JP2020161385A - Negative electrode material for lithium ion secondary battery and manufacturing method thereof, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery - Google Patents

Negative electrode material for lithium ion secondary battery and manufacturing method thereof, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery Download PDF

Info

Publication number
JP2020161385A
JP2020161385A JP2019061007A JP2019061007A JP2020161385A JP 2020161385 A JP2020161385 A JP 2020161385A JP 2019061007 A JP2019061007 A JP 2019061007A JP 2019061007 A JP2019061007 A JP 2019061007A JP 2020161385 A JP2020161385 A JP 2020161385A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
ion secondary
lithium ion
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019061007A
Other languages
Japanese (ja)
Inventor
森田 浩一
Koichi Morita
浩一 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Chemicals Co Ltd
Original Assignee
Osaka Gas Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Chemicals Co Ltd filed Critical Osaka Gas Chemicals Co Ltd
Priority to JP2019061007A priority Critical patent/JP2020161385A/en
Publication of JP2020161385A publication Critical patent/JP2020161385A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a negative electrode material having a long life and excellent safety while using a graphite material having a modified surface of natural graphite, which is advantageous in cost.SOLUTION: In a negative electrode material for a lithium secondary battery in which a heat-treated product with a carbon-based isotropic pitch adheres to at least a part of the surface of natural graphite, the content of quinoline insoluble in the carbon-based isotropic pitch is 30 mass% or less when the total amount of the carbon-based isotropic pitch is 100% by mass.SELECTED DRAWING: None

Description

本発明は、リチウムイオン二次電池用負極材料及びその製造方法、並びに該負極材料を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池に関する。 The present invention relates to a negative electrode material for a lithium ion secondary battery and a method for producing the same, and a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery using the negative electrode material.

リチウムイオン二次電池は、エネルギー密度の高い二次電池であり、近年盛んに研究されている。このリチウムイオン二次電池は、一般に、負極材料としては炭素材料等が用いられ、正極材料としてはリチウム遷移金属複合酸化物等が用いられ、電解質としては種々の塩を溶解した非プロトン性有機溶媒等が用いられている。 Lithium-ion secondary batteries are secondary batteries with high energy density and have been actively studied in recent years. In this lithium ion secondary battery, a carbon material or the like is generally used as a negative electrode material, a lithium transition metal composite oxide or the like is used as a positive electrode material, and an aprotic organic solvent in which various salts are dissolved is used as an electrolyte. Etc. are used.

現在、リチウムイオン二次電池の負極材料には、大きく分けて黒鉛材料と、難黒鉛化性炭素材料(ハードカーボン)とが挙げられる。このうち黒鉛材料は、リチウムイオンの吸蔵量が大きいことから高容量の電池を得ることができ、且つ、放電カーブがなだらかで放電末期まで安定して高い電圧を保つといった利点がある。一方、難黒鉛化性炭素材料は、リチウムイオンの吸蔵及び放出に関わる反応サイトが多いため、大電流での充放電が可能になるものの、熱処理の条件等に応じて高容量が得られにくい、不可逆容量が大きくなる等の課題がある。 Currently, the negative electrode materials of lithium ion secondary batteries are roughly classified into graphite materials and non-graphitizable carbon materials (hard carbon). Of these, the graphite material has the advantages that a high-capacity battery can be obtained because it has a large occlusion of lithium ions, and that the discharge curve is gentle and a stable high voltage is maintained until the end of the discharge. On the other hand, the graphitizable carbon material has many reaction sites related to occlusion and release of lithium ions, so that it can be charged and discharged with a large current, but it is difficult to obtain a high capacity depending on the heat treatment conditions. There are problems such as an increase in irreversible capacity.

そこで、スマートフォン、ノート型パーソナルコンピュータ(ノート型パソコン)等のモバイル機器に用いられる民生用のリチウムイオン電池においては、一般に、高容量が得られる黒鉛材料を負極材料として用いている。この黒鉛材料の中でも、従来は、易黒鉛化性炭素前駆体を2800℃以上で焼成した人造黒鉛が主流であったが、近年、コストの観点から、特許文献1〜3のように、天然黒鉛の表面を修飾した黒鉛材料が主流となりつつある。リチウムイオン二次電池は、自動車等の電源としての応用検討もなされるようになってきている。前記の携帯電話やノート型パソコン等のような小型機器の場合よりもさらに長期にわたる寿命特性が要求される。 Therefore, in consumer lithium-ion batteries used in mobile devices such as smartphones and notebook personal computers (notebook personal computers), a graphite material having a high capacity is generally used as a negative electrode material. Among these graphite materials, artificial graphite obtained by calcining a graphitizable carbon precursor at 2800 ° C. or higher has been the mainstream in the past, but in recent years, from the viewpoint of cost, natural graphite has been described in Patent Documents 1 to 3. Graphite materials with modified surfaces are becoming mainstream. The application of lithium-ion secondary batteries as a power source for automobiles and the like is also being studied. Longer life characteristics are required than in the case of small devices such as the above-mentioned mobile phones and notebook personal computers.

上記要求を受けて、特許文献4では、石炭系等方性ピッチを用いて天然黒鉛の表面を修飾することにより、容量と寿命特性の双方の特性を満足する黒鉛材料が提案されている。 In response to the above requirements, Patent Document 4 proposes a graphite material that satisfies both capacity and life characteristics by modifying the surface of natural graphite using a coal-based isotropic pitch.

特開2016−081816号公報Japanese Unexamined Patent Publication No. 2016-081816 特開平04−368778号公報Japanese Unexamined Patent Publication No. 04-368778 特開平04−370662号公報Japanese Unexamined Patent Publication No. 04-370662 特開平05−307959号公報Japanese Unexamined Patent Publication No. 05-307959

ごく最近では、低温での充電による負極へのリチウム金属析出により、電池の発火事故等に繋がる事象が複数回発生しており、より安全性に優れた材料が要求されるようになってきている。また、このような事象は充放電サイクルを繰り返した後に発生しやすいことから、さらに寿命を改良することが要求されるようになってきている。 Most recently, lithium metal precipitation on the negative electrode due to charging at low temperature has caused multiple events leading to battery ignition accidents, etc., and there is a growing demand for materials with better safety. .. Further, since such an event is likely to occur after repeating the charge / discharge cycle, it is required to further improve the life.

以上から、コストが有利な天然黒鉛の表面を修飾した黒鉛材料を用いつつ、長寿命且つ安全性に優れた負極材料を提供することを目的とする。 From the above, it is an object of the present invention to provide a negative electrode material having a long life and excellent safety while using a graphite material having a modified surface of natural graphite, which is advantageous in cost.

本発明者は、上記の課題に鑑み、鋭意研究を重ねてきた。その結果、天然黒鉛の表面を修飾した黒鉛材料において、表面を被覆する材料をキノリン不溶分の含有率が特定範囲である石炭系等方性ピッチの熱処理物とすることで、従来よりも寿命特性及び安全性を改善することができることを見出した。本発明は、このような知見に基づき、さらに研究を重ね、完成したものである。すなわち、本発明は、以下の構成を包含する。
項1.天然黒鉛の表面の少なくとも一部に、石炭系等方性ピッチの熱処理物が付着しているリチウム二次電池用負極材料であって、
前記石炭系等方性ピッチの総量を100質量%として、前記石炭系等方性ピッチのキノリン不溶分の含有率が30質量%以下である、リチウムイオン二次電池用負極材料。
項2.前記石炭系等方性ピッチの総量を100質量%として、前記石炭系等方性ピッチのキノリン不溶分の含有率が15〜28質量%である、項1に記載のリチウムイオン二次電池用負極材料。
項3.前記石炭系等方性ピッチの軟化点が260〜300℃である、項1又は2に記載のリチウムイオン二次電池用負極材料。
項4.前記石炭系等方性ピッチの総量を100質量%として、前記石炭系等方性ピッチのアセトン可溶分の含有率が7.5〜14質量%である、項1〜3のいずれか1項に記載のリチウムイオン二次電池用負極材料。
項5.前記リチウムイオン二次電池用負極材料の総量を100質量%として、前記天然黒鉛の含有量が95〜99.9質量%であり、前記石炭系等方性ピッチの熱処理物の含有量が0.1〜5質量%である、項1〜4のいずれか1項に記載のリチウムイオン二次電池用負極材料。
項6.項1〜5のいずれか1項に記載のリチウムイオン二次電池用負極材料の製造方法であって、
(1)天然黒鉛と、石炭系等方性ピッチとを混合する工程、及び
(2)前記混合物を前記石炭系等方性ピッチの軟化点以上の温度で熱処理する工程
を備え、前記石炭系等方性ピッチの総量を100質量%として、前記石炭系等方性ピッチのキノリン不溶分の含有率が30質量%以下である、製造方法。
項7.前記工程(1)の前に、
コールタールから一次キノリン不溶分を除去し、次いで、蒸留する工程
を備え、前記蒸留は、多段階の蒸留を行い、且つ、最終段階の蒸留が薄膜蒸留である、項6に記載の製造方法。
項8.前記蒸留が、一段階目の蒸留を行った後に、空気を供給しながら二段階目以降の蒸留を行う、項7に記載の製造方法。
項9.前記工程(1)が、前記天然黒鉛と前記石炭系等方性ピッチとを、90〜99.5:0.5〜10(質量比)の混合比率で混合する工程である、項6〜8のいずれか1項に記載の製造方法。
項10.前記工程(2)が、非酸化性雰囲気で熱処理を行う工程である、項6〜9のいずれか1項に記載の製造方法。
項11.前記工程(2)における加熱温度が800〜1300℃である、項6〜10のいずれか1項に記載の製造方法。
項12.項1〜5のいずれか1項に記載のリチウムイオン二次電池用負極材料を用いたリチウムイオン二次電池用負極。
項13.項12に記載のリチウムイオン二次電池用負極を備えたリチウムイオン二次電池。
The present inventor has conducted extensive research in view of the above problems. As a result, in the graphite material whose surface is modified from natural graphite, the material covering the surface is a heat-treated product having a coal-based isotropic pitch in which the content of quinoline-insoluble matter is in a specific range, so that the life characteristics are longer than before. And found that safety can be improved. The present invention has been further studied and completed based on such findings. That is, the present invention includes the following configurations.
Item 1. A negative electrode material for a lithium secondary battery in which a heat-treated product having a carbon-based isotropic pitch is attached to at least a part of the surface of natural graphite.
A negative electrode material for a lithium ion secondary battery, wherein the total amount of the coal-based isotropic pitch is 100% by mass, and the content of the quinoline-insoluble content of the coal-based isotropic pitch is 30% by mass or less.
Item 2. Item 2. The negative electrode for a lithium ion secondary battery according to Item 1, wherein the total amount of the coal-based isotropic pitch is 100% by mass, and the content of the quinoline-insoluble content of the coal-based isotropic pitch is 15 to 28% by mass. material.
Item 3. Item 2. The negative electrode material for a lithium ion secondary battery according to Item 1 or 2, wherein the softening point of the coal-based isotropic pitch is 260 to 300 ° C.
Item 4. Item 1 of Item 1 to 3, wherein the total amount of the isotropic pitch of the coal system is 100% by mass, and the content of the acetone-soluble component of the isotropic pitch of the coal system is 7.5 to 14% by mass. Negative electrode material for lithium ion secondary batteries according to.
Item 5. Assuming that the total amount of the negative electrode material for the lithium ion secondary battery is 100% by mass, the content of the natural graphite is 95 to 99.9% by mass, and the content of the heat-treated product having a coal-based isotropic pitch is 0. Item 2. The negative electrode material for a lithium ion secondary battery according to any one of Items 1 to 4, which is 1 to 5% by mass.
Item 6. Item 2. The method for producing a negative electrode material for a lithium ion secondary battery according to any one of Items 1 to 5.
It is provided with a step of mixing (1) natural graphite and a coal-based isotropic pitch, and (2) a step of heat-treating the mixture at a temperature equal to or higher than the softening point of the coal-based isotropic pitch. A production method in which the total amount of isotropic pitch is 100% by mass and the content of quinoline insoluble content in the coal-based isotropic pitch is 30% by mass or less.
Item 7. Before the step (1),
Item 6. The production method according to Item 6, further comprising a step of removing the primary quinoline insoluble matter from coal tar and then distilling, wherein the distillation is performed in multiple stages and the final stage distillation is thin film distillation.
Item 8. Item 7. The production method according to Item 7, wherein the distillation is performed in the first stage and then in the second and subsequent stages while supplying air.
Item 9. Item 6 to 8, wherein the step (1) is a step of mixing the natural graphite and the coal-based isotropic pitch at a mixing ratio of 90 to 99.5: 0.5 to 10 (mass ratio). The production method according to any one of the above.
Item 10. Item 6. The production method according to any one of Items 6 to 9, wherein the step (2) is a step of performing a heat treatment in a non-oxidizing atmosphere.
Item 11. Item 2. The production method according to any one of Items 6 to 10, wherein the heating temperature in the step (2) is 800 to 1300 ° C.
Item 12. A negative electrode for a lithium ion secondary battery using the negative electrode material for a lithium ion secondary battery according to any one of Items 1 to 5.
Item 13. Item 12. The lithium ion secondary battery provided with the negative electrode for the lithium ion secondary battery according to Item 12.

本発明のリチウムイオン二次電池用負極材料は、コスト的に優位で且つ高容量な表面修飾天然黒鉛の寿命特性及び安全性を改良するために、天然黒鉛の表面の少なくとも一部にキノリン不溶分の含有率が特定範囲である石炭系等方性ピッチの熱処理物が付着した炭素材である。このリチウムイオン二次電池用負極材料は、低コストで且つ容量、寿命特性及び安全性に優れるため、特に、自動車等の電源としてのリチウムイオン二次電池の負極炭素材料として有用である。 The negative electrode material for a lithium ion secondary battery of the present invention has a quinoline-insoluble content on at least a part of the surface of natural graphite in order to improve the life characteristics and safety of surface-modified natural graphite which is cost-effective and has a high capacity. It is a carbon material to which a heat-treated product of a coal-based isotropic pitch having a specific content of graphite is attached. Since this negative electrode material for a lithium ion secondary battery is low in cost and excellent in capacity, life characteristics and safety, it is particularly useful as a negative electrode carbon material for a lithium ion secondary battery as a power source for automobiles and the like.

本明細書において、「含有」は、「含む(comprise)」、「実質的にのみからなる(consist essentially of)」、及び「のみからなる(consist of)」のいずれも包含する概念である。また、本明細書において、数値範囲をA〜Bで表記する場合、A以上B以下を示す。 As used herein, "contains" is a concept that includes any of "comprise," "consist essentially of," and "consist of." Further, in the present specification, when the numerical range is expressed by A to B, it indicates A or more and B or less.

本明細書において、「リチウムイオン二次電池」とは、非水電解液を使用した「非水リチウムイオン二次電池」と固体電解質を使用した「全固体リチウムイオン二次電池」の双方を意味する。 In the present specification, the "lithium ion secondary battery" means both a "non-aqueous lithium ion secondary battery" using a non-aqueous electrolyte solution and an "all-solid-state lithium ion secondary battery" using a solid electrolyte. To do.

1.リチウムイオン二次電池用負極材料
本発明のリチウムイオン二次電池用負極材料は、天然黒鉛の表面の少なくとも一部に、石炭系等方性ピッチの熱処理物が付着している。
1. 1. Negative electrode material for lithium ion secondary battery The negative electrode material for lithium ion secondary battery of the present invention has a coal-based isotropic pitch heat-treated material adhered to at least a part of the surface of natural graphite.

(1−1)天然黒鉛
天然黒鉛の形状及び形態は、特に制限されることはなく、燐片状、塊状、繊維状、ウィスカー状、球状、破砕状等種々多様なものを採用することができるが、粒子の配向をより抑制し、電解液をより浸み込みやすくし、レート特性等の電池特性をより向上させる観点から、常法で球状化処理が施された球状天然黒鉛が好ましい。なお、球状天然黒鉛は、例えば、透過型電子顕微鏡(TEM)観察において、扁平状の天然黒鉛がキャベツ状になった構造が見られ、表層には劈開部が存在している。なお、天然黒鉛は、単独で用いることもでき、2種以上を組合せて用いることもできる。
(1-1) Natural Graphite The shape and morphology of natural graphite are not particularly limited, and various types such as flaky, lumpy, fibrous, whiskers, spherical, and crushed ones can be adopted. However, from the viewpoint of further suppressing the orientation of the particles, making it easier for the electrolytic solution to penetrate, and further improving the battery characteristics such as the rate characteristics, spherical natural graphite which has been subjected to the spheroidizing treatment by a conventional method is preferable. In the spherical natural graphite, for example, when observed with a transmission electron microscope (TEM), a structure in which flat natural graphite is formed into a cabbage shape is observed, and a cleavage portion is present on the surface layer. Natural graphite can be used alone or in combination of two or more.

天然黒鉛は、通常、扁平状であり、タップ密度は0.6g/cc以下であることが多いが、球状化処理を施すことにより、タップ密度を例えば0.62〜1.3g/cc、好ましくは0.65〜1.2g/cc、より好ましくは0.7〜1.1g/ccとすることができる。これにより、粒子が配向して入出力特性が低下するのを抑制しやすい。なお、天然黒鉛のタップ密度は、(株)セイシン企業製の「TAPDENSER KYT−4000」により測定する。 Natural graphite is usually flat and has a tap density of 0.6 g / cc or less. However, by performing a spheroidizing treatment, the tap density is preferably 0.62 to 1.3 g / cc, for example. Can be 0.65 to 1.2 g / cc, more preferably 0.7 to 1.1 g / cc. As a result, it is easy to prevent the particles from being oriented and the input / output characteristics from being lowered. The tap density of natural graphite is measured by "TAPDENSER KYT-4000" manufactured by Seishin Enterprise Co., Ltd.

また、天然黒鉛の粒径は、特に制限されないが、電極の均一性、活物質のかさ密度、電極を作製する工程上でのハンドリング性等の観点から、中心粒径(D50)は5〜40μmが好ましく、5〜30μmがより好ましく、7〜25μmがさらに好ましい。なお、天然黒鉛の中心粒径(D50)は、日機装(株)製の「MT3000EXII」により測定する。 The particle size of natural graphite is not particularly limited, but the central particle size (D50) is 5 to 40 μm from the viewpoints of electrode uniformity, bulk density of active material, handleability in the process of manufacturing the electrode, and the like. Is preferable, 5 to 30 μm is more preferable, and 7 to 25 μm is even more preferable. The centriole particle size (D50) of natural graphite is measured by "MT3000EXII" manufactured by Nikkiso Co., Ltd.

また、天然黒鉛は、X線広角回折法による(002)面の平均面間隔d(002)は、結晶化度の一般的な指標であり、結晶性をより十分に高くするとともに、リチウムの溶解析出に近い低い電位部分(リチウムの電位基準で0〜0.3V)の容量を十分に大きくする観点から、0.335〜0.337nmが好ましく、0.3354〜0.3360nmがより好ましい。 Further, in natural graphite, the average interplanar spacing d (002) of the (002) plane by the X-ray wide-angle diffraction method is a general index of the crystallinity, and the crystallinity is made higher sufficiently and lithium is dissolved. From the viewpoint of sufficiently increasing the capacity of the low potential portion (0 to 0.3 V based on the potential of graphite) close to precipitation, 0.335 to 0.337 nm is preferable, and 0.3354 to 0.3360 nm is more preferable.

また、天然黒鉛は、X線広角回折法によるc軸方向の結晶子厚みLc(004)は、結晶性をより十分に高くするとともに、リチウムの溶解析出に近い低い電位部分(リチウムの電位基準で0〜0.3V)の容量を十分に大きくする観点から、10〜100nmが好ましく、20〜95nmがより好ましい。 Further, in natural graphite, the crystallite thickness Lc (004) in the c-axis direction by the X-ray wide-angle diffraction method has a sufficiently high crystallinity and a low potential portion close to the dissolution and precipitation of lithium (based on the potential of lithium). From the viewpoint of sufficiently increasing the capacitance of 0 to 0.3 V), 10 to 100 nm is preferable, and 20 to 95 nm is more preferable.

上記のような天然黒鉛は、通常、リチウムイオン二次電池において用いられる電解質、例えば、非プロトン性有機溶媒と塩とを含む電解液やリチウムイオンに対する活性点、つまり、電解液と反応して電解液を分解したり、充放電時に移動するリチウムイオンと反応したりする活性点を部分的に有している。この活性点は、詳細は明らかではないが、一般には、天然黒鉛の外側に配向している、結晶子の端面であると理解されている。 Natural graphite as described above is usually electrolyzed by reacting with an electrolyte used in a lithium ion secondary battery, for example, an electrolytic solution containing an aprotic organic solvent and a salt or an active point for lithium ions, that is, an electrolytic solution. It partially has active points that decompose the liquid and react with lithium ions that move during charging and discharging. Although the details of this active site are not clear, it is generally understood to be the end face of the crystallite, which is oriented outward of natural graphite.

(1−2)石炭系等方性ピッチの熱処理物
本発明において、石炭系等方性ピッチの熱処理物は、天然黒鉛よりも結晶化度が低い材料であり、X線広角回折法による(002)面の平均面間隔d(002)が0.337nmより大きく0.338nmより小さいことが好ましく、0.3371〜0.3379nmがより好ましい。このため、電解液の有機溶媒やリチウムイオンとの反応性が低く、電解液の分解や粒子の破壊等が起こりにくい。本発明においては、天然黒鉛の少なくとも一部(特に天然黒鉛表面の活性点、さらには全部)に石炭系等方性ピッチの熱処理物が付着し、石炭系等方性ピッチの熱処理物が活性点を塞ぐことにより、電池の充放電効率及び寿命特性が向上し、またその安全性が改善されるという利点を有している。
(1-2) Coal-based isotropic pitch heat-treated product In the present invention, the coal-based isotropic pitch heat-treated product is a material having a lower crystallinity than natural graphite, and is subjected to X-ray wide-angle diffraction (002). ) The average surface spacing d (002) of the surfaces is preferably larger than 0.337 nm and smaller than 0.338 nm, more preferably 0.3371 to 0.3379 nm. Therefore, the reactivity of the electrolytic solution with the organic solvent and lithium ions is low, and decomposition of the electrolytic solution and destruction of particles are unlikely to occur. In the present invention, a heat-treated product having a coal-based isotropic pitch adheres to at least a part of natural graphite (particularly, the active points on the surface of natural graphite, and further all), and the heat-treated product having a coal-based isotropic pitch is the active points. By closing the above, there is an advantage that the charge / discharge efficiency and life characteristics of the battery are improved, and the safety thereof is improved.

本発明で用いられる石炭系等方性ピッチは、寿命特性、安全性等の観点から、当該石炭系等方性ピッチの総量を100質量%として、キノリン不溶分(QI)の含有率が30質量%、好ましくは15〜28質量%、より好ましくは17〜25質量%である。キノリン不溶分(QI)が少ないほど分子量の大きい成分が少ないことを意味しており、分子量分布が狭くなる傾向がある。石炭系等方性ピッチのキノリン不溶分(QI)の含有率が30質量%をこえると、分子量分布が広くなり、石炭系等方性ピッチに含有される成分の均一性に劣るため、天然黒鉛に付着する成分の均一性も劣ることになり、寿命特性及び安全性が不十分である。なお、本発明では、キノリン不溶分(QI)の含有率が極端に少ない場合であっても寿命特性及び安全性に優れているが、極端に高分子量成分が少ないため、石炭系等方性ピッチに含有される天然黒鉛に付着する成分が少ないため、本発明のリチウムイオン二次電池用負極材料の生産時に石炭系ピッチが過剰に必要となり、生産効率の観点からは、キノリン不溶分(QI)の含有率は少なすぎないことが好ましい。なお、石炭系等方性ピッチのキノリン不溶分(QI)の含有率は、JIS K2415の規格に準拠して測定する。 The coal-based isotropic pitch used in the present invention has a quinoline insoluble content (QI) content of 30 mass by mass, where the total amount of the coal-based isotropic pitch is 100% by mass from the viewpoint of life characteristics, safety, etc. %, preferably 15 to 28% by mass, more preferably 17 to 25% by mass. The smaller the quinoline insoluble matter (QI), the smaller the number of components having a large molecular weight, and the molecular weight distribution tends to be narrow. When the content of quinoline insoluble matter (QI) in a coal-based isotropic pitch exceeds 30% by mass, the molecular weight distribution becomes wide and the uniformity of the components contained in the coal-based isotropic pitch is inferior. The uniformity of the components adhering to the graphite is also inferior, and the life characteristics and safety are insufficient. In the present invention, even when the content of quinoline insoluble matter (QI) is extremely low, the life characteristics and safety are excellent, but since the high molecular weight component is extremely small, the coal-based isotropic pitch Since the amount of the component adhering to the natural graphite contained in the graphite is small, an excessive coal-based pitch is required during the production of the negative electrode material for the lithium ion secondary battery of the present invention, and from the viewpoint of production efficiency, the quinoline insoluble matter (QI) It is preferable that the content of is not too small. The content of quinoline insoluble matter (QI) in a coal-based isotropic pitch is measured in accordance with the JIS K2415 standard.

本発明で用いられる石炭系等方性ピッチの軟化点は、天然黒鉛の活性点をより十分に塞ぎ、容量を維持しつつ寿命特性をより良好にする観点から、260〜300℃が好ましく、270〜295℃がより好ましく、275〜290℃がさらに好ましい。なお、石炭系等方性ピッチの軟化点は、ASTM D3461の規格に従って測定する。 The softening point of the coal-based isotropic pitch used in the present invention is preferably 260 to 300 ° C. from the viewpoint of more sufficiently closing the active site of natural graphite and improving the life characteristics while maintaining the capacity, preferably 270 ° C. ~ 295 ° C. is more preferable, and 275 to 290 ° C. is even more preferable. The softening point of the coal-based isotropic pitch is measured according to the standards of ASTM D3461.

本発明の石炭系等方性ピッチのアセトン可溶分(AcS)の含有率は、寿命特性、安全性等の観点から、当該石炭系等方性ピッチの総量を100質量%として、7.5〜14質量%が好ましく、8〜13質量%がより好ましい。アセトン可溶分(AcS)が少ないほど、分子量の小さい成分が少ないことを意味しており、分子量分布が狭くなる傾向がある。なお、アセトン可溶分(AcS)の含有率は、JIS K2415の規格に準拠して測定する。 The content of the acetone-soluble component (AcS) of the coal-based isotropic pitch of the present invention is 7.5, where the total amount of the coal-based isotropic pitch is 100% by mass from the viewpoint of life characteristics, safety, etc. ~ 14% by mass is preferable, and 8 to 13% by mass is more preferable. The smaller the acetone-soluble component (AcS), the smaller the number of components having a small molecular weight, and the molecular weight distribution tends to be narrowed. The content of acetone-soluble matter (AcS) is measured according to the JIS K2415 standard.

上述のような条件を有する石炭系等方性ピッチは、単独で用いることもでき、2種以上を組合せて用いることもできる。 The coal-based isotropic pitch having the above-mentioned conditions can be used alone or in combination of two or more.

本発明のリチウムイオン二次電池用負極材料は、上述のように、天然黒鉛の主として活性点が選択的に石炭系等方性ピッチの熱処理物と反応し、電解液やリチウムイオンに対して不活性化されている。つまり、この負極材料は、天然黒鉛表面が、上記石炭系等方性ピッチの熱処理物を含むコーティング層で完全に被覆されているわけではなく、天然黒鉛表面の活性点が、上記石炭系等方性ピッチの熱処理物で被覆されることにより、不活性化されているものと考えられる。 As described above, the negative electrode material for a lithium ion secondary battery of the present invention selectively reacts with a heat-treated product in which the active sites are mainly of natural graphite and have a coal-based isotropic pitch, and is incompatible with an electrolytic solution and lithium ions. It has been activated. That is, in this negative electrode material, the surface of the natural graphite is not completely coated with the coating layer containing the heat-treated product having the above-mentioned coal-based isotropic pitch, and the active point of the surface of the natural graphite is the above-mentioned coal-based isotropic. It is considered that the mixture is inactivated by being coated with an anisotropic heat-treated product.

本発明のリチウムイオン二次電池用負極材料は、このように天然黒鉛の主として活性点が選択的に被覆されている材料、つまり、天然黒鉛の表面が少なくとも部分的に被覆されている材料である。天然黒鉛の含有量は、負極材料が割れたり、電極から剥がれたり、活性面の露出による電解液等との副反応が起こったりして容量低下、寿命特性低下及び安全性低下を引き起こすことをより抑制するために、本発明のリチウムイオン二次電池用負極材料の総量を100質量%として、95〜99.9質量%が好ましく、96〜99.5質量%がより好ましく、97.5〜99質量%がさらに好ましい。また、石炭系等方性ピッチの熱処理物の含有量は、同様の理由により、0.1〜5質量%が好ましく、0.5〜4質量%がより好ましく、1〜2.5質量%がさらに好ましい。 The negative electrode material for a lithium ion secondary battery of the present invention is a material in which mainly active sites of natural graphite are selectively coated, that is, a material in which the surface of natural graphite is at least partially coated. .. The content of natural graphite is more likely to cause a decrease in mass, a decrease in life characteristics, and a decrease in safety due to cracking of the negative electrode material, peeling from the electrode, and side reactions with the electrolytic solution due to exposure of the active surface. In order to suppress this, the total amount of the negative electrode material for the lithium ion secondary battery of the present invention is 100% by mass, preferably 95 to 99.9% by mass, more preferably 96 to 99.5% by mass, and 97.5 to 99. Mass% is more preferred. For the same reason, the content of the heat-treated product having a coal-based isotropic pitch is preferably 0.1 to 5% by mass, more preferably 0.5 to 4% by mass, and 1 to 2.5% by mass. More preferred.

本発明のリチウムイオン二次電池用負極材料は、天然黒鉛の活性点が、結晶性の低い石炭系等方性ピッチの熱処理物で被覆されているために、天然黒鉛よりもタップ密度が大きいが、粒子が配向して入出力特性が低下するのをより抑制する観点から、0.8〜1.4g/ccが好ましく、0.85〜1.3g/ccがより好ましく、0.9〜1.2g/ccがさらに好ましい。なお、本発明のリチウムイオン二次電池用負極材料のタップ密度は、(株)セイシン企業製の「TAPDENSER KYT−4000」により測定する。 The negative electrode material for a lithium ion secondary battery of the present invention has a higher tap density than natural graphite because the active sites of natural graphite are coated with a heat-treated product having a low crystallinity and a coal-based isotropic pitch. From the viewpoint of further suppressing the orientation of particles and deterioration of input / output characteristics, 0.8 to 1.4 g / cc is preferable, 0.85 to 1.3 g / cc is more preferable, and 0.9 to 1 .2 g / cc is more preferable. The tap density of the negative electrode material for a lithium ion secondary battery of the present invention is measured by "TAPDENSER KYT-4000" manufactured by Seishin Co., Ltd.

本発明のリチウムイオン二次電池用負極材料は、天然黒鉛の活性点が、結晶性の低い等方性ピッチの熱処理物で被覆されているために、天然黒鉛よりも中心粒型(D50)が大きいが、電極の均一性、活物質のかさ密度、電極を作製する工程上でのハンドリング性等の観点から、5〜40μmが好ましく、5〜30μmがより好ましく、7〜25μmがさらに好ましい。なお、本発明のリチウムイオン二次電池用負極材料の中心粒径(D50)は、日機装(株)製の「MT3000EXII」により測定する。 The negative electrode material for a lithium ion secondary battery of the present invention has a central grain type (D50) more than that of natural graphite because the active sites of natural graphite are coated with a heat-treated product having an isotropic pitch with low crystallinity. Although it is large, 5 to 40 μm is preferable, 5 to 30 μm is more preferable, and 7 to 25 μm is further preferable, from the viewpoints of electrode uniformity, bulk density of active material, handleability in the process of producing the electrode, and the like. The central particle size (D50) of the negative electrode material for a lithium ion secondary battery of the present invention is measured by "MT3000EXII" manufactured by Nikkiso Co., Ltd.

本発明のリチウムイオン二次電池用負極材料は、d(002)が0.335〜0.337nmが好ましく、0.3354〜0.3360nmがより好ましい。 In the negative electrode material for a lithium ion secondary battery of the present invention, d (002) is preferably 0.335 to 0.337 nm, more preferably 0.3354 to 0.3360 nm.

本発明のリチウムイオン二次電池用負極材料は、Lc(004)が10〜100nmが好ましく、20〜90nmがより好ましい。 The negative electrode material for a lithium ion secondary battery of the present invention preferably has an Lc (004) of 10 to 100 nm, more preferably 20 to 90 nm.

上記のような本発明のリチウムイオン二次電池用負極材料は、結晶性が高く、高容量を実現することが可能となる。また、安価な天然黒鉛を原材料としているので、コスト的にも優位である。しかも、課題であった長期にわたる寿命特性(充放電サイクル特性)及び安全性も優れており、自動車等の電源としての要求性能をも満足することができる。 The negative electrode material for a lithium ion secondary battery of the present invention as described above has high crystallinity and can realize a high capacity. In addition, since inexpensive natural graphite is used as a raw material, it is advantageous in terms of cost. Moreover, the long-term life characteristics (charge / discharge cycle characteristics) and safety, which have been problems, are also excellent, and the required performance as a power source for automobiles and the like can be satisfied.

2.リチウムイオン二次電池用負極材料の製造方法
上記した本発明のリチウムイオン二次電池用負極材料は、特に制限されるわけではないが、上記した天然黒鉛を、上記した石炭系等方性ピッチの熱処理物を含む雰囲気下において熱処理することにより得ることができる。
2. 2. Method for Manufacturing Negative Electrode Material for Lithium Ion Secondary Battery The negative electrode material for lithium ion secondary battery of the present invention described above is not particularly limited, but the above-mentioned natural graphite is used with the above-mentioned coal-based isotropic pitch. It can be obtained by heat treatment in an atmosphere containing a heat-treated product.

より具体的には、本発明のリチウムイオン二次電池用負極材料は、
(1)天然黒鉛と、石炭系等方性ピッチとを混合する工程、及び
(2)前記混合物を前記石炭系等方性ピッチの軟化点以上の温度で熱処理する工程
を備え、前記石炭系等方性ピッチの総量を100質量%として、前記石炭系等方性ピッチのキノリン不溶分(QI)の含有率が30質量%以下である方法により得ることができる。
More specifically, the negative electrode material for a lithium ion secondary battery of the present invention is
It is provided with a step of mixing (1) natural graphite and a coal-based isotropic pitch, and (2) a step of heat-treating the mixture at a temperature equal to or higher than the softening point of the coal-based isotropic pitch. It can be obtained by a method in which the total amount of the anisotropic pitch is 100% by mass and the content of the quinoline insoluble content (QI) of the coal-based isotropic pitch is 30% by mass or less.

このように、工程(1)において、天然黒鉛と特定のキノリン不溶分(QI)の含有率を有する石炭系等方性ピッチとを混合し、後の工程(2)において、加熱処理を施すことで、天然黒鉛を、当該特定の石炭系等方性ピッチの熱処理物を含む雰囲気下において熱処理することができる。 As described above, in the step (1), natural graphite and a coal-based isotropic pitch having a specific quinoline insoluble content (QI) content are mixed, and in the subsequent step (2), heat treatment is performed. Therefore, the natural graphite can be heat-treated in an atmosphere containing the heat-treated product having the specific coal-based isotropic pitch.

(2−1)天然黒鉛及び石炭系等方性ピッチ
工程(1)において、天然黒鉛及び石炭系等方性ピッチは上記したものである。本発明で用いるキノリン不溶分(QI)の含有率が30質量%以下である石炭系等方性ピッチはより分子量分布が狭く、より均一な成分で構成されているため、より天然黒鉛の表面に付着する石炭系等方性ピッチの熱処理物の成分もより均一であると考えられる。
(2-1) Natural graphite and coal-based isotropic pitch In the step (1), the natural graphite and coal-based isotropic pitch are as described above. The coal-based isotropic pitch having a quinoline insoluble content (QI) content of 30% by mass or less used in the present invention has a narrower molecular weight distribution and is composed of more uniform components, so that it can be used on the surface of natural graphite. It is considered that the components of the adhered coal-based isotropic pitch heat-treated product are also more uniform.

なお、通常、市販されている石炭系等方性ピッチのキノリン不溶分(QI)の含有率は、石炭系等方性ピッチの総量を100質量%として、30質量%より大きい。キノリン不溶分(QI)の含有率が30質量%以下である石炭系等方性ピッチは、例えば、コールタールから一次キノリン不溶分を除去し、次いで、蒸留することにより得ることができる。ただし、蒸留は、多段階の蒸留を行い、且つ、最終段階の蒸留として薄膜蒸留を行うことによって、キノリン不溶分(QI)の含有率が30質量%以下である石炭系等方性ピッチを得ることができる。 The content of quinoline insoluble matter (QI) in commercially available carbon-based isotropic pitch is usually larger than 30% by mass, where the total amount of carbon-based isotropic pitch is 100% by mass. A coal-based isotropic pitch having a quinoline insoluble (QI) content of 30% by mass or less can be obtained, for example, by removing the primary quinoline insoluble from coal tar and then distilling. However, in the distillation, a coal-based isotropic pitch having a quinoline insoluble content (QI) content of 30% by mass or less is obtained by performing multi-step distillation and thin-film distillation as the final-step distillation. be able to.

原料となるコールタールとしては、例えば、コークス炉の操業で得られるコールタール;コールタールピッチの溶媒抽出、熱改質等で副生したコールタール等が挙げられ、単独で用いることもでき、2種以上を組合せて用いることもできる。 Examples of the coal tar used as a raw material include coal tar obtained by operating a coke oven; coal tar produced as a by-product by solvent extraction of coal tar pitch, thermal modification, etc., and can be used alone. 2 It is also possible to use a combination of seeds or more.

このコールタールは、まず、フリーカーボンと称されることもある固形分として含有される一次キノリン不溶分(一次QI)を除去することが好ましい。一次キノリン不溶分(一次QI)を除去する方法としては、例えば、静置法、遠心分離法等を採用することができる。これらの方法は、単独で採用することもでき、組合せて採用することもできる。このように、一次キノリン不溶分(一次QI)を除去することにより、後の工程において等方性組織の発達がより容易となり、本発明で使用する石炭系等方性ピッチが得られやすくなる。また、原料となるコールタールに含有される不純物を除去することもできる。 It is preferable that the coal tar first removes the primary quinoline insoluble component (primary QI) contained as a solid content sometimes referred to as free carbon. As a method for removing the primary quinoline insoluble matter (primary QI), for example, a static method, a centrifugation method, or the like can be adopted. These methods can be adopted alone or in combination. By removing the primary quinoline insoluble matter (primary QI) in this way, the isotropic structure can be more easily developed in a later step, and the carbon-based isotropic pitch used in the present invention can be easily obtained. It is also possible to remove impurities contained in coal tar as a raw material.

その後、一次キノリン不溶分(一次QI)を除去したコールタールを蒸留するが、この際、多段階の蒸留を行うことが好ましい。この際、まず、一段階目の蒸留によって、軟化点が60〜150℃であるピッチが製造されやすい。その後、二段階目以降の蒸留を行うが、この際、空気を供給しながら蒸留を所定回数行うことで、酸素による架橋反応を上昇させるエアーブロン反応を起こさせ、軟化点がより高い(260〜300℃)石炭系等方性ピッチを得ることができる。なお、このエアーブロン反応工程は、効率性の観点から、2〜4段階に分けて徐々にピッチの軟化点を上昇させることが好ましい。 After that, coal tar from which the primary quinoline insoluble matter (primary QI) has been removed is distilled, and at this time, it is preferable to carry out multi-step distillation. At this time, first, a pitch having a softening point of 60 to 150 ° C. is easily produced by the first-stage distillation. After that, the second and subsequent stages of distillation are carried out. At this time, by carrying out the distillation a predetermined number of times while supplying air, an air bron reaction that increases the cross-linking reaction by oxygen is caused, and the softening point is higher (260- (300 ° C) A coal-based isotropic pitch can be obtained. From the viewpoint of efficiency, this air bron reaction step is preferably divided into 2 to 4 steps to gradually raise the softening point of the pitch.

ただし、単に多段階の蒸留を行うことのみでは、キノリン不溶分(QI)の含有率を十分に低くすることは困難であるため、最終段階の蒸留は、例えば薄膜蒸留装置を用いて、薄膜蒸留を行うことにより、キノリン不溶分(QI)の含有率が30質量%以下である石炭系等方性ピッチを得ることができる。 However, since it is difficult to sufficiently reduce the content of quinoline insoluble matter (QI) by simply performing multi-step distillation, the final-step distillation is performed by thin-film distillation, for example, using a thin-film distillation apparatus. By performing the above, a coal-based isotropic pitch having a quinoline insoluble content (QI) content of 30% by mass or less can be obtained.

蒸留には、通常、バッチ式の反応槽が採用されるが、撹拌を行っても反応槽内で温度の分布が生じることが多く、低温部と高温部で製造される石炭系等方性ピッチの物性が異なることが多い。低温部では低沸点成分が残留する一方、高温部では低沸点成分の残留が少なく、結果的に製造される石炭系等方性ピッチの分子量の分布が広がりやすい。一方、最終段階を薄膜蒸留とすると、反応温度のばらつきを抑制することができ、より分子量分布の狭く、キノリン不溶分(QI)の含有量が少ない石炭系等方性ピッチを製造することができる。 A batch type reaction tank is usually used for distillation, but even if stirring is performed, a temperature distribution often occurs in the reaction tank, and a carbon-based isotropic pitch produced in a low temperature part and a high temperature part is produced. Often have different physical properties. The low boiling point component remains in the low temperature part, while the low boiling point component remains in the high temperature part, and the distribution of the molecular weight of the resulting coal-based isotropic pitch tends to spread. On the other hand, when the final step is thin film distillation, it is possible to suppress variations in reaction temperature, and to produce a coal-based isotropic pitch having a narrower molecular weight distribution and a lower content of quinoline insoluble matter (QI). ..

(2−2)工程(1)
工程(1)において、天然黒鉛と上記した石炭系等方性ピッチとの混合比率は特に制限されるものではないが、上記したリチウムイオン二次電池用負極材料を得る観点から、90〜99.5:0.5〜10(質量比)が好ましく、90〜99:1〜10(質量比)がより好ましく、94〜98:2〜6(質量比)がさらに好ましい。
(2-2) Step (1)
In the step (1), the mixing ratio of natural graphite and the above-mentioned coal-based isotropic pitch is not particularly limited, but from the viewpoint of obtaining the above-mentioned negative electrode material for a lithium ion secondary battery, 90 to 99. It is preferably 5: 0.5 to 10 (mass ratio), more preferably 90 to 99: 1 to 10 (mass ratio), and even more preferably 94 to 98: 2 to 6 (mass ratio).

天然黒鉛と石炭系等方性ピッチとを混合する方法としては特に制限されず、常法で行うことができる。例えば、混合は、ナウタミキサー、リボンミキサー、V型ミキサー、ロッキングミキサー等を使用することにより行うことができる。 The method for mixing natural graphite and coal-based isotropic pitch is not particularly limited, and can be carried out by a conventional method. For example, mixing can be performed by using a Nauta mixer, a ribbon mixer, a V-type mixer, a locking mixer, or the like.

(2−3)工程(2)
工程(2)において、加熱処理をする際の雰囲気は、炭素の燃焼をより避ける観点から、窒素雰囲気、アルゴン雰囲気等の不活性ガス雰囲気や、水素雰囲気、上記した不活性ガスと水素との混合気体雰囲気等の還元性雰囲気等の非酸化性雰囲気において行うことが好ましい。
(2-3) Step (2)
In the step (2), the atmosphere during the heat treatment is an inert gas atmosphere such as a nitrogen atmosphere or an argon atmosphere, a hydrogen atmosphere, or a mixture of the above-mentioned inert gas and hydrogen from the viewpoint of avoiding carbon combustion. It is preferably performed in a non-oxidizing atmosphere such as a reducing atmosphere such as a gas atmosphere.

また、加熱処理は、減圧又は常圧(0.1Pa〜0.15MPa程度)で実施するのが好ましく、またその際の設定温度は、石炭系等方性ピッチの熱分解温度以上であれば特に制限はないが、通常、800〜1300℃に設定するのが好ましく、850〜1100℃に設定するのがより好ましい。加熱温度をこの範囲内とすることで、容量を維持しつつ、天然黒鉛と石炭系等方性ピッチの熱処理物とをより十分に反応させてリチウムイオンや電解液とより反応しにくく、寿命特性及び安全性をより改善した負極材料が得られる。 Further, the heat treatment is preferably carried out under reduced pressure or normal pressure (about 0.1 Pa to 0.15 MPa), and the set temperature at that time is particularly high as long as it is equal to or higher than the pyrolysis temperature of the coal-based isotropic pitch. Although there is no limitation, it is usually preferably set to 800 to 1300 ° C, more preferably 850 to 1100 ° C. By keeping the heating temperature within this range, while maintaining the capacity, the natural graphite and the heat-treated product with an isotropic pitch of coal are more sufficiently reacted, and it is more difficult to react with lithium ions and the electrolytic solution, and the life characteristic. And a negative electrode material with further improved safety can be obtained.

加熱時間(最高到達温度における保持時間)は、上記した石炭系等方性ピッチの熱処理物の濃度や加熱温度、得ようとする負極材料中の石炭系等方性ピッチの熱処理物の含有量等に応じて適宜設定すればよいが、10分〜5時間が好ましく、30分〜2時間がより好ましい。 The heating time (holding time at the maximum temperature reached) includes the concentration and heating temperature of the above-mentioned coal-based isotropic pitch heat-treated product, the content of the coal-based isotropic pitch heat-treated product in the negative electrode material to be obtained, and the like. It may be appropriately set according to the above, but 10 minutes to 5 hours is preferable, and 30 minutes to 2 hours is more preferable.

3.リチウムイオン二次電池用負極
本発明のリチウムイオン二次電池用負極材料は、リチウムイオン二次電池用負極(さらにはリチウムイオン二次電池)の構成材料として好適に使用できる。例えば、本発明のリチウムイオン二次電池用負極材料、バインダー等を含む混合物を成形する方法;本発明のリチウムイオン二次電池用負極材料、有機溶媒、バインダー等を含む負極活物質層形成用ペースト組成物を負極集電体に塗布手段(ドクターブレード等)を用いて塗布する方法等により、負極集電体上に負極活物質層を形成し、任意の形状のリチウムイオン二次電池用負極とすることができる。負極の形成においては、必要に応じて端子と組み合わせてもよい。特に、負極集電体に負極活物質層形成用ペースト組成物を用いて塗布する方法が好ましい。
3. 3. Negative electrode for lithium ion secondary battery The negative electrode material for a lithium ion secondary battery of the present invention can be suitably used as a constituent material for a negative electrode for a lithium ion secondary battery (furthermore, a lithium ion secondary battery). For example, a method for molding a mixture containing a negative electrode material for a lithium ion secondary battery, a binder, etc. of the present invention; a paste for forming a negative electrode active material layer containing a negative electrode material for a lithium ion secondary battery, an organic solvent, a binder, etc. of the present invention. A negative electrode active material layer is formed on the negative electrode current collector by a method of applying the composition to the negative electrode current collector using a coating means (doctor blade or the like), and a negative electrode for a lithium ion secondary battery having an arbitrary shape is formed. can do. In forming the negative electrode, it may be combined with a terminal if necessary. In particular, a method of applying the paste composition for forming a negative electrode active material layer to the negative electrode current collector is preferable.

負極集電体は、銅、銀、金等の金属からなる、例えば箔状、メッシュ状等の部材が好ましく、公知の負極集電体を使用することができる。 The negative electrode current collector is preferably a member made of a metal such as copper, silver, or gold, for example, in the form of a foil or a mesh, and a known negative electrode current collector can be used.

有機溶媒としては、通常、バインダーを溶解又は分散可能な溶媒が使用され、例えば、N−メチルピロリドン、N,N−ジメチルホルムアミド等の有機溶媒を例示することができる。有機溶媒は単独で用いることもでき、2種以上を組合せて用いることもできる。有機溶媒の使用量は、ペースト状となる限り特に制限されず、例えば、本発明のリチウムイオン二次電池用負極材料100質量部に対して、通常、60〜150質量部、特に60〜100質量部とすることができる。 As the organic solvent, a solvent capable of dissolving or dispersing the binder is usually used, and examples thereof include organic solvents such as N-methylpyrrolidone and N, N-dimethylformamide. The organic solvent can be used alone or in combination of two or more. The amount of the organic solvent used is not particularly limited as long as it is in the form of a paste. For example, with respect to 100 parts by mass of the negative electrode material for a lithium ion secondary battery of the present invention, it is usually 60 to 150 parts by mass, particularly 60 to 100 parts by mass. Can be a part.

バインダーとしては、リチウムイオン二次電池に使用されるバインダーであれば特に制限はないが、具体的には、フッ素系ポリマー(ポリフッ化ビニリデン、ポリテトラフルオロエチレン等)、ポリオレフィン系ポリマー(ポリエチレン、ポリプロピレン等)、合成ゴム等の公知のバインダーを使用することができる。この場合のバインダーの量としては、特に限定されず、例えば、本発明のリチウムイオン二次電池用負極材料100質量部に対して、0.1〜20質量部、特に1〜10質量部とすることができる。 The binder is not particularly limited as long as it is a binder used in a lithium ion secondary battery, but specifically, a fluoropolymer (polyvinylidene fluoride, polytetrafluoroethylene, etc.) and a polyolefin polymer (polyethylene, polypropylene, etc.) Etc.), known binders such as synthetic rubber can be used. The amount of the binder in this case is not particularly limited, and is, for example, 0.1 to 20 parts by mass, particularly 1 to 10 parts by mass with respect to 100 parts by mass of the negative electrode material for the lithium ion secondary battery of the present invention. be able to.

負極活物質層(負極活物質層形成用ペースト組成物)には、さらに、導電材(導電性炭素材料等)を含ませてもよい。導電材としては、例えば、アセチレンブラック、サーマルブラック、ファーネスブラック等のカーボンブラック等が挙げられる。これらの導電材は、単独で用いることもでき、2種以上を組合せて用いることもできる。導電材の使用割合は特に制限されないが、本発明のリチウムイオン二次電池用負極材料と導電材の総量を100質量%として、通常、1〜10重量%、特に1〜5質量%とすることができる。これにより、電極としての導電性をさらに向上させることも可能である。 The negative electrode active material layer (paste composition for forming the negative electrode active material layer) may further contain a conductive material (conductive carbon material or the like). Examples of the conductive material include carbon black such as acetylene black, thermal black, and furnace black. These conductive materials can be used alone or in combination of two or more. The proportion of the conductive material used is not particularly limited, but the total amount of the negative electrode material for the lithium ion secondary battery and the conductive material of the present invention is 100% by mass, and is usually 1 to 10% by mass, particularly 1 to 5% by mass. Can be done. Thereby, it is possible to further improve the conductivity as an electrode.

このようなリチウムイオン二次電池用負極を形成する場合は、本発明のリチウムイオン二次電池用負極材料を、必要に応じてバインダー及び導電材と混合してペースト状(負極活物質層形成用ペースト組成物)にし、そのペースト組成物を負極集電体上に塗布して負極活物質層を形成することが好ましい。 When forming such a negative electrode for a lithium ion secondary battery, the negative electrode material for a lithium ion secondary battery of the present invention is mixed with a binder and a conductive material as necessary to form a paste (for forming a negative electrode active material layer). It is preferable to prepare a paste composition) and apply the paste composition on the negative electrode current collector to form a negative electrode active material layer.

前記ペースト組成物の負極集電体への塗布量は特に制限されず、通常、5〜15mg/cmが好ましく、7〜13mg/cmがより好ましい。また、負極集電体に塗布した膜の厚さ(前記ペースト組成物の膜厚)は、例えば、30〜300μmが好ましく、50〜200μmがより好ましい。なお、塗布後、負極集電体には、乾燥処理(例えば、真空乾燥等)を施してもよい。 The coating amount of the negative electrode current collector of the paste composition is not particularly limited, usually, preferably 5~15mg / cm 2, 7~13mg / cm 2 is more preferable. The thickness of the film applied to the negative electrode current collector (the film thickness of the paste composition) is, for example, preferably 30 to 300 μm, more preferably 50 to 200 μm. After coating, the negative electrode current collector may be subjected to a drying treatment (for example, vacuum drying).

4.リチウムイオン二次電池
本発明のリチウムイオン二次電池用負極材料は、上記したように負極構成材料としてリチウムイオン二次電池を構成できる。特に、本発明のリチウムイオン二次電池用負極材料は、前記のように、大電流での繰り返し充放電を可能とするためのリチウムイオン二次電池を構成できる。
4. Lithium Ion Secondary Battery The negative electrode material for a lithium ion secondary battery of the present invention can constitute a lithium ion secondary battery as a negative electrode constituent material as described above. In particular, the negative electrode material for a lithium ion secondary battery of the present invention can form a lithium ion secondary battery for enabling repeated charging and discharging with a large current as described above.

本発明のリチウムイオン二次電池は、上記した本発明のリチウムイオン二次電池用負極を備えている。また、本発明のリチウムイオン二次電池は、本発明のリチウムイオン二次電池用負極以外に、公知のリチウムイオン二次電池に適用される正極、電解液及びこれらを収納するための容器を備えることができる。 The lithium ion secondary battery of the present invention includes the negative electrode for the lithium ion secondary battery of the present invention described above. Further, the lithium ion secondary battery of the present invention includes, in addition to the negative electrode for the lithium ion secondary battery of the present invention, a positive electrode applied to a known lithium ion secondary battery, an electrolytic solution, and a container for storing these. be able to.

正極は、特に制限されず、公知の正極が使用でき、正極は、例えば、正極集電体、正極活物質、導電剤などで構成できる。正極集電体として、例えば、アルミニウム等を例示することができる。正極活物質としては、例えば、TiS、MoS、NbSe、FeS、VS、VSe等の層状構造を有する金属カルコゲン化物;CoO、Cr、TiO、CuO、V、MoO、V(・P)、MnO(・LiO)、LiCoO、LiNiO、LiMn、リチウムニッケルマンガンコバルト系複合酸化物等の金属酸化物;ポリアセチレン、ポリアニリン、ポリパラフェニレン、ポリチオフェン、ポリピロール等の導電性を有する共役系高分子物質等を用いることができる。好ましくは、金属酸化物(特に、V、MnO、LiCoO、リチウムニッケルマンガンコバルト系複合酸化物)を用いることができる。 The positive electrode is not particularly limited, and a known positive electrode can be used, and the positive electrode can be composed of, for example, a positive electrode current collector, a positive electrode active material, a conductive agent, or the like. As the positive electrode current collector, for example, aluminum or the like can be exemplified. Examples of the positive electrode active material include metal chalcogens having a layered structure such as TiS 2 , MoS 3 , NbSe 3 , FeS, VS 2 , and VSe 2 ; CoO 2 , Cr 3 O 5 , TiO 2 , CuO, and V 3 O. Metals such as 6 , Mo 3 O, V 2 O 5 (・ P 2 O 5 ), Mn 2 O (・ Li 2 O), LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , lithium nickel manganese cobalt-based composite oxide Oxides: Conducting conjugated polymer substances such as polyacetylene, polyaniline, polyparaphenylene, polythiophene, and polypyrrole can be used. Preferably, a metal oxide (particularly V 2 O 5 , Mn 2 O, LiCo O 2 , lithium nickel manganese cobalt-based composite oxide) can be used.

また、電解液は、上述のような非プロトン性有機溶媒に塩を溶解した電解液であって、正極と負極との間に配置されており、例えば、正極と負極との短絡を防止するための不織布等からなるセパレータに含浸されて保持されている。 Further, the electrolytic solution is an electrolytic solution in which a salt is dissolved in an aprotic organic solvent as described above, and is arranged between the positive electrode and the negative electrode. For example, in order to prevent a short circuit between the positive electrode and the negative electrode. It is impregnated and held in a separator made of a non-woven fabric or the like.

なお、上述の電解液を構成する非プロトン性有機溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、ギ酸メチル、酢酸メチル等のエステル類;テトラヒドロフラン、2−メチルテトラヒドロフラン等のフラン類;ジオキソラン、4−メチルジオキソラン、ジエチルエーテル、ジメトキシエタン、ジエトキシエタン、メトキシエトキシエタン、ジエチレングリコール等のエーテル類;ジメチルスルホキシド;スルホラン、メチルスルホラン等のスルホラン類;アセトニトリル;ジメチルホルムアミド等が挙げられる。これらの非プロトン性有機溶媒は、単独で用いることもでき、2種以上を組合せて用いることもできる。 Examples of the aprotic organic solvent constituting the above-mentioned electrolytic solution include esters of ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, methyl formate, methyl acetate and the like. Classes; furans such as tetrahydrofuran and 2-methyltetraxyl; ethers such as dioxolane, 4-methyldioxolane, diethyl ether, dimethoxyethane, diethoxyethane, methoxyethoxyethane and diethylene glycol; dimethyl sulfoxide; sulfolanes such as sulfolane and methylsulfolane. Kind; acetonitrile; dimethyl formamide and the like. These aprotic organic solvents can be used alone or in combination of two or more.

一方、このような非プロトン性有機溶媒に溶解される塩は、例えば、LiPF、LiClO、LiBF、LiAsF、LiSbF、LiAlO、LiAlCl、LiCl、LiI等の溶媒和しにくいアニオンを生成する塩が挙げられる。これらの塩は、単独で用いることもでき、2種以上を組合せて用いることもできる。好ましい電解液には、強い還元雰囲気でも安定な溶媒テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、4−メチルジオキソランのような強い還元雰囲気でも安定なエーテル系溶媒や、前記非プロトン性溶媒(好ましくは2種以上の混合溶媒)に、前記例示の塩を溶解させた溶液等が含まれる。 Meanwhile, salt dissolved in such aprotic organic solvents are, for example, LiPF 6, LiClO 4, LiBF 4, LiAsF 6, LiSbF 6, LiAlO 4, LiAlCl 4, LiCl, hardly solvated such LiI anion Examples include salts that produce. These salts can be used alone or in combination of two or more. Preferred electrolytic solutions include ether solvents that are stable even in a strong reducing atmosphere, such as tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, and 4-methyldioxolane, and the aprotic solvents (preferably two types). The above mixed solvent) includes a solution or the like in which the above-exemplified salt is dissolved.

なお、リチウムイオン二次電池は、円筒型、角型、ボタン型等任意の形状又は形態とすることができる。 The lithium ion secondary battery may have any shape or form such as a cylindrical type, a square type, and a button type.

このような本発明のリチウムイオン二次電池は、負極に本発明のリチウムイオン二次電池用負極材料を用いているため、充放電容量が大きく、また、負極が電解液と反応しにくいため寿命特性及び安全性が高い。 Since the lithium ion secondary battery of the present invention uses the negative electrode material for the lithium ion secondary battery of the present invention for the negative electrode, it has a large charge / discharge capacity and the negative electrode does not easily react with the electrolytic solution, so that it has a long life. High characteristics and safety.

なお、本発明のリチウムイオン二次電池は、上述の電解液に代えて、公知の無機固体電解質や高分子固体電解質等の他の電解質を用いた場合も同様に実施することができる。 The lithium ion secondary battery of the present invention can be similarly carried out when another electrolyte such as a known inorganic solid electrolyte or polymer solid electrolyte is used instead of the above-mentioned electrolytic solution.

以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって制限されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.

[軟化点の測定]
軟化点は、ASTM D3461の規格に準拠して測定した。
[Measurement of softening point]
The softening point was measured according to the standards of ASTM D3461.

[キノリン不溶分(QI)の含有率測定]
キノリン不溶分(QI)の含有率は、JIS K2415の規格に準拠して測定した。
[Measurement of quinoline insoluble matter (QI) content]
The content of quinoline insoluble matter (QI) was measured according to the JIS K2415 standard.

[アセトン可溶分(AcS)の含有率測定]
アセトン可溶分(AcS)の含有率は、JIS K2415の規格に準拠して測定した。
[Measurement of Acetone Soluble Content (AcS) Content]
The content of acetone-soluble matter (AcS) was measured according to the JIS K2415 standard.

[粒径の測定]
日機装(株)製「MT3000EXII」を用いて、粒子の粒度分布及びD50を測定した。
[Measurement of particle size]
The particle size distribution and D50 of the particles were measured using "MT3000EXII" manufactured by Nikkiso Co., Ltd.

[比表面積の測定法]
カンタークローム社製「NOVA2000/窒素吸着BET比表面積測定装置」を用いて比表面積を測定した。
[Measurement method of specific surface area]
The specific surface area was measured using a "NOVA2000 / nitrogen adsorption BET specific surface area measuring device" manufactured by Canterchrome.

[タップ密度の測定法]
(株)セイシン企業製TAPDENSER「KYT−4000」を用いてタップ密度を測定した。シリンダーの容積は200cc、タッピング距離は50mm、タッピング回数は1200回とした。
[Measurement method of tap density]
The tap density was measured using TAPDENSER "KYT-4000" manufactured by Seishin Enterprise Co., Ltd. The volume of the cylinder was 200 cc, the tapping distance was 50 mm, and the number of tapping times was 1200.

[初回充放電評価]
電池の作製
実施例1及び比較例1〜2で得た炭素材料98質量部に、増粘剤としてカルボキシメチルセルロース1質量部、及び結着材としてスチレンブタジエン共重合体1質量部と、適量の水を加えて混練し、スラリーとした。銅箔上にこのスラリーをドクターブレード法で目付け9.0mg/cmに塗布した。60℃で乾燥した後、ロールプレスにより密度が1.6g/ccとなるように圧密化し、150℃で減圧乾燥して負極とした。
[Initial charge / discharge evaluation]
Preparation of Batteries 98 parts by mass of the carbon material obtained in Example 1 and Comparative Examples 1 and 2, 1 part by mass of carboxymethyl cellulose as a thickener, 1 part by mass of a styrene-butadiene copolymer as a binder, and an appropriate amount of water. Was added and kneaded to obtain a slurry. This slurry was applied onto a copper foil by a doctor blade method at a coating rate of 9.0 mg / cm 2 . After drying at 60 ° C., it was compacted by a roll press to a density of 1.6 g / cc, and dried under reduced pressure at 150 ° C. to obtain a negative electrode.

得られた負極の他、対極としてLi金属箔を、電解液としてエチレンカーボネートとエチルメチルカーボネートとの混合溶媒(体積比1:2)にLiPFを1mol/Lの割合で溶解した溶解液を用い、セパレータとしてポリプロピレン不織布を用いて、ガラスセルを作製した。 In addition to the obtained negative electrode, a Li metal foil was used as the counter electrode, and a solution prepared by dissolving LiPF 6 in a mixed solvent (volume ratio 1: 2) of ethylene carbonate and ethyl methyl carbonate at a ratio of 1 mol / L was used as the electrolytic solution. , A glass cell was prepared using a polypropylene non-woven fabric as a separator.

評価方法
上記ガラスセルで、25℃のもと、0.3C(定電流定電圧)で10mVまで8時間充電し、0.3Cで2Vまで放電し、初回放電容量(1.2Vカットオフ電圧)を求め表2に記した。
Evaluation method In the above glass cell, charge to 10 mV at 0.3 C (constant current constant voltage) for 8 hours at 25 ° C, discharge to 2 V at 0.3 C, and first discharge capacity (1.2 V cutoff voltage). Was calculated and shown in Table 2.

[寿命特性及び安全性評価]
電池の作製
実施例1及び比較例1〜2で得た炭素材料97.5質量部に、増粘剤としてカルボキシメチルセルロース1質量部、及び結着材としてスチレンブタジエン共重合体1.5質量部と、適量の水を加えて混練し、スラリーとした。銅箔上にこのスラリーをドクターブレード法で目付け10.6mg/cmに塗布した。60℃で乾燥した後、ロールプレスにより密度が1.5g/ccとなるように圧密化し30mm×50mm角に切り出し、150℃で減圧乾燥して負極とした。
[Life characteristics and safety evaluation]
Preparation of Batteries 97.5 parts by mass of the carbon material obtained in Example 1 and Comparative Examples 1 and 2, 1 part by mass of carboxymethyl cellulose as a thickener, and 1.5 parts by mass of a styrene-butadiene copolymer as a binder. , An appropriate amount of water was added and kneaded to prepare a slurry. This slurry was applied to a copper foil at a size of 10.6 mg / cm 2 by the doctor blade method. After drying at 60 ° C., it was compacted by a roll press to a density of 1.5 g / cc, cut into 30 mm × 50 mm squares, and dried under reduced pressure at 150 ° C. to obtain a negative electrode.

リチウムニッケルマンガンコバルト系複合酸化物粉体93質量部に、カーボンブラック4質量部、ポリフッ化ビニリデン(PVDF)3質量部とN−メチルピロリドン適量を加え混練し、スラリーとした。アルミニウム箔にこのスラリーをドクターブレード法で目付け21.2mg/cmに塗布した。130℃で減圧乾燥し、更に正極層の密度が2.7mg/cmとなるようにロールプレスで圧密化した。これを32mm×52mm角に切り出し、150℃で乾燥して正極とした。 To 93 parts by mass of lithium nickel manganese cobalt-based composite oxide powder, 4 parts by mass of carbon black, 3 parts by mass of polyvinylidene fluoride (PVDF) and an appropriate amount of N-methylpyrrolidone were added and kneaded to prepare a slurry. This slurry was applied to an aluminum foil by a doctor blade method at a filling rate of 21.2 mg / cm 2 . It was dried under reduced pressure at 130 ° C., and further consolidated by a roll press so that the density of the positive electrode layer was 2.7 mg / cm 3 . This was cut into 32 mm × 52 mm squares and dried at 150 ° C. to obtain a positive electrode.

電解液としてはエチレンカーボネート:エチルメチルカーボネート=3:7(質量比)にLiPFを溶解したものを用いた。 As the electrolytic solution, one in which LiPF 6 was dissolved in ethylene carbonate: ethyl methyl carbonate = 3: 7 (mass ratio) was used.

この電池に、0.2Cで4.05Vまで充電し、0.2Cで2.7Vまで放電を3回繰り返し、初期調整とした。 This battery was charged to 4.05 V at 0.2 C and discharged to 2.7 V at 0.2 C three times for initial adjustment.

評価方法1:寿命特性
50℃のもと、0.5Cで4.05Vまで充電、及び0.5Cで2.7Vまで放電を1サイクルとして、1000サイクル繰り返し、容量維持率を確認し、結果を表2に示した。
Evaluation method 1: Under life characteristics of 50 ° C., charge to 4.05V at 0.5C and discharge to 2.7V at 0.5C as one cycle, repeat 1000 cycles, check the capacity retention rate, and check the result. It is shown in Table 2.

評価方法2:安全性
以下の(1)〜(6)の条件で充放電を行い、その充放電による電池の劣化度合い(安全性)を判断するために、充放電開始前と充放電終了後の交流抵抗の測定を実施した。なお、交流抵抗の測定は25℃のもと、周波数500kHz〜0.1Hz、振幅10mVの条件で実施し、負極側の抵抗とされる100Hz〜0.1Hzの抵抗値の増加で電池の劣化度合(安全性)を評価し、結果を表2に示した。
(1)25℃のもと、0.2Cで4.05Vまで充電、0.2Cで2.7Vまで放電を1サイクルとして、10サイクル繰り返した。
(2)25℃のもと、0.5Cで4.15Vまで充電、0.5Cで2.7Vまでの放電を1サイクルとして、10サイクル繰り返した。
(3)25℃のもと、1Cで4.15Vまで充電、1Cで2.7Vまで放電を1サイクルとして、10サイクル繰り返した。
(4)0℃のもと、0.5Cで4.1Vまで充電、0.5Cで2.7Vまで放電を1サイクルとして、10サイクル繰り返した。
(5)0℃のもと、1Cで4.1Vまで充電、1Cで2.7Vまで放電を1サイクルとして、10サイクル繰り返した。
(6)0℃のもと、1Cで4.15Vまで充電、1Cで2.7Vまで放電を1サイクルとして、10サイクル繰り返した。
Evaluation method 2: Safety Charge / discharge is performed under the following conditions (1) to (6), and in order to judge the degree of deterioration (safety) of the battery due to the charge / discharge, before the start of charge / discharge and after the end of charge / discharge. The AC resistance of was measured. The AC resistance is measured under the conditions of a frequency of 500 kHz to 0.1 Hz and an amplitude of 10 mV at 25 ° C., and the degree of deterioration of the battery is increased by increasing the resistance value of 100 Hz to 0.1 Hz, which is the resistance on the negative electrode side. (Safety) was evaluated and the results are shown in Table 2.
(1) At 25 ° C., charging was performed at 0.2 C to 4.05 V, and discharging was performed at 0.2 C to 2.7 V as one cycle, and 10 cycles were repeated.
(2) At 25 ° C., charging to 4.15 V at 0.5 C and discharging to 2.7 V at 0.5 C were set as one cycle, and 10 cycles were repeated.
(3) At 25 ° C., 1C was charged to 4.15 V, and 1C was discharged to 2.7 V as one cycle, and 10 cycles were repeated.
(4) At 0 ° C., charging was performed at 0.5 C to 4.1 V, and discharging was performed at 0.5 C to 2.7 V as one cycle, and 10 cycles were repeated.
(5) Under 0 ° C., 1C was charged to 4.1 V, and 1C was discharged to 2.7 V as one cycle, and 10 cycles were repeated.
(6) Under 0 ° C., 1C was charged to 4.15 V, and 1C was discharged to 2.7 V as one cycle, and 10 cycles were repeated.

[実施例1]
一次キノリン不溶分(QI)を遠心分離法により除去したコールタール(キノリン不溶分(QI)含有率0.00質量%以下;中国製)を蒸留して軟化点約80℃の石炭系ピッチを作製した。次に、得られた石炭系ピッチを、空気を流量3L/minで供給しながら2段階の反応槽及び薄膜蒸留装置を使用した蒸留により、軟化点286.5℃の石炭系等方性ピッチを作製した。得られた石炭系等方性ピッチのキノリン不溶分(QI)含有率は20.4質量%、アセトン可溶分(AcS)含有率は12.4質量%であった。
[Example 1]
Coal tar (quinoline insoluble (QI) content of 0.00% by mass or less; made in China) from which the primary quinoline insoluble (QI) has been removed by centrifugation is distilled to prepare a coal-based pitch with a softening point of about 80 ° C. did. Next, the obtained carbon-based pitch was distilled using a two-stage reaction tank and a thin-film distillation apparatus while supplying air at a flow rate of 3 L / min to obtain a coal-based isotropic pitch with a softening point of 286.5 ° C. Made. The obtained coal-based isotropic pitch had a quinoline insoluble content (QI) content of 20.4% by mass and an acetone-soluble content (AcS) content of 12.4% by mass.

中国製球状天然黒鉛[D50=11.5μm、比表面積=8.8m/g、タップ密度=0.70g/cc、d(002)=0.335nm、Lc(004)=58nm]95質量部と、上記で得られた石炭系等方性ピッチ5質量部とを、ナウタミキサーで混合した。球状天然黒鉛と石炭系等方性ピッチとの混合物を窒素雰囲気中、900℃で1時間熱処理した。得られた表面被覆黒鉛の物性値を表1に示す。 Spherical natural graphite made in China [D50 = 11.5 μm, specific surface area = 8.8 m 2 / g, tap density = 0.70 g / cc, d (002) = 0.335 nm, Lc (004) = 58 nm] 95 parts by mass And 5 parts by mass of the coal-based isotropic pitch obtained above were mixed with a Nauta mixer. A mixture of spherical natural graphite and a carbon-based isotropic pitch was heat-treated at 900 ° C. for 1 hour in a nitrogen atmosphere. Table 1 shows the physical property values of the obtained surface-coated graphite.

[比較例1]
一次キノリン不溶分(QI)を遠心分離法により除去したコールタール(キノリン不溶分(QI)含有率0.00質量%以下;中国製)を蒸留して軟化点約80℃の石炭系ピッチを作製した。次に、得られた石炭系ピッチを、空気を流量3L/minで供給しながら3段階の反応槽を使用した蒸留(薄膜蒸留装置は使用していない)により、軟化点285.4℃の石炭系等方性ピッチを作製した。得られた石炭系等方性ピッチのキノリン不溶分(QI)含有率は35.7質量%、アセトン可溶分(AcS)含有率は15.5質量%であった。上記で得られた石炭系等方性ピッチを使用したこと以外は実施例1と同様に表面被覆黒鉛を作製し、得られた表面被覆黒鉛の物性値を表1に示した。
[Comparative Example 1]
Coal tar (quinoline insoluble (QI) content of 0.00% by mass or less; made in China) from which the primary quinoline insoluble (QI) has been removed by centrifugation is distilled to prepare a coal-based pitch with a softening point of about 80 ° C. did. Next, the obtained carbon-based pitch was distilled using a three-stage reaction tank (without using a thin film distillation apparatus) while supplying air at a flow rate of 3 L / min to coal having a softening point of 285.4 ° C. A system isotropic pitch was made. The obtained coal-based isotropic pitch had a quinoline-insoluble (QI) content of 35.7% by mass and an acetone-soluble content (AcS) content of 15.5% by mass. Surface-coated graphite was prepared in the same manner as in Example 1 except that the coal-based isotropic pitch obtained above was used, and the physical property values of the obtained surface-coated graphite are shown in Table 1.

[比較例2]
一次キノリン不溶分(QI)を除去していないコールタール(キノリン不溶分(QI)含有率3.1質量%;中国製)を蒸留して軟化点約80℃の石炭系ピッチを作製した。次に、得られた石炭系ピッチを、空気を流量3L/minで供給しながら3段階の反応槽を使用した蒸留(薄膜蒸留装置は使用していない)により、軟化点248.1℃の石炭系等方性ピッチを作製した。得られた石炭系等方性ピッチのキノリン不溶分(QI)含有率は40.7質量%、アセトン可溶分(AcS)含有率は18.5質量%であった。上記で得られた石炭系等方性ピッチを使用したこと以外は実施例1と同様に表面被覆黒鉛を作製し、得られた表面被覆黒鉛の物性値を表1に示した。
[Comparative Example 2]
Coal tar (quinoline insoluble (QI) content 3.1% by mass; made in China) from which the primary quinoline insoluble (QI) was not removed was distilled to prepare a coal-based pitch having a softening point of about 80 ° C. Next, the obtained coal-based pitch was distilled using a three-stage reaction tank (without using a thin film distillation apparatus) while supplying air at a flow rate of 3 L / min to obtain coal having a softening point of 248.1 ° C. A system isotropic pitch was made. The obtained coal-based isotropic pitch had a quinoline insoluble content (QI) content of 40.7% by mass and an acetone-soluble content (AcS) content of 18.5% by mass. Surface-coated graphite was prepared in the same manner as in Example 1 except that the coal-based isotropic pitch obtained above was used, and the physical property values of the obtained surface-coated graphite are shown in Table 1.

Figure 2020161385
Figure 2020161385

また、実施例1及び比較例1〜2で得られたリチウムイオン二次電池の電池特性を表2に示す。 Table 2 shows the battery characteristics of the lithium ion secondary batteries obtained in Example 1 and Comparative Examples 1 and 2.

Figure 2020161385
Figure 2020161385

表2の初回放電容量の結果より、キノリン不溶分(QI)含有率の違いは、放電容量に影響を及ぼしていないことがわかる。 From the results of the initial discharge capacity in Table 2, it can be seen that the difference in the quinoline insoluble content (QI) content does not affect the discharge capacity.

表2の寿命特性の結果より、キノリン不溶分(QI)含有率が30質量%以下である石炭系等方性ピッチ熱処理物で天然黒鉛を被覆することにより、優れた繰り返し充放電特性を有する負極材料が得られ、寿命特性に優れることがわかる。 From the results of the life characteristics in Table 2, the negative electrode having excellent repetitive charge / discharge characteristics by coating natural graphite with a coal-based isotropic pitch heat-treated product having a quinoline insoluble content (QI) content of 30% by mass or less. It can be seen that the material is obtained and the life characteristics are excellent.

また、近年、特に低温で充電することにより、負極にリチウム金属が析出することにより、電池の発火事故等に繋がる事例が見受けられる。表2の安全性の評価は、段階的に10サイクル毎に環境温度、充放電速度及び充電電圧(つまり、負極材料の利用率)をより厳しい条件とすることにより、電池の劣化、つまり、負極へのリチウム金属の析出のしやすさを電池の抵抗の上昇により評価するものである。具体的には、抵抗が上昇すればするほど、リチウム金属が析出しやすくなっており、安全性に乏しいことを意味している。この結果によると、キノリン不溶分(QI)含有率が30質量%以下である石炭系等方性ピッチ熱処理物で天然黒鉛を被覆することにより、安全性に優れたリチウム金属の析出しにくい負極材料が得られることがわかる。 Further, in recent years, there have been cases where lithium metal is deposited on the negative electrode by charging at a particularly low temperature, which leads to a battery ignition accident or the like. The safety evaluation in Table 2 is based on the deterioration of the battery, that is, the negative electrode, by gradually setting the environmental temperature, charge / discharge rate, and charging voltage (that is, the utilization rate of the negative electrode material) to stricter conditions every 10 cycles. The ease with which lithium metal is deposited on the battery is evaluated by increasing the resistance of the battery. Specifically, the higher the resistance, the easier it is for lithium metal to precipitate, which means that safety is poor. According to this result, by coating natural graphite with a coal-based isotropic pitch heat-treated product having a quinoline insoluble content (QI) content of 30% by mass or less, a negative electrode material having excellent safety and less likely to precipitate lithium metal. Can be obtained.

本発明のリチウムイオン二次電池用負極材料によれば、容量と寿命特性及び安全性とを満足し、且つ、安価なリチウムイオン二次電池負極炭素材料を提供することができる。特に、長期にわたる寿命特性(充放電サイクル特性)及び厳しい条件下での安全性が要求される自動車等の電源として有用である。 According to the negative electrode material for a lithium ion secondary battery of the present invention, it is possible to provide an inexpensive lithium ion secondary battery negative electrode carbon material that satisfies the capacity, life characteristics and safety. In particular, it is useful as a power source for automobiles and the like, which require long-term life characteristics (charge / discharge cycle characteristics) and safety under severe conditions.

Claims (13)

天然黒鉛の表面の少なくとも一部に、石炭系等方性ピッチの熱処理物が付着しているリチウム二次電池用負極材料であって、
前記石炭系等方性ピッチの総量を100質量%として、前記石炭系等方性ピッチのキノリン不溶分の含有率が30質量%以下である、リチウムイオン二次電池用負極材料。
A negative electrode material for a lithium secondary battery in which a heat-treated product having a carbon-based isotropic pitch is attached to at least a part of the surface of natural graphite.
A negative electrode material for a lithium ion secondary battery, wherein the total amount of the coal-based isotropic pitch is 100% by mass, and the content of the quinoline-insoluble content of the coal-based isotropic pitch is 30% by mass or less.
前記石炭系等方性ピッチの総量を100質量%として、前記石炭系等方性ピッチのキノリン不溶分の含有率が15〜28質量%である、請求項1に記載のリチウムイオン二次電池用負極材料。 The lithium ion secondary battery according to claim 1, wherein the total amount of the coal-based isotropic pitch is 100% by mass, and the content of the quinoline-insoluble component of the coal-based isotropic pitch is 15 to 28% by mass. Negative electrode material. 前記石炭系等方性ピッチの軟化点が260〜300℃である、請求項1又は2に記載のリチウムイオン二次電池用負極材料。 The negative electrode material for a lithium ion secondary battery according to claim 1 or 2, wherein the softening point of the coal-based isotropic pitch is 260 to 300 ° C. 前記石炭系等方性ピッチの総量を100質量%として、前記石炭系等方性ピッチのアセトン可溶分の含有率が7.5〜14質量%である、請求項1〜3のいずれか1項に記載のリチウムイオン二次電池用負極材料。 Any 1 of claims 1 to 3, wherein the total amount of the coal-based isotropic pitch is 100% by mass, and the content of the acetone-soluble component of the coal-based isotropic pitch is 7.5 to 14% by mass. Negative electrode material for lithium ion secondary batteries according to the section. 前記リチウムイオン二次電池用負極材料の総量を100質量%として、前記天然黒鉛の含有量が95〜99.9質量%であり、前記石炭系等方性ピッチの熱処理物の含有量が0.1〜5質量%である、請求項1〜4のいずれか1項に記載のリチウムイオン二次電池用負極材料。 Assuming that the total amount of the negative electrode material for the lithium ion secondary battery is 100% by mass, the content of the natural graphite is 95 to 99.9% by mass, and the content of the heat-treated product having a coal-based isotropic pitch is 0. The negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 4, which is 1 to 5% by mass. 請求項1〜5のいずれか1項に記載のリチウムイオン二次電池用負極材料の製造方法であって、
(1)天然黒鉛と、石炭系等方性ピッチとを混合する工程、及び
(2)前記混合物を前記石炭系等方性ピッチの軟化点以上の温度で熱処理する工程
を備え、前記石炭系等方性ピッチの総量を100質量%として、前記石炭系等方性ピッチのキノリン不溶分の含有率が30質量%以下である、製造方法。
The method for producing a negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 5.
It is provided with a step of mixing (1) natural graphite and a coal-based isotropic pitch, and (2) a step of heat-treating the mixture at a temperature equal to or higher than the softening point of the coal-based isotropic pitch. A production method in which the total amount of isotropic pitch is 100% by mass and the content of quinoline insoluble content in the coal-based isotropic pitch is 30% by mass or less.
前記工程(1)の前に、
コールタールから一次キノリン不溶分を除去し、次いで、蒸留する工程
を備え、前記蒸留は、多段階の蒸留を行い、且つ、最終段階の蒸留が薄膜蒸留である、請求項6に記載の製造方法。
Before the step (1),
The production method according to claim 6, further comprising a step of removing the primary quinoline insoluble matter from coal tar and then distilling, wherein the distillation is carried out in multiple stages and the final stage distillation is thin film distillation. ..
前記蒸留が、一段階目の蒸留を行った後に、空気を供給しながら二段階目以降の蒸留を行う、請求項7に記載の製造方法。 The production method according to claim 7, wherein the distillation is performed in the second and subsequent stages while supplying air after performing the first stage distillation. 前記工程(1)が、前記天然黒鉛と前記石炭系等方性ピッチとを、90〜99.5:0.5〜10(質量比)の混合比率で混合する工程である、請求項6〜8のいずれか1項に記載の製造方法。 The step (1) is a step of mixing the natural graphite and the coal-based isotropic pitch at a mixing ratio of 90 to 99.5: 0.5 to 10 (mass ratio), claim 6 to 6. The production method according to any one of 8. 前記工程(2)が、非酸化性雰囲気で熱処理を行う工程である、請求項6〜9のいずれか1項に記載の製造方法。 The production method according to any one of claims 6 to 9, wherein the step (2) is a step of performing a heat treatment in a non-oxidizing atmosphere. 前記工程(2)における加熱温度が800〜1300℃である、請求項6〜10のいずれか1項に記載の製造方法。 The production method according to any one of claims 6 to 10, wherein the heating temperature in the step (2) is 800 to 1300 ° C. 請求項1〜5のいずれか1項に記載のリチウムイオン二次電池用負極材料を用いたリチウムイオン二次電池用負極。 A negative electrode for a lithium ion secondary battery using the negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 5. 請求項12に記載のリチウムイオン二次電池用負極を備えたリチウムイオン二次電池。 A lithium ion secondary battery comprising the negative electrode for the lithium ion secondary battery according to claim 12.
JP2019061007A 2019-03-27 2019-03-27 Negative electrode material for lithium ion secondary battery and manufacturing method thereof, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery Pending JP2020161385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019061007A JP2020161385A (en) 2019-03-27 2019-03-27 Negative electrode material for lithium ion secondary battery and manufacturing method thereof, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019061007A JP2020161385A (en) 2019-03-27 2019-03-27 Negative electrode material for lithium ion secondary battery and manufacturing method thereof, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2020161385A true JP2020161385A (en) 2020-10-01

Family

ID=72639699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019061007A Pending JP2020161385A (en) 2019-03-27 2019-03-27 Negative electrode material for lithium ion secondary battery and manufacturing method thereof, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2020161385A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021128881A (en) * 2020-02-14 2021-09-02 Jfeケミカル株式会社 Coating pitch of lithium ion secondary battery negative electrode material and manufacturing method thereof
CN113772668A (en) * 2021-08-30 2021-12-10 湛江市聚鑫新能源有限公司 Graphite negative electrode material with high rate capability, preparation method thereof and application thereof in lithium ion battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021128881A (en) * 2020-02-14 2021-09-02 Jfeケミカル株式会社 Coating pitch of lithium ion secondary battery negative electrode material and manufacturing method thereof
JP7185650B2 (en) 2020-02-14 2022-12-07 Jfeケミカル株式会社 Coating pitch for lithium ion secondary battery negative electrode material and method for producing the same
CN113772668A (en) * 2021-08-30 2021-12-10 湛江市聚鑫新能源有限公司 Graphite negative electrode material with high rate capability, preparation method thereof and application thereof in lithium ion battery
CN113772668B (en) * 2021-08-30 2024-01-23 湛江市聚鑫新能源有限公司 Graphite negative electrode material with high rate performance, preparation method thereof and application thereof in lithium ion battery

Similar Documents

Publication Publication Date Title
CN107851795B (en) Negative electrode active material for lithium secondary battery and negative electrode for lithium secondary battery comprising same
US10658654B2 (en) Composite anode active material, anode including the same, and lithium secondary battery including the anode
CN107710463B (en) Positive electrode for lithium-sulfur battery, method for producing same, and lithium-sulfur battery comprising same
US8936876B2 (en) Carbon material for nonaqueous secondary battery, negative electrode using carbon material and nonaqueous secondary battery
JP5270050B1 (en) Composite graphite particles and uses thereof
KR101564374B1 (en) Method of preparing artificial graphite negative electrode material for rechargeable lithium battery and artificial graphite negative electrode material for rechargeable lithium battery prepared from the same
WO2013021843A1 (en) Sulfide-based solid-state battery
JPWO2012017677A1 (en) Negative electrode active material for lithium secondary battery
JP2012164624A (en) Negative electrode active material for lithium ion secondary battery, and lithium ion secondary battery comprising the negative electrode active material
JP2009295465A (en) Positive electrode active material for lithium secondary battery and manufacturing method
JPWO2018110263A1 (en) Composite graphite particles, production method thereof and use thereof
JP2022550820A (en) Spherical carbon-based negative electrode active material, manufacturing method thereof, negative electrode containing same, and lithium secondary battery
JP6638513B2 (en) Active material for negative electrode of non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and lithium ion secondary battery
JP2019175851A (en) Negative electrode active material for lithium ion secondary batteries and manufacturing method therefor
CN111971824A (en) Negative electrode active material for secondary battery, negative electrode comprising same, and method for producing same
JP4747482B2 (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2020161385A (en) Negative electrode material for lithium ion secondary battery and manufacturing method thereof, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
KR20220037675A (en) Negative electrode and secondary battery comprising the same
JP7009049B2 (en) Lithium-ion secondary battery Carbon material for negative electrode, its intermediate, its manufacturing method, and negative electrode or battery using it
JP2000260428A (en) Lithium secondary battery using nonaqueous cabon- coated negative electrode
JP2017183205A (en) Material for lithium secondary battery negative electrode and production method thereof
JP2001006670A (en) Bulk mesophase and manufacture thereof
CN114586199A (en) Negative electrode active material, method of preparing the same, and negative electrode and secondary battery including the same
JP6747281B2 (en) Negative electrode active material, negative electrode active material manufacturing method, negative electrode and battery
CN113748545A (en) Negative electrode active material, method of preparing the same, and negative electrode and secondary battery including the same