start temperature, the softening start temperature is preferably 250 ° C. or higher, more preferably 260 ° C. or higher, and preferably 400 ° C. or lower, more Preferably it is 350 degrees C or less. The softening start temperature is obtained as an intersection of a substantially horizontal straight line in the low temperature region and a displacement amount expansion line in the temperature region where the displacement amount expands based on a graph showing the relationship between the temperature and the probe displacement amount. it can. The softening start temperature can also be obtained by differentiating the curve of the relationship between temperature and probe displacement.

以上の構成の実施形態に係る絶縁電線10によれば、急激伸張試験した後の平角導線11の露出率が7%以下であり、且つ樹脂絶縁層12のヤング率が9.0×10N/mm以上であるので、平角導線11への樹脂絶縁層12の優れた密着性と共に、優れた耐外傷性を得ることができる。 According to the insulated wire 10 according to the embodiment having the above configuration, the exposure rate of the flat wire 11 after the rapid extension test is 7% or less, and the Young's modulus of the resin insulating layer 12 is 9.0 × 10 3 N. Since it is / mm 2 or more, it is possible to obtain excellent damage resistance as well as excellent adhesion of the resin insulating layer 12 to the flat conductive wire 11.

次に、実施形態に係る絶縁電線10の製造方法について説明する。   Next, the manufacturing method of the insulated wire 10 which concerns on embodiment is demonstrated.

実施形態に係る絶縁電線10の製造方法は、図2に示すように、伸線加工工程、冷間加工工程、焼鈍工程、油分除去工程、及び電着塗装工程を含む。なお、これらの工程は、それぞれの工程をバッチ式で行ってもよく、また、全ての工程を連続式で行ってもよく、更には、例えば伸線加工工程及び冷間加工工程を連続式で行った後、焼鈍工程のみをバッチ式で行い、それ以降の油分除去工程及び電着塗装工程を連続式で行う場合のようにバッチ式と連続式とを組み合わせて行ってもよい。   The manufacturing method of the insulated wire 10 according to the embodiment includes a wire drawing process, a cold working process, an annealing process, an oil removing process, and an electrodeposition coating process, as shown in FIG. In addition, these processes may perform each process by a batch type, and may perform all the processes by a continuous type. Furthermore, for example, a wire drawing process and a cold working process are performed by a continuous type. After performing, only an annealing process may be performed by a batch type, and it may carry out combining a batch type and a continuous type like the case where the oil removal process and electrodeposition coating process after that are performed by a continuous type.

<伸線加工工程>
伸線加工工程では、母線としての荒引線を細径化して横断面が円形の丸線に伸線加工する。伸線加工としては、一般的には、荒引線を伸線ダイスに通す加工が挙げられる。荒引線の外径は例えば8.0mmであり、伸線後の丸線の外径は例えば0.05〜0.2mmである。なお、伸線加工は通常は多段階で行い、例えば、まず外径が8.0mmの荒引き線を外径が2.6〜3.2mmとなるように伸線し、次いで0.6〜0.8mmとなるように伸線し、更に0.05〜0.2mmとなるように伸線する。
<Wire drawing process>
In the wire drawing process, the rough drawn wire as a bus bar is reduced in diameter and drawn into a round wire having a circular cross section. In general, the drawing process includes a process of passing a rough drawing wire through a drawing die. The outer diameter of the rough drawn wire is, for example, 8.0 mm, and the outer diameter of the round wire after drawing is, for example, 0.05 to 0.2 mm. Note that the wire drawing is usually performed in multiple stages. For example, first, a rough drawing wire having an outer diameter of 8.0 mm is drawn so that the outer diameter is 2.6 to 3.2 mm, and then 0.6 to The wire is drawn to 0.8 mm, and further drawn to 0.05 to 0.2 mm.

<冷間加工工程>
冷間加工工程では、伸線工程で伸線した丸線を、外周面に平行な一対の平坦面を含む平角導線11に冷間加工する。冷間加工としては、例えば、丸線を圧延機のローラー間に通す圧延加工、丸線をダイスに通す加工等が挙げられる。図1Aに示すような上下面及び両側面が平坦面に形成された断面形状が扁平な矩形の絶縁電線10を製造する場合、丸線を厚さ方向及び幅方向のそれぞれで圧延加工することにより同様の断面形状の平角導線11を得ることができる。また、図1Bに示すような上下面が平坦面に形成され且つ両側面が外側に膨出した曲面に形成された断面形状が扁平の絶縁電線10を製造する場合、丸線を厚さ方向で圧延加工することにより同様の断面形状の平角導線11を得ることができる。
<Cold working process>
In the cold working process, the round wire drawn in the drawing process is cold worked into a flat conducting wire 11 including a pair of flat surfaces parallel to the outer peripheral surface. Examples of cold working include rolling that passes a round wire between rollers of a rolling mill, processing that passes a round wire through a die, and the like. When manufacturing the insulated electric wire 10 having a flat cross-sectional shape in which the upper and lower surfaces and both side surfaces are formed flat as shown in FIG. 1A, the round wire is rolled in each of the thickness direction and the width direction. A flat conducting wire 11 having a similar cross-sectional shape can be obtained. In addition, when manufacturing an insulated electric wire 10 having a flat cross section formed on a curved surface in which the upper and lower surfaces are formed as flat surfaces and both side surfaces bulge outward as shown in FIG. The flat conducting wire 11 having the same cross-sectional shape can be obtained by rolling.

<焼鈍工程>
焼鈍工程では、熱処理により、平角導線11を形成する金属の結晶粒度や0.2%耐力等の物性調整を行う。この焼鈍工程での熱処理は、長さ方向の特性を均一化させる観点からはバッチ式で行うことが好ましく、その場合、冷間加工工程後の平角導線11を巻回したボビンを熱処理炉に投入後、所定の昇温速度で炉内の温度を所定の保持温度まで高め、その保持温度で所定の保持時間を保持した後、所定の降温速度で炉内の温度を低下させることが好ましい。ここで、昇温速度は例えば20〜2000℃/hである。保持温度(焼鈍温度)は例えば150〜1000℃である。保持時間(焼鈍時間)は例えば1秒間〜100時間である。降温速度は例えば10〜2000℃/hである。また、熱処理を連続式で行う場合、熱処理条件は、例えば焼鈍温度500〜900℃及び焼鈍時間1〜60秒である。熱処理は、窒素ガス等の不活性ガス雰囲気で行うことが好ましい。なお、細径である場合、この焼鈍工程による熱処理は必ずしも必要でない。
<Annealing process>
In the annealing step, physical properties such as crystal grain size and 0.2% proof stress of the metal forming the flat wire 11 are adjusted by heat treatment. The heat treatment in this annealing process is preferably performed batchwise from the viewpoint of uniforming the characteristics in the length direction. In that case, the bobbin around which the flat wire 11 is wound after the cold working process is put into a heat treatment furnace. After that, it is preferable to raise the temperature in the furnace to a predetermined holding temperature at a predetermined temperature rising rate, hold the predetermined holding time at the holding temperature, and then lower the temperature in the furnace at a predetermined temperature lowering rate. Here, the temperature rising rate is, for example, 20 to 2000 ° C./h. The holding temperature (annealing temperature) is, for example, 150 to 1000 ° C. The holding time (annealing time) is, for example, 1 second to 100 hours. The cooling rate is, for example, 10 to 2000 ° C./h. Moreover, when performing heat processing by a continuous type, heat processing conditions are the annealing temperature of 500-900 degreeC, and annealing time 1-60 seconds, for example. The heat treatment is preferably performed in an inert gas atmosphere such as nitrogen gas. In addition, when it is a small diameter, the heat processing by this annealing process is not necessarily required.

<油分除去工程>
油分除去工程では、平角導線11の外周面に付着した油分を洗浄除去する。この油分除去工程での洗浄は、例えば、平角導線11を洗浄液に浸漬して引き上げた後、窒素ガス等の不活性ガスを吹き付けて平角導線11の外周面に付着した洗浄液を飛散させることにより行うことができる。ここで、洗浄液としては、例えば、水(温水)、有機溶剤等が挙げられる。洗浄液を水とする場合、水温は例えば10〜60℃である。洗浄液には洗剤を含めてもよい。
<Oil removal process>
In the oil removal step, the oil attached to the outer peripheral surface of the flat conducting wire 11 is removed by washing. Cleaning in this oil removal step is performed by, for example, immersing and pulling up the flat conducting wire 11 in the cleaning liquid and then spraying an inert gas such as nitrogen gas to scatter the cleaning liquid adhering to the outer peripheral surface of the flat conducting wire 11. be able to. Here, examples of the cleaning liquid include water (warm water), an organic solvent, and the like. When the cleaning liquid is water, the water temperature is, for example, 10 to 60 ° C. The cleaning liquid may contain a detergent.

<電着塗装工程>
電着塗装工程では、電着塗料組成物を用いて電着塗装することにより平角導線11の外周面を樹脂絶縁層12で被覆する。具体的には、平角導線11を電着塗料組成物に連続して通すと共に平角導線11を一方の電極として電着塗料組成物に電圧を印加することにより平角導線11の外周面に電着塗料組成物を付着させ、そして、それを焼付炉に通して平角導線11の外周面に付着した電着塗料組成物を焼き付けることにより樹脂絶縁層12を形成する。
<Electrodeposition painting process>
In the electrodeposition coating step, the outer peripheral surface of the flat conducting wire 11 is covered with the resin insulating layer 12 by electrodeposition coating using the electrodeposition coating composition. Specifically, the rectangular conductive wire 11 is continuously passed through the electrodeposition coating composition, and a voltage is applied to the electrodeposition coating composition using the flat conductive wire 11 as one electrode, whereby the electrodeposition coating is applied to the outer peripheral surface of the rectangular conductive wire 11. The resin insulation layer 12 is formed by depositing the composition and baking the electrodeposition coating composition deposited on the outer peripheral surface of the flat wire 11 through a baking furnace.

ここで、電着塗装に用いる電着塗料組成物は、ポリアミドイミド樹脂と、非プロトン性極性溶媒と、塩基性中和剤と、着色剤と、水とを含み、ポリアミドイミド樹脂の粒子が水に分散したO/W型分散液である。電着塗料組成物は、アニオン型のものであっても、また、カチオン型のものであっても、どちらでもよい。   Here, the electrodeposition coating composition used for electrodeposition coating includes a polyamideimide resin, an aprotic polar solvent, a basic neutralizing agent, a colorant, and water, and the polyamideimide resin particles are water. O / W type dispersion dispersed in The electrodeposition coating composition may be either an anionic type or a cationic type.

ポリアミドイミド樹脂の数平均分子量は例えば5000〜75000である。ポリアミドイミド樹脂の数平均分子量は、ゲルパーミエーションクロマトグラフ(GPC)により標準ポリスチレンの検量線を用いて測定される。   The number average molecular weight of the polyamideimide resin is, for example, 5000 to 75000. The number average molecular weight of the polyamideimide resin is measured by gel permeation chromatography (GPC) using a standard polystyrene calibration curve.

ポリアミドイミド樹脂の酸価は例えば10〜50mgKOH/gである。ポリアミドイミド樹脂の酸価は、JISK5601−2−1:1999「塗料成分試験方法−第2部:溶剤可溶物中の成分分析−第1節:酸価(滴定法)」に基づいて測定される。   The acid value of the polyamideimide resin is, for example, 10 to 50 mgKOH / g. The acid value of the polyamide-imide resin is measured based on JISK5601-2-1: 1999 “Paint component test method-Part 2: Component analysis in solvent-soluble materials—Section 1: Acid value (titration method)”. The

「非プロトン性極性溶媒」とは、アルコールを除く極性有機溶媒である。非プロトン性極性溶媒は、極性を有することから、水に対する親和性が高く、水と混合した際に相分離することなく相溶して均一な単一相となる。電着塗料組成物に含まれる非プロトン性極性溶媒は、ポリアミドイミド樹脂に対しての良溶媒であることが必要である。「ポリアミドイミド樹脂に対する良溶媒」とは、ポリアミドイミド樹脂に対する溶解性が高い溶媒、具体的には、25℃における溶媒1kgに対するポリアミドイミド樹脂の溶解量が100g以上である溶媒をいう。かかる非プロトン性極性溶媒としては、例えば、N−メチル−2−ピロリドン(以下「NMP」という。)、ジメチルホルムアミド(以下「DMF」という。)、1,3−ジメチル−2−イミダゾリジノン(以下「DMI」という。)、ジメチルアセトアミド、γ−ブチロラクトン、ジメチルスルホキシド、スルホラン、シクロヘキサノンのうちの1種又は2種以上を含むことが好ましい。非プロトン性極性溶媒は、NMP、又は、NMPに加えてDMFを含むことがより好ましい。   “Aprotic polar solvent” is a polar organic solvent excluding alcohol. Since the aprotic polar solvent has polarity, it has a high affinity for water, and when mixed with water, the aprotic polar solvent dissolves without phase separation and becomes a uniform single phase. The aprotic polar solvent contained in the electrodeposition coating composition needs to be a good solvent for the polyamideimide resin. The “good solvent for polyamideimide resin” refers to a solvent having high solubility in polyamideimide resin, specifically, a solvent in which the amount of polyamideimide resin dissolved in 1 kg of solvent at 25 ° C. is 100 g or more. Examples of such aprotic polar solvents include N-methyl-2-pyrrolidone (hereinafter referred to as “NMP”), dimethylformamide (hereinafter referred to as “DMF”), 1,3-dimethyl-2-imidazolidinone ( Hereinafter, it is preferably referred to as “DMI”), dimethylacetamide, γ-butyrolactone, dimethyl sulfoxide, sulfolane, or cyclohexanone. More preferably, the aprotic polar solvent contains NMP or DMF in addition to NMP.

電着塗料組成物における非プロトン性極性溶媒の含有量は10〜20質量%であり、樹脂絶縁層12におけるピンホールの形成を抑制する観点から、好ましくは10質量%以上であり、また、樹脂絶縁層12における被膜凹みの形成を抑制する観点から、好ましくは20質量%以下である。非プロトン性極性溶媒の含有量の水の含有量に対する比(非プロトン性極性溶媒の含有量/水の含有量)は、ゲル化の発生を抑制する観点から、好ましくは50/50以下であり、また、電着塗装速度を高める観点から、好ましくは60/40以下、より好ましくは30/70以下である。電着塗料組成物の非プロトン性極性溶媒がNMPを含む場合、電着塗料組成物におけるNMPの含有量は、好ましくは7質量%以上、より好ましくは10質量%以上であり、また、好ましくは30質量%以下、より好ましくは23質量%以下である。電着塗料組成物の非プロトン性極性溶媒がNMPに加えてDMFを含む場合、電着塗料組成物におけるDMFの含有量は、好ましくは1質量%以上、より好ましくは3質量%以上であり、また、好ましくは20質量%以下、より好ましくは10質量%以下である。NMPの含有量に対するDMFの含有量の割合((DMF含有量/NMP含有量)×100)は、好ましくは5%以上、より好ましくは8%以上であり、また、好ましくは100%以下、より好ましくは12%以下である。   The content of the aprotic polar solvent in the electrodeposition coating composition is 10 to 20% by mass, and preferably 10% by mass or more from the viewpoint of suppressing the formation of pinholes in the resin insulating layer 12, and the resin From the viewpoint of suppressing the formation of a film dent in the insulating layer 12, the content is preferably 20% by mass or less. The ratio of the aprotic polar solvent content to the water content (aprotic polar solvent content / water content) is preferably 50/50 or less from the viewpoint of suppressing the occurrence of gelation. Also, from the viewpoint of increasing the electrodeposition coating speed, it is preferably 60/40 or less, more preferably 30/70 or less. When the aprotic polar solvent of the electrodeposition coating composition contains NMP, the content of NMP in the electrodeposition coating composition is preferably 7% by mass or more, more preferably 10% by mass or more, and preferably It is 30 mass% or less, More preferably, it is 23 mass% or less. When the aprotic polar solvent of the electrodeposition coating composition contains DMF in addition to NMP, the DMF content in the electrodeposition coating composition is preferably 1% by mass or more, more preferably 3% by mass or more, Moreover, Preferably it is 20 mass% or less, More preferably, it is 10 mass% or less. The ratio of the DMF content to the NMP content ((DMF content / NMP content) × 100) is preferably 5% or more, more preferably 8% or more, and preferably 100% or less, more Preferably it is 12% or less.

塩基性中和剤としては、例えば、2−アミノエタノール(以下「AE」という。)、2,2−イミノジエタノール、2−アミノ−2−メチルプロパノールなどのアミノアルコール系化合物;モルホリンなどのモルホリン系化合物;ピペラジン無水物、ピペラジン六水和物などのピペラジン系化合物;トリエチルアミン、トリプロピルアミンなどのアルキルアミン系化合物;ピペリジンなどのピペリジン系化合物等が挙げられる。塩基性中和剤は、これらのうちの1種又は2種以上を含むことが好ましい。塩基性中和剤は、沈殿の発生による電着塗料組成物の固形分の損失を抑制する観点から、分子中にアミノ基及び水酸基を有する化合物を含むことが好ましく、アミノアルコール系化合物を含むことがより好ましく、2−アミノエタノールを含むことが更に好ましい。電着塗料組成物における塩基性中和剤の含有量は例えば0.18〜0.22質量%である。電着塗料組成物における固形分1g当たりの塩基性中和剤のミリグラム数は例えば26〜40mgである。塩基性中和剤による電着塗料組成物の中和率は例えば80〜120%である。電着塗料組成物の中和率は電位差滴定で測定される。   Examples of the basic neutralizer include amino alcohol compounds such as 2-aminoethanol (hereinafter referred to as “AE”), 2,2-iminodiethanol, and 2-amino-2-methylpropanol; morpholine compounds such as morpholine. Compounds; piperazine-based compounds such as piperazine anhydride and piperazine hexahydrate; alkylamine-based compounds such as triethylamine and tripropylamine; piperidine-based compounds such as piperidine. The basic neutralizing agent preferably contains one or more of these. The basic neutralizing agent preferably contains a compound having an amino group and a hydroxyl group in the molecule from the viewpoint of suppressing the loss of the solid content of the electrodeposition coating composition due to the occurrence of precipitation, and contains an amino alcohol compound. Is more preferable, and it is still more preferable that 2-aminoethanol is included. The content of the basic neutralizing agent in the electrodeposition coating composition is, for example, 0.18 to 0.22% by mass. The number of milligrams of the basic neutralizing agent per gram of solid content in the electrodeposition coating composition is, for example, 26 to 40 mg. The neutralization rate of the electrodeposition coating composition with the basic neutralizing agent is, for example, 80 to 120%. The neutralization rate of the electrodeposition coating composition is measured by potentiometric titration.

着色剤としては、例えば、C.I.ソルベントブラック3、C.I.ソルベントブラック27、C.I.ソルベントブラック7等が挙げられる。着色剤は、これらのうちの1種又は2種以上を含むことが好ましい。着色剤は、均一に着色する観点から、C.I.ソルベントブラック3を含むことが好ましい。電着塗料組成物におけるポリアミドイミド樹脂100質量部に対する着色剤の含有量は例えば1〜7質量部である。   Examples of the colorant include C.I. I. Solvent Black 3, C.I. I. Solvent Black 27, C.I. I. Solvent black 7 etc. are mentioned. The colorant preferably contains one or more of these. From the viewpoint of uniformly coloring the colorant, C.I. I. It is preferable that Solvent Black 3 is included. The content of the colorant with respect to 100 parts by mass of the polyamideimide resin in the electrodeposition coating composition is, for example, 1 to 7 parts by mass.

水は、例えば、イオン交換水や蒸留水である。電着塗料組成物における水の含有量は例えば50〜90質量%である。   The water is, for example, ion exchange water or distilled water. The water content in the electrodeposition coating composition is, for example, 50 to 90% by mass.

電着塗料組成物は、その他にナフサなどの非プロトン性非極性溶媒やアルコールなどのプロトン性極性溶媒等を含んでいてもよい。   In addition, the electrodeposition coating composition may contain an aprotic nonpolar solvent such as naphtha or a protic polar solvent such as alcohol.

電着塗料組成物の固形分濃度は1〜5質量%であり、優れた電着塗装加工性を得る観点から、好ましくは2質量%以上であり、また、樹脂絶縁層12の角対応部分12c及び短辺対応部分12dの厚さを厚く形成する観点から、好ましくは4質量%以下である。電着塗料組成物は、高固形分濃度のものを希釈したものであってもよい。   The solid content concentration of the electrodeposition coating composition is 1 to 5% by mass, preferably 2% by mass or more from the viewpoint of obtaining excellent electrodeposition coating processability, and the corner corresponding portion 12c of the resin insulating layer 12 And from a viewpoint of forming the thickness of the short side corresponding | compatible part 12d thickly, Preferably it is 4 mass% or less. The electrodeposition coating composition may be diluted with a high solid content concentration.

電着塗料組成物の50%径(D50:メジアン径)は例えば20〜5000nmである。90%径(D90)は例えば100〜20000nmである。10%径(D10)は例えば10〜2000nmである。これらの電着塗料組成物の粒子径は、例えば大塚電子社製のゼータ電位・粒径・分子量測定システム(ELSZ−2000ZS)を用いた動的光散乱法により測定される。 The 50% diameter (D 50 : median diameter) of the electrodeposition coating composition is, for example, 20 to 5000 nm. The 90% diameter (D 90 ) is, for example, 100 to 20000 nm. The 10% diameter (D 10 ) is, for example, 10 to 2000 nm. The particle size of these electrodeposition coating compositions is measured, for example, by a dynamic light scattering method using a zeta potential / particle size / molecular weight measurement system (ELSZ-2000ZS) manufactured by Otsuka Electronics Co., Ltd.

電着塗料組成物の粘度は、B型粘度計により測定され、例えば1.0〜2.0mPa・sである。電着塗料組成物のpHは、pHメーターにより測定され、例えば7〜9である。電着塗料組成物の液温は、例えば10〜30℃である。   The viscosity of the electrodeposition coating composition is measured with a B-type viscometer and is, for example, 1.0 to 2.0 mPa · s. The pH of the electrodeposition coating composition is measured with a pH meter and is, for example, 7-9. The liquid temperature of the electrodeposition coating composition is, for example, 10 to 30 ° C.

電着塗料組成物は、例えば、ポリアミドイミド樹脂を含む油相成分と水相成分とをそれぞれ準備し、それらを混合した後に撹拌して転相乳化させることにより調製することができる。この撹拌には、汎用の乳化機、分散機、混合機、又は、攪拌機を用いることができる。具体的には、例えば、高剪断を与えることができるローター式又はステーター式ミキサー、コロイドミル、ホモジナイザー、高圧ホモジナイザー等が挙げられる。撹拌の際における撹拌翼の外周の周速は例えば1〜25m/secである。撹拌時間は例えば1〜30分である。   The electrodeposition coating composition can be prepared, for example, by preparing an oil phase component and a water phase component each containing a polyamideimide resin, mixing them, and stirring to phase inversion emulsification. For this stirring, a general-purpose emulsifier, a disperser, a mixer, or a stirrer can be used. Specifically, for example, a rotor type or stator type mixer capable of giving high shear, a colloid mill, a homogenizer, a high pressure homogenizer and the like can be mentioned. The peripheral speed of the outer periphery of the stirring blade during stirring is, for example, 1 to 25 m / sec. The stirring time is, for example, 1 to 30 minutes.

平角導線11を電着塗料組成物に通すときの線速は、優れた生産性を得る観点から、好ましくは20m/min以上、より好ましくは25m/min以上であり、また、樹脂絶縁層12における被膜凹み及びピンホールの形成を抑制すると共に樹脂絶縁層12を十分な厚さに形成する観点から、好ましくは40m/min以下、より好ましくは35m/min以下である。   From the viewpoint of obtaining excellent productivity, the linear velocity when the flat wire 11 is passed through the electrodeposition coating composition is preferably 20 m / min or more, more preferably 25 m / min or more. From the viewpoint of suppressing the formation of the film dent and the pinhole and forming the resin insulating layer 12 with a sufficient thickness, it is preferably 40 m / min or less, more preferably 35 m / min or less.

電着塗装工程では、電着塗料組成物を入れた槽を隔室に収容し、低真空雰囲気(100Pa以上)或いは窒素ガス雰囲気で平角導線11の電着塗料組成物への浸漬を行ってもよい。電着塗料組成物への電圧印加は、定電流法で行っても、また、定電圧法で行っても、どちらでもよい。その印加電圧は、例えば10〜100Vである。   In the electrodeposition coating process, the tank containing the electrodeposition coating composition is housed in a compartment, and the flat wire 11 is immersed in the electrodeposition coating composition in a low vacuum atmosphere (100 Pa or more) or a nitrogen gas atmosphere. Good. The voltage application to the electrodeposition coating composition may be performed by a constant current method or a constant voltage method. The applied voltage is, for example, 10 to 100V.

電着塗料組成物から出た後に焼付炉に入るまでの間に平角導線11の外周面に付着した電着塗料組成物は溶媒成分が飛散して濃縮されることとなるが、平角導線11の外周面に付着したその濃縮された電着塗料組成物の固形分濃度は、樹脂絶縁層12における被膜凹み及びピンホールの形成を抑制する観点から、好ましくは8質量%以上、より好ましくは10質量%以上である。この固形分濃度は、元の電着塗料組成物の固形分濃度や粘度によって調整することができる。   The electrodeposition coating composition adhering to the outer peripheral surface of the flat conducting wire 11 after exiting the electrodeposition coating composition and entering the baking furnace is concentrated by scattering the solvent component. The solid content concentration of the concentrated electrodeposition coating composition adhering to the outer peripheral surface is preferably 8% by mass or more, more preferably 10% by mass from the viewpoint of suppressing the formation of film dents and pinholes in the resin insulating layer 12. % Or more. This solid content concentration can be adjusted by the solid content concentration and viscosity of the original electrodeposition coating composition.

焼付処理温度、つまり、焼付炉の炉内温度は、例えば200〜500℃である。焼付処理時間は、例えば5〜100秒である。焼付処理時間は、平角導線11の線速の設定によって調節することができる。焼付処理は、単一の焼付処理温度により一段階で行っても、また、相互に異なる焼付処理温度の多段階で行っても、どちらでもよい。   The baking temperature, that is, the temperature inside the baking furnace is, for example, 200 to 500 ° C. The baking process time is, for example, 5 to 100 seconds. The baking treatment time can be adjusted by setting the linear speed of the flat wire 11. The baking process may be performed in one stage depending on a single baking process temperature, or may be performed in multiple stages at different baking process temperatures.

以上のような実施形態に係る絶縁電線10の製造方法によれば、平角導線11への樹脂絶縁層12の密着性が優れると共に耐外傷性が優れる絶縁電線10を得ることができる。例えば、樹脂を有機溶剤に溶解させた塗料を用いて樹脂絶縁層を形成する場合、1回の処理で形成される被膜が薄いことから複数回の処理を必要とし、そのため内側部分に過剰な熱が加えられて導体との密着性が低くなるが、実施形態に係る絶縁電線10の製造方法では、ポリアミドイミド樹脂と非プロトン性極性溶媒と水とを含むと共に固形分濃度が2〜4質量%であり、且つ非プロトン性極性溶媒の含有量が10〜20質量%である電着塗料組成物を用いて電着塗装を行い、1回の処理で厚肉の被膜が形成されるので、平角導線11への樹脂絶縁層12の優れた密着性を得ることができる。加えて、電着塗料組成物が、ポリアミドイミド樹脂と非プロトン性極性溶媒と水とを含むと共に固形分濃度が2〜4質量%であり、且つ非プロトン性極性溶媒の含有量が10〜15質量%であるので、平角状の絶縁電線10における樹脂絶縁層12の角対応部分12c及び短辺対応部分12dの厚さを厚く形成することができる。   According to the manufacturing method of the insulated wire 10 according to the embodiment as described above, it is possible to obtain the insulated wire 10 that has excellent adhesion of the resin insulating layer 12 to the flat conductive wire 11 and excellent damage resistance. For example, when a resin insulating layer is formed using a paint in which a resin is dissolved in an organic solvent, a thin film is formed in one process, and thus multiple processes are required. However, in the method for manufacturing the insulated wire 10 according to the embodiment, the solid content concentration is 2 to 4% by mass, including a polyamideimide resin, an aprotic polar solvent, and water. And electrodeposition coating is performed using an electrodeposition coating composition having an aprotic polar solvent content of 10 to 20% by mass, and a thick film is formed by one treatment. Excellent adhesion of the resin insulating layer 12 to the conducting wire 11 can be obtained. In addition, the electrodeposition coating composition contains a polyamideimide resin, an aprotic polar solvent, and water, has a solid content concentration of 2 to 4% by mass, and a content of the aprotic polar solvent is 10 to 15. Since it is mass%, the thickness of the corner | angular corresponding | compatible part 12c and the short side corresponding | compatible part 12d of the resin insulating layer 12 in the flat insulated wire 10 can be formed thickly.

なお、上記実施形態では、断面形状が扁平な矩形の絶縁電線10を示したが、特にこれに限定されるものではなく、例えば、厚さ方向及び幅方向の寸法が等しい断面形状が正方形のものであってもよく、また、断面形状が円形の丸線であってもよい。   In the above embodiment, the rectangular insulated wire 10 having a flat cross-sectional shape is shown. However, the present invention is not particularly limited thereto. For example, the cross-sectional shape having the same dimension in the thickness direction and the width direction is square. In addition, the cross-sectional shape may be a circular round line.

[試験評価1]
(絶縁電線)
<実施例1>
数平均分子量10000及び酸価33mgKOH/gのポリアミドイミド樹脂(5.8質量%)と、非プロトン性極性溶媒のNMP(36.8質量%)及びDMF(3.4質量%)と、塩基性中和剤のAE(0.19質量%)と、着色剤のC.I.ソルベントブラック3(ポリアミドイミド樹脂100質量部に対して0.50質量部)と、水(54質量%)とを含み、非プロトン性極性溶媒の含有量(NMP含有量+DMF含有量)が40質量%であり、且つ(DMF含有量/NMP含有量)×100=9.2%である固形分濃度が5.8質量%のO/W型分散液の電着塗料組成物を調製した。
[Test Evaluation 1]
(Insulated wire)
<Example 1>
Polyamideimide resin (5.8% by mass) having a number average molecular weight of 10000 and an acid value of 33 mgKOH / g, aprotic polar solvents NMP (36.8% by mass) and DMF (3.4% by mass), basic Neutralizing agent AE (0.19% by mass) and coloring agent C.I. I. Solvent Black 3 (0.50 parts by mass with respect to 100 parts by mass of polyamideimide resin) and water (54% by mass), and the content of aprotic polar solvent (NMP content + DMF content) is 40 masses %, And (DMF content / NMP content) × 100 = 9.2%, an O / W type dispersion electrodeposition coating composition having a solid content concentration of 5.8% by mass was prepared.

この電着塗料組成物を水で3倍に希釈して電着ワニスとし、この電着ワニスに厚さ0.05mm及び幅0.3mmの高純度銅の平角導線を線速30m/minで連続的に通して100mAの電流を流し、また、電着ワニスから引き上げた平角導線を、絶縁層焼き付け用の一次焼付炉の上段ゾーン(210℃)、中段ゾーン(245℃)、下段ゾーン(290℃)、並びに融着層焼き付け用の二次焼付炉の上段ゾーン(280℃)、中段ゾーン(300℃)、下段ゾーン(320℃)に順に通して電着塗装することにより平角導線の外周面を樹脂絶縁層で被覆して絶縁電線を作製した。得られた絶縁電線を実施例1とした。   This electrodeposition coating composition is diluted three times with water to form an electrodeposition varnish, and a flat copper wire having a thickness of 0.05 mm and a width of 0.3 mm is continuously applied to the electrodeposition varnish at a linear velocity of 30 m / min. The rectangular conductor wire pulled up from the electrodeposition varnish was passed through an upper zone (210 ° C.), a middle zone (245 ° C.), a lower zone (290 ° C.) ), And the outer zone of the rectangular conducting wire by electrodeposition coating through the upper zone (280 ° C.), the middle zone (300 ° C.) and the lower zone (320 ° C.) in order of the secondary baking furnace for baking the fusion layer. An insulated wire was produced by covering with a resin insulating layer. The obtained insulated wire was taken as Example 1.

<実施例2>
実施例1の絶縁電線に300℃で5分間の追加加熱を施したものを実施例2とした。
<Example 2>
Example 2 was obtained by subjecting the insulated wire of Example 1 to additional heating at 300 ° C. for 5 minutes.

<比較例1>
ポリアミドイミド樹脂の代わりにポリイミド樹脂を含む電着塗料組成物を用いたことを除いて実施例1と同様に絶縁電線を作製した。この絶縁電線を比較例1とした。
<Comparative Example 1>
An insulated wire was produced in the same manner as in Example 1 except that an electrodeposition coating composition containing a polyimide resin was used instead of the polyamideimide resin. This insulated wire was referred to as Comparative Example 1.

<比較例2>
ポリアミドイミド樹脂を溶剤に溶解させた塗料に平角導線を線速30m/minで連続的に通して焼き付けることにより平角導線の外周面を樹脂絶縁層で被覆して絶縁電線を作製した。得られた絶縁電線を比較例2とした。
<Comparative example 2>
A flat wire was continuously passed through a paint in which a polyamide-imide resin was dissolved in a solvent at a wire speed of 30 m / min and baked to coat the outer peripheral surface of the flat wire with a resin insulating layer to produce an insulated wire. The obtained insulated wire was referred to as Comparative Example 2.

<比較例3>
実施例1の絶縁電線に300℃で10分間の追加加熱を施したものを比較例3とした。
<Comparative Example 3>
Comparative Example 3 was obtained by subjecting the insulated wire of Example 1 to additional heating at 300 ° C. for 10 minutes.

(試験評価方法)
<平角導線の露出率>
実施例1及び2並びに比較例1〜3のそれぞれについて、JIS C3216−3:2011に基づいて急激伸張試験した後の側面視での図3に示すように破断点から長さ4mm及び中央の幅0.3mmの部分における平角導線の露出率を画像処理により求めた。
(Test evaluation method)
<Exposure rate of flat wire>
About each of Example 1 and 2 and Comparative Examples 1-3, as shown in FIG. 3 in the side view after carrying out the rapid extension | expansion test based on JISC3216-3: 2011, length 4mm and width | variety of a center are shown. The exposure rate of the rectangular conducting wire in the 0.3 mm portion was determined by image processing.

<樹脂絶縁層のヤング率>
実施例1及び2並びに比較例1〜3のそれぞれについて、微小硬度計(島津製作所社製 型番:DUH−211)により樹脂絶縁層のヤング率を求めた。なお、圧子には、拡がり角度が115°の三角錐形状のものを用いた。
<Young's modulus of resin insulation layer>
About each of Example 1 and 2 and Comparative Examples 1-3, the Young's modulus of the resin insulating layer was calculated | required with the microhardness meter (Shimadzu Corporation model number: DUH-211). The indenter used was a triangular pyramid with an expansion angle of 115 °.

<樹脂絶縁層の軟化開始温度>
実施例1及び比較例1のそれぞれについて、熱機械的分析装置(日立ハイテクサイエンス社製 TMA7100)を用い、絶縁電線の樹脂絶縁層にへら状プローブを25mNの力で押し当てて10℃/minの速度で昇温させる熱機械分析(TMA)を行った。そして、温度とプローブの変位量との関係における変位量の拡大開始点での温度を軟化開始温度としてグラフから求めた。
<Softening start temperature of resin insulation layer>
For each of Example 1 and Comparative Example 1, using a thermomechanical analyzer (TMA7100 manufactured by Hitachi High-Tech Science Co., Ltd.), the spatula probe was pressed against the resin insulation layer of the insulated wire with a force of 25 mN at 10 ° C./min. Thermomechanical analysis (TMA) was performed to raise the temperature at a rate. And the temperature at the expansion start point of the displacement amount in the relationship between the temperature and the displacement amount of the probe was obtained from the graph as the softening start temperature.

(試験評価結果)
表1は試験結果を示す。
(Test evaluation results)
Table 1 shows the test results.

以上の結果によれば、導線の露出率が7%以下であり、且つ樹脂絶縁層のヤング率が9.0×10N/mm以上である実施例1及び2では、平角導線への樹脂絶縁層の優れた密着性と共に、優れた耐外傷性を期待することができる。一方、導線の露出率が7%以下である比較例1では、平角導線への樹脂絶縁層の優れた密着性を期待できるものの、ヤング率が9.0×10N/mmよりも低いので、優れた耐外傷性を期待することができない。また、樹脂絶縁層のヤング率が9.0×10N/mm以上である比較例2及び3では、優れた耐外傷性を期待することはできるものの、導線の露出率が7%よりも大きいので、平角導線への樹脂絶縁層の高い密着性は期待することができない。 According to the above results, in Examples 1 and 2 in which the exposure rate of the conducting wire is 7% or less and the Young's modulus of the resin insulating layer is 9.0 × 10 3 N / mm 2 or more, In addition to the excellent adhesion of the resin insulating layer, it is possible to expect excellent trauma resistance. On the other hand, in Comparative Example 1 where the exposure rate of the conducting wire is 7% or less, although excellent adhesion of the resin insulating layer to the rectangular conducting wire can be expected, the Young's modulus is lower than 9.0 × 10 3 N / mm 2. As such, excellent trauma resistance cannot be expected. Further, in Comparative Examples 2 and 3 in which the Young's modulus of the resin insulating layer is 9.0 × 10 3 N / mm 2 or more, although excellent trauma resistance can be expected, the exposure rate of the conductive wire is more than 7%. Therefore, high adhesion of the resin insulating layer to the flat conductor cannot be expected.

図4は、温度とプローブの変位量との関係を示す。   FIG. 4 shows the relationship between temperature and probe displacement.

このグラフより、実施例1の樹脂絶縁層のポリアミドイミド樹脂の軟化開始温度は270℃と高いのに対し、比較例1の樹脂絶縁層のポリイミド樹脂の軟化開始温度は230℃とそれよりも低いことが分かる。   From this graph, the softening start temperature of the polyamideimide resin of the resin insulating layer of Example 1 is as high as 270 ° C., whereas the softening start temperature of the polyimide resin of the resin insulating layer of Comparative Example 1 is as low as 230 ° C. I understand that.

[試験評価2]
数平均分子量10000及び酸価33mgKOH/gのポリアミドイミド樹脂(5.8質量%)と、非プロトン性極性溶媒のNMP(7.8質量%)、DMF(3.4質量%)、及びDMI(29.0質量%)と、塩基性中和剤のAE(0.19質量%)と、着色剤のC.I.ソルベントブラック3(ポリアミドイミド樹脂100質量部に対して0.50質量部)と、水(54質量%)とを含み、非プロトン性極性溶剤の含有量(NMP含有量+DMF含有量+DMI含有量)が40質量%で、且つ(DMF含有量/(NMP含有量+DMI含有量))×100=9.2%である固形分濃度が5.8質量%のO/W型分散液の電着塗料組成物を調整した。この電着塗料組成物を水で3倍に希釈して電着ワニスとし、実施例1と同様にして絶縁電線を作製した。
[Test evaluation 2]
Polyamideimide resin (5.8% by mass) having a number average molecular weight of 10000 and an acid value of 33 mgKOH / g, aprotic polar solvent NMP (7.8% by mass), DMF (3.4% by mass), and DMI ( 29.0% by mass), basic neutralizing agent AE (0.19% by mass), and coloring agent C.I. I. Solvent Black 3 (0.50 parts by mass with respect to 100 parts by mass of polyamideimide resin) and water (54% by mass), content of aprotic polar solvent (NMP content + DMF content + DMI content) Is 40% by mass and (DMF content / (NMP content + DMI content)) × 100 = 9.2% Electrodeposition coating of O / W type dispersion having a solid content concentration of 5.8% by mass The composition was adjusted. This electrodeposition coating composition was diluted three times with water to obtain an electrodeposition varnish, and an insulated wire was produced in the same manner as in Example 1.

非プロトン性極性溶媒としてDMIを用いた場合でも実施例1と同等の絶縁電線が得られることを確認した。   It was confirmed that an insulated wire equivalent to Example 1 was obtained even when DMI was used as the aprotic polar solvent.

[試験評価3]
(絶縁電線)
ポリアミドイミド樹脂と、非プロトン性極性溶媒のNMP及びDMFと、塩基性中和剤のAEと、着色剤のC.I.ソルベントブラック3と、水とを含み、(DMF含有量/NMP含有量)×100=9.2%である固形分濃度が6.0質量%及び10質量%のO/W型分散液の電着塗料組成物をそれぞれ調製した。
[Test Evaluation 3]
(Insulated wire)
Polyamideimide resin, aprotic polar solvents NMP and DMF, basic neutralizing agent AE, and coloring agent C.I. I. Electricity of O / W type dispersion liquid containing Solvent Black 3 and water and having a solid content concentration of 6.0% by mass and 10% by mass (DMF content / NMP content) × 100 = 9.2% Each coating composition was prepared.

固形分濃度が6.0質量%の電着塗料組成物について、水で希釈して固形分濃度を1.0質量%、1.5質量%、2.0質量%、2.5質量%、3.0質量%、4.0質量%、及び5.0質量%とした7個の電着塗料組成物と、未希釈の固形分濃度が6質量%の電着塗料組成物とを準備した。なお、固形分濃度が2.0〜4.0質量%の電着塗料組成物における非プロトン性極性溶媒の含有量(NMP含有量+DMF含有量)はいずれも10〜15質量%であった。   The electrodeposition coating composition having a solid content concentration of 6.0% by mass is diluted with water to have a solid content concentration of 1.0% by mass, 1.5% by mass, 2.0% by mass, 2.5% by mass, Seven electrodeposition paint compositions having 3.0% by mass, 4.0% by mass, and 5.0% by mass, and an electrodeposition paint composition having an undiluted solid content concentration of 6% by mass were prepared. . The content of the aprotic polar solvent (NMP content + DMF content) in the electrodeposition coating composition having a solid content concentration of 2.0 to 4.0% by mass was 10 to 15% by mass.

各電着塗料組成物に厚さ0.05mm及び幅0.3mmの高純度銅の平角導線を線速30m/minで連続的に通して電着塗装することにより平角導線の外周面を樹脂絶縁層で被覆して絶縁電線を作製した。なお、樹脂絶縁層の厚さが約4μmとなるように印加電圧を調整した。   Each electrodeposition coating composition is electrodeposited by continuously passing a high-purity copper flat conductor with a thickness of 0.05 mm and a width of 0.3 mm at a linear speed of 30 m / min. An insulated wire was produced by covering with a layer. The applied voltage was adjusted so that the thickness of the resin insulating layer was about 4 μm.

また、固形分濃度が10質量%の電着塗料組成物について、水で希釈して固形分濃度を1.0質量%、1.5質量%、2.0質量%、2.5質量%、3.0質量%、4.0質量%、5.0質量%、及び6.0質量%とした8個の電着塗料組成物を準備し、それらを用いて同様に絶縁電線を作製した。なお、固形分濃度が2.0〜4.0質量%の電着塗料組成物における非プロトン性極性溶媒の含有量(NMP含有量+DMF含有量)はいずれも10〜20質量%であった。   Moreover, about the electrodeposition coating composition whose solid content concentration is 10 mass%, it dilutes with water and solid content concentration is 1.0 mass%, 1.5 mass%, 2.0 mass%, 2.5 mass%, Eight electrodeposition coating compositions having 3.0% by mass, 4.0% by mass, 5.0% by mass, and 6.0% by mass were prepared, and similarly, insulated wires were produced. The content of the aprotic polar solvent (NMP content + DMF content) in the electrodeposition coating composition having a solid content concentration of 2.0 to 4.0% by mass was 10 to 20% by mass.

(試験評価方法)
得られた各絶縁電線について、以下の試験評価を行った。
(Test evaluation method)
The following test evaluation was performed about each obtained insulated wire.

<樹脂絶縁層の厚さ>
絶縁電線を切断してその断面観察から、樹脂絶縁層について、長辺中央対応部分、長辺端対応部分、短辺対応部分、及び角対応部分の厚さを測定した。
<Thickness of resin insulation layer>
By cutting the insulated wire and observing the cross section, the thickness of the long side center corresponding part, the long side end corresponding part, the short side corresponding part, and the corner corresponding part of the resin insulating layer was measured.

<絶縁破壊電圧>
図5に示すように、ホットプレート21上に載置された導電体22上にコイル状の絶縁電線10を載せ、その上に絶縁板23を介して質量100gの錘24を載せた。そして、絶縁導線10の平角導線と導電体22との間に電圧を印加し、電圧を徐々に上昇させて樹脂絶縁層が破壊するときの電圧である絶縁破壊電圧を測定した。なお、昇圧条件はJIS C3216−5:2011「巻線試験方法−第5部:電気的特性」における「JA.4.2 c)金属はく法」に基づいた。
<Dielectric breakdown voltage>
As shown in FIG. 5, a coiled insulated wire 10 was placed on a conductor 22 placed on a hot plate 21, and a weight 24 having a mass of 100 g was placed on the insulated wire 10 via an insulating plate 23. And the voltage was applied between the flat conducting wire of the insulated conducting wire 10, and the conductor 22, and the dielectric breakdown voltage which is a voltage at the time of raising a voltage gradually and destroying a resin insulating layer was measured. The boosting conditions were based on “JA.4.2 c) Metal foil method” in JIS C3216-5: 2011 “Winding test method—Part 5: Electrical characteristics”.

(試験評価結果)
図6A及びBは、電着塗料組成物の固形分濃度と樹脂絶縁層の各部分の厚さとの関係を示す。
(Test evaluation results)
6A and 6B show the relationship between the solid content concentration of the electrodeposition coating composition and the thickness of each part of the resin insulating layer.

これらの結果によれば、希釈前の固形分濃度が6質量%及び10質量%のいずれの電着塗料組成物の場合についても、全体的な傾向として、樹脂絶縁層における長辺中央対応部分及び長辺端対応部分が相対的に厚く、次いで角対応部分、短辺対応部分が相対的に薄く形成されることが分かる。また、電着塗料組成物の固形分濃度が2〜4質量%であれば、それらの部分間の厚さの差が小さく、厚さの均一性が高い樹脂絶縁層を形成できることが分かる。なお、電着塗料組成物の固形分濃度が低くなると、短辺対応部分の厚さが著しく厚くなるが、これは、固形分濃度が低いために印加電圧を高める必要があることから、平角導線の短辺部分に電界集中するためであると考えられる。   According to these results, in the case of any electrodeposition coating composition having a solid content concentration before dilution of 6% by mass and 10% by mass, the overall tendency is that It can be seen that the long side end corresponding portion is relatively thick, and then the corner corresponding portion and the short side corresponding portion are formed relatively thin. Moreover, if the solid content concentration of the electrodeposition coating composition is 2 to 4% by mass, it can be seen that a resin insulation layer having a small thickness difference and high thickness uniformity can be formed. When the solid content concentration of the electrodeposition coating composition is lowered, the thickness of the short side corresponding portion is remarkably increased. However, since the solid content concentration is low, it is necessary to increase the applied voltage. This is considered to be because the electric field concentrates on the short side portion of.

図7は、電着塗料組成物の固形分濃度と絶縁破壊電圧との関係を示す。   FIG. 7 shows the relationship between the solid content concentration of the electrodeposition coating composition and the dielectric breakdown voltage.

この結果によれば、電着塗料組成物の固形分濃度が2〜4質量%であれば、絶縁破壊電圧が比較的高く、従って、樹脂絶縁層を十分な厚さに形成できることが分かる。   According to this result, it can be seen that when the solid content concentration of the electrodeposition coating composition is 2 to 4% by mass, the dielectric breakdown voltage is relatively high, and therefore the resin insulating layer can be formed to a sufficient thickness.

[試験評価4]
(絶縁電線)
ポリアミドイミド樹脂と、非プロトン性極性溶媒のNMP及びDMFと、塩基性中和剤のAEと、着色剤のC.I.ソルベントブラック3と、水とを含み、非プロトン性極性溶媒の含有量(NMP含有量+DMF含有量)が13質量%、15質量%、17.5質量%、及び20質量%であり、且つ(DMF含有量/NMP含有量)×100=9.2%である固形分濃度が2.0質量%のO/W型分散液の電着塗料組成物をそれぞれ調製した。
[Test Evaluation 4]
(Insulated wire)
Polyamideimide resin, aprotic polar solvents NMP and DMF, basic neutralizing agent AE, and coloring agent C.I. I. Solvent Black 3 and water, the aprotic polar solvent content (NMP content + DMF content) is 13% by mass, 15% by mass, 17.5% by mass, and 20% by mass, and ( DMF content / NMP content) × 100 = 9.2% An electrodeposition coating composition of an O / W type dispersion having a solid content concentration of 2.0% by mass was prepared.

各電着塗料組成物に厚さ0.05mm及び幅0.3mmの高純度銅の平角導線を線速30m/minで連続的に通して電着塗装することにより平角導線の外周面を樹脂絶縁層で被覆して絶縁電線を作製した。なお、樹脂絶縁層の厚さが約4μmとなるように印加電圧を調整した。   Each electrodeposition coating composition is electrodeposited by continuously passing a high-purity copper flat conductor with a thickness of 0.05 mm and a width of 0.3 mm at a linear speed of 30 m / min. An insulated wire was produced by covering with a layer. The applied voltage was adjusted so that the thickness of the resin insulating layer was about 4 μm.

(試験評価方法)
得られた各絶縁電線について、樹脂絶縁層を目視にて観察し、1.5m当たりの被膜凹みの数及び5m当たりのピンホールの数を数えた。
(Test evaluation method)
About each obtained insulated wire, the resin insulation layer was observed visually and the number of the coating dents per 1.5 m and the number of pinholes per 5 m were counted.

(試験評価結果)
図8は、電着塗料組成物の非プロトン性極性溶媒の含有量と被膜凹み及びピンホールの数との関係を示す。
(Test evaluation results)
FIG. 8 shows the relationship between the content of the aprotic polar solvent in the electrodeposition coating composition and the number of film dents and pinholes.

この結果によれば、非プロトン性極性溶媒の含有量が少なくなることにより、被膜凹み及びピンホールの数、特にピンホールの数が減少することが分かる。   According to this result, it can be seen that the number of film dents and pinholes, particularly the number of pinholes, is reduced by decreasing the content of the aprotic polar solvent.

[試験評価5]
ポリアミドイミド樹脂と、非プロトン性極性溶媒のNMP及びDMFと、塩基性中和剤のAEと、着色剤のC.I.ソルベントブラック3と、水とを含み、非プロトン性極性溶媒の含有量(NMP含有量+DMF含有量)が13質量%であり、(DMF含有量/NMP含有量)×100=9.2%であり、且つ塩基性中和剤の含有量(AE含有量)が0.19質量%、0.21質量%、0.23質量%、及び0.25質量%である固形分濃度が3.3質量%のO/W型分散液の電着塗料組成物をそれぞれ調製した。
[Test Evaluation 5]
Polyamideimide resin, aprotic polar solvents NMP and DMF, basic neutralizing agent AE, and coloring agent C.I. I. Solvent Black 3 and water, the content of the aprotic polar solvent (NMP content + DMF content) is 13% by mass, (DMF content / NMP content) × 100 = 9.2% And the content of the basic neutralizing agent (AE content) is 0.19% by mass, 0.21% by mass, 0.23% by mass, and 0.25% by mass, and the solid content concentration is 3.3. An electrodeposition coating composition of a mass% O / W type dispersion was prepared.

各電着塗料組成物に厚さ0.05mm及び幅0.3mmの高純度銅の平角導線を線速30m/minで連続的に通して電着塗装することにより平角導線の外周面を樹脂絶縁層で被覆して絶縁電線を作製した。なお、樹脂絶縁層の厚さが約4μmとなるように印加電圧を調整した。   Each electrodeposition coating composition is electrodeposited by continuously passing a high-purity copper flat conductor with a thickness of 0.05 mm and a width of 0.3 mm at a linear speed of 30 m / min. An insulated wire was produced by covering with a layer. The applied voltage was adjusted so that the thickness of the resin insulating layer was about 4 μm.

また、線速を25m/min及び35m/minとして同様に絶縁電線を作製した。   Moreover, the insulated wire was similarly produced by making line speed into 25 m / min and 35 m / min.

(試験評価方法)
得られた各絶縁電線について、樹脂絶縁層を目視にて観察し、1.5m当たりの被膜凹みの数及び5m当たりのピンホールの数を数えた。
(Test evaluation method)
About each obtained insulated wire, the resin insulation layer was observed visually and the number of the coating dents per 1.5 m and the number of pinholes per 5 m were counted.

(試験評価結果)
図9A〜Cは、電着塗料組成物の塩基性中和剤の含有量と被膜凹み及びピンホールの数との関係を示す。
(Test evaluation results)
9A to 9C show the relationship between the content of the basic neutralizing agent in the electrodeposition coating composition and the number of film dents and pinholes.

この結果によれば、塩基性中和剤の含有量が0.21〜0.23質量%であることにより、被膜凹み及びピンホールの数が減少することが分かる。   According to this result, it can be seen that when the content of the basic neutralizing agent is 0.21 to 0.23 mass%, the number of coating dents and pinholes is reduced.

本発明は絶縁電線及びその製造方法について有用である。   The present invention is useful for an insulated wire and a method for manufacturing the same.

10 絶縁電線
11 平角導線
12 樹脂絶縁層
12a 長辺中央対応部分
12b 長辺端対応部分
12c 角対応部分
12d 短辺対応部分
21 ホットプレート
22 導電体
23 絶縁板
24 錘
DESCRIPTION OF SYMBOLS 10 Insulated wire 11 Rectangular conductor 12 Resin insulating layer 12a Long side center corresponding part 12b Long side end corresponding part 12c Corner corresponding part 12d Short side corresponding part 21 Hot plate 22 Conductor 23 Insulating plate 24 Weight

Claims (7)

導線と、前記導線の外周面を被覆するポリアミドイミド樹脂で形成された樹脂絶縁層と、を備えた絶縁電線であって、
前記絶縁電線をJIS C3216−3:2011に基づいて急激伸張試験した後の側面視での破断点から長さ4mmの所定幅の部分における前記導線の露出率が7%以下であり、且つ微小硬度計により求められる前記樹脂絶縁層のヤング率が9.0×10N/mm以上である絶縁電線。
An insulated wire comprising: a conductive wire; and a resin insulating layer formed of a polyamide-imide resin covering an outer peripheral surface of the conductive wire,
The exposed rate of the conducting wire in a portion having a predetermined width of 4 mm from the breaking point in a side view after a rapid extension test of the insulated wire based on JIS C3216-3: 2011 is 7% or less, and a micro hardness The insulated electric wire whose Young's modulus of the said resin insulating layer calculated | required by a meter is 9.0 * 10 < 3 > N / mm < 2 > or more.
請求項1に記載された絶縁電線において、
前記導線が扁平な断面形状を有する平角導線である絶縁電線。
In the insulated wire according to claim 1,
An insulated wire, wherein the conducting wire is a flat rectangular conducting wire having a flat cross-sectional shape.
請求項1又は2に記載された絶縁電線の製造方法において、
前記樹脂絶縁層にへら状プローブを25mNの力で押し当てて10℃/minの速度で昇温させたときの温度とプローブの変位量との関係における変位量の拡大開始点での温度が250℃以上である絶縁電線。
In the manufacturing method of the insulated wire described in Claim 1 or 2,
When the spatula-like probe is pressed against the resin insulating layer with a force of 25 mN and the temperature is raised at a rate of 10 ° C./min, the temperature at the displacement start point of the relationship between the temperature and the probe displacement is 250. Insulated wire that is above ℃.
導線をO/W型分散液の電着塗料組成物に連続的に通して電着塗装することにより前記導線の外周面を樹脂絶縁層で被覆する絶縁電線の製造方法であって、
前記電着塗料組成物は、ポリアミドイミド樹脂と、非プロトン性極性溶媒と、水と、を含むと共に固形分濃度が2〜4質量%であり、且つ前記非プロトン性極性溶媒の含有量が10〜20質量%である絶縁電線の製造方法。
A method for producing an insulated wire in which a conductive wire is continuously passed through an electrodeposition coating composition of an O / W type dispersion and electrodeposited to coat the outer peripheral surface of the conductive wire with a resin insulating layer,
The electrodeposition coating composition contains a polyamide-imide resin, an aprotic polar solvent, and water, has a solid content concentration of 2 to 4% by mass, and a content of the aprotic polar solvent is 10%. The manufacturing method of the insulated wire which is -20 mass%.
請求項4に記載された絶縁電線の製造方法において、
前記導線を前記電着塗料組成物に通すときの線速を20〜40m/minとする絶縁電線の製造方法。
In the manufacturing method of the insulated wire described in Claim 4,
The manufacturing method of the insulated wire which sets the line speed when passing the said conducting wire through the said electrodeposition coating composition to 20-40 m / min.
請求項4又は5に記載された絶縁電線の製造方法において、
前記電着塗料組成物を出た後の前記導線の外周面に付着した電着塗料組成物における固形分濃度が10質量%以上である絶縁電線の製造方法。
In the manufacturing method of the insulated wire described in Claim 4 or 5,
The manufacturing method of the insulated wire whose solid content concentration in the electrodeposition coating composition adhering to the outer peripheral surface of the said conducting wire after leaving the said electrodeposition coating composition is 10 mass% or more.
請求項4乃至6のいずれかに記載された絶縁電線の製造方法において、
前記導線が扁平な断面形状を有する平角導線である絶縁電線。
In the manufacturing method of the insulated wire in any one of Claims 4 thru | or 6,
An insulated wire, wherein the conducting wire is a flat rectangular conducting wire having a flat cross-sectional shape.
JP2016074957A 2016-04-04 2016-04-04 Insulation wire and manufacturing method therefor Pending JP2017188243A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016074957A JP2017188243A (en) 2016-04-04 2016-04-04 Insulation wire and manufacturing method therefor
TW106110151A TW201807094A (en) 2016-04-04 2017-03-27 Insulated electric cable and method of manufacturing same
PCT/JP2017/012558 WO2017175624A1 (en) 2016-04-04 2017-03-28 Insulated electric cable and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016074957A JP2017188243A (en) 2016-04-04 2016-04-04 Insulation wire and manufacturing method therefor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020109422A Division JP2020155421A (en) 2020-06-25 2020-06-25 Insulated electric wire

Publications (1)

Publication Number Publication Date
JP2017188243A true JP2017188243A (en) 2017-10-12

Family

ID=60001158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016074957A Pending JP2017188243A (en) 2016-04-04 2016-04-04 Insulation wire and manufacturing method therefor

Country Status (3)

Country Link
JP (1) JP2017188243A (en)
TW (1) TW201807094A (en)
WO (1) WO2017175624A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6443578A (en) * 1987-08-10 1989-02-15 Mitsubishi Electric Corp Emulsion for electrodeposition
JP4834925B2 (en) * 2001-06-20 2011-12-14 日立化成工業株式会社 Resin composition for electrical insulation and enameled wire
JP2013072092A (en) * 2011-09-26 2013-04-22 Mitsubishi Cable Ind Ltd Electric insulated wire, method for producing the same, and coil obtained by winding the same

Also Published As

Publication number Publication date
TW201807094A (en) 2018-03-01
WO2017175624A1 (en) 2017-10-12

Similar Documents

Publication Publication Date Title
JP6973576B2 (en) Electrodeposition liquid for forming water-dispersed insulating film
CN108603074B (en) Electrodeposition liquid and electrodeposition-coated body
WO2018151091A1 (en) Electrodeposition solution and method for producing conductor with insulating film using same
WO2017175624A1 (en) Insulated electric cable and method of manufacturing same
JP2020155421A (en) Insulated electric wire
JP6769076B2 (en) Electrodeposition coating composition and method for manufacturing insulated wires using it
JP6907809B2 (en) Insulated flat conductor with high aspect ratio, its manufacturing method and coil
JP6069035B2 (en) Method for producing electrodeposited body
CN106536792B (en) Electrodeposition coating body and its manufacturing method
JP6708192B2 (en) Insulated wire manufacturing method
WO2017141885A1 (en) Electrodeposition liquid and electrodeposition-coated article
JP7375777B2 (en) Electrodeposition liquid, manufacturing method of insulation film
JP2017079187A (en) Colored insulating wire and method for producing the same
JP2018092812A (en) Method for producing insulated wire, and method of preparing supplemental coating for use therein
JP2017016956A (en) Insulated wire and manufacturing method thereof
JP2019040672A (en) Enamel wire and production method of enamel wire
WO2021187024A1 (en) Insulating film-equipped die-cut product and method for producing same
JP6760236B2 (en) Insulated wire manufacturing method and electrodeposition coating equipment used for it
JP2009129566A (en) Insulated electric wire and its manufacturing method
WO2017110188A1 (en) Aqueous dispersion type electrodeposition liquid for insulating-film formation
JPH09161575A (en) Manufacture of flat type insulated wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A603 Late request for extension of time limit during examination

Free format text: JAPANESE INTERMEDIATE CODE: A603

Effective date: 20200123

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200625

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200625

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200706

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200707

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200717

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200728

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201117

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210406

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210511

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210511