JP2017183205A - Material for lithium secondary battery negative electrode and production method thereof - Google Patents

Material for lithium secondary battery negative electrode and production method thereof Download PDF

Info

Publication number
JP2017183205A
JP2017183205A JP2016072258A JP2016072258A JP2017183205A JP 2017183205 A JP2017183205 A JP 2017183205A JP 2016072258 A JP2016072258 A JP 2016072258A JP 2016072258 A JP2016072258 A JP 2016072258A JP 2017183205 A JP2017183205 A JP 2017183205A
Authority
JP
Japan
Prior art keywords
secondary battery
lithium secondary
negative electrode
graphite
coated graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016072258A
Other languages
Japanese (ja)
Inventor
大輝 武田
Daiki Takeda
大輝 武田
正紀 山口
Masanori Yamaguchi
正紀 山口
良一 藤原
Ryoichi Fujiwara
良一 藤原
裕美 竹林
Hiromi Takebayashi
裕美 竹林
輝彦 中野
Teruhiko Nakano
輝彦 中野
宜保 上田
Yoshiyasu Ueda
宜保 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Chemicals Co Ltd
Original Assignee
Osaka Gas Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Chemicals Co Ltd filed Critical Osaka Gas Chemicals Co Ltd
Priority to JP2016072258A priority Critical patent/JP2017183205A/en
Publication of JP2017183205A publication Critical patent/JP2017183205A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a material for lithium secondary battery negative electrode capable of imparting excellent initial charge and discharge efficiency to the lithium secondary battery, and to provide a production method thereof.SOLUTION: A material for lithium secondary battery negative electrode contains, in at least a part of the surface of graphite particles, surface coated graphite formed by adhesion of a carbon material having crystallinity lower than that of the graphite particles. When measuring steam adsorption amount of the surface coated graphite, at 5 points at P/P=0.05±0.01 intervals in a range of relative pressure P/P=0.2-0.4, and a secondary function formula derived by plotting the relation of the relative pressure P/Pand steam adsorption amount, respectively, on the X axis and Y axis based on the results of 5 points is Y=F(X), the value of Y at X=0.3 is 0.03-0.4 cm/g.SELECTED DRAWING: None

Description

本発明は、リチウム二次電池負極用材料及びその製造方法に関する。   The present invention relates to a negative electrode material for a lithium secondary battery and a method for producing the same.

リチウム二次電池は、高エネルギー密度型二次電池の一種として注目されており、近年、その研究が盛んに行われている。リチウム二次電池は、例えば、負極材料として炭素材料を、正極材料として金属カルコゲン化物又は金属酸化物を、電解液として非プロトン性有機溶媒に種々の塩を溶解させた溶液を、それぞれ構成要素として形成される。現在使用されているリチウム二次電池用の負極材料として、大きく分けて黒鉛材料と難黒鉛化性炭素前駆体を1000℃前後で焼成した難黒鉛化性炭素が知られている。前者はリチウム二次電池の負極材料として用いた場合、高容量密度が得られ、しかも、リチウムイオンの放出に伴う電位の変化が小さいという利点を有する。一方、後者はリチウム二次電池の負極材料として用いた場合、入出力特性は黒鉛材料に較べて優れるが、高容量密度が得られず、不可逆容量が大きいという欠点を有する。   Lithium secondary batteries are attracting attention as a kind of high energy density type secondary batteries, and their research has been actively conducted in recent years. For example, a lithium secondary battery includes a carbon material as a negative electrode material, a metal chalcogenide or a metal oxide as a positive electrode material, and a solution in which various salts are dissolved in an aprotic organic solvent as an electrolytic solution. It is formed. As a negative electrode material for lithium secondary batteries currently used, non-graphitizable carbon obtained by firing a graphite material and a non-graphitizable carbon precursor roughly at 1000 ° C. is known. When the former is used as a negative electrode material for a lithium secondary battery, it has an advantage that a high capacity density is obtained and that the potential change accompanying the release of lithium ions is small. On the other hand, when the latter is used as a negative electrode material for a lithium secondary battery, the input / output characteristics are superior to those of a graphite material, but it has a drawback that a high capacity density cannot be obtained and an irreversible capacity is large.

民生用小型リチウムイオン電池(例えば、携帯電話やノート型パーソナルコンピュータなどのモバイル機器用のリチウム電池など)における負極材料としては、高容量密度の得られる黒鉛材料が一般に用いられている。黒鉛材料の中でも、易黒鉛化性炭素前駆体を2800℃以上で焼成した人造黒鉛が従来は主流であったが、近年、コストの観点から、天然黒鉛粒子の表面を修飾した黒鉛材料が主流となりつつある(例えば、特許文献1,2)。   As a negative electrode material in a consumer-use small lithium ion battery (for example, a lithium battery for a mobile device such as a mobile phone or a notebook personal computer), a graphite material having a high capacity density is generally used. Among graphite materials, artificial graphite obtained by firing an easily graphitizable carbon precursor at 2800 ° C. or higher has been mainstream in the past, but in recent years, graphite materials with modified natural graphite particles have become mainstream from the viewpoint of cost. (For example, Patent Documents 1 and 2).

また、近年において、リチウムイオン電池は、自動車などの電源としての応用検討もなされるようになってきている。このような用途では、前記の携帯電話やノート型パソコンの場合よりもさらにサイズの大きな電池が使用される場合が多いので、従来よりもさらに初期充放電効率を高めることが望まれている。このような観点において例えば、電解液に特定の添加剤を入れることにより負極活物質表面に生成するSEI(Solid Electryte Interface)皮膜を良好に形成させる方法(特許文献3)、あるいは、負極活物質表面に高分子を被覆する技術(特許文献4,5)などが知られている。   In recent years, lithium ion batteries have been studied for application as power sources for automobiles and the like. In such an application, since a battery having a size larger than that of the mobile phone or the notebook personal computer is often used, it is desired to further improve the initial charge / discharge efficiency than before. From such a viewpoint, for example, a method of forming a SEI (Solid Electrolyte Interface) film that is generated on the surface of the negative electrode active material by adding a specific additive to the electrolytic solution (Patent Document 3), or the surface of the negative electrode active material A technique for coating a polymer with a polymer (Patent Documents 4 and 5) is known.

特開平04−368778号公報Japanese Patent Laid-Open No. 04-368778 特開平04−370662号公報Japanese Patent Laid-Open No. 04-370662 特許第3633268号公報Japanese Patent No. 3633268 特開平11−120992号公報JP-A-11-129992 特開2014−157658号公報JP 2014-157658 A

しかしながら、上記特許文献技術3の技術では、添加剤が初期充電時に還元されSEI皮膜を形成する際に電荷を消費するため初期効率が低下するといった問題があった。また、添加剤の種類によっては、電解液に一般的に用いられている炭酸エステル類よりもコストが高くなり、経済性の面からも好ましくない。さらに、上記特許文献技術4,5の技術では、被覆層高分子の負極活物質表面への接着性、高分子被覆層の膨潤、高分子のイオン伝導性が不十分であることに起因して界面抵抗が上昇し、結果として高い初期充放電効率が得られないといった種々の問題があった。上記の各技術のように、負極活物質表面の皮膜の種類や組成等を種々変更することによって、初期充放電効率を向上させることは広く行われているが、初期充放電効率等の性能についてさらなる改善が強く求められているのが実情であった。   However, the technique of Patent Document 3 has a problem in that the initial efficiency is reduced because the additive is reduced during initial charging and consumes electric charge when forming the SEI film. In addition, depending on the type of additive, the cost becomes higher than that of carbonic acid esters generally used in an electrolytic solution, which is not preferable from the viewpoint of economy. Further, in the techniques of Patent Documents 4 and 5, the adhesion of the coating layer polymer to the negative electrode active material surface, the swelling of the polymer coating layer, and the ionic conductivity of the polymer are insufficient. There were various problems such that the interfacial resistance increased and as a result, high initial charge / discharge efficiency could not be obtained. As in the above technologies, it is widely performed to improve the initial charge / discharge efficiency by variously changing the type and composition of the film on the surface of the negative electrode active material. The actual situation is that there is a strong demand for further improvements.

さらに、本発明者らは、初期充電時のガスの発生が初期充放電効率に影響を与えると共に、自動車用途、蓄電システム用途等の大型の電池を想定した場合、そのガス発生量を抑制することが重要であることを見出した。初期充電時のガスの発生は、電池の製造工程において別途、ガス抜き工程によってセル外にガスを放出させる等の必要が生じるおそれがあった。特に、自動車用途、蓄電システム用途等の大型の電池ではそのガス量が膨大になるため、製造時間を要すると共に設備も複雑になりやすい。さらに、初期充電時のガス発生量が多い場合、ガスを貯留するためのスペースを別途、大きく取る必要がある半面、ガス抜き後はそのスペースは不要となるものであり、必要以上にセルサイズを大きくしなければならないという弊害も生じる。   Furthermore, the present inventors suppress the amount of gas generation when the generation of gas at the time of initial charging affects the initial charge / discharge efficiency and envisions a large battery for automobile use, power storage system use, etc. Found that is important. The generation of gas at the time of initial charging may cause the necessity of releasing the gas outside the cell through a degassing step in the battery manufacturing process. In particular, a large battery for automobile use, power storage system use, and the like has an enormous amount of gas, which requires manufacturing time and tends to be complicated. Furthermore, if the amount of gas generated during initial charging is large, it is necessary to provide a large space for storing gas.On the other hand, after degassing, the space becomes unnecessary, and the cell size must be increased more than necessary. There is also an adverse effect that must be increased.

本発明は、上記に鑑みてなされたものであり、リチウム二次電池に優れた初期充放電効率を付与することができ、初期充放電時のガス発生量を抑制することができるリチウム二次電池負極用材料及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above, and can provide a lithium secondary battery with excellent initial charge / discharge efficiency, and can suppress the amount of gas generated during initial charge / discharge. It aims at providing the material for negative electrodes, and its manufacturing method.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、リチウム二次電池負極用炭素材料において、従来注目されてこなかった炭素材料の水蒸気吸着量に着目したところ、これが初期充電時のガス発生量に大きな影響を及ぼすことを見出した。また、特定の相対圧における水蒸気吸着量を所定の範囲に制御することで、上記目的を達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors focused on the water vapor adsorption amount of a carbon material that has not been noticed in the past in a carbon material for a lithium secondary battery negative electrode. It has been found that it greatly affects the amount of gas generated. Further, the inventors have found that the above object can be achieved by controlling the water vapor adsorption amount at a specific relative pressure within a predetermined range, and have completed the present invention.

すなわち、本発明は、例えば、以下の項に記載の主題を包含する。
項1.黒鉛粒子の表面の少なくとも一部に、前記黒鉛粒子より結晶性の低い炭素材料が付着して形成される表面被覆黒鉛を含み、
表面被覆黒鉛は、水蒸気吸着量測定において相対圧P/P=0.2〜0.4である範囲内で水蒸気吸着量をP/P=0.05±0.01間隔で5点測定し、この5点の結果に基づいて相対圧P/P及び水蒸気吸着量との関係をそれぞれX軸及びY軸にプロットして導出した2次関数式をY=F(X)とした場合、X=0.3におけるYの値が0.03〜0.4cm/gである、リチウム二次電池負極用材料。
項2.表面被覆黒鉛は、前記炭素材料が等方性ピッチの熱処理物である、上記項1に記載のリチウム二次電池負極用材料。
項3.前記等方性ピッチの軟化点が240℃〜290℃である、上記項2に記載のリチウム二次電池負極用材料。
項4.前記黒鉛粒子が球状の天然黒鉛である、上記項1〜3のいずれか1項に記載のリチウム二次電池負極用材料。
項5.上記項1〜4のいずれか1項に記載のリチウム二次電池負極用材料の製造方法であって、
黒鉛粒子と炭素前駆体を混合して混合物を調製し、当該混合物を熱処理する工程を備える、リチウム二次電池負極用材料の製造方法。
項6.前記熱処理を行う雰囲気温度の最高到達温度が800〜1000℃である、上記項5に記載の製造方法。
項7.前記熱処理時の昇温速度が10〜200℃/時間である、上記項5又は6に記載の製造方法。
項8.前記混合物における黒鉛粒子と炭素前駆体との重量比率が、90:10〜99:1である、上記項5〜7のいずれか1項に記載の製造方法。
項9.上記項1〜4のいずれか1項に記載のリチウム二次電池負極用材料で形成された負極と、正極と、電解液とを少なくとも備えて構成されている、リチウム二次電池。
項10.自動車用である、上記項9に記載のリチウム二次電池。
項11.蓄電システム用である、上記項9に記載のリチウム二次電池。
That is, the present invention includes, for example, the subject matters described in the following sections.
Item 1. Including at least part of the surface of the graphite particles, surface-coated graphite formed by adhering a carbon material having lower crystallinity than the graphite particles;
For surface-coated graphite, water vapor adsorption amount is measured at 5 points at intervals of P / P 0 = 0.05 ± 0.01 within the range of relative pressure P / P 0 = 0.2 to 0.4 in measurement of water vapor adsorption amount. When the quadratic function expression derived by plotting the relationship between the relative pressure P / P 0 and the water vapor adsorption amount on the X axis and the Y axis based on the results of these five points is Y = F (X) The material for lithium secondary battery negative electrodes whose Y value in X = 0.3 is 0.03-0.4 cm < 3 > / g.
Item 2. Item 2. The material for a negative electrode of a lithium secondary battery according to Item 1, wherein the surface-coated graphite is a heat-treated product having an isotropic pitch as the carbon material.
Item 3. Item 3. The lithium secondary battery negative electrode material according to Item 2, wherein the softening point of the isotropic pitch is 240 ° C to 290 ° C.
Item 4. Item 4. The negative electrode material for a lithium secondary battery according to any one of Items 1 to 3, wherein the graphite particles are spherical natural graphite.
Item 5. The method for producing a lithium secondary battery negative electrode material according to any one of Items 1 to 4,
The manufacturing method of the material for lithium secondary battery negative electrodes provided with the process of mixing a graphite particle and a carbon precursor, preparing a mixture, and heat-processing the said mixture.
Item 6. Item 6. The manufacturing method according to Item 5, wherein the highest temperature of the atmospheric temperature for performing the heat treatment is 800 to 1000 ° C.
Item 7. Item 7. The production method according to Item 5 or 6, wherein a temperature increase rate during the heat treatment is 10 to 200 ° C / hour.
Item 8. Item 8. The production method according to any one of Items 5 to 7, wherein a weight ratio of the graphite particles to the carbon precursor in the mixture is 90:10 to 99: 1.
Item 9. A lithium secondary battery comprising at least a negative electrode formed of the lithium secondary battery negative electrode material according to any one of Items 1 to 4, a positive electrode, and an electrolytic solution.
Item 10. Item 10. The lithium secondary battery according to Item 9, which is used for automobiles.
Item 11. Item 10. The lithium secondary battery according to Item 9, which is used for a power storage system.

本発明のリチウム二次電池用負極材料は、特定の相対圧における水蒸気吸着量が所定の範囲に制御された表面被覆黒鉛を含む。これにより、リチウム二次電池に優れた初期充放電効率を付与することができると共に初期充放電時のガス発生量を抑制することができ、しかも、コスト的に優位な材料である。特に、本発明のリチウム二次電池用負極材料は、大型の製品に適しており、例えば、自動車、蓄電システムなどの電源として使用されるリチウム二次電池の負極炭素材料として有用である。   The negative electrode material for a lithium secondary battery of the present invention includes surface-coated graphite in which the water vapor adsorption amount at a specific relative pressure is controlled within a predetermined range. Thereby, excellent initial charge / discharge efficiency can be imparted to the lithium secondary battery, the amount of gas generated during the initial charge / discharge can be suppressed, and the material is advantageous in terms of cost. In particular, the negative electrode material for a lithium secondary battery of the present invention is suitable for a large product, and is useful as a negative electrode carbon material for a lithium secondary battery used as a power source for automobiles, power storage systems, and the like.

本発明のリチウム二次電池用負極材料の製造方法は、上記リチウム二次電池用負極材料の製造方法として適しており、簡便な方法でリチウム二次電池用負極材料を製造できる。   The method for producing a negative electrode material for a lithium secondary battery according to the present invention is suitable as a method for producing the negative electrode material for a lithium secondary battery, and the negative electrode material for a lithium secondary battery can be produced by a simple method.

以下、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

<リチウム二次電池負極用材料>
本実施形態のリチウム二次電池負極用材料は、黒鉛粒子の表面の少なくとも一部に、前記黒鉛粒子より結晶性の低い炭素材料が付着して形成される表面被覆黒鉛を含み、表面被覆黒鉛は、水蒸気吸着量測定において相対圧P/P=0.2〜0.4である範囲内で水蒸気吸着量をP/P=0.05±0.01間隔で5点測定し、この5点の結果に基づいて相対圧P/P及び水蒸気吸着量との関係をそれぞれX軸及びY軸にプロットして導出した2次関数式をY=F(X)とした場合、X=0.3におけるYの値が0.03〜0.4cm/gである。
<Material for negative electrode of lithium secondary battery>
The material for the negative electrode of the lithium secondary battery of the present embodiment includes surface-coated graphite formed by attaching a carbon material having lower crystallinity than the graphite particles to at least a part of the surface of the graphite particles. In the water vapor adsorption amount measurement, the water vapor adsorption amount was measured at 5 points at intervals of P / P 0 = 0.05 ± 0.01 within the range where the relative pressure P / P 0 = 0.2 to 0.4. When the quadratic function expression derived by plotting the relationship between the relative pressure P / P 0 and the water vapor adsorption amount on the X axis and the Y axis based on the result of the points is Y = F (X), X = 0 The value of Y in .3 is 0.03 to 0.4 cm 3 / g.

本実施形態のリチウム二次電池用負極材料は、特定の相対圧における水蒸気吸着量が所定の範囲に制御されていることで、リチウム二次電池に優れた初期充放電効率を付与することができる。特に、本実施形態のリチウム二次電池用負極材料では、特定の相対圧における水蒸気吸着量が所定の範囲に制御されていることで、初期充電時のガス発生量が抑制され、これにより、リチウム二次電池に優れた初期充放電効率を付与することができるものである。   The negative electrode material for a lithium secondary battery of the present embodiment can impart excellent initial charge / discharge efficiency to the lithium secondary battery by controlling the water vapor adsorption amount at a specific relative pressure within a predetermined range. . In particular, in the negative electrode material for a lithium secondary battery of the present embodiment, the amount of gas generated at the initial charging is suppressed by controlling the water vapor adsorption amount at a specific relative pressure within a predetermined range. It is possible to impart excellent initial charge / discharge efficiency to the secondary battery.

以下、本実施形態のリチウム二次電池負極用材料(以下、単に「負極用材料」と略記することがある)について詳述する。   Hereinafter, the lithium secondary battery negative electrode material (hereinafter, simply referred to as “negative electrode material” in some cases) of this embodiment will be described in detail.

負極用材料は、黒鉛粒子の表面の少なくとも一部に、前記黒鉛粒子より結晶性の低い炭素材料が付着して形成される表面被覆黒鉛を含む。   The negative electrode material includes surface-coated graphite formed by adhering a carbon material having lower crystallinity than the graphite particles to at least a part of the surface of the graphite particles.

上記黒鉛粒子は、本実施形態の表面被覆黒鉛の芯材となる粒子である。   The graphite particles are particles that serve as the core material of the surface-coated graphite of the present embodiment.

黒鉛粒子の種類は特に限定されないが、例えば、本発明の効果がより発揮されやすいという観点から、球状の天然黒鉛が例示される。球状とは、真球状であってもよいし、あるいは、楕円形状等であってもよい。   Although the kind of graphite particle is not particularly limited, for example, spherical natural graphite is exemplified from the viewpoint that the effect of the present invention is more easily exhibited. The spherical shape may be a true spherical shape or an elliptical shape.

上記球状天然黒鉛の種類は限定的ではないが、例えば、扁平状の天然黒鉛が球状化処理された黒鉛粒子が例示される。球状化処理を実施する場合、通常、扁平状の天然黒鉛のタップ密度は0.6g/cc程度であるが、好ましくは0.8g/cc以上、より好ましくは0.9g/cc以上、さらに好ましくは1.0g/cc以上に調整された天然黒鉛を使用することが好ましい。   The kind of the spherical natural graphite is not limited, but examples thereof include graphite particles obtained by spheroidizing natural flat graphite. When carrying out the spheroidizing treatment, the tap density of the flat natural graphite is usually about 0.6 g / cc, preferably 0.8 g / cc or more, more preferably 0.9 g / cc or more, even more preferably. Is preferably natural graphite adjusted to 1.0 g / cc or more.

上記球状天然黒鉛の粒径は特に限定されるものではないが、通常、平均粒径(中心粒径D50)は5〜40μm、より好ましくは5〜30μm、特に好ましくは10〜25μmである。なお、ここでいう平均粒径D50は体積平均粒子径である。   Although the particle diameter of the spherical natural graphite is not particularly limited, the average particle diameter (center particle diameter D50) is usually 5 to 40 μm, more preferably 5 to 30 μm, and particularly preferably 10 to 25 μm. In addition, the average particle diameter D50 here is a volume average particle diameter.

黒鉛粒子は、結晶性が高いことが好ましく、例えば、X線広角回折法による(002)面の平均面間隔d(002)が0.335〜0.340nmとすることができ、c軸方向の結晶子厚みLc(004)が10nm以上、より好ましくは、20nm以上とすることができる。平均面間隔が0.340nm以下であれば、天然黒鉛の結晶性が向上しやすく、しかも、負極用材料が形成された場合において、リチウムの溶解析出に近い低い電位部分(リチウムの電位基準で0〜0.3V)の容量が十分となりやすい。また、Lc(004)が10nm以上あれば、天然黒鉛の結晶性が向上しやすく、しかも、負極用材料が形成された場合において、リチウムの溶解析出に近い低い電位部分(リチウムの電位基準で0〜0.3V)の容量が十分となりやすい。   The graphite particles preferably have high crystallinity. For example, the average interplanar spacing d (002) of the (002) plane by the X-ray wide angle diffraction method can be 0.335 to 0.340 nm, and the c-axis direction The crystallite thickness Lc (004) can be 10 nm or more, and more preferably 20 nm or more. If the average interplanar spacing is 0.340 nm or less, the crystallinity of natural graphite is likely to improve, and when a negative electrode material is formed, a low potential portion close to lithium dissolution and precipitation (0 on the basis of the lithium potential). The capacity of ~ 0.3V) tends to be sufficient. Further, if Lc (004) is 10 nm or more, the crystallinity of natural graphite is likely to be improved, and when a negative electrode material is formed, a low potential portion close to lithium dissolution and precipitation (0 on the basis of lithium potential). The capacity of ~ 0.3V) tends to be sufficient.

炭素材料は、黒鉛粒子の表面の少なくとも一部に付着している。例えば、炭素材料は、黒鉛粒子の表面の少なくとも一部を覆うように存在している。   The carbon material is attached to at least a part of the surface of the graphite particles. For example, the carbon material is present so as to cover at least a part of the surface of the graphite particles.

炭素材料は、前記黒鉛粒子より結晶性が低い。これにより、負極用材料をリチウム二次電池負極として用いる場合には、電解液の有機溶媒との反応性が低いので、電解液の分解や粒子の破壊などが起こりにくい。その結果、電池の充放電効率が向上し、また、その安全性が改善されるという利点を有している。一般に、天然黒鉛等の黒鉛粒子は、活性な結晶子の端面が外側に配向しているため、電解液と反応しやすいが、上記表面被覆黒鉛を含む負極用材料では、結晶化度が低い炭素材料がこの活性な結晶子端面を塞いでいるので、電解液の有機溶媒との反応が制御されると考えられる。そのため、上記表面被覆黒鉛を含む負極用材料は、リチウム二次電池負極として用いられると、初期充電時のガス発生量を抑制することが可能となると考えられる。   The carbon material has lower crystallinity than the graphite particles. As a result, when the negative electrode material is used as a negative electrode for a lithium secondary battery, the electrolytic solution has low reactivity with the organic solvent, and therefore, the electrolytic solution is hardly decomposed or the particles are broken. As a result, the charge / discharge efficiency of the battery is improved, and the safety is improved. Generally, graphite particles such as natural graphite easily react with the electrolyte solution because the end surfaces of active crystallites are oriented outward. However, in the negative electrode material containing the above surface-coated graphite, carbon having a low degree of crystallinity. It is considered that the reaction of the electrolyte solution with the organic solvent is controlled because the material blocks the active crystallite end face. Therefore, when the negative electrode material containing the surface-coated graphite is used as a negative electrode for a lithium secondary battery, it is considered that the amount of gas generated during initial charging can be suppressed.

炭素材料の結晶性が前記黒鉛粒子より結晶性が低いことについては、一般的な結晶化度の指標として知られている広角X線回折法による(002)面の値から判断できる。つまり、炭素材料のd(002)が、芯材となる天然黒鉛のd(002)より大きければ、炭素材料は、黒鉛粒子より結晶性が低いといえる。   That the crystallinity of the carbon material is lower than that of the graphite particles can be determined from the value of the (002) plane by a wide angle X-ray diffraction method, which is known as a general index of crystallinity. In other words, if d (002) of the carbon material is larger than d (002) of natural graphite as the core material, it can be said that the carbon material has lower crystallinity than the graphite particles.

上記炭素材料の種類は特に限定されないが、例えば、等方性ピッチの熱処理物が例示される。等方性ピッチの熱処理物とは、非晶質性の炭素質である。つまり、上記炭素材料が等方性ピッチの熱処理物である場合は、黒鉛粒子の表面の少なくとも一部が非晶質性の炭素質の層で覆われている。   Although the kind of said carbon material is not specifically limited, For example, the heat processing thing of an isotropic pitch is illustrated. The heat-treated product with an isotropic pitch is amorphous carbonaceous material. That is, when the carbon material is a heat treated product of isotropic pitch, at least a part of the surface of the graphite particles is covered with an amorphous carbonaceous layer.

上記等方性ピッチの軟化点は、例えば、240℃〜290℃とすることができ、より好ましくは260〜290℃である。   The softening point of the isotropic pitch can be, for example, 240 ° C. to 290 ° C., and more preferably 260 to 290 ° C.

表面被覆黒鉛において、炭素材料は、黒鉛粒子の表面全体を被覆していてもよい。あるいは、表面被覆黒鉛において、炭素材料は、黒鉛粒子の表面の一部だけを被覆していてもよく、この場合、部分的に表面被覆黒鉛において、部分的に黒鉛粒子が露出している状態となる。負極用材料がより優れた充放電特性を付与できるという観点では、黒鉛粒子の表面全体を炭素材料が被覆していることが好ましいが、黒鉛粒子の表面の一部だけが被覆されている場合であっても、十分に負極用材料の機能が発揮され得る。   In the surface-coated graphite, the carbon material may cover the entire surface of the graphite particles. Alternatively, in the surface-coated graphite, the carbon material may cover only a part of the surface of the graphite particles. In this case, the surface-coated graphite is partially exposed, and the graphite particles are partially exposed. Become. From the viewpoint that the negative electrode material can impart better charge / discharge characteristics, it is preferable that the entire surface of the graphite particles is covered with the carbon material, but only when a part of the surface of the graphite particles is covered. Even if it exists, the function of the material for negative electrodes can fully be exhibited.

表面被覆黒鉛の平均粒子径は特に限定されない。例えば、表面被覆黒鉛の平均粒子径(D50)は5〜40μm、より好ましくは5〜30μm、特に好ましくは10〜25μmとすることができる。なお、ここでいう平均粒径D50は体積平均粒子径である。   The average particle diameter of the surface-coated graphite is not particularly limited. For example, the average particle diameter (D50) of the surface-coated graphite can be 5 to 40 μm, more preferably 5 to 30 μm, and particularly preferably 10 to 25 μm. In addition, the average particle diameter D50 here is a volume average particle diameter.

また、表面被覆黒鉛のX線広角回折法による(002)面の平均面間隔d(002)は、0.335〜0.340nm、c軸方向の結晶子厚みLc(004)が10nm以上、より好ましくは20nm以上である。d(002)の値が上記範囲であれば、炭素材料の割合が高くなり過ぎることはないので、表面被覆黒鉛の結晶性の低下が起こりにくく、低電位部分の容量も十分となり得る。   Further, the average interplanar spacing d (002) of the (002) plane of the surface-coated graphite by the X-ray wide angle diffraction method is 0.335 to 0.340 nm, and the crystallite thickness Lc (004) in the c-axis direction is 10 nm or more. Preferably it is 20 nm or more. If the value of d (002) is in the above range, the ratio of the carbon material does not become too high, so that the crystallinity of the surface-coated graphite hardly occurs and the capacity of the low potential portion can be sufficient.

表面被覆黒鉛のタップ密度は、0.85g/cc以上とすることができ、この場合、表面被覆黒鉛を含む負極用材料から負極を作製した場合に、表面被覆黒鉛の粒子が配向(すなわち、粒子が一定方向に配列)し、入出力特性の低下が生じにくい。より好ましいタップ密度は、0.95g/cc以上、さらに好ましくは1.05g/cc以上である。また、上記表面被覆黒鉛のタップ密度は、芯材である黒鉛粒子のタップ密度より高い。   The tap density of the surface-coated graphite can be 0.85 g / cc or more. In this case, when the negative electrode is produced from the negative electrode material containing the surface-coated graphite, the particles of the surface-coated graphite are oriented (that is, the particles Are arranged in a certain direction), and the input / output characteristics are unlikely to deteriorate. A more preferable tap density is 0.95 g / cc or more, and further preferably 1.05 g / cc or more. The tap density of the surface-coated graphite is higher than the tap density of the graphite particles that are the core material.

本実施形態の負極用材料は、その効果が阻害されない程度であれば、表面被覆黒鉛以外の材料を含んでいてもよい。例えば、負極を形成するためのバインダーや有機溶媒等が含まれ得る。   The negative electrode material of this embodiment may contain a material other than the surface-coated graphite as long as the effect is not hindered. For example, a binder or an organic solvent for forming the negative electrode can be included.

表面被覆黒鉛は、水蒸気吸着量測定において相対圧P/P=0.2〜0.4である範囲内で水蒸気吸着量をP/P=0.05±0.01間隔で5点測定し、この5点の結果に基づいて相対圧P/P及び水蒸気吸着量との関係をそれぞれX軸及びY軸にプロットして導出した2次関数式をY=F(X)とした場合、X=0.3におけるYの値が0.03〜0.4cm/gである。なお、相対圧P/Pは、平衡圧力(P)を飽和蒸気圧(P)で割った値のことをいう。 For surface-coated graphite, water vapor adsorption amount is measured at 5 points at intervals of P / P 0 = 0.05 ± 0.01 within the range of relative pressure P / P 0 = 0.2 to 0.4 in measurement of water vapor adsorption amount. When the quadratic function expression derived by plotting the relationship between the relative pressure P / P 0 and the water vapor adsorption amount on the X axis and the Y axis based on the results of these five points is Y = F (X) The value of Y at X = 0.3 is 0.03 to 0.4 cm 3 / g. The relative pressure P / P 0 means a value obtained by dividing the equilibrium pressure (P) by the saturated vapor pressure (P 0 ).

表面被覆黒鉛の水蒸気吸着量測定でのX=0.3におけるYの値(F(0.3))が上記範囲であれば、負極用材料をリチウム二次電池負極として用いた場合に、そのリチウム二次電池の初期充電時のガス発生量を抑制することが可能となり、その結果、リチウム二次電池に優れた初期充放電効率を付与することができる。より好ましいX=0.3におけるYの値は、0.03〜0.2である。   If the value of Y (F (0.3)) at X = 0.3 in the measurement of the amount of water vapor adsorption of the surface-coated graphite is within the above range, when the negative electrode material is used as a negative electrode for a lithium secondary battery, It becomes possible to suppress the gas generation amount at the time of initial charge of the lithium secondary battery, and as a result, excellent initial charge / discharge efficiency can be imparted to the lithium secondary battery. More preferably, the value of Y at X = 0.3 is 0.03 to 0.2.

上記水蒸気吸着量測定は、日本ベル株式会社製「高精度ガス/蒸気吸着量測定装置 BELSORP−max」を用いて測定された値をいう。   The said water vapor | steam adsorption amount measurement says the value measured using Nippon Bell Co., Ltd. "high precision gas / vapor adsorption amount measuring apparatus BELSORP-max."

2次関数式Y=F(X)は、近似式である。この近似式の導出は、以下のように行うことができる。まず、表面被覆黒鉛を水蒸気吸着量測定用サンプルとし、相対圧P/Pが少なくとも0.2〜0.4である範囲で水蒸気吸着量を測定する。この測定において、P/P=0.2〜0.4の範囲内で、P/P=0.05±0.01間隔となるように、水蒸気吸着量を5点測定する。これら測定した5点について、X軸に相対圧P/Pを、Y軸に水蒸気吸着量をプロットして曲線を引き、描かれた曲線の2次関数式;Y=F(X)を導出することで、近似式が得られる。上記プロットから2次関数式;Y=F(X)を算出するには、自動計算ソフトを使用すればよい。 The quadratic function expression Y = F (X) is an approximate expression. This approximate expression can be derived as follows. First, the surface-coated graphite is used as a water vapor adsorption amount measurement sample, and the water vapor adsorption amount is measured in a range where the relative pressure P / P 0 is at least 0.2 to 0.4. In this measurement, the water vapor adsorption amount is measured at five points so that P / P 0 = 0.05 ± 0.01 in the range of P / P 0 = 0.2 to 0.4. For these five measured points, the relative pressure P / P 0 is plotted on the X axis and the water vapor adsorption amount is plotted on the Y axis, and a curve is drawn to derive a quadratic function formula of the drawn curve: Y = F (X) By doing so, an approximate expression is obtained. In order to calculate the quadratic function equation; Y = F (X) from the above plot, automatic calculation software may be used.

上記のように得られた近似式から、X=0.3におけるYの値、すなわち、F(0.3)を求めればよい。   What is necessary is just to obtain | require the value of Y in X = 0.3, ie, F (0.3), from the approximate expression obtained as mentioned above.

2次関数式;Y=F(X)において、F(0.3)の値が0.03〜0.4である表面被覆黒鉛を含む負極材料をリチウム二次電池負極として用いた場合に、そのリチウム二次電池の初期充電時のガス発生量が抑制され、良好な初期充放電効率を有する。この理由としては種々考えられるが、主に、下記理由を挙げることができる。   When a negative electrode material containing surface-coated graphite having a F (0.3) value of 0.03 to 0.4 in a quadratic function formula; Y = F (X) is used as a negative electrode for a lithium secondary battery, The amount of gas generated during the initial charging of the lithium secondary battery is suppressed, and the initial charging / discharging efficiency is good. There are various reasons for this, but the following reasons can be mainly cited.

負極用材料を構成する負極活物質表面(表面被覆黒鉛)に適度な水分が存在すると、電解質との反応により、SEI(Solid Electryte Interface)皮膜と同様のLi塩が、負極活物質表面に生成し、これが、その後の電解液との反応性を低下させていると考えられる。負極活物質表面の水蒸気吸着量が多いと、被覆材料の含水率が高くなるため、この水と電解液とが反応することで、ガス発生量が増加する可能性があり、これによりエネルギーが余分に消費されて、初期充放電効率の低下を引き起こす。逆に、負極活物質表面の水蒸気吸着量が少ないと、初期充電前に負極活物質表面に皮膜が十分に生成しないため、初期充電時のガス発生の抑制が難しくなる。   When appropriate moisture is present on the surface of the negative electrode active material (surface-coated graphite) constituting the negative electrode material, a Li salt similar to the SEI (Solid Electrolyte Interface) film is generated on the surface of the negative electrode active material due to the reaction with the electrolyte. This is considered to reduce the reactivity with the subsequent electrolyte solution. If the amount of water vapor adsorbed on the surface of the negative electrode active material is large, the moisture content of the coating material increases, and this water may react with the electrolyte solution, which may increase the amount of gas generated. To cause a reduction in initial charge / discharge efficiency. Conversely, if the amount of water vapor adsorbed on the surface of the negative electrode active material is small, a film is not sufficiently formed on the surface of the negative electrode active material before the initial charge, making it difficult to suppress gas generation during the initial charge.

また、負極用材料を構成する負極活物質表面(表面被覆黒鉛)が適度な親水性を有すると、負極用材料のスラリーを調製する際に、負極活物質と溶媒のなじみが良好となり、スラリーに含まれる増粘剤及び結着剤成分が負極活物質を均一に覆うことができるようになり、初期充電時の電解液との反応性が低下する。この反応性の低下が、リチウム二次電池の初期充電時のガス発生量の抑制につながり、初期充放電効率の低下が防止されやすい。負極用材料の水蒸気吸着量が少なすぎると、活物質と溶媒のなじみが悪く、電極内で結着剤などの固形成分が不均一に分布しやすくなるので、ガス発生量の抑制が困難となる。また、水蒸気吸着量が多いと、負極活物質表面の親水性が高く、含水率が高くなるため、電解液の過度な分解を招き、電池特性を低下させるおそれがある。   In addition, if the surface of the negative electrode active material (surface-coated graphite) constituting the negative electrode material has appropriate hydrophilicity, the negative electrode active material and the solvent become more familiar when the slurry for the negative electrode material is prepared. The thickener and binder component contained can uniformly cover the negative electrode active material, and the reactivity with the electrolyte during initial charging is reduced. This decrease in reactivity leads to suppression of the amount of gas generated during the initial charging of the lithium secondary battery, and a decrease in the initial charge / discharge efficiency is easily prevented. If the amount of water vapor adsorption of the negative electrode material is too small, the familiarity between the active material and the solvent is poor, and solid components such as binders are likely to be unevenly distributed within the electrode, making it difficult to suppress the amount of gas generated. . Further, when the water vapor adsorption amount is large, the surface of the negative electrode active material has high hydrophilicity and the water content becomes high, so that the electrolyte solution is excessively decomposed and the battery characteristics may be deteriorated.

なお、上記近似式において、X=0.1である場合のYの値(F(0.1))は限定的ではないが、例えば、0.01〜0.1cm/gとすることが好ましく、0.01〜0.05であることがより好ましい。同様に、X=0.5である場合のYの値(F(0.5))は限定的ではないが、例えば、0.08〜0.9cm/g程度とすることが好ましく、0.08〜0.5cm/gであることがより好ましい。いずれの場合も、負極用材料をチウム二次電池負極として用いた場合に、そのリチウム二次電池の初期充電時のガス発生量を抑制することが可能となり、その結果、リチウム二次電池に優れた初期充放電効率を付与することができる。X=0.2であれば、Yの値(F(0.2))は0.02〜0.2、X=0.4であれば、Yの値(F(0.2))は0.05〜0.6とできる。 In the above approximate expression, the value of Y (F (0.1)) when X = 0.1 is not limited, but may be, for example, 0.01 to 0.1 cm 3 / g. Preferably, it is 0.01-0.05. Similarly, the value of Y (F (0.5)) when X = 0.5 is not limited, but is preferably about 0.08 to 0.9 cm 3 / g, for example, It is more preferable that it is 0.08-0.5 cm < 3 > / g. In either case, when the negative electrode material is used as a negative electrode for a lithium secondary battery, it is possible to suppress the amount of gas generated during the initial charging of the lithium secondary battery, and as a result, the lithium secondary battery is excellent. The initial charge / discharge efficiency can be imparted. If X = 0.2, the value of Y (F (0.2)) is 0.02 to 0.2, and if X = 0.4, the value of Y (F (0.2)) is It can be 0.05-0.6.

このように表面被覆黒鉛においては、X=0.3に限らず、いずれの相対圧における水蒸気吸着量を比較しても、初期充電時のガス発生量を抑制しうる水蒸気吸着量の範囲を特定することができる。   In this way, in surface-coated graphite, the range of water vapor adsorption amount that can suppress the amount of gas generation at the initial charge is specified by comparing the water vapor adsorption amount at any relative pressure, not limited to X = 0.3. can do.

なお、負極用材料の水蒸気吸着量の大小は一般的に、窒素吸着によるBET比表面積と、水蒸気吸着によるBET比表面積との比でも評価することができる。窒素吸着によるBET比表面積と水蒸気吸着によるBET比表面積の比は、0.04〜0.3程度とすることが好ましく、より好ましくは0.05〜0.2である。   The amount of water vapor adsorption of the negative electrode material can generally be evaluated by the ratio of the BET specific surface area by nitrogen adsorption to the BET specific surface area by water vapor adsorption. The ratio of the BET specific surface area by nitrogen adsorption to the BET specific surface area by water vapor adsorption is preferably about 0.04 to 0.3, more preferably 0.05 to 0.2.

本実施形態の負極用材料は、上記表面被覆黒鉛を含有することで、リチウム二次電池の初期充電時のガス発生量を抑制できる。このように従来は何ら着目されていなかったリチウム二次電池の初期充電時のガス発生量に着眼点を置き、このガス発生量とリチウム二次電池の初期充放電効率との間に関連性があることを見出して、本実施形態の負極用材料が見出されている。つまり、本実施形態の負極用材料では、初期充電時のガス発生量が抑制されるので、従来よりもリチウム二次電池の初期充放電効率を向上させることができる。   By including the surface-coated graphite, the negative electrode material of the present embodiment can suppress the amount of gas generated during the initial charging of the lithium secondary battery. In this way, attention has been paid to the amount of gas generated at the time of initial charging of a lithium secondary battery, which has not been paid attention in the past, and there is a relationship between the amount of gas generated and the initial charge / discharge efficiency of the lithium secondary battery. As a result, the negative electrode material of this embodiment has been found. That is, in the negative electrode material of the present embodiment, the amount of gas generated at the time of initial charging is suppressed, so that the initial charge / discharge efficiency of the lithium secondary battery can be improved as compared with the prior art.

<リチウム二次電池負極用材料の製造方法>
上記リチウム二次電池負極用材料は、種々の方法で製造することができ、その製造方法は特に限定されない。例えば、リチウム二次電池負極用材料は、例えば、下記の工程を備える製造方法によって製造される。
黒鉛粒子と炭素前駆体を混合して混合物を調製し、当該混合物を熱処理する工程。
<Method for producing negative electrode material for lithium secondary battery>
The lithium secondary battery negative electrode material can be produced by various methods, and the production method is not particularly limited. For example, the material for a lithium secondary battery negative electrode is manufactured by, for example, a manufacturing method including the following steps.
A step of preparing a mixture by mixing graphite particles and a carbon precursor and heat-treating the mixture.

上記工程によって、表面被覆黒鉛が得られる。   Surface-coated graphite is obtained by the above process.

黒鉛粒子としては、上述したように、球状の天然黒鉛が例示される。   Examples of the graphite particles include spherical natural graphite as described above.

上記炭素前駆体は、加熱処理されることで、表面被覆黒鉛を構成する炭素材料に変化する。この炭素材料は、前記黒鉛粒子より結晶性が低い。   The said carbon precursor changes into the carbon material which comprises surface coating graphite by heat-processing. This carbon material has lower crystallinity than the graphite particles.

炭素前駆体としては特に制限はないが、石炭系或いは石油系のピッチやタールの他に、各種セルロース、ポリアクリルアミド、ポリエチレンイミン、フェノール樹脂、フラン樹脂、エポキシ樹脂、ポリ塩化ビニル、ポリビニルアルコールの各種の合成樹脂を用いることができる。中でも、ピッチを炭素前駆体として用いることが好ましい。ピッチは等方性ピッチであっても異方性ピッチであってもよい。ピッチは、等方性ピッチであることが好ましく、石炭系等方性ピッチであることがさらに好ましい。また、ピッチを用いる場合には、軟化点が240〜290℃であることが好ましく、より好ましくは260〜290℃である。上記炭素前駆体は、1種単独で使用してもよいし、二種類以上を組み合わせて使用することもできる。   The carbon precursor is not particularly limited, but in addition to coal or petroleum pitch and tar, various cellulose, polyacrylamide, polyethyleneimine, phenol resin, furan resin, epoxy resin, polyvinyl chloride, polyvinyl alcohol These synthetic resins can be used. Among these, it is preferable to use pitch as the carbon precursor. The pitch may be an isotropic pitch or an anisotropic pitch. The pitch is preferably an isotropic pitch, and more preferably a coal-based isotropic pitch. Moreover, when using a pitch, it is preferable that a softening point is 240-290 degreeC, More preferably, it is 260-290 degreeC. The said carbon precursor may be used individually by 1 type, and can also be used in combination of 2 or more types.

黒鉛粒子と炭素前駆体との混合物を調製する方法は限定的ではなく、所定量の黒鉛粒子と炭素前駆体とを適宜の方法で混合すればよい。例えば、混合物を調製するにあたっての混合方法としては、例えば、ナウタミキサー、リボンミキサー、V型ミキサー、ロッキングミキサーなどを使用することにより行われる。   The method for preparing the mixture of graphite particles and carbon precursor is not limited, and a predetermined amount of graphite particles and carbon precursor may be mixed by an appropriate method. For example, as a mixing method in preparing the mixture, for example, a nauta mixer, a ribbon mixer, a V-type mixer, a rocking mixer, or the like is used.

上記混合物における黒鉛粒子と炭素前駆体との混合割合は特に限定的ではない。例えば、黒鉛粒子と炭素前駆体との混合割合は通常、黒鉛粒子と炭素前駆体との合計重量を100重量部とした場合、黒鉛粒子を90〜99重量部とすることができる。すなわち、混合物における黒鉛粒子と炭素前駆体との重量比率を、90:10〜99:1の範囲とすることができる。黒鉛粒子と炭素前駆体との合計重量を100重量部あたり、黒鉛粒子が90〜99重量部であることで、黒鉛粒子の活性な結晶子の端面が、炭素材料によって十分に覆われやすくなり、電解液との反応性が抑制されやすいので、電池の充放電効率が向上しやすく、しかも、安全性を維持しやすい。また、黒鉛粒子と炭素前駆体との合計重量を100重量部あたり、黒鉛粒子が90〜99重量部であることで、黒鉛粒子に由来する低電位部分の容量が減少しにくく、リチウム二次電池を作製した場合に十分な容量を得ることができる。   The mixing ratio of the graphite particles and the carbon precursor in the mixture is not particularly limited. For example, the mixing ratio of the graphite particles and the carbon precursor can usually be 90 to 99 parts by weight when the total weight of the graphite particles and the carbon precursor is 100 parts by weight. That is, the weight ratio of the graphite particles and the carbon precursor in the mixture can be in the range of 90:10 to 99: 1. When the total weight of the graphite particles and the carbon precursor is 100 parts by weight, and the graphite particles are 90 to 99 parts by weight, the active crystallite end faces of the graphite particles are sufficiently covered with the carbon material, Since the reactivity with the electrolytic solution is easily suppressed, the charge / discharge efficiency of the battery is easily improved, and the safety is easily maintained. Further, since the total weight of the graphite particles and the carbon precursor is 100 to 99 parts by weight and the graphite particles are 90 to 99 parts by weight, the capacity of the low potential portion derived from the graphite particles is difficult to decrease, and the lithium secondary battery A sufficient capacity can be obtained.

以上より、黒鉛粒子と炭素前駆体の重量比率が上記範囲にあることで、電解液との反応性が十分抑制され、かつ高容量な電池が得られる。   As described above, when the weight ratio of the graphite particles and the carbon precursor is in the above range, the reactivity with the electrolytic solution is sufficiently suppressed, and a high-capacity battery is obtained.

混合物における黒鉛粒子と炭素前駆体との重量比率は、92:8〜98:2の範囲であることが好ましく、93:7〜96:4の範囲であることが好ましい。   The weight ratio of the graphite particles to the carbon precursor in the mixture is preferably in the range of 92: 8 to 98: 2, and preferably in the range of 93: 7 to 96: 4.

混合物の熱処理を実施するにあたっての雰囲気温度は特に限定されない。例えば、熱処理を行う雰囲気温度の最高到達温度が800〜1000℃であることが好ましい。この場合、得られた負極用材料をリチウム二次電池に適用した場合において、ガス発生量が抑制されやすく、初期充放電効率が向上しやすい。熱処理を行う雰囲気温度の最高到達温度が上記範囲であることで炭素前駆体の炭化が促進され、可逆容量の低下が抑制されるので、初期充放電効率の低下を防止しやすい。さらに、熱処理を行う雰囲気温度の最高到達温度が上記範囲であれば、炭素前駆体の部分的な黒鉛化が抑制され、炭素材料の結晶化度が低くなりにくいので、電解液との副反応を抑制しやすくなる。この結果、得られた負極用材料をリチウム二次電池に適用した場合において、ガス発生量が抑制され得る。   The ambient temperature for carrying out the heat treatment of the mixture is not particularly limited. For example, it is preferable that the highest reached temperature of the atmospheric temperature for heat treatment is 800 to 1000 ° C. In this case, when the obtained negative electrode material is applied to a lithium secondary battery, the amount of gas generation is easily suppressed, and the initial charge / discharge efficiency is easily improved. When the maximum temperature of the atmospheric temperature for the heat treatment is within the above range, carbonization of the carbon precursor is promoted and reduction in reversible capacity is suppressed, so that it is easy to prevent reduction in initial charge / discharge efficiency. Furthermore, if the maximum temperature of the atmospheric temperature for heat treatment is within the above range, partial graphitization of the carbon precursor is suppressed, and the crystallinity of the carbon material is unlikely to be lowered. It becomes easy to suppress. As a result, when the obtained negative electrode material is applied to a lithium secondary battery, the amount of gas generated can be suppressed.

このように特定範囲の水蒸気吸着量を有する負極用材料を得るには、表面被覆黒鉛の調製時における熱処理温度が重要な要素の一つとなる。熱処理を行う雰囲気温度の最高到達温度は、900〜1000℃であることがさらに好ましい。   Thus, in order to obtain a negative electrode material having a water vapor adsorption amount in a specific range, the heat treatment temperature during the preparation of the surface-coated graphite is one of the important factors. It is more preferable that the maximum temperature of the atmospheric temperature for performing the heat treatment is 900 to 1000 ° C.

上記最高到達温度での保持時間は特に限定されないが、30分〜2時間程度であることが好ましい。   The holding time at the maximum temperature is not particularly limited, but is preferably about 30 minutes to 2 hours.

さらに、混合物の熱処理を実施するにあたっての昇温速度も限定的ではない。例えば、熱処理時の昇温速度が10〜200℃/時間とすることができる。この範囲の昇温速度であることで、揮発成分が急速にガス化するのが防止されやすくなり、揮発ガス成分の芯材への被覆がより均一となりやすいので、ガス発生量を抑制されやすく、初期充放電効率が向上しやすい。また、昇温速度が上記範囲であれば、熱処理時間を短縮しやすいので経済性の面でも好ましい。   Furthermore, the rate of temperature rise when performing heat treatment of the mixture is not limited. For example, the heating rate during heat treatment can be 10 to 200 ° C./hour. By being a temperature increase rate in this range, it becomes easy to prevent volatile components from being rapidly gasified, and the coating of the volatile gas components on the core material is likely to be more uniform, so that the amount of gas generation is easily suppressed, Initial charge / discharge efficiency is easy to improve. Moreover, if the rate of temperature increase is in the above range, the heat treatment time can be easily shortened, which is preferable in terms of economy.

混合物の熱処理は窒素等の不活性ガス気流中、還元雰囲気中などの非酸化性雰囲気中で行うことが好ましい。この場合、熱処理による焼成によって形成される炭素材料表面に含酸素官能基が生成にくくし、比表面積の増加を引き起こしにくくできる。   The heat treatment of the mixture is preferably performed in a non-oxidizing atmosphere such as an inert gas stream such as nitrogen or a reducing atmosphere. In this case, it is possible to make it difficult for oxygen-containing functional groups to be formed on the surface of the carbon material formed by firing by heat treatment, and to make it difficult to increase the specific surface area.

上記のように混合物の熱処理を行うことで混合物が焼成され、上記表面被覆黒鉛が得られる。このように得られた表面被覆黒鉛は、例えば、粒子状の形状である。   By performing the heat treatment of the mixture as described above, the mixture is fired to obtain the surface-coated graphite. The surface-coated graphite thus obtained has, for example, a particulate shape.

上記焼成で得られた上記表面被覆黒鉛は、そのまま負極用材料として使用してもよいし、あるいは、粉砕等の処理を行ってもよい。また、上記焼成で得られた上記表面被覆黒鉛に、適宜の添加剤を加えるなどの処理を行って、負極用材料を調製することもできる。   The surface-coated graphite obtained by the firing may be used as a negative electrode material as it is, or may be subjected to a treatment such as pulverization. Further, the negative electrode material can be prepared by performing a treatment such as adding an appropriate additive to the surface-coated graphite obtained by the firing.

このようにして得られた負極用材料は、特定の相対圧における水蒸気吸着量が所定の範囲に制御されていることで、リチウム二次電池に優れた初期充放電効率を付与することができる。また、負極用材料は、結晶性が高く、高容量密度を実現できる。また、安価な天然黒鉛を原材料としているので、コスト的にも優位な方法で負極用材料を製造できる。   The negative electrode material thus obtained can impart excellent initial charge / discharge efficiency to the lithium secondary battery by controlling the water vapor adsorption amount at a specific relative pressure within a predetermined range. Moreover, the negative electrode material has high crystallinity and can realize a high capacity density. Moreover, since cheap natural graphite is used as a raw material, the negative electrode material can be produced by a cost-effective method.

<リチウム二次電池>
上記リチウム二次電池負極用材料は、電極を形成することができ、特に、リチウム二次電池用の負極を形成する構成材料として好適に使用できる。
<Lithium secondary battery>
The lithium secondary battery negative electrode material can form an electrode, and can be particularly suitably used as a constituent material for forming a negative electrode for a lithium secondary battery.

上記リチウム二次電池は、上記負極用材料で形成された負極と、正極と、電解液とを少なくとも備えて構成され得る。   The lithium secondary battery may include at least a negative electrode formed of the negative electrode material, a positive electrode, and an electrolytic solution.

負極を形成する方法は特に限定的ではない。例えば、上記負極用材料及びバインダー等を含む混合物を成形する方法;上記負極用材料、有機溶媒及びバインダーなどを含むペーストを負極集電体に適宜の塗布手段(ドクターブレードなど)を用いて塗布する方法などによって、任意の形状のリチウム二次電池用負極が形成され得る。負極の形成においては、必要に応じて端子と組み合わせてもよい。   The method for forming the negative electrode is not particularly limited. For example, a method of forming a mixture containing the negative electrode material and a binder; and applying a paste containing the negative electrode material, an organic solvent and a binder to the negative electrode current collector using an appropriate application means (such as a doctor blade). A negative electrode for a lithium secondary battery having an arbitrary shape can be formed by a method or the like. In forming the negative electrode, it may be combined with a terminal as necessary.

負極集電体は、特に制限されず、公知の集電体、例えば、銅などの導電体を使用することができる。有機溶媒としては、通常、バインダーを溶解又は分散可能な溶媒が使用され、例えば、N−メチルピロリドン、N,N−ジメチルホルムアミドなどの有機溶媒を例示することができる。有機溶媒は単独で又は2種以上組み合わせてもよい。有機溶媒の使用量は、ペースト状となる限り特に制限されず、例えば、負極炭素材100重量部に対して、通常、60〜150重量部程度、好ましくは60〜100重量部程度である。   The negative electrode current collector is not particularly limited, and a known current collector, for example, a conductor such as copper can be used. As the organic solvent, a solvent capable of dissolving or dispersing the binder is usually used, and examples thereof include organic solvents such as N-methylpyrrolidone and N, N-dimethylformamide. The organic solvents may be used alone or in combination of two or more. The amount of the organic solvent used is not particularly limited as long as it becomes a paste, and is, for example, usually about 60 to 150 parts by weight, preferably about 60 to 100 parts by weight with respect to 100 parts by weight of the negative electrode carbon material.

バインダーとしては、特に限定されず、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素系ポリマー;ポリエチレン、ポリプロピレンなどのポリオレフィン系ポリマー;合成ゴム類などを用いることができる。この場合のバインダーの量としては、特に限定されず、例えば、負極用材料に含まれる表面被覆黒鉛100重量部に対して、0.1〜20重量部、好ましくは1〜10重量部である。ペーストの調製方法は、特に制限されず、例えば、バインダーと溶媒との混合液(又は分散液)と、表面被覆黒鉛とを混合する方法などを例示することができる。   The binder is not particularly limited, and fluorine-based polymers such as polytetrafluoroethylene and polyvinylidene fluoride; polyolefin-based polymers such as polyethylene and polypropylene; synthetic rubbers and the like can be used. The amount of the binder in this case is not particularly limited, and is, for example, 0.1 to 20 parts by weight, preferably 1 to 10 parts by weight with respect to 100 parts by weight of the surface-coated graphite contained in the negative electrode material. The method for preparing the paste is not particularly limited, and examples thereof include a method of mixing a mixed liquid (or dispersion liquid) of a binder and a solvent and surface-coated graphite.

なお、負極用材料と導電材(炭素質材料又は導電性炭素材料)とを併用して、負極を製造してもよい。導電材の使用割合は特に制限されないが、負極用材料と炭素質材料の総量に対して、通常、1〜10重量%程度、好ましくは1〜5重量%程度である。導電材(例えば、カーボンブラック(例えば、アセチレンブラック、サーマルブラック、ファーネスブラック)などの炭素質材料)を併用することにより、電極としての導電性を向上させてもよい。導電材は、単独で又は2種以上組み合わせて使用できる。なお、導電材は、例えば、負極用材料と溶媒とを含むペーストに混合し、このペーストを負極集電体に塗布する方法などにより、負極用材料とともに有効に利用できる。   Note that the negative electrode may be manufactured by using a negative electrode material and a conductive material (carbonaceous material or conductive carbon material) in combination. The use ratio of the conductive material is not particularly limited, but is usually about 1 to 10% by weight, preferably about 1 to 5% by weight, based on the total amount of the negative electrode material and the carbonaceous material. By using a conductive material (for example, a carbonaceous material such as carbon black (for example, acetylene black, thermal black, furnace black)), conductivity as an electrode may be improved. A conductive material can be used individually or in combination of 2 or more types. The conductive material can be effectively used together with the negative electrode material by, for example, a method of mixing a paste containing a negative electrode material and a solvent and applying the paste to the negative electrode current collector.

前記ペーストの負極集電体への塗布量は特に制限されず、通常、5〜15mg/cm程度、好ましくは7〜13mg/cm程度である。また、負極集電体に塗布した膜の厚さ(前記ペーストの膜厚)は、例えば、30〜300μm、好ましくは50〜200μmである。なお、塗布後、負極集電体には、乾燥処理(例えば、真空乾燥など)を施してもよい。 The amount of the paste applied to the negative electrode current collector is not particularly limited, and is usually about 5 to 15 mg / cm 2 , preferably about 7 to 13 mg / cm 2 . Moreover, the thickness (film thickness of the paste) applied to the negative electrode current collector is, for example, 30 to 300 μm, preferably 50 to 200 μm. In addition, after application | coating, you may give a drying process (for example, vacuum drying etc.) to a negative electrode collector.

正極は、特に制限されず、公知の正極が使用できる。例えば、正極は、正極集電体、正極活物質、導電剤などで構成できる。正極は、リチウムを吸蔵及び放出することが可能であることが好ましい。   The positive electrode is not particularly limited, and a known positive electrode can be used. For example, the positive electrode can be composed of a positive electrode current collector, a positive electrode active material, a conductive agent, and the like. The positive electrode is preferably capable of inserting and extracting lithium.

正極集電体として、例えば、アルミニウムなどを例示することができる。正極活物質としては、例えば、TiS,MoS,NbSe,FeS,VS,VSeなどの層状構造を有する金属カルコゲン化物;CoO,Cr,TiO,CuO,V,MoO,V(・P),MnO(・LiO),LiCoO、LiNiO、LiMnなどの金属酸化物;ポリアセチレン、ポリアニリン、ポリパラフェニレン、ポリチオフェン、ポリピロールなどの導電性を有する共役系高分子物質などを用いることができる。好ましくは、金属酸化物(特に、V、MnO、LiCoO)を用いる。 Examples of the positive electrode current collector include aluminum. Examples of the positive electrode active material include metal chalcogenides having a layered structure such as TiS 2 , MoS 3 , NbSe 3 , FeS, VS 2 , and VSe 2 ; CoO 2 , Cr 3 O 5 , TiO 2 , CuO, and V 3 O 6 , metal oxides such as Mo 3 O, V 2 O 5 (· P 2 O 5 ), Mn 2 O (· Li 2 O), LiCoO 2 , LiNiO 2 , LiMn 2 O 4 ; polyacetylene, polyaniline, polypara Conductive conjugated polymer substances such as phenylene, polythiophene, and polypyrrole can be used. Preferably, a metal oxide (in particular, V 2 O 5 , Mn 2 O, LiCoO 2 ) is used.

また、電解液としては、例えば、プロピレンカーボネート、エチレンカーボネート、γ−ブチロラクトン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、4−メチルジオキソラン、スルホラン、1,2−ジメトキシエタン、ジメチルスルホキシド、アセトニトリル、N,N−ジメチルホルムアミド、ジエチレングリコール、ジメチルエーテルなどの非プロトン性溶媒などが例示できる。また、電解液は、これらの非プロトン性溶媒に、LiPF,LiClO,LiBF,LiAsF,LiSbF,LiAlO,LiAlCl,LiCl,LiIなどの溶媒和しにくいアニオンを生成する塩を溶解させたものも含まれる。電解液は、単独で又は2種以上組み合わせてもよい。好ましい電解液には、強い還元雰囲気でも安定な溶媒テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、4−メチルジオキソランのような強い還元雰囲気でも安定なエーテル系溶媒や、前記非プロトン性溶媒(好ましくは2種以上の混合溶媒)に、前記例示の塩を溶解させた溶液などが含まれる。 Examples of the electrolyte solution include propylene carbonate, ethylene carbonate, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, 4-methyldioxolane, sulfolane, 1,2-dimethoxyethane, dimethyl sulfoxide, acetonitrile, N, N -Examples include aprotic solvents such as dimethylformamide, diethylene glycol, and dimethyl ether. Further, the electrolyte, these aprotic solvents, LiPF 6, LiClO 4, LiBF 4, LiAsF 6, LiSbF 6, LiAlO 4, LiAlCl 4, LiCl, the salts formed a solvated hard anions such LiI The dissolved one is also included. The electrolyte solutions may be used alone or in combination of two or more. Preferred electrolytes include solvents that are stable even in a strong reducing atmosphere such as tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, 4-methyldioxolane, ether solvents that are stable in a strong reducing atmosphere, and the above-mentioned aprotic solvents (preferably two kinds). The above mixed solvent) includes a solution in which the exemplified salt is dissolved.

上記リチウム二次電池は、セパレータ(通常使用される多孔質ポリプロピレン製不織布などのポリオレフィン系多孔質膜のセパレータなど)、集電体、ガスケット、封口板、ケースなどの電池構成要素を用い、常法により、組立ておよび製造できる。   The lithium secondary battery uses battery components such as a separator (such as a separator of a polyolefin-based porous film such as a porous polypropylene nonwoven fabric that is usually used), a current collector, a gasket, a sealing plate, and a case. Can be assembled and manufactured.

なお、リチウム二次電池は、円筒型、角型、ボタン型など任意の形状又は形態とすることができる。   Note that the lithium secondary battery can have any shape or form such as a cylindrical shape, a square shape, or a button shape.

上記リチウム二次電池は、上記実施形態の負極用材料を使用して形成されているので、リチウム二次電池に優れた初期充放電効率を付与することができる。   Since the said lithium secondary battery is formed using the negative electrode material of the said embodiment, the initial stage charge / discharge efficiency excellent in the lithium secondary battery can be provided.

そのため、上記リチウム二次電池は、大型の製品に組み込まれる電池として適している。例えば、上記リチウム二次電池は、自動車、蓄電システムなどの電源として使用することができる。   Therefore, the lithium secondary battery is suitable as a battery incorporated in a large product. For example, the lithium secondary battery can be used as a power source for automobiles, power storage systems, and the like.

以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例の態様に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited to the aspect of these Examples.

<X線回折測定法及び解析>
実施例および比較例において、黒鉛化度P及び、d(002)、La(110)及びLc(004)は、理学電機株式会社製のX線広角回折装置(型式:RINT2500)により測定した。
<X-ray diffraction measurement method and analysis>
In the examples and comparative examples, the degree of graphitization P 1 and d (002), La (110) and Lc (004) were measured with an X-ray wide-angle diffractometer (model: RINT2500) manufactured by Rigaku Corporation.

また、結晶子サイズの測定は、学振法に従って行った。その際解析ソフトとしてCarbon Analyzer Gseries((株)菱化システム)を用いた。標準シリコンとしては、NIST650b Silicon PowderXRD Spacing (U.S.Department of commerce National Institute ofstandards and Technology)を用いた。   The crystallite size was measured according to the Gakushin method. At that time, Carbon Analyzer Gseries (Ryoka System Co., Ltd.) was used as analysis software. NIST650b Silicon Powder XRD Spacing (US Department of Commerce National Institutes of Standards and Technology) was used as the standard silicon.

黒鉛化度Pは、下記式(1)に基づき、11回折線強度を適用して求めた。 The graphitization degree P 1 was determined by applying 11 diffraction line intensities based on the following formula (1).

Figure 2017183205
Figure 2017183205

式中、Kは定数、mは多重度、Fは二次元格子の構造因子、θは(hk0)面に対する回折角、A(hk)は係数である。 In the equation, K is a constant, m is multiplicity, F is a structure factor of a two-dimensional lattice, θ 0 is a diffraction angle with respect to the (hk0) plane, and A n (hk) is a coefficient.

具体的には、以下の方法により精度良く黒鉛化度を決定した。すなわち、理論式は、黒鉛化度P(hk)についてのn次多項式とみなせるので、フーリエ(Fourier)級数項の数nを十分大きな値にすれば、黒鉛化度に対応したhk回折線プロファイルが一義的に決まることになる。それゆえ、P(hk)を可変パラメータとして、実測したhk回折線プロファイルIOBS(2θ)を、理論式を用いて最小二乗法によりフィッティングを行うことによりP(hk)を決定した。 Specifically, the degree of graphitization was accurately determined by the following method. That is, since the theoretical formula can be regarded as an nth-order polynomial for the degree of graphitization P 1 (hk), if the number n of the Fourier series term is set to a sufficiently large value, the hk diffraction line profile corresponding to the degree of graphitization. Is uniquely determined. Therefore, P 1 a (hk) as a variable parameter, the actually measured hk diffraction line profile I OBS of (2 [Theta]), to determine P 1 a (hk) by performing fitting by the least squares method using a theoretical expression.

<平均粒子径の測定>
日機装株式会社製「MT3000EXII」を用いて、粒子の粒度分布及びD50を測定した。
<Measurement of average particle diameter>
The particle size distribution and D50 of the particles were measured using “MT3000EXII” manufactured by Nikkiso Co., Ltd.

<比表面積の測定法>
カンタークローム社製「NOVA2000/窒素吸着BET比表面積測定装置」を用いて比表面積を測定した。
<Measurement method of specific surface area>
The specific surface area was measured using "NOVA2000 / nitrogen adsorption BET specific surface area measuring apparatus" manufactured by Canterchrome.

<タップ密度の測定法>
セイシン企業株式会社製タップデンサー「KYT−4000」を用いてタップ密度を測定した。シリンダーの容積は200cc、タッピング距離は50mm、タッピング回数は1200回とした。
<Measurement method of tap density>
The tap density was measured using a tap denser “KYT-4000” manufactured by Seishin Enterprise Co., Ltd. The cylinder volume was 200 cc, the tapping distance was 50 mm, and the tapping frequency was 1200 times.

<水蒸気吸着量の測定>
日本ベル株式会社製「高精度ガス/蒸気吸着量測定装置 BELSORP-max」を用いて水蒸気吸着量を測定した。
<Measurement of water vapor adsorption amount>
The amount of water vapor adsorption was measured using “BELSORP-max”, a highly accurate gas / vapor adsorption measuring device manufactured by Nippon Bell Co., Ltd.

<初期充放電効率の測定>
初期充放電効率測定には、下記の手順で作成した電池を用いた。負極用材料(表面被覆黒鉛)98重量部に、増粘剤としてカルボキシメチルセルロースの1重量部、及び結着材としてスチレンブタジエン共重合体の1重量部と適量の水を加えて混練し、スラリーとした。銅箔上にこのスラリーをドクターブレード法で目付け9.0mg/cmに塗布した。60℃で乾燥したのちロールプレスにより密度が1.6g/ccとなるように圧密化し10×10mm角に切り出し、200℃で減圧乾燥して負極とした。正極には12×12mm角に金属Li箔を用い、電解液としてはエチレンカーボネート:エチルメチルカーボネート1:2(質量比)の1M LiPFを用いた。
<Measurement of initial charge / discharge efficiency>
A battery prepared by the following procedure was used for the initial charge / discharge efficiency measurement. To 98 parts by weight of the negative electrode material (surface-coated graphite), 1 part by weight of carboxymethyl cellulose as a thickener and 1 part by weight of a styrene-butadiene copolymer as a binder and an appropriate amount of water are added and kneaded, did. This slurry was applied to a weight of 9.0 mg / cm 2 on a copper foil by a doctor blade method. After drying at 60 ° C., it was compacted by a roll press to a density of 1.6 g / cc, cut into 10 × 10 mm squares, and dried at 200 ° C. under reduced pressure to obtain a negative electrode. A metal Li foil having a 12 × 12 mm square was used for the positive electrode, and 1M LiPF 6 of ethylene carbonate: ethyl methyl carbonate 1: 2 (mass ratio) was used as the electrolyte.

上記電池で、0.3Cで0.01Vまで充電した後、0.01Vの定電圧で充電し、8時間充電後、0.3Cで1.2Vまで放電を行い、充放電容量を測定した。   The battery was charged to 0.01 V at 0.3 C, charged at a constant voltage of 0.01 V, charged for 8 hours, discharged to 1.2 V at 0.3 C, and the charge / discharge capacity was measured.

<ガス発生量の評価方法>
ガス発生量の測定には、下記の手順で作成した電池を用いた。表面被覆黒鉛98重量部に、増粘剤としてカルボキシメチルセルロースの1重量部、及び結着材としてスチレンブタジエン共重合体の1重量部と適量の水を加えて混練し、スラリーとした。銅箔上にこのスラリーをドクターブレード法で目付け9.2mg/cmに塗布した。60℃で乾燥したのちロールプレスにより密度が1.5g/ccとなるように圧密化し32×52mm角に切り出し、200℃で減圧乾燥して負極とした。
<Evaluation method of gas generation amount>
For the measurement of the amount of gas generated, a battery prepared by the following procedure was used. To 98 parts by weight of surface-coated graphite, 1 part by weight of carboxymethyl cellulose as a thickener and 1 part by weight of a styrene-butadiene copolymer as a binder and an appropriate amount of water were added and kneaded to prepare a slurry. This slurry was applied to a copper foil with a basis weight of 9.2 mg / cm 2 by a doctor blade method. After drying at 60 ° C., it was compacted to a density of 1.5 g / cc by a roll press and cut into 32 × 52 mm squares, and dried at 200 ° C. under reduced pressure to obtain a negative electrode.

リチウムニッケルマンガンコバルト系複合酸化物粉体93重量部に、アセチレンブラック4重量部、ポリフッ化ビニリデン(PVDF)3重量部とN−メチルピロリドンを加え混練し、スラリーとした。アルミニウム箔にこのスラリーをドクターブレード法で塗布した。130℃で減圧乾燥し、更に正極層の密度が2.7g/cmとなるようにロールプレスで圧密化した。これを30mm×50mm角に切り出し、150℃で乾燥して正極とした。 To 93 parts by weight of lithium nickel manganese cobalt composite oxide powder, 4 parts by weight of acetylene black, 3 parts by weight of polyvinylidene fluoride (PVDF) and N-methylpyrrolidone were added and kneaded to prepare a slurry. This slurry was applied to an aluminum foil by a doctor blade method. It dried under reduced pressure at 130 degreeC, and also consolidated by the roll press so that the density of a positive electrode layer might be 2.7 g / cm < 3 >. This was cut into a 30 mm × 50 mm square and dried at 150 ° C. to obtain a positive electrode.

上記の負極と正極を用い、電解液としてはエチレンカーボネート:エチルメチルカーボネート=3:7(質量比)の1M LiPFを用いた。 The above negative electrode and positive electrode were used, and 1M LiPF 6 of ethylene carbonate: ethyl methyl carbonate = 3: 7 (mass ratio) was used as the electrolytic solution.

初期充電時のガス発生量はアルキメデス法によって評価した。上記電池を水で満たされた容器に入れた後、上記電池で0.05Cで3.6Vまで充電した。容器から溢れた水の重量を測定し、充電前後での重量差を求めた。ここで得られた水の重量を体積に換算し、電池の体積変化量を求め、その値を初期充電時におけるガス発生量とした。そして、比較例1のガス発生量を100とし、これを基準として各実施例及び比較例1以外の比較例のガス発生量の相対量を算出し、下記基準にて、ガス発生量を評価した。
A:ガス発生量が50以下であり、ガス発生が十分に抑制されていた。
B:ガス発生量が50を超過、かつ、100未満であり、実用上問題ないレベルにガス発生が抑制されていた。
C:ガス発生量が100を超過しており、ガス発生が抑制されていなかった。
The amount of gas generated during initial charging was evaluated by the Archimedes method. After putting the battery in a container filled with water, the battery was charged to 3.6 V at 0.05 C. The weight of water overflowing from the container was measured, and the weight difference before and after charging was determined. The weight of the water obtained here was converted into a volume, the amount of change in the volume of the battery was determined, and that value was taken as the amount of gas generated during initial charging. And the gas generation amount of the comparative example 1 was set to 100, the relative amount of the gas generation amount of comparative examples other than each Example and the comparative example 1 was calculated on the basis of this, and the gas generation amount was evaluated on the following reference | standard. .
A: Gas generation amount was 50 or less, and gas generation was sufficiently suppressed.
B: The amount of gas generated was more than 50 and less than 100, and the gas generation was suppressed to a level where there was no practical problem.
C: Gas generation amount exceeded 100, and gas generation was not suppressed.

(実施例1)
中国製球状天然黒鉛(D50=17.9μm、比表面積=5.5m/g、タップ密度=1.00g/cc、d(002)=0.335nm)95重量部と、石炭系等方性ピッチ(軟化点=280℃)5重量部とをナウタミキサーで混合して混合物を得た。この混合物を、窒素雰囲気中、900℃で1時間(昇温速度200℃/hr)にわたって熱処理を行った。得られた表面被覆黒鉛の各種物性値を表1に示す。
Example 1
Spherical natural graphite made in China (D50 = 17.9 μm, specific surface area = 5.5 m 2 / g, tap density = 1.00 g / cc, d (002) = 0.335 nm) 95 parts by weight, coal-based isotropic 5 parts by weight of pitch (softening point = 280 ° C.) was mixed with a Nauta mixer to obtain a mixture. This mixture was heat-treated in a nitrogen atmosphere at 900 ° C. for 1 hour (temperature increase rate: 200 ° C./hr). Table 1 shows various physical property values of the obtained surface-coated graphite.

(実施例2)
熱処理の温度を950℃とする以外は、実施例1と同じ条件で、表面被覆黒鉛を調製した。得られた表面被覆黒鉛の物性値を表1に示す。
(Example 2)
Surface-coated graphite was prepared under the same conditions as in Example 1 except that the heat treatment temperature was 950 ° C. Table 1 shows the physical property values of the obtained surface-coated graphite.

(実施例3)
熱処理の温度を1000℃とする以外は、実施例1と同じ条件で、表面被覆黒鉛を調製した。得られた表面被覆黒鉛の物性値を表1に示す。
(Example 3)
Surface-coated graphite was prepared under the same conditions as in Example 1 except that the heat treatment temperature was 1000 ° C. Table 1 shows the physical property values of the obtained surface-coated graphite.

(実施例4)
熱処理の温度を800℃とする以外は、実施例1と同じ条件で、表面被覆黒鉛を調製した。得られた表面被覆黒鉛の物性値を表1に示す。
Example 4
Surface-coated graphite was prepared under the same conditions as in Example 1 except that the heat treatment temperature was 800 ° C. Table 1 shows the physical property values of the obtained surface-coated graphite.

(実施例5)
熱処理の温度を850℃とする以外は、実施例1と同じ条件で、表面被覆黒鉛を調製した。得られた表面被覆黒鉛の物性値を表1に示す。
(Example 5)
Surface-coated graphite was prepared under the same conditions as in Example 1 except that the heat treatment temperature was 850 ° C. Table 1 shows the physical property values of the obtained surface-coated graphite.

(比較例1)
焼成温度を1100℃とする以外は、実施例1と同じ条件で、表面被覆黒鉛を調製した。得られた表面被覆黒鉛の物性値を表1に示す。
(Comparative Example 1)
Surface-coated graphite was prepared under the same conditions as in Example 1 except that the firing temperature was 1100 ° C. Table 1 shows the physical property values of the obtained surface-coated graphite.

(比較例2)
中国製球状天然黒鉛を92.5重量部に、石炭系等方性ピッチを7.5重量部に変更したこと以外は、比較例1と同じ条件で表面被覆黒鉛を調製した。得られた表面被覆黒鉛の物性値を表1に示す。
(Comparative Example 2)
Surface-coated graphite was prepared under the same conditions as in Comparative Example 1 except that the Chinese-made spherical natural graphite was changed to 92.5 parts by weight and the coal-based isotropic pitch was changed to 7.5 parts by weight. Table 1 shows the physical property values of the obtained surface-coated graphite.

(比較例3)
中国製球状天然黒鉛を90重量部に、石炭系等方性ピッチを10重量部に変更したこと以外は、比較例1と同じ条件で表面被覆黒鉛を調製した。得られた表面被覆黒鉛の物性値を表1に示す。
(比較例4)
熱処理の温度を700℃とする以外は、実施例1と同じ条件で、表面被覆黒鉛を調製した。得られた表面被覆黒鉛の物性値を表1に示す。
(Comparative Example 3)
Surface-coated graphite was prepared under the same conditions as in Comparative Example 1, except that the Chinese-made spherical natural graphite was changed to 90 parts by weight and the coal-based isotropic pitch was changed to 10 parts by weight. Table 1 shows the physical property values of the obtained surface-coated graphite.
(Comparative Example 4)
Surface-coated graphite was prepared under the same conditions as in Example 1 except that the heat treatment temperature was 700 ° C. Table 1 shows the physical property values of the obtained surface-coated graphite.

(比較例5)
中国製球状天然黒鉛[D50=22.1μm、比表面積=4.0m/g、タップ密度=1.00g/cc、d(002)=0.335nm、]95重量部と、石炭系等方性ピッチ(軟化点=280℃)5重量部とをナウタミキサーで混合して混合物を得た。この混合物を、窒素雰囲気中、1100℃で1時間(昇温速度200℃/hr)熱処理した。得られた表面被覆黒鉛の物性値を表1に示す。
(Comparative Example 5)
Spherical natural graphite made in China [D50 = 22.1 μm, specific surface area = 4.0 m 2 / g, tap density = 1.00 g / cc, d (002) = 0.335 nm], 95 parts by weight, coal based isotropic 5 parts by weight of a natural pitch (softening point = 280 ° C.) was mixed with a Nauta mixer to obtain a mixture. This mixture was heat-treated in a nitrogen atmosphere at 1100 ° C. for 1 hour (temperature increase rate: 200 ° C./hr). Table 1 shows the physical property values of the obtained surface-coated graphite.

(比較例6)
実施例1で使用した石炭系等方性ピッチを、軟化点が240℃である石炭系等方性ピッチに変更したこと以外は、実施例1と同じ条件で表面被覆黒鉛を調製した。
(Comparative Example 6)
Surface-coated graphite was prepared under the same conditions as in Example 1 except that the coal-based isotropic pitch used in Example 1 was changed to a coal-based isotropic pitch having a softening point of 240 ° C.

(比較例7)
実施例1で使用した中国製球状天然黒鉛を被覆処理せずそのまま使用してサンプルを調製した。物性値を表1に示す。
(Comparative Example 7)
A sample was prepared using the Chinese spherical natural graphite used in Example 1 as it was without coating treatment. The physical property values are shown in Table 1.

(比較例8)
焼成温度を900℃、昇温速度を300℃/hrに変更したこと以外は、実施例1と同じ条件で表面被覆黒鉛を調製した。
(Comparative Example 8)
Surface-coated graphite was prepared under the same conditions as in Example 1 except that the firing temperature was changed to 900 ° C. and the rate of temperature increase was changed to 300 ° C./hr.

Figure 2017183205
Figure 2017183205

表1には各実施例及び比較例の表面被覆黒鉛の調製条件、表面被覆黒鉛の各種物性(体積平均粒子径D50、比表面積、広角X線回折法による(002)面の平均面間隔d(002))、並びに、水蒸気吸着量測定におけるP/P=0.1,0.3,0.5それぞれにおける二次関数式Y=F(X)の値を示している。 Table 1 shows the preparation conditions of the surface-coated graphite of each Example and Comparative Example, various physical properties of the surface-coated graphite (volume average particle diameter D50, specific surface area, average surface spacing d of (002) plane by wide angle X-ray diffraction method ( 002)), and the value of the quadratic function Y = F (X) in each of P / P 0 = 0.1, 0.3, 0.5 in the measurement of the amount of adsorbed water vapor.

なお、実施例1の表面被覆黒鉛において、P/P=0.1,0.3,0.5のときの二次関数式Y=F(X)はそれぞれ、
P/Po=0.1のときF(X)=0.4919X+0.3487X+0.0104
P/Po=0.3のときF(X)=2.1456X−0.3692X+0.0888
P/Po=0.5のときF(X)=0.7428X+0.6805X−0.2644
であった。
In the surface-coated graphite of Example 1, the quadratic function formula Y = F (X) when P / P 0 = 0.1, 0.3, 0.5 is
When P / Po = 0.1, F (X) = 0.919X 2 + 0.3487X + 0.0104
When P / Po = 0.3, F (X) = 2.456X 2 −0.3692X + 0.0888
When P / Po = 0.5, F (X) = 0.428X 2 + 0.6805X−0.2644
Met.

表2には、各実施例及び比較例で調製した表面被覆黒鉛を用いて構成された電池において、放電容量、初期効率及びガス発生量の結果を示している。   Table 2 shows the results of discharge capacity, initial efficiency, and gas generation amount in the batteries configured using the surface-coated graphite prepared in each Example and Comparative Example.

Figure 2017183205
Figure 2017183205

表2の結果から、実施例で得られた表面被覆黒鉛はいずれも、初期充電時のガス発生量が比較例よりも抑制されており、しかも、優れた初期充放電特性を有していることもわかる。この結果、本発明のリチウム二次電池用負極材料は、大型の製品、例えば、自動車、蓄電システムなどの電源として使用されるリチウム二次電池の負極炭素材料として有用であることが示されたといえる。   From the results shown in Table 2, all the surface-coated graphite obtained in the examples have a smaller amount of gas generation at the time of initial charge than that of the comparative example, and have excellent initial charge / discharge characteristics. I understand. As a result, it can be said that the negative electrode material for a lithium secondary battery of the present invention is useful as a negative electrode carbon material for a lithium secondary battery used as a power source for large products such as automobiles and power storage systems. .

本発明のリチウム二次電池用負極材料は、特定の相対圧における水蒸気吸着量が所定の範囲に制御された表面被覆黒鉛を含むことで、リチウム二次電池に優れた初期充放電効率を付与することができ、しかも、コスト的に優位な材料である。そのため、本発明のリチウム二次電池用負極材料は、大型の製品に適しており、例えば、自動車、蓄電システムなどの電源として使用されるリチウム二次電池の負極炭素材料として有用である。   The negative electrode material for a lithium secondary battery of the present invention includes surface-coated graphite whose water vapor adsorption amount at a specific relative pressure is controlled within a predetermined range, thereby imparting excellent initial charge / discharge efficiency to the lithium secondary battery. In addition, it is a cost-effective material. Therefore, the negative electrode material for lithium secondary batteries of the present invention is suitable for large-sized products, and is useful as a negative electrode carbon material for lithium secondary batteries used as a power source for automobiles, power storage systems, and the like.

Claims (11)

黒鉛粒子の表面の少なくとも一部に、前記黒鉛粒子より結晶性の低い炭素材料が付着して形成される表面被覆黒鉛を含み、
表面被覆黒鉛は、水蒸気吸着量測定において相対圧P/P=0.2〜0.4である範囲内で水蒸気吸着量をP/P=0.05±0.01間隔で5点測定し、この5点の結果に基づいて相対圧P/P及び水蒸気吸着量との関係をそれぞれX軸及びY軸にプロットして導出した2次関数式をY=F(X)とした場合、X=0.3におけるYの値が0.03〜0.4cm/gである、リチウム二次電池負極用材料。
Including at least part of the surface of the graphite particles, surface-coated graphite formed by adhering a carbon material having lower crystallinity than the graphite particles;
For surface-coated graphite, water vapor adsorption amount is measured at 5 points at intervals of P / P 0 = 0.05 ± 0.01 within the range of relative pressure P / P 0 = 0.2 to 0.4 in measurement of water vapor adsorption amount. When the quadratic function expression derived by plotting the relationship between the relative pressure P / P 0 and the water vapor adsorption amount on the X axis and the Y axis based on the results of these five points is Y = F (X) The material for lithium secondary battery negative electrodes whose Y value in X = 0.3 is 0.03-0.4 cm < 3 > / g.
表面被覆黒鉛は、前記炭素材料が等方性ピッチの熱処理物である、請求項1に記載のリチウム二次電池負極用材料。   The surface-coated graphite is a material for a negative electrode of a lithium secondary battery according to claim 1, wherein the carbon material is a heat-treated product having an isotropic pitch. 前記等方性ピッチの軟化点が240℃〜290℃である、請求項2に記載のリチウム二次電池負極用材料。   The material for a lithium secondary battery negative electrode according to claim 2, wherein a softening point of the isotropic pitch is 240C to 290C. 前記黒鉛粒子が球状の天然黒鉛である、請求項1〜3のいずれか1項に記載のリチウム二次電池負極用材料。   The material for a lithium secondary battery negative electrode according to any one of claims 1 to 3, wherein the graphite particles are spherical natural graphite. 請求項1〜4のいずれか1項に記載のリチウム二次電池負極用材料の製造方法であって、
黒鉛粒子と炭素前駆体を混合して混合物を調製し、当該混合物を熱処理する工程を備える、リチウム二次電池負極用材料の製造方法。
It is a manufacturing method of the material for lithium secondary battery negative electrodes given in any 1 paragraph of Claims 1-4,
The manufacturing method of the material for lithium secondary battery negative electrodes provided with the process of mixing a graphite particle and a carbon precursor, preparing a mixture, and heat-processing the said mixture.
前記熱処理を行う雰囲気温度の最高到達温度が800〜1000℃である、請求項5に記載の製造方法。   The manufacturing method according to claim 5, wherein the highest temperature of the atmospheric temperature for performing the heat treatment is 800 to 1000 ° C. 前記熱処理時の昇温速度が10〜200℃/時間である、請求項5又は6に記載の製造方法。   The manufacturing method of Claim 5 or 6 whose temperature increase rate at the time of the said heat processing is 10-200 degreeC / hour. 前記混合物における黒鉛粒子と炭素前駆体との重量比率が、90:10〜99:1である、請求項5〜7のいずれか1項に記載の製造方法。   The manufacturing method according to any one of claims 5 to 7, wherein a weight ratio of the graphite particles and the carbon precursor in the mixture is 90:10 to 99: 1. 請求項1〜4のいずれか1項に記載のリチウム二次電池負極用材料で形成された負極と、正極と、電解液とを少なくとも備えて構成されている、リチウム二次電池。   A lithium secondary battery comprising at least a negative electrode formed of the lithium secondary battery negative electrode material according to any one of claims 1 to 4, a positive electrode, and an electrolytic solution. 自動車用である、請求項9に記載のリチウム二次電池。   The lithium secondary battery according to claim 9, which is for an automobile. 蓄電システム用である、請求項9に記載のリチウム二次電池。   The lithium secondary battery according to claim 9, which is used for a power storage system.
JP2016072258A 2016-03-31 2016-03-31 Material for lithium secondary battery negative electrode and production method thereof Pending JP2017183205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016072258A JP2017183205A (en) 2016-03-31 2016-03-31 Material for lithium secondary battery negative electrode and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016072258A JP2017183205A (en) 2016-03-31 2016-03-31 Material for lithium secondary battery negative electrode and production method thereof

Publications (1)

Publication Number Publication Date
JP2017183205A true JP2017183205A (en) 2017-10-05

Family

ID=60007116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016072258A Pending JP2017183205A (en) 2016-03-31 2016-03-31 Material for lithium secondary battery negative electrode and production method thereof

Country Status (1)

Country Link
JP (1) JP2017183205A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018179802A1 (en) * 2017-03-31 2019-12-26 株式会社エンビジョンAescエナジーデバイス Anode for lithium ion battery and lithium ion battery
WO2020141607A1 (en) * 2019-01-04 2020-07-09 日立化成株式会社 Lithium ion secondary battery negative electrode material, production method for lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode, and lithium ion secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100292A (en) * 2001-09-21 2003-04-04 Osaka Gas Chem Kk Carbon material for negative electrode and manufacturing method thereof, and lithium ion secondary battery using the same
JP2009117240A (en) * 2007-11-08 2009-05-28 Osaka Gas Chem Kk Anode carbon material, and lithium secondary cell equipped with same
WO2012015054A1 (en) * 2010-07-30 2012-02-02 日立化成工業株式会社 Negative pole material for lithium ion secondary battery, negative pole for lithium ion secondary battery, and lithium ion secondary battery
US20140227588A1 (en) * 2013-02-04 2014-08-14 Lg Chem, Ltd. Anode including spherical natural graphite and lithium secondary battery including the anode
WO2017110796A1 (en) * 2015-12-21 2017-06-29 住友ベークライト株式会社 Carbon material for secondary battery negative electrodes, active material for secondary battery negative electrodes, secondary battery negative electrode and secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100292A (en) * 2001-09-21 2003-04-04 Osaka Gas Chem Kk Carbon material for negative electrode and manufacturing method thereof, and lithium ion secondary battery using the same
JP2009117240A (en) * 2007-11-08 2009-05-28 Osaka Gas Chem Kk Anode carbon material, and lithium secondary cell equipped with same
WO2012015054A1 (en) * 2010-07-30 2012-02-02 日立化成工業株式会社 Negative pole material for lithium ion secondary battery, negative pole for lithium ion secondary battery, and lithium ion secondary battery
US20130143127A1 (en) * 2010-07-30 2013-06-06 Hitachi Chemical Company, Ltd. Anode material for lithium ion secondary battery, anode for lithium ion secondary battery, and lithium ion secondary battery
US20140227588A1 (en) * 2013-02-04 2014-08-14 Lg Chem, Ltd. Anode including spherical natural graphite and lithium secondary battery including the anode
JP2015513185A (en) * 2013-02-04 2015-04-30 エルジー・ケム・リミテッド Negative electrode containing spherical natural graphite and lithium secondary battery containing the same
WO2017110796A1 (en) * 2015-12-21 2017-06-29 住友ベークライト株式会社 Carbon material for secondary battery negative electrodes, active material for secondary battery negative electrodes, secondary battery negative electrode and secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018179802A1 (en) * 2017-03-31 2019-12-26 株式会社エンビジョンAescエナジーデバイス Anode for lithium ion battery and lithium ion battery
WO2020141607A1 (en) * 2019-01-04 2020-07-09 日立化成株式会社 Lithium ion secondary battery negative electrode material, production method for lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode, and lithium ion secondary battery
CN113228344A (en) * 2019-01-04 2021-08-06 昭和电工材料株式会社 Negative electrode material for lithium ion secondary battery, method for producing negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JPWO2020141607A1 (en) * 2019-01-04 2021-09-27 昭和電工マテリアルズ株式会社 Manufacturing method of negative electrode material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP7004093B2 (en) 2019-01-04 2022-01-21 昭和電工マテリアルズ株式会社 Negative electrode material for lithium ion secondary battery, method for manufacturing negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
CN107949938B (en) Positive electrode active material for secondary battery, positive electrode for secondary battery comprising same, and secondary battery
CN107851795B (en) Negative electrode active material for lithium secondary battery and negative electrode for lithium secondary battery comprising same
JP6464252B2 (en) Graphite secondary particles and lithium secondary battery containing the same
KR101461220B1 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and negative electrode and rechargeable lithium battery including the same
JP5757148B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
CN107112499B (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP6022297B2 (en) Negative electrode material for lithium ion secondary battery, and negative electrode and secondary battery using the same
CN111742431A (en) Positive electrode active material for secondary battery, method for preparing same, and lithium secondary battery comprising same
US20110027646A1 (en) Anode material of excellent conductivity and high power secondary battery employed with the same
KR102277734B1 (en) Negative electrode active material for lithium secondary battery, negative electrode for lithium secondry battery and lithium secondary battery comprising the same
KR102426797B1 (en) Negative electrode active material for lithium secondary battery, method of manufacturing the same, negative electrode for lithium secondry battery and lithium secondary battery comprising the same
JP5683890B2 (en) Positive electrode material, manufacturing method thereof, positive electrode and non-aqueous electrolyte secondary battery
CN112219293B (en) Negative electrode for lithium secondary battery and lithium secondary battery comprising same
WO2018110263A1 (en) Composite graphite particles, method for producing same, and use thereof
WO2016158823A1 (en) Carbonaceous molding for cell electrode, and method for manufacturing same
KR102250897B1 (en) Active material for an anode and a secondary battery comprising the same
CN113574702A (en) Negative electrode active material for secondary battery, method for producing same, negative electrode for secondary battery comprising same, and lithium secondary battery
EP4266408A1 (en) Anode active material for lithium secondary battery, preparation method therefor, and lithium secondary battery including same
KR102465722B1 (en) Active material for an anode and a secondary battery comprising the same
CN111201200A (en) Method of preparing positive electrode active material for secondary battery and secondary battery using the same
CN115004414A (en) Positive electrode active material for secondary battery and lithium secondary battery comprising same
KR101897860B1 (en) Cathode additives for lithium secondary battery and secondary battery comprising the same
CN114175315A (en) Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2017183205A (en) Material for lithium secondary battery negative electrode and production method thereof
JP2020161385A (en) Negative electrode material for lithium ion secondary battery and manufacturing method thereof, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200303