JP2017181355A - Gel-like material detector and gel-like material detection method - Google Patents

Gel-like material detector and gel-like material detection method Download PDF

Info

Publication number
JP2017181355A
JP2017181355A JP2016070375A JP2016070375A JP2017181355A JP 2017181355 A JP2017181355 A JP 2017181355A JP 2016070375 A JP2016070375 A JP 2016070375A JP 2016070375 A JP2016070375 A JP 2016070375A JP 2017181355 A JP2017181355 A JP 2017181355A
Authority
JP
Japan
Prior art keywords
gel
detection
light
substance
detection plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016070375A
Other languages
Japanese (ja)
Inventor
雅人 安浦
Masato YASUURA
雅人 安浦
藤巻 真
Makoto Fujimaki
真 藤巻
耕治 上野
Koji Ueno
耕治 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
C AND I KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
C AND I KK
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by C AND I KK, National Institute of Advanced Industrial Science and Technology AIST filed Critical C AND I KK
Priority to JP2016070375A priority Critical patent/JP2017181355A/en
Publication of JP2017181355A publication Critical patent/JP2017181355A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow, with simple configuration, detection of information on gel particles in the initial stage of generating a gel-like material and on the growth of the gel particles and to sensitively detect, in real time, the information on the gel-like material with a small amount of a reagent and a sample and with a high freedom of selecting a light source.SOLUTION: A gel-like material detector 1 includes: a liquid holding unit having a detection plate 2, the detection plate having a front surface, to which a sample of a liquid containing a detection target material and a reagent for generating a gel-like material by reacting with the detection target material are introduced, and a back surface, and forming a near field on the front surface by a light emitted from the back surface side under the total reflection condition; a light source 5 capable of emitting the light from the back surface side of the detection plate 2 under the total reflection condition; and a detection unit 6 on the front surface side of the detection plate 2, capable of detecting a scattered light emitted from the gel-like material associated with the light emission in a detection region on the front surface.SELECTED DRAWING: Figure 1

Description

本発明は、光の全反射に伴って生成される近接場を利用してゲル状物質の散乱光を検出するゲル状物質検出装置及びゲル状物質検出方法に関する。   The present invention relates to a gel-like substance detection device and a gel-like substance detection method for detecting scattered light of a gel-like substance using a near field generated with total reflection of light.

試料にゲル化反応を生じる試薬を混ぜて、ゲル化反応によって液体中に生じるゲル状物質を検出することによって、前記試料中におけるゲル化を生じた原因物質の検出が行われている。例えば、医療分野において、エンドトキシンの除去確認やβ−D−グルカンの検出等を目的として、前記ゲル状物質の検出が行われている。   A reagent that causes a gelation reaction is mixed with the sample, and a gel-like substance generated in the liquid by the gelation reaction is detected to detect the causative substance that has caused the gelation in the sample. For example, in the medical field, the gel-like substance is detected for the purpose of confirming endotoxin removal and detecting β-D-glucan.

従来の前記ゲル状物質の検出方法の例としては、ゲル化法が挙げられる。例えば、前記試薬としてカブトガニ由来のリムルス試薬を用いた前記エンドトキシンの検出にこのゲル化法は用いられている。これは、前記リムルス試薬が前記エンドトキシンに特異的に反応し、凝集塊となる現象を利用し、試料と前記リムルス試薬とを混合して静置し、一定時間後に転倒して混合溶液のゲル化を確認する方法である。前記ゲル化法では、ゲル化を起こす前記試料の最大希釈倍率をもって、前記試料中の原因物質を定量する。   An example of a conventional method for detecting the gel-like substance is a gelation method. For example, this gelation method is used to detect the endotoxin using a Limulus reagent derived from horseshoe crab as the reagent. This utilizes the phenomenon that the Limulus reagent reacts specifically with the endotoxin and forms an agglomerate. The sample and the Limulus reagent are mixed and allowed to stand, and after falling for a certain time, the mixture solution is gelled. It is a method to confirm. In the gelation method, the causative substance in the sample is quantified at the maximum dilution ratio of the sample that causes gelation.

前記ゲル化法に類似する方法として、比濁時間分析法(特許文献1参照)、発色合成基質法が知られている。
前記比濁時間分析法では、前記試料のゲル化反応に伴う濁度変化を光学的手法で計測し、前記原因物質の定量を行う。また、前記発色合成基質法では、前記試料のゲル化反応に応じて発色基を生成する合成基質を用い、前記発色基の量を比色定量して前記原因物質の定量を行う。
As a method similar to the gelation method, a turbidimetric time analysis method (see Patent Document 1) and a chromogenic synthetic substrate method are known.
In the turbidimetric time analysis method, the turbidity change accompanying the gelation reaction of the sample is measured by an optical method, and the causative substance is quantified. In the chromogenic synthetic substrate method, the causative substance is quantified by colorimetric determination of the amount of the chromophore using a synthetic substrate that generates a chromophore according to the gelation reaction of the sample.

しかしながら、前記ゲル化法、前記比濁時間分析法及び前記発色合成基質法では、ゲル化反応が進行した結果として生じる各種状態を定量的に評価して前記ゲル化の検出を行うため、前記ゲル状物質生成初期のゲル粒子及びその成長過程に関する情報が得られない問題がある。前記ゲル状物質生成初期のゲル粒子及びその成長過程に関する情報が得られる場合、検出情報から粒子サイズ成長の有無等を確認して、検出対象となる前記ゲル状物質の情報と、夾雑物やノイズの情報とを高精度に判別できる。
また、前記ゲル化法、前記比濁時間分析法及び前記発色合成基質法では、定量評価に必要な前記試料の量が比較的多量であり、前記リムルス試薬が比較的高価であることから、検出に必要な前記リムルス試薬の量を低減させることが求められる。また、前記試料として例えば血液を生体から取得する場合には、身体的負担を考慮すると、検出に必要な前記試料の量を低減させることが求められる。
However, in the gelation method, the turbidimetric time analysis method and the chromogenic synthesis substrate method, the gelation is detected by quantitatively evaluating various states resulting from the progress of the gelation reaction. There is a problem that information on gel particles in the initial stage of the formation of a granular material and the growth process thereof cannot be obtained. When information on the gel particles at the initial stage of the gel-like substance generation and the growth process thereof is obtained, the presence or absence of particle size growth is confirmed from the detection information, information on the gel-like substance to be detected, and impurities and noise Can be determined with high accuracy.
In the gelation method, the turbidimetric time analysis method and the chromogenic synthesis substrate method, the amount of the sample necessary for quantitative evaluation is relatively large, and the Limulus reagent is relatively expensive. It is required to reduce the amount of the Limulus reagent necessary for the treatment. In addition, for example, when blood is obtained from a living body as the sample, it is required to reduce the amount of the sample necessary for detection in consideration of physical burden.

前記ゲル状物質生成初期のゲル粒子及びその成長過程に関する情報を測定するニーズに応えて開発された前記ゲル状物質の検出方法として、ゲル粒子測定装置が提案されている。
前記ゲル粒子測定装置では、前記試料及び前記試薬を導入する試料セルの側方から光を入射して、前記試料セル内の前記ゲル粒子からの散乱光を生じさせ、この散乱光を光検出器で測定することで前記ゲル粒子の検出を行う。
より具体的には、前記試料セルに前記光を入射し、90°側方散乱光を前記光検出器で検出することでゲル粒子の検出を行うものや、より高度な計測のため、前記試料セルにコヒーレント光を入射し、その透過光及び前方・側方・後方各散乱光を前記光検出器で検出することで、これらの変動成分から前記ゲル粒子生成の検出や粒度計測を行う前記ゲル粒子測定装置が提案されている(特許文献2,3参照)。
A gel particle measuring apparatus has been proposed as a method for detecting the gel-like substance developed in response to the need to measure the gel particles at the initial stage of the gel-like substance generation and the growth process thereof.
In the gel particle measuring apparatus, light is incident from the side of the sample cell into which the sample and the reagent are introduced to generate scattered light from the gel particles in the sample cell, and the scattered light is detected by a photodetector. The gel particles are detected by measuring in step (1).
More specifically, the sample light is incident on the sample cell, and 90 ° side scattered light is detected by the photodetector to detect gel particles, or for more advanced measurement, the sample The gel that detects coherent light in the cell and detects the gel particle generation and particle size measurement from these fluctuation components by detecting the transmitted light and the forward, side, and back scattered light with the photodetector. A particle measuring apparatus has been proposed (see Patent Documents 2 and 3).

しかしながら、前記ゲル粒子測定装置では、前記透過光及び前記前方・側方・後方各散乱光を検出するための前記光検出器を各方向に設ける必要があり、装置が大型化、複雑化する問題がある。また、検出の高感度化のためには、光源を高出力化するか、光路長を長く設定する必要がある。前記光路長を長くするためには前記試料セルのサイズを大きくする必要があり、前記試料セルに導入する前記試薬及び前記試料の量が比較的多量となる問題がある。この問題は、前記原因物質の濃度が低い前記試料に対する測定を目的とする場合には、前記光路長をより長く設定する必要があるため、より一層大きくなる。
なお、装置が大型化、複雑化することを避ける目的で、複合ゲル粒子検出器(特許文献4参照)が提案されているが、この提案においても検出器(受光素子)を複数方向に設ける必要がある点で前記ゲル粒子測定装置と変わりがない。
However, in the gel particle measuring apparatus, it is necessary to provide the light detectors for detecting the transmitted light and the scattered light in the front, side, and rear directions in each direction, which increases the size and complexity of the apparatus. There is. In order to increase the detection sensitivity, it is necessary to increase the output of the light source or set the optical path length to be long. In order to increase the optical path length, it is necessary to increase the size of the sample cell, and there is a problem that the amount of the reagent and the sample introduced into the sample cell becomes relatively large. This problem is further increased when the purpose is to measure the sample having a low concentration of the causative substance because the optical path length needs to be set longer.
Note that a composite gel particle detector (see Patent Document 4) has been proposed for the purpose of avoiding an increase in size and complexity of the apparatus, but in this proposal as well, it is necessary to provide detectors (light receiving elements) in a plurality of directions. There is no difference from the above-mentioned gel particle measuring device.

特開2004− 93536号公報JP 2004-93536 A 特許第4551980号公報Japanese Patent No. 4551980 特許第5014466号公報Japanese Patent No. 5014466 特開2015−121458号公報JP, 2015-112458, A

本発明は、従来技術における前記諸問題を解決し、簡易な構造で、ゲル状物質生成初期のゲル粒子及びその成長過程に関する情報を検出可能であり、光源選択の自由度が高く、少量の試薬及び試料の量で、ゲル状物質情報をリアルタイムかつ高感度に検出可能なゲル状物質検出装置及びゲル状物質検出方法を提供することを目的とする。   The present invention solves the above-mentioned problems in the prior art, can detect information on gel particles and their growth process at the initial stage of gel-like substance generation with a simple structure, has a high degree of freedom in light source selection, and has a small amount of reagent. It is another object of the present invention to provide a gel-like substance detection device and a gel-like substance detection method capable of detecting gel-like substance information in real time and with high sensitivity using the amount of the sample.

前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 被検出物質を含む液体の試料及び前記被検出物質と反応してゲル状物質を生成する試薬が表面上に導入されるとともに裏面側から全反射条件で照射される光により前記表面上に近接場を形成可能な検出板が配され、かつ、導入された前記試料及び前記試薬が前記検出板の前記表面上に保持される液体保持部と、前記全反射条件で前記検出板の前記裏面側から前記光を照射可能とされる光照射部と、前記検出板の前記表面側に配され、前記表面上の領域を検出領域とし前記光の照射に伴いゲル状物質から発せられる散乱光を検出可能とされる検出部と、を有することを特徴とするゲル状物質検出装置。
<2> 検出部が、散乱光を含む検出領域の様子を2次元画像として取得可能とされる前記<1>に記載のゲル状物質検出装置。
<3> 液体保持部が、試料及び試薬の導入部が形成されるとともに検出板と前記検出板の被覆部とで少なくとも前記検出板表面上の近接場形成領域を含む空間を画成する中空部で構成され、かつ、少なくとも前記検出板表面上の検出領域及び光検出部の間に配される部位が光透過性を有する前記<1>から<2>のいずれかに記載のゲル状物質検出装置。
<4> 液体保持部が、試料及び試薬を攪拌可能な攪拌部を備える前記<1>から<3>のいずれかに記載のゲル状物質検出装置。
<5> 液体保持部が、試料及び試薬の温度を調節する温度調節部を備える前記<1>から<4>のいずれかに記載のゲル状物質検出装置。
<6> 検出板が、裏面から表面に向けて、光透過性基板と金属材料又は半導体材料で形成される金属層又は半導体層と光透過性誘電材料で形成される誘電体層とがこの順で積層されて構成される前記<1>から<5>のいずれかに記載のゲル状物質検出装置。
<7> 金属層又は半導体層が、Si層及び10モル%〜30モル%のGeを含むSiGe層のいずれかの半導体層で形成される前記<6>に記載のゲル状物質検出装置。
<8> 誘電体層が、SiO層で形成される前記<6>から<7>のいずれかに記載のゲル状物質検出装置。
<9> 検出板の厚み方向に対して傾斜する角度で表され、かつ、前記検出板が光を全反射する条件を律する最小の角度を臨界角としたときに、前記臨界角以上前記臨界角より7度大きい角度以下の角度で前記検出板が裏面側から前記光の照射を受ける位置に光照射部が配される前記<6>から<8>のいずれかに記載のゲル状物質検出装置。
<10> 被検出物質を含む液体の試料及び前記被検出物質と反応してゲル状物質を生成する試薬が表面上に導入されるとともに裏面側から全反射条件で照射される光により前記表面上に近接場を形成可能な検出板が配され、かつ、導入された前記試料及び前記試薬が前記検出板の前記表面上に保持される液体保持部に対し、前記試料及び前記試薬を導入する液体導入工程と、前記全反射条件で前記検出板の前記裏面側から前記光を照射する光照射工程と、前記表面上の領域を検出領域とし前記光の照射に伴いゲル状物質から発せられる散乱光を検出する検出工程と、を含むことを特徴とするゲル状物質検出方法。
<11> 検出工程が、散乱光を含む検出領域の様子を2次元画像として取得する前記<10>に記載のゲル状物質検出方法。
<12> 検出工程が、複数の2次元画像を経時的に取得する工程である前記<11>に記載のゲル状物質検出方法。
<13> 裏面から表面に向けて、光透過性基板と金属材料又は半導体材料で形成される金属層又は半導体層と光透過性誘電材料で形成される誘電体層とがこの順で積層されて構成される検出板を用いる前記<10>から<12>のいずれかに記載のゲル状物質検出方法。
<14> 光照射工程が、検出板の厚み方向に対して傾斜する角度で表され、かつ、前記検出板が光を全反射する条件を律する最小の角度を臨界角としたときに、前記臨界角以上前記臨界角より7度大きい角度以下の角度で前記検出板の裏面側に対し前記光を照射する工程である前記<13>に記載のゲル状物質検出方法。
Means for solving the problems are as follows. That is,
<1> A liquid sample containing a substance to be detected and a reagent that reacts with the substance to be detected to generate a gel-like substance are introduced onto the surface and light irradiated on the surface from the back side under total reflection conditions. A detection plate capable of forming a near field, and a liquid holding unit in which the introduced sample and the reagent are held on the surface of the detection plate, and the detection plate under the total reflection condition A light irradiator capable of irradiating the light from the back side, and a scattered light that is disposed on the front surface side of the detection plate and that is a region on the front surface that is a detection region and is emitted from a gel-like substance upon irradiation with the light A gel-like substance detection apparatus comprising: a detection unit capable of detecting
<2> The gel-like substance detection device according to <1>, wherein the detection unit can acquire the state of the detection region including the scattered light as a two-dimensional image.
<3> A hollow portion in which the liquid holding portion defines a space including at least a near-field forming region on the surface of the detection plate, with the introduction portion of the sample and the reagent being formed and the detection plate and the covering portion of the detection plate The gel-like substance detection according to any one of <1> to <2>, wherein at least a portion arranged between the detection region on the surface of the detection plate and the light detection unit is light transmissive apparatus.
<4> The gel-like substance detection device according to any one of <1> to <3>, wherein the liquid holding unit includes a stirring unit capable of stirring the sample and the reagent.
<5> The gel-like substance detection device according to any one of <1> to <4>, wherein the liquid holding unit includes a temperature adjustment unit that adjusts the temperature of the sample and the reagent.
<6> From the back surface to the front surface, the light-transmitting substrate, the metal layer or the semiconductor layer formed of a metal material or a semiconductor material, and the dielectric layer formed of a light-transmissive dielectric material are arranged in this order. The gel-like substance detection device according to any one of <1> to <5>, wherein the gel-like material detection device is configured by being laminated.
<7> The gel-like substance detection device according to <6>, wherein the metal layer or the semiconductor layer is formed of any one of a Si layer and a SiGe layer including 10 mol% to 30 mol% of Ge.
<8> The gel-like substance detection device according to any one of <6> to <7>, wherein the dielectric layer is formed of a SiO 2 layer.
<9> When the critical angle is expressed as an angle inclined with respect to the thickness direction of the detection plate and the detection plate defines the condition for total reflection of light, the critical angle is equal to or greater than the critical angle. The gel-like substance detection device according to any one of <6> to <8>, wherein a light irradiation unit is disposed at a position where the detection plate receives the light irradiation from the back side at an angle of 7 degrees or greater. .
<10> A liquid sample containing a substance to be detected and a reagent that reacts with the substance to be detected to generate a gel-like substance are introduced onto the surface and light irradiated on the surface from the back side under total reflection conditions. A liquid that introduces the sample and the reagent to a liquid holding portion in which a detection plate capable of forming a near field is disposed and the introduced sample and the reagent are held on the surface of the detection plate An introducing step, a light irradiating step of irradiating the light from the back side of the detection plate under the total reflection condition, and a scattered light emitted from a gel-like substance upon irradiation of the light with the region on the surface as a detection region And a detection step of detecting a gel substance.
<11> The gel-like substance detection method according to <10>, wherein the detection step acquires the state of the detection region including scattered light as a two-dimensional image.
<12> The method for detecting a gel-like substance according to <11>, wherein the detection step is a step of acquiring a plurality of two-dimensional images over time.
<13> From the back surface to the front surface, a light transmissive substrate, a metal layer or a semiconductor layer formed of a metal material or a semiconductor material, and a dielectric layer formed of a light transmissive dielectric material are laminated in this order. The gel-like substance detection method according to any one of <10> to <12>, wherein the detection plate is used.
<14> When the light irradiation step is represented by an angle inclined with respect to the thickness direction of the detection plate and the minimum angle that governs the condition that the detection plate totally reflects light is the critical angle, the critical angle The method for detecting a gel-like substance according to <13>, which is a step of irradiating the back surface side of the detection plate with the light at an angle not less than an angle and not more than 7 degrees greater than the critical angle.

本発明によれば、従来技術における前記諸問題を解決することができ、簡易な構造で、ゲル状物質生成初期のゲル粒子及びその成長過程を検出可能であり、光源選択の自由度が高く、少量の試薬及び試料の量で、ゲル状物質情報をリアルタイムかつ高感度に検出可能なゲル状物質検出装置及びゲル状物質検出方法を提供することができる。   According to the present invention, the above-mentioned problems in the prior art can be solved, the gel particles in the initial stage of gel-like substance generation and the growth process thereof can be detected with a simple structure, and the degree of freedom of light source selection is high. It is possible to provide a gel substance detection apparatus and a gel substance detection method capable of detecting gel substance information in real time and with high sensitivity with a small amount of reagent and sample.

第1実施形態の概要を説明するための説明図である。It is explanatory drawing for demonstrating the outline | summary of 1st Embodiment. ゲル化反応初期における散乱光の発生状況を説明する説明図である。It is explanatory drawing explaining the generation | occurrence | production state of the scattered light in the gelation reaction initial stage. ゲル化反応が進んだ状態における散乱光の発生状況を説明する説明図である。It is explanatory drawing explaining the generation | occurrence | production state of the scattered light in the state which gelatinization reaction advanced. 第2実施形態の概要を説明するための説明図である。It is explanatory drawing for demonstrating the outline | summary of 2nd Embodiment. 近接場(増強電場)の強度が照射光の強度と同じ強度にまで減衰する検出板表面からの距離と入射角の臨界角からの角度との関係を示す図である。It is a figure which shows the relationship between the distance from the detection plate surface where the intensity | strength of a near field (enhanced electric field) attenuate | damps to the intensity | strength same as the intensity | strength of irradiated light, and the angle from the critical angle of an incident angle. 実施例1における観察開始時点の顕微鏡像を示す図である。2 is a diagram showing a microscopic image at the observation start time in Example 1. FIG. 実施例1における観察開始後60分経過時点の顕微鏡像を示す図である。FIG. 3 is a diagram showing a microscopic image when 60 minutes have elapsed after the start of observation in Example 1. 比較例における観察開始後60分経過時点の顕微鏡像を示す図である。It is a figure which shows the microscope image at the time of 60-minute progress after the observation start in a comparative example. 実施例2における観察開始時点の顕微鏡像を示す図である。FIG. 6 is a diagram showing a microscopic image at the observation start time in Example 2. 実施例2における観察開始後30秒経過時点の顕微鏡像を示す図である。6 is a diagram showing a microscopic image at the time point when 30 seconds have elapsed after the start of observation in Example 2. FIG. 実施例2における観察開始後10分経過時点の顕微鏡像を示す図である。10 is a diagram showing a microscopic image at the time when 10 minutes have elapsed since the start of observation in Example 2. FIG.

(ゲル状物質検出装置)
本発明のゲル状物質検出装置は、液体保持部、光照射部、検出部を有する。
(Gel-like substance detection device)
The gel-like substance detection device of the present invention includes a liquid holding unit, a light irradiation unit, and a detection unit.

<液体保持部>
前記液体保持部は、検出板が配され、かつ、導入される前記被検出物質を含む液体の試料及び前記被検出物質と反応してゲル状物質を生成する試薬が前記検出板の表面上に保持される部であり、前記試料と前記試薬とを保持してこれらがゲル化反応する場を与える。
<Liquid holding part>
The liquid holding unit includes a detection plate, and a liquid sample containing the substance to be detected to be introduced and a reagent that reacts with the substance to be detected to generate a gel-like substance on the surface of the detection plate It is a part to be held, and holds the sample and the reagent and provides a place where these undergo a gelation reaction.

前記試料としては、例えば、血液製剤やヒト血漿等が挙げられる。また、前記試薬としては、例えば、リムルス試薬、トロンビン試薬等が挙げられる。また、前記被検出物質としては、例えば、エンドトキシン、β−D−グルカン、フィブリン等が挙げられる。
なお、前記試料及び前記試薬としては、前記被検出物質と前記試薬とのゲル化反応により生ずるものであれば、例示したものに限定されない。
また、前記ゲル状物質としては、前記被検出物質と前記試薬とのゲル化反応により生ずるものであれば、ゲル粒子であっても、ゲル粒子が凝集した凝集体であっても検出可能とされる。
Examples of the sample include blood products and human plasma. Examples of the reagent include Limulus reagent and thrombin reagent. Examples of the substance to be detected include endotoxin, β-D-glucan, fibrin and the like.
The sample and the reagent are not limited to those exemplified as long as they are generated by a gelation reaction between the substance to be detected and the reagent.
The gel-like substance can be detected as a gel particle or an aggregate in which gel particles are aggregated as long as it is generated by a gelation reaction between the substance to be detected and the reagent. The

前記検出板は、前記試料及び前記試薬が表面上に導入されるとともに裏面側から全反射条件で照射される光により前記表面上に近接場を形成可能とされる。
前記検出板の構成としては、特に制限はなく目的に応じて適宜選択することができ、単層で構成されてもよく、電場増強を目的とした積層体で構成されてもよい。
なお、前記検出板の全反射面を構成する面としては、前記全反射が生じるように光学的に平坦な面であることが好ましい。
In the detection plate, the sample and the reagent are introduced onto the surface, and a near field can be formed on the surface by light irradiated under the total reflection condition from the back side.
There is no restriction | limiting in particular as a structure of the said detection plate, According to the objective, it can select suitably, It may be comprised by the single layer, and may be comprised by the laminated body aiming at the electric field enhancement.
The surface constituting the total reflection surface of the detection plate is preferably an optically flat surface so that the total reflection occurs.

前記検出板を前記単層で構成する場合、この単層の表面を全反射面として前記照射光を全反射させると、表面近傍にエバネッセント場が生じることとなる。このような現象は、照射される光が前記単層を透過する程度に光透過性を有する材料であれば、材料に依存することなく一般に生じる現象であるため、前記単層の形成材料としては、特に制限はなく、公知の光透過性を有する検出板形成材料から適宜選択することができる。   When the detection plate is formed of the single layer, if the irradiation light is totally reflected with the surface of the single layer as a total reflection surface, an evanescent field is generated in the vicinity of the surface. Such a phenomenon is a phenomenon that generally occurs without depending on the material, so long as the irradiated light is a material that transmits light through the single layer. There is no particular limitation, and it can be appropriately selected from known light-transmitting detection plate forming materials.

前記検出板を前記積層体で構成する場合、前記積層体としては特に制限はなく、例えば下記参考文献1〜7に記載される、電場増強を目的とした公知の検出板を採用することができる。特に、前記裏面から前記表面に向けて、光透過性基板と金属材料又は半導体材料で形成される金属層又は半導体層と光透過性誘電材料で形成される誘電体層とがこの順で積層されて構成されるように前記検出板を構成すると、前記検出板裏面側から照射される前記光によって前記誘電体層内に導波モードが励起され、前記検出板の表面近傍に増強電場が得られ、その結果、前記ゲル状物質から発せられる散乱光の強度を高め、より一層感度を向上させることができる。
なお、本明細書において「近接場」とは、前記エバネッセント場及び前記増強電場のいずれかを示す。これら前記エバネッセント場及び前記増強電場は、いずれも前記検出板の表面近傍のみに形成され、前記検出板から遠ざかるにつれて急激に減衰する性質を有する。
参考文献1:M. Fujimaki et al. Optics Express, Vol. 23 (2015) pp.10925 - 10937
参考文献2:O.R.Bolduc et al. Talanta, Vol. 77 (2009) pp. 1680 - 1687
参考文献3:R. Cush et al. Biosensors and Bioelectronics, Vol. 8 (1993) pp. 347 - 353
参考文献4:P.E. Buckle et al. Biosensors and Bioelectronics, Vol. 8 (1993) pp. 355 - 363
参考文献5:C. Nylander et al. Sensors and Actuators, Vol. 3 (1982/83) pp. 79 - 88
参考文献6:R.P. Podgorsek et al. Sensors and Actuators, B 38 - 39 (1997) pp. 349 - 352
参考文献7:S. Hayashi et al. Applied Physics Express Vol. 8, 022201 (2015)
When the detection plate is composed of the laminate, the laminate is not particularly limited, and for example, a known detection plate for the purpose of electric field enhancement described in References 1 to 7 below can be adopted. . In particular, a light transmissive substrate, a metal layer or semiconductor layer formed of a metal material or a semiconductor material, and a dielectric layer formed of a light transmissive dielectric material are laminated in this order from the back surface to the front surface. When the detection plate is configured to be configured, a waveguide mode is excited in the dielectric layer by the light irradiated from the back side of the detection plate, and an enhanced electric field is obtained in the vicinity of the surface of the detection plate. As a result, the intensity of the scattered light emitted from the gel substance can be increased, and the sensitivity can be further improved.
In the present specification, the “near field” indicates either the evanescent field or the enhanced electric field. Both the evanescent field and the enhanced electric field are formed only in the vicinity of the surface of the detection plate, and have a property of abruptly decaying away from the detection plate.
Reference 1: M. Fujimaki et al. Optics Express, Vol. 23 (2015) pp.10925-10937
Reference 2: ORBolduc et al. Talanta, Vol. 77 (2009) pp. 1680-1687
Reference 3: R. Cush et al. Biosensors and Bioelectronics, Vol. 8 (1993) pp. 347-353
Reference 4: PE Buckle et al. Biosensors and Bioelectronics, Vol. 8 (1993) pp. 355-363
Reference 5: C. Nylander et al. Sensors and Actuators, Vol. 3 (1982/83) pp. 79-88
Reference 6: RP Podgorsek et al. Sensors and Actuators, B 38-39 (1997) pp. 349-352
Reference 7: S. Hayashi et al. Applied Physics Express Vol. 8, 022201 (2015)

前記光透過性基板の形成材料としては、特に制限はなく、目的に応じて適宜選択することができ、ガラスやプラスチック等、公知の光透過性誘電体から適宜選択することができる。   There is no restriction | limiting in particular as a forming material of the said light-transmitting board | substrate, According to the objective, it can select suitably, It can select suitably from well-known light-transmitting dielectric materials, such as glass and a plastics.

前記積層体における前記金属層又は前記半導体層の形成材料としては、特に制限はなく、前記参考文献1に記載されているような公知の導波モードセンサの検出板に用いられるものから適宜選択することができるが、Si層及び10モル%〜30モル%のGeを含むSiGe層のいずれかの半導体層で形成されることが好ましい。
即ち、前記金属層又は前記半導体層を前記Si層として形成すると電場増強作用を向上させることができる。
また、前記電場増強作用を向上させる観点からは、層の屈折率が大きい方が有利であるが、単結晶Siに比べて成膜が容易な微結晶を含む多結晶又はアモルファスのSiは、前記単結晶Siよりも屈折率が小さい。しかしながら、こうした多結晶又はアモルファスのSiに対し、10モル%〜30モル%の含有率でGeを含ませると、高屈折率の前記半導体層を容易に成膜することができる。ただし、前記含有率が10モル%未満であると十分な屈折率が得られないことがあり、30モル%を超えると光吸収が大きくなり、延いては光の減衰が大きくなるため、却って前記電場増強作用の低下を招くことがある。
なお、前記微結晶とは、結晶粒の最大粒径が大きくとも30nmである単結晶を意味する。
There is no restriction | limiting in particular as a forming material of the said metal layer or the said semiconductor layer in the said laminated body, It selects suitably from what is used for the detection plate of a well-known waveguide mode sensor as described in the said reference 1. However, it is preferably formed of a semiconductor layer of any one of a Si layer and a SiGe layer containing 10 mol% to 30 mol% Ge.
That is, when the metal layer or the semiconductor layer is formed as the Si layer, the electric field enhancing action can be improved.
Further, from the viewpoint of improving the electric field enhancing action, it is advantageous that the layer has a large refractive index, but polycrystalline or amorphous Si containing microcrystals that can be easily formed as compared with single-crystal Si, The refractive index is smaller than that of single crystal Si. However, when Ge is contained in such a polycrystalline or amorphous Si at a content of 10 mol% to 30 mol%, the semiconductor layer having a high refractive index can be easily formed. However, if the content is less than 10 mol%, a sufficient refractive index may not be obtained, and if it exceeds 30 mol%, the light absorption increases and eventually the attenuation of light increases. The electric field enhancement effect may be reduced.
The microcrystal means a single crystal having a maximum crystal grain size of 30 nm at most.

前記積層体における誘電体層としては、特に制限はなく、SiO、フリントガラス、クラウンガラス等の公知の光透過性誘電体を用いることができるが、中でも、前記Si層の表面側を酸化処理することで成膜できる等、簡便に製造することができるため、前記誘電体層を前記SiOで形成することが好ましい。
なお、本明細書において「光透過性」とは、各材料が本発明の形態において使用される厚さにおいて、前記照射光の透過率が0.5%以上であることを示す。
The dielectric layer in the laminate is not particularly limited, and a known light-transmitting dielectric such as SiO 2 , flint glass, crown glass or the like can be used. Among them, the surface side of the Si layer is oxidized. Therefore, it is preferable to form the dielectric layer with the SiO 2 because it can be easily manufactured.
In the present specification, “light transmittance” indicates that the transmittance of the irradiation light is 0.5% or more at the thickness at which each material is used in the embodiment of the present invention.

前記液体保持部の構成としては、特に制限はなく目的に応じて適宜選択することができ、例えば、前記検出板自身で構成されてもよく、また、前記試料及び前記試薬を、カバーガラス等の光透過性部材と前記検出板とで挟み、前記試料及び前記試薬の液層を前記検出板表面上に保持する構成でもよい。
また、前記液体保持部の構成としては、公知の液体セル、公知の液体流路を前記近接場形成領域に対応するサイズに対応させたもので構成されてもよい。
また、前記液体保持部の構成としては、前記試料及び前記試薬の導入部が形成されるとともに前記検出板と前記検出板の被覆部とで少なくとも前記検出板表面上の近接場形成領域を含む空間を画成する中空部で構成され、かつ、少なくとも前記検出板表面上の検出領域及び光検出部の間に配される部位が光透過性を有する構成が好ましい。このような中空部を有する構成とすると、前記近接場形成領域が前記検出板表面上近傍の僅かな領域に形成されるため、前記導入部から前記中空部内に前記試料及び前記試薬を引き込むように導入し易く、また、前記中空部の容量設定に伴い前記試料及び前記試薬の量を安定して低減させることが可能となる。
なお、前記液体保持部としては、前記試料及び前記試薬を保持する領域を複数分画して設けることでマルチチャンネル化させてもよい。
The configuration of the liquid holding unit is not particularly limited and may be appropriately selected depending on the purpose. For example, the liquid holding unit may be configured by the detection plate itself, and the sample and the reagent may be a cover glass or the like. A configuration may be adopted in which the sample and the reagent liquid layer are held on the surface of the detection plate by being sandwiched between the light transmissive member and the detection plate.
Moreover, as a structure of the said liquid holding | maintenance part, you may be comprised by what made the well-known liquid cell and the well-known liquid flow path respond | correspond to the size corresponding to the said near field formation area | region.
In addition, as the configuration of the liquid holding unit, a space in which the sample and the reagent introducing unit are formed and at least the detection plate and the covering unit of the detection plate include a near-field forming region on the surface of the detection plate. And at least a portion disposed between the detection region on the detection plate surface and the light detection portion is preferably light transmissive. With the configuration having such a hollow portion, the near-field forming region is formed in a slight region near the detection plate surface, so that the sample and the reagent are drawn into the hollow portion from the introduction portion. It is easy to introduce, and the amount of the sample and the reagent can be stably reduced with the volume setting of the hollow portion.
The liquid holding unit may be multi-channeled by providing a plurality of divided regions for holding the sample and the reagent.

また、前記液体保持部としては、特に制限はないが、前記ゲル化反応を推進する目的で前記試料及び前記試薬を攪拌可能な攪拌部を備えることとしてもよい。前記攪拌部としては、例えば、公知の電動スクリュー、磁界を用いた撹拌子等の公知の攪拌用部材を用いることができる。
また、前記液体保持部としては、前記ゲル化反応を促進する目的で前記試料及び前記試薬の温度を調節する温度調節部を備えることとしてもよい。前記温度調節部としては、例えば、公知の恒温槽等に用いられる各種ヒーター、ペルチェ素子等の公知の温度調節部材を用いることができる。
Further, the liquid holding unit is not particularly limited, but may be provided with a stirring unit capable of stirring the sample and the reagent for the purpose of promoting the gelation reaction. As the stirring unit, for example, a known stirring member such as a known electric screw or a stirring bar using a magnetic field can be used.
In addition, the liquid holding unit may include a temperature adjusting unit that adjusts the temperature of the sample and the reagent for the purpose of promoting the gelation reaction. As said temperature control part, well-known temperature control members, such as various heaters used for a well-known thermostat etc., a Peltier device, can be used, for example.

<光照射部>
前記光照射部は、前記全反射条件で前記検出板の前記裏面側から前記光を照射可能とされる。
前記光照射部の光源としては、特に制限はなく、目的に応じて適宜選択することができ、公知のランプ、LED、レーザー等が挙げられる。即ち、前記ゲル状物質検出装置においては、前記検出板の前記裏面側から前記全反射条件で前記光を照射することで前記表面近傍に形成される前記近接場が前記ゲル状物質から散乱光を発生させることを検出原理とするため、前記光照射部に求められる役割としては、前記検出板の前記裏面側から前記全反射条件で前記光を照射することのみであり、このような役割を担うものであれば前記光源の選択に制限がない。
<Light irradiation part>
The said light irradiation part can be irradiated with the said light from the said back surface side of the said detection board on the said total reflection conditions.
There is no restriction | limiting in particular as a light source of the said light irradiation part, According to the objective, it can select suitably, A well-known lamp | ramp, LED, a laser, etc. are mentioned. That is, in the gel-like substance detection device, the near field formed in the vicinity of the surface by irradiating the light under the total reflection condition from the back side of the detection plate emits scattered light from the gel-like substance. In order to make it a detection principle, the role required for the light irradiator is only to irradiate the light from the back surface side of the detection plate under the total reflection condition. If it is a thing, there will be no restriction | limiting in the selection of the said light source.

なお、前記ランプ、LED等の放射光源を用いる場合には、前記検出板の表面側からの照射光の漏れ出しを避けるため、放射される光のうち前記検出板の前記裏面側に照射される全ての方位における光が前記全反射条件を満たす必要がある。こうしたことから、前記放射光源を用いる場合には、照射光の照射方向を特定の方位に規制するコリメートレンズ等の案内部を用いてもよい。   In addition, when using radiation light sources, such as the said lamp | ramp and LED, in order to avoid the leakage of the irradiation light from the surface side of the said detection plate, it irradiates to the said back surface side of the said detection plate among the emitted light. Light in all directions must satisfy the total reflection condition. For this reason, when the radiation light source is used, a guide unit such as a collimator lens that restricts the irradiation direction of the irradiation light to a specific direction may be used.

ここで、前記検出板が前記表面と前記裏面とが平行な板である場合、前記裏面側から照射された前記光は、前記表面上に液体が存在すると全反射されない。よって、このような場合には、前記検出板の裏面部分に回折格子を形成することで、前記回折格子に特定の角度で前記光を照射したときに、前記光が前記回折格子で回折されて前記検出板内に導入されるとともに、前記検出板内に導入された前記光が前記全反射条件で前記表面に照射されて前記表面近傍に近接場が形成されるように前記検出板を構成してもよい。または、前記表面と前記裏面とが平行にならないように形成するとよい。或いは、前記光源から照射される前記光を公知のプリズムを介して前記検出板の前記裏面に照射することとしてもよい。
前記プリズムは、前記検出板の前記裏面に屈折率調整オイル又は光学用接着剤等により光学的に貼り合せて用いることができる。また、前記プリズムの形成材料として、前記光透過性基板又は前記単層の前記検出板の形成材料と同じ形成材料が選択される場合には、前記検出板と前記プリズムとが一体成型されたものを用いることもできる。
Here, when the detection plate is a plate in which the front surface and the back surface are parallel, the light irradiated from the back surface side is not totally reflected when liquid exists on the front surface. Therefore, in such a case, by forming a diffraction grating on the back surface portion of the detection plate, when the light is irradiated to the diffraction grating at a specific angle, the light is diffracted by the diffraction grating. The detection plate is configured such that the light is introduced into the detection plate, and the light introduced into the detection plate is irradiated on the surface under the total reflection condition to form a near field near the surface. May be. Or it is good to form so that the said surface and the said back surface may not become parallel. Or it is good also as irradiating the said back surface of the said detection plate through the well-known prism with the said light irradiated from the said light source.
The prism can be used by optically bonding to the back surface of the detection plate with a refractive index adjusting oil or an optical adhesive. When the same material as the material for forming the light-transmitting substrate or the single-layer detection plate is selected as the material for forming the prism, the detection plate and the prism are integrally molded. Can also be used.

前記検出板の厚み方向に対して傾斜する角度で表され、かつ、前記検出板が光を全反射する条件を律する最小の角度を臨界角としたときに、前記臨界角以上前記臨界角より7度大きい角度以下の角度で前記検出板が前記光の照射を受ける位置に前記光照射部が配されると、前記近接場(増強電場)が入射光の強度以上となる前記検出板の表面位置からの距離を長くすることができる。   When the critical angle is defined as an angle inclined with respect to the thickness direction of the detection plate and the detection plate defines the condition for total reflection of light, the critical angle is 7 or more from the critical angle. The surface position of the detection plate where the near field (enhanced electric field) is greater than or equal to the intensity of the incident light when the light irradiation unit is disposed at a position where the detection plate is irradiated with the light at an angle of less than a large angle The distance from can be increased.

<検出部>
前記検出部は、前記検出板の前記表面側に配され、前記表面上の領域を検出領域とし前記光の照射に伴いゲル状物質から発せられる散乱光を検出可能とされる。前記検出部としては、特に制限はなく、目的に応じて適宜選択することができ、公知のフォトダイオード、光電子増倍管等の光検出器を用いることができる。
既存のゲル粒子測定装置では、前記ゲル粒子の情報を、前記各光検出器の光学観察視野中の信号を積分等して算出する必要があり、2次元画像情報として取得することができない。前記ゲル粒子の情報を前記2次元画像情報として取得することができると、光点として現れる前記2次元画像情報における前記散乱光の位置情報や大きさ情報を時系列で観察することにより、その光点が前記ゲル粒子が成長したものである、前記ゲル粒子が新規に生成されたものである等の前記ゲル粒子に関与する情報を示すものであるか、或いは、夾雑物、ノイズ、光源出力の揺らぎ等の前記ゲル粒子に関与しない情報を示すものであるかを区別することが可能となる。このような2次元画像情報の取得を可能とするには、前記検出部として撮像デバイスを選択すればよい。前記撮像デバイスとしては、特に制限はなく、目的に応じて適宜選択することができ、公知のCCDイメージセンサ、CMOSイメージセンサ等のイメージセンサを用いることができる。
<Detector>
The detection unit is arranged on the surface side of the detection plate, and can detect scattered light emitted from the gel-like substance upon irradiation with the light with the region on the surface as a detection region. There is no restriction | limiting in particular as said detection part, According to the objective, it can select suitably, Photodetectors, such as a well-known photodiode and a photomultiplier tube, can be used.
In the existing gel particle measuring apparatus, it is necessary to calculate the information on the gel particles by integrating signals in the optical observation field of the respective photodetectors, and cannot be obtained as two-dimensional image information. When the information of the gel particles can be acquired as the two-dimensional image information, the light is obtained by observing the position information and the size information of the scattered light in the two-dimensional image information appearing as a light spot in time series. The point indicates information related to the gel particle, such as the gel particle grown, the gel particle newly generated, or the like, or impurities, noise, light source output It is possible to distinguish whether it shows information not related to the gel particles such as fluctuation. In order to obtain such two-dimensional image information, an imaging device may be selected as the detection unit. There is no restriction | limiting in particular as said imaging device, According to the objective, it can select suitably, Image sensors, such as a well-known CCD image sensor and a CMOS image sensor, can be used.

(ゲル状物質検出方法)
本発明のゲル状物質検出方法は、液体導入工程と、光照射工程と、検出工程とを含む。
なお、前記ゲル状物質検出方法は、前記ゲル状物質検出装置を用いて実施することができる。
(Gel-like substance detection method)
The gel-like substance detection method of the present invention includes a liquid introduction process, a light irradiation process, and a detection process.
In addition, the said gel-like substance detection method can be implemented using the said gel-like substance detection apparatus.

前記液体導入工程は、被検出物質を含む液体の試料及び前記被検出物質と反応してゲル状物質を生成する試薬が表面上に導入されるとともに裏面側から全反射条件で照射される光により前記表面上に近接場を形成可能な検出板が配され、かつ、導入された前記試料及び前記試薬が前記検出板の前記表面上に保持される液体保持部に対し、前記試料及び前記試薬を導入する工程である。
前記液体保持部としては、前記ゲル状物質検出装置について説明したものと同様の部として構成され、前記裏面から前記表面に向けて、光透過性基板と金属材料又は半導体材料で形成される金属層又は半導体層と光透過性誘電材料で形成される誘電体層とがこの順で積層されて構成される検出板を用いることが好ましい。
In the liquid introduction step, a liquid sample containing a substance to be detected and a reagent that reacts with the substance to be detected to generate a gel-like substance are introduced onto the surface, and light is irradiated from the back side under total reflection conditions. A detection plate capable of forming a near field on the surface is disposed, and the sample and the reagent are placed on the liquid holding unit in which the introduced sample and the reagent are held on the surface of the detection plate. It is a process to introduce.
The liquid holding part is configured as a part similar to that described for the gel-like substance detection device, and is formed of a light-transmitting substrate and a metal material or a semiconductor material from the back surface toward the surface. Alternatively, it is preferable to use a detection plate in which a semiconductor layer and a dielectric layer formed of a light transmissive dielectric material are stacked in this order.

前記光照射工程は、前記全反射条件で前記検出板の前記裏面側から前記光を照射する工程である。
前記光照射工程としては、前記ゲル状物質検出装置について説明した前記光照射部と同様の説明事項により実施することができる。
The light irradiation step is a step of irradiating the light from the back side of the detection plate under the total reflection condition.
The light irradiation step can be performed according to the same explanation as the light irradiation unit described for the gel-like substance detection device.

前記検出工程は、前記表面上の領域を検出領域とし前記光の照射に伴いゲル状物質から発せられる散乱光を検出する工程である。
前記検出工程としては、前記ゲル状物質検出装置について説明した前記検出部と同様の説明事項により実施することができる。特に、前記ゲル粒子の情報を前記2次元画像情報として取得可能であることが好ましい。中でも、前記検出工程が、複数の前記2次元画像を経時的に取得する工程であることが好ましい。前記検出工程がこのような工程であると、光点として現れる前記2次元画像情報における前記散乱光の位置情報や大きさ情報を時系列で観察することができ、その光点が前記ゲル粒子が成長したものである、前記ゲル粒子が新規に生成されたものである等の前記ゲル粒子に関与する情報を示すものであるか、或いは、夾雑物、ノイズ、光源出力の揺らぎ等の前記ゲル粒子に関与しない情報を示すものであるかを区別することができる。
The detection step is a step of detecting scattered light emitted from the gel-like substance upon irradiation with the light using the region on the surface as a detection region.
The detection step can be performed by the same explanation as the detection unit described for the gel-like substance detection device. In particular, it is preferable that information on the gel particles can be acquired as the two-dimensional image information. Especially, it is preferable that the detection step is a step of acquiring a plurality of the two-dimensional images over time. When the detection step is such a step, position information and size information of the scattered light in the two-dimensional image information appearing as light spots can be observed in time series, and the light spots are the gel particles. The gel particles that show information relating to the gel particles such as grown, the gel particles are newly generated, or the like, such as impurities, noise, fluctuations in light source output, etc. It is possible to distinguish whether the information is not related to the information.

前記ゲル状物質検出装置及び前記ゲル状物質検出方法の例を図面を参照しつつ、より詳細に説明する。
先ず、前記ゲル状物質検出装置の一実施形態に係る第1実施形態を図1を参照しつつ、説明する。なお、図1は、第1実施形態の概要を説明するための説明図である。
Examples of the gel substance detection device and the gel substance detection method will be described in more detail with reference to the drawings.
First, a first embodiment according to an embodiment of the gel-like substance detection device will be described with reference to FIG. In addition, FIG. 1 is explanatory drawing for demonstrating the outline | summary of 1st Embodiment.

図1に示すようにゲル状物質検出装置1は、検出板2と、前記試料及び前記試薬の混合溶液3を検出板2とで挟む態様で混合溶液3の液層を検出板2表面上に保持するように配されたカバーガラス4と、検出板2の裏面に光学的に貼り合せたプリズム11を介して全反射条件で検出板2の裏面側から光Lを照射する光源5(前記光照射部)と、検出板2の表面側に配され、表面上の領域を検出領域とし光Lの照射に伴い前記ゲル状物質から発せられる散乱光Sを検出可能とされる検出部6とで構成される。なお、検出板2とカバーガラス4とで前記液体保持部が構成される。また、検出部6は、散乱光Sを含む前記検出領域の様子を2次元画像として取得可能な前記撮像デバイスで構成される。また、図1に示すゲル状物質検出装置1では、全反射条件で検出板2の裏面側から光Lを照射する目的でプリズム11を配する構成としているが、同じ目的から裏面に前記回折格子が形成された前記検出板を用いることで、プリズム11に代えることもできる。   As shown in FIG. 1, the gel-like substance detection device 1 has a liquid layer of the mixed solution 3 on the surface of the detection plate 2 in such a manner that the detection plate 2 and the mixed solution 3 of the sample and the reagent are sandwiched between the detection plates 2. A light source 5 that emits light L from the back side of the detection plate 2 under total reflection conditions through a cover glass 4 arranged to be held and a prism 11 optically bonded to the back side of the detection plate 2 (the light An irradiation unit) and a detection unit 6 that is arranged on the surface side of the detection plate 2 and can detect the scattered light S emitted from the gel-like substance upon irradiation with the light L with the region on the surface as a detection region. Composed. The detection plate 2 and the cover glass 4 constitute the liquid holding unit. The detection unit 6 is configured by the imaging device that can acquire the state of the detection region including the scattered light S as a two-dimensional image. In the gel-like substance detection apparatus 1 shown in FIG. 1, the prism 11 is arranged for the purpose of irradiating the light L from the back side of the detection plate 2 under the total reflection condition. By using the detection plate on which is formed, the prism 11 can be used.

ここで、検出板2上に保持される混合溶液3では、ゲル化反応初期において、図2に拡大して示すように混合溶液3に含まれる前記被検出物質と前記試薬とのゲル化反応により、ゲル粒子pが生ずる。
ゲル粒子pが存在する状態で、光源5から検出板2の表面側に全反射条件で光を照射すると、検出板2の表面近傍に近接場(エバネッセント場)fが形成される。この時、ゲル粒子pからは近接場fにおける励起光(エバネッセント波)を受けて散乱光Sが発せられ、散乱光Sの前記検出領域における発生状況が2次元画像として検出部6で取得される。即ち、ゲル粒子pの発生は、光源5から検出部2への光照射に基づいて瞬時に検出部6で検出される。
なお、図2は、ゲル化反応初期における散乱光の発生状況を説明する説明図である。
Here, in the mixed solution 3 held on the detection plate 2, in the initial stage of the gelation reaction, as shown in an enlarged view in FIG. 2, the gelation reaction between the substance to be detected and the reagent contained in the mixed solution 3 is performed. , Gel particles p are generated.
When light is irradiated from the light source 5 to the surface side of the detection plate 2 under total reflection conditions in the presence of the gel particles p, a near field (evanescent field) f is formed near the surface of the detection plate 2. At this time, the scattered light S is emitted from the gel particles p in response to the excitation light (evanescent wave) in the near field f, and the generation state of the scattered light S in the detection region is acquired by the detection unit 6 as a two-dimensional image. . That is, the generation of the gel particles p is instantaneously detected by the detection unit 6 based on the light irradiation from the light source 5 to the detection unit 2.
FIG. 2 is an explanatory diagram for explaining the generation state of scattered light in the early stage of the gelation reaction.

次に、ゲル化反応が進んだ状態を図3に示す。ゲル化反応が進行すると、ゲル粒子p同士の間を架橋するように成長した筋状のゲル状物質cが生ずる。
このゲル状物質c及び予め存在するゲル粒子pは、ゲル粒子pの検出と同様に、光源5から検出部2への光照射に基づいて瞬時に検出部6で検出される。
なお、図3は、ゲル化反応が進んだ状態における散乱光の発生状況を説明する説明図である。
Next, the state in which the gelation reaction has progressed is shown in FIG. When the gelation reaction proceeds, a streak-like gel material c that grows so as to crosslink between the gel particles p is generated.
This gel-like substance c and pre-existing gel particles p are instantaneously detected by the detection unit 6 based on light irradiation from the light source 5 to the detection unit 2 in the same manner as the detection of the gel particles p.
In addition, FIG. 3 is explanatory drawing explaining the generation | occurrence | production state of the scattered light in the state which gelatinization reaction advanced.

以上の通り、ゲル状物質検出装置1では、ゲル粒子p及びゲル状物質cの発生を光源5から検出部2への光照射に基づいて瞬時に検出部6で検出することができる。つまり、ゲル状物質検出装置1では、優れた感度が得られる。
また、例えば図2、図3に示すゲル化反応の経時変化を、検出部6から連続的又は断続的に取得される2次元画像を観察することにより、粒子1つ1つの位置情報及びサイズ情報を含むゲル状物質情報をリアルタイムで確認することができる。
As described above, in the gel substance detection device 1, the generation of the gel particles p and the gel substance c can be instantaneously detected by the detection unit 6 based on the light irradiation from the light source 5 to the detection unit 2. That is, in the gel-like substance detection device 1, excellent sensitivity can be obtained.
Further, for example, by observing a two-dimensional image obtained continuously or intermittently from the detection unit 6 with respect to the change over time of the gelation reaction shown in FIGS. 2 and 3, the position information and size information for each particle. The gel-like substance information containing can be confirmed in real time.

また、ゲル状物質検出装置1では、近接場fの形成領域に対応する容量分だけあれば前記ゲル状物質の検出を行うことができ、少量の前記試薬及び前記試料の量で前記ゲル状物質情報を検出することができる。   Further, in the gel-like substance detection device 1, the gel-like substance can be detected as long as it has a capacity corresponding to the formation region of the near field f, and the gel-like substance can be detected with a small amount of the reagent and the sample. Information can be detected.

また、ゲル状物質検出装置1では、散乱光を一つの検出部6で検出することができ、複数の方位から検出する場合よりも、より簡便な構造とすることができる。
また、光源5から照射される光Lは、検出板2で全反射され検出部6に検出されることがないため、光Lは、入射角度が調整されて単に近接場fを形成するものであればよい。つまり、ゲル状物質検出装置1では、光源5の選択の自由度が高いといえる。
Moreover, in the gel-like substance detection apparatus 1, scattered light can be detected by one detection unit 6, and a simpler structure can be obtained than in the case of detecting from a plurality of directions.
In addition, since the light L emitted from the light source 5 is totally reflected by the detection plate 2 and is not detected by the detection unit 6, the light L simply forms the near field f with the incident angle adjusted. I just need it. That is, it can be said that the gel-like substance detection device 1 has a high degree of freedom in selecting the light source 5.

次に、前記ゲル状物質検出装置の他の実施形態に係る第2実施形態を図4を参照しつつ、説明する。なお、図4は、第2実施形態の概要を説明するための説明図である。   Next, a second embodiment according to another embodiment of the gel-like substance detection device will be described with reference to FIG. FIG. 4 is an explanatory diagram for explaining the outline of the second embodiment.

図4に示すようにゲル状物質検出装置20は、検出板24が裏面側から表面側に向けて、光透過性基板21上に金属層又は半導体層22と誘電体層23とがこの順で積層された積層構造とされる点で、検出板2が単層で構成されるゲル状物質検出装置1と異なる。
このように構成されるゲル状物質検出装置20では、ゲル状物質検出装置1について説明したのと同様の効果が得られるほか、照射光Lによって誘電体層23内に導波モードが励起され、検出板24の表面近傍に増強電場が得られ、その結果、前記ゲル状物質から発せられる散乱光Sの光強度が強められ、より一層感度を向上させることができる。即ち、検出板24の表面近傍に形成される前記近接場(増強電場)によって、前記ゲル状物質から強い散乱光Sが発せられ、光源5の出力を上げることなく、より明確に前記ゲル状物質の検出を行うことができる。
As shown in FIG. 4, in the gel-like substance detection device 20, the detection plate 24 is directed from the back side to the front side, and the metal layer or semiconductor layer 22 and the dielectric layer 23 are arranged in this order on the light transmissive substrate 21. It differs from the gel-like substance detection device 1 in which the detection plate 2 is formed of a single layer in that it has a laminated structure.
In the gel-like substance detection device 20 configured as described above, the same effect as described for the gel-like substance detection device 1 can be obtained, and the waveguide mode is excited in the dielectric layer 23 by the irradiation light L, An enhanced electric field is obtained in the vicinity of the surface of the detection plate 24. As a result, the light intensity of the scattered light S emitted from the gel substance is increased, and the sensitivity can be further improved. That is, the scattered light S is emitted from the gel material by the near field (enhanced electric field) formed in the vicinity of the surface of the detection plate 24, and the gel material is more clearly defined without increasing the output of the light source 5. Can be detected.

ここで、前記導波モードを利用する場合の検出板24に対する光の入射角度について説明をする。前記導波モードを利用するゲル状物質検出装置20では、検出板24の表面近傍に形成される前記近接場(増強電場)が検出板24表面位置から検出板24の厚み方向に沿う表面上のより遠い位置まで染み出し、検出板24の表面位置から距離の長い前記近接場(増強電場)を形成することができる。つまり図2及び図3における近接場fの領域をより遠方にまで広げることが可能となる。
特に、検出板24の厚み方向に対して傾斜する角度で表され、かつ、検出板24が光Lを全反射する条件を律する最小の角度を臨界角θとしたときに、臨界角θ以上、臨界角θより7度大きい角度θ以下の角度で検出板24が裏面側から光Lの照射を受けることとすると、前記近接場(増強電場)が入射光の強度以上となる検出板24の表面位置からの距離を長くすることができる。
そのため、このような角度で前記光照射部は、検出板24に対し、光Lを照射することが好ましい。
以下、より具体的に説明する。
Here, the incident angle of light with respect to the detection plate 24 when the waveguide mode is used will be described. In the gel-like substance detection device 20 using the waveguide mode, the near field (enhanced electric field) formed in the vicinity of the surface of the detection plate 24 is on the surface along the thickness direction of the detection plate 24 from the surface position of the detection plate 24. The near field (enhanced electric field) having a long distance from the surface position of the detection plate 24 can be formed by spreading to a farther position. In other words, the near field f region in FIGS. 2 and 3 can be extended farther.
In particular, the critical angle θ 1 is expressed by an angle that is inclined with respect to the thickness direction of the detection plate 24 and the minimum angle that governs the condition that the detection plate 24 totally reflects the light L is the critical angle θ 1. As described above, when the detection plate 24 is irradiated with the light L from the back side at an angle θ 2 or less which is 7 degrees larger than the critical angle θ 1 , the near field (enhanced electric field) is detected to be greater than the intensity of the incident light. The distance from the surface position of the plate 24 can be increased.
Therefore, it is preferable that the light irradiation unit irradiates the detection plate 24 with the light L at such an angle.
More specific description will be given below.

代表的な前記導波モードの励起構成の一つとして、光透過性基板21をSiOガラス(屈折率1.458、消衰係数0)とし、その上に積層した金属層又は半導体層22をSi層(屈折率3.959、消衰係数0.022)とし、誘電体層23をSiO層(屈折率1.458、消衰係数0)とした積層構造や、金属層又は半導体層22をSiGe層(屈折率4.052、消衰係数0.061)とし、誘電体層23をSiO層(屈折率1.466、消衰係数0)とした積層構造において、金属層又は半導体層22層の厚みを50nmとし、589.3nmの単色光を照射した際に、照射光と同程度以上の近接場(増強電場)が、検出板24の表面から検出板24の厚み方向に沿って500nm離れた位置にまで染み出すことが可能な距離を、最適な誘電体層23の厚みにおいて計算した。近接場(増強電場)の強度が照射光の強度と同じ強度にまで減衰する検出板24表面からの距離と入射角の臨界角からの角度との関係を図5に示す。 As one of typical waveguide mode excitation configurations, the light transmissive substrate 21 is made of SiO 2 glass (refractive index 1.458, extinction coefficient 0), and a metal layer or semiconductor layer 22 laminated thereon is formed. A laminated structure in which the Si layer (refractive index 3.959, extinction coefficient 0.022) and the dielectric layer 23 are SiO 2 layers (refractive index 1.458, extinction coefficient 0), metal layer or semiconductor layer 22 In the laminated structure in which the SiGe layer (refractive index 4.052, extinction coefficient 0.061) and the dielectric layer 23 is the SiO 2 layer (refractive index 1.466, extinction coefficient 0), a metal layer or a semiconductor layer When the 22 layers have a thickness of 50 nm and are irradiated with a monochromatic light of 589.3 nm, a near field (enhanced electric field) equal to or higher than that of the irradiated light extends from the surface of the detection plate 24 along the thickness direction of the detection plate 24. Distance that can bleed out to a position 500 nm away It was calculated in the thickness optimal dielectric layer 23. FIG. 5 shows the relationship between the distance from the surface of the detection plate 24 where the intensity of the near field (enhanced electric field) attenuates to the same intensity as the intensity of the irradiation light and the angle from the critical angle of the incident angle.

該図5に示すように、入射角が臨界角θに近づく程、つまり臨界角θからの角度が0に近づく程、長い染み出し距離の前記近接場(増強電場)の形成が可能であり、その結果、図2及び図3における近接場fの領域をより遠方にまで広げることが可能となり、より検出板24から離れた位置に生じたゲル粒子まで観測することが可能となる。
一方、臨界角θより7度大きい角度である角度θ以下の角度では、500nm先まで入射光以上の強度の電場が染み出し得る。
したがって、前記光照射部は、検出板24の裏面に対し、臨界角θ以上、臨界角θより7度大きい角度θ以下の角度で光Lを照射することが好ましい。
As shown in figure 5, as the incident angle approaches the critical angle theta 1, i.e. larger the angle from the critical angle theta 1 approaches 0, it can form a long exudation distance the near field (enhanced electric field) is As a result, the region of the near field f in FIGS. 2 and 3 can be extended farther, and the gel particles generated at a position farther from the detection plate 24 can be observed.
On the other hand, at an angle θ 2 or less, which is 7 degrees larger than the critical angle θ 1, an electric field with an intensity equal to or higher than incident light can ooze up to 500 nm ahead.
Accordingly, the light irradiation unit with respect to the rear surface of the detection plate 24, the critical angle theta 1 or more, it is preferable to irradiate light L at an angle than the critical angle theta 1 7 ° greater angle theta 2 below.

(実施例1)
図4に示すゲル状物質検出装置20の構成にしたがって、実施例に係るゲル状物質検出装置を製造した。具体的には、光透過性基板21を厚み0.75mmのシリカガラス基板とし、金属層又は半導体層22を厚み25nmのSi層とし、誘電体層23を厚み360nmのSiO層として検出板24を構成し、これを台形のプリズム11上に設置した。また、光源5として白色光源を用い、出射端にコリメートレンズを装着した600μmコア径の光ファイバにより光をプリズム11へ導入し、出射端とプリズムとの間に設置した偏光フィルタによりS偏光が検出板24に入射されるよう調整した。検出部6として10倍の対物レンズと冷却CMOSカメラとを備えた光学顕微鏡を用いた。なお、カメラのシャッター時間は100msである。
検出板24の裏面に照射される光Lの入射角度は、67.6°に設定した。なお、この光学系における臨界角θは、66.2°である。
また、この光学系では、検出板24から反射された光Lの反射スペクトルを観察し、波長650nm前後で前記導波モードが励起されていることを確認した。
Example 1
According to the configuration of the gel-like substance detection device 20 shown in FIG. 4, the gel-like substance detection device according to the example was manufactured. Specifically, the light transmissive substrate 21 is a 0.75 mm thick silica glass substrate, the metal layer or the semiconductor layer 22 is a 25 nm thick Si layer, and the dielectric layer 23 is a 360 nm thick SiO 2 layer. This was installed on a trapezoidal prism 11. Further, a white light source is used as the light source 5 and light is introduced into the prism 11 by an optical fiber having a core diameter of 600 μm with a collimating lens attached to the exit end, and S-polarized light is detected by a polarization filter disposed between the exit end and the prism. Adjustment was made so as to be incident on the plate 24. An optical microscope provided with a 10 × objective lens and a cooled CMOS camera was used as the detection unit 6. Note that the shutter time of the camera is 100 ms.
The incident angle of the light L applied to the back surface of the detection plate 24 was set to 67.6 °. The critical angle θ 1 in this optical system is 66.2 °.
In this optical system, the reflection spectrum of the light L reflected from the detection plate 24 was observed, and it was confirmed that the waveguide mode was excited at a wavelength of about 650 nm.

次に実施例に係るゲル状物質検出装置を用いて、次の通り、実施例1におけるゲル状物質検出試験を行った。
先ず、検出板24の表面に、LAL試薬(生化学工業社製、PYROTELL)とエンドトキシン標準液との混合溶液3を混合直後に10μL滴下した(液体導入工程)。
次に、光源5から検出板24の裏面に光Lを照射した(光照射工程)。
次に、検出部6から検出板24表面上の検出領域の様子を2次元画像として取得した(検出工程)。
Next, using the gel-like substance detection device according to the example, the gel-like substance detection test in Example 1 was performed as follows.
First, 10 μL of a mixed solution 3 of an LAL reagent (Seikagaku Corporation, PYROTELL) and an endotoxin standard solution was dropped on the surface of the detection plate 24 immediately after mixing (liquid introduction step).
Next, the light L was irradiated from the light source 5 to the back surface of the detection plate 24 (light irradiation process).
Next, the state of the detection region on the surface of the detection plate 24 was acquired from the detection unit 6 as a two-dimensional image (detection step).

取得した前記2次元画像として、実施例1における観察開始時点の顕微鏡像を図6(a)に示す。
光Lは、検出板24により全反射され、検出部6には映らない。また、ゲル化反応開始直後であるため、検出板24の表面上に固形物が無く、散乱光Sも観測されない。
As the acquired two-dimensional image, a microscopic image at the start of observation in Example 1 is shown in FIG.
The light L is totally reflected by the detection plate 24 and is not reflected on the detection unit 6. Further, since it is immediately after the start of the gelation reaction, there is no solid matter on the surface of the detection plate 24, and no scattered light S is observed.

次に、取得した前記2次元画像として、実施例1における観察開始後60分経過時点の顕微鏡像を図6(b)に示す。
ゲル粒子から発せられる散乱光Sが光点として観測でき、また、ゲル粒子同士の間に網の目のように成長した筋状のゲル状物質から発せられる散乱光Sが網の目状の靄のような光模様として観測できる。
Next, as the acquired two-dimensional image, a microscopic image at the time when 60 minutes have elapsed after the start of observation in Example 1 is shown in FIG.
Scattered light S emitted from the gel particles can be observed as a light spot, and the scattered light S emitted from the streak-like gel-like substance grown like a mesh between the gel particles can be observed as a mesh-like wrinkle. It can be observed as a light pattern.

以上のように実施例1に係るゲル状物質検出装置によれば、ゲル状物質生成初期のゲル粒子及びその成長過程に関する情報を2次元画像として検出可能であり、粒子1つ1つの位置情報及びサイズ情報を含むゲル状物質情報をリアルタイムかつ高感度に検出できる。   As described above, according to the gel-like substance detection device according to the first embodiment, it is possible to detect information on gel particles at the initial stage of gel-like substance generation and the growth process thereof as a two-dimensional image, and position information for each particle and Gel-like substance information including size information can be detected in real time and with high sensitivity.

(比較例)
光源5からの光照射を止め、検出板24の表面側から別の光源にて検出板24の表面を照明して、検出部6で検出板24表面上の検出領域の様子を2次元画像として取得した。つまり、落射型顕微鏡と同様の構成とし、これにより2次元画像を取得した。
取得した前記2次元画像として、比較例における観察開始後60分経過時点の顕微鏡像を図6(c)に示す。なお、図6(c)における検出領域は、図6(b)における検出領域と同じ領域である。
図6(c)に示すように、比較例における観測では、図6(b)で観測できるゲル粒子の一部が観測できるものの、網の目状に成長したゲル状物質を観測できない。言い換えれば、本発明を適用することにより、光学顕微鏡では観察できない状態のゲルを観測することができている。
(Comparative example)
The light irradiation from the light source 5 is stopped, the surface of the detection plate 24 is illuminated from the surface side of the detection plate 24 with another light source, and the state of the detection region on the surface of the detection plate 24 is detected by the detection unit 6 as a two-dimensional image. I got it. That is, it was set as the structure similar to an episcopic type microscope, and the two-dimensional image was acquired by this.
As the acquired two-dimensional image, a microscopic image at the time when 60 minutes have elapsed after the start of observation in the comparative example is shown in FIG. Note that the detection region in FIG. 6C is the same region as the detection region in FIG.
As shown in FIG. 6 (c), in the observation in the comparative example, although some of the gel particles that can be observed in FIG. 6 (b) can be observed, the gel-like substance grown in the form of a mesh cannot be observed. In other words, by applying the present invention, a gel in a state that cannot be observed with an optical microscope can be observed.

(実施例2)
混合溶液3を、LAL試薬(生化学工業社製、PYROTELL)とエンドトキシン標準液との混合溶液から、ヒト正常血漿とトロンビン試薬(シスメックス社製、トロンボチェックFib)との混合溶液に変更したこと以外は、実施例1と同様にして、実施例2におけるゲル状物質検出試験を行った。
(Example 2)
Other than changing the mixed solution 3 from a mixed solution of LAL reagent (Seikagaku Corporation, PYROTELL) and endotoxin standard solution to a mixed solution of human normal plasma and thrombin reagent (Sysmex Corp., Thrombocheck Fib) In the same manner as in Example 1, the gel-like substance detection test in Example 2 was performed.

実施例2における観察開始時点の顕微鏡像を図7(a)に示す。
光Lは、検出板24により全反射され、検出部6には映らない。また、混合溶液の混合時点でゲル化反応が急速に始まっており、既に形成されたゲル粒子から発せられる散乱光を観測できる。
FIG. 7A shows a microscopic image at the observation start time in Example 2.
The light L is totally reflected by the detection plate 24 and is not reflected on the detection unit 6. In addition, the gelation reaction starts rapidly at the time of mixing the mixed solution, and scattered light emitted from the already formed gel particles can be observed.

次に、実施例2における観察開始後30秒経過時点の顕微鏡像を図7(b)に示す。
ゲル粒子の生じる散乱光が光点として観測でき、光点として観測できるゲル粒子の数も図7(a)と比べて増加している。
Next, FIG. 7B shows a microscope image when 30 seconds have elapsed after the start of observation in Example 2.
The scattered light generated by the gel particles can be observed as a light spot, and the number of gel particles that can be observed as the light spot is increased as compared with FIG.

次に、実施例2における観察開始後10分経過時点の顕微鏡像を図7(c)に示す。
ゲル粒子の生じる散乱光が光点として観測でき、光点として観測できるゲル粒子の数も図7(b)と比べて増加している。また、光点同士が細く糸のように連なっている領域がみられ、ゲル粒子の成長過程が新たなゲル粒子の生成と区別できる形で観測できている。これは2次元画像を取得することによる利点である。
Next, FIG. 7C shows a microscopic image at the time when 10 minutes have elapsed after the start of observation in Example 2.
Scattered light generated by the gel particles can be observed as a light spot, and the number of gel particles that can be observed as the light spot is increased as compared with FIG. In addition, a region where the light spots are thin and connected like a thread is observed, and the growth process of the gel particles can be observed in a form that can be distinguished from the generation of new gel particles. This is an advantage of acquiring a two-dimensional image.

1,20 ゲル状物質検出装置
2,24 検出板
3 混合溶液
4 カバーガラス
5 光源
6 検出部
11 プリズム
21 光透過性基板
22 金属層又は半導体層
23 誘電体層
p ゲル粒子
c ゲル状物質
f 近接場
L 光
S 散乱光
θ 臨界角
θ 角度

DESCRIPTION OF SYMBOLS 1,20 Gel-like substance detection apparatus 2,24 Detection board 3 Mixed solution 4 Cover glass 5 Light source 6 Detection part 11 Prism 21 Light transmissive substrate 22 Metal layer or semiconductor layer 23 Dielectric layer p Gel particle c Gel-like substance f Proximity Field L light S scattered light θ 1 critical angle θ 2 angle

Claims (14)

被検出物質を含む液体の試料及び前記被検出物質と反応してゲル状物質を生成する試薬が表面上に導入されるとともに裏面側から全反射条件で照射される光により前記表面上に近接場を形成可能な検出板が配され、かつ、導入された前記試料及び前記試薬が前記検出板の前記表面上に保持される液体保持部と、
前記全反射条件で前記検出板の前記裏面側から前記光を照射可能とされる光照射部と、前記検出板の前記表面側に配され、前記表面上の領域を検出領域とし前記光の照射に伴いゲル状物質から発せられる散乱光を検出可能とされる検出部と、
を有することを特徴とするゲル状物質検出装置。
A liquid sample containing a substance to be detected and a reagent that reacts with the substance to be detected to generate a gel-like substance are introduced onto the surface, and near-field on the surface by light irradiated under total reflection conditions from the back side. And a liquid holding unit in which the introduced sample and the reagent are held on the surface of the detection plate,
A light irradiator capable of irradiating the light from the back surface side of the detection plate under the total reflection condition, and a light irradiation portion disposed on the front surface side of the detection plate, with the region on the surface as a detection region. And a detection unit capable of detecting scattered light emitted from the gel material,
A gel-like substance detection device comprising:
検出部が、散乱光を含む検出領域の様子を2次元画像として取得可能とされる請求項1に記載のゲル状物質検出装置。   The gel-like substance detection device according to claim 1, wherein the detection unit can acquire the state of the detection region including scattered light as a two-dimensional image. 液体保持部が、試料及び試薬の導入部が形成されるとともに検出板と前記検出板の被覆部とで少なくとも前記検出板表面上の近接場形成領域を含む空間を画成する中空部で構成され、かつ、少なくとも前記検出板表面上の検出領域及び光検出部の間に配される部位が光透過性を有する請求項1から2のいずれかに記載のゲル状物質検出装置。   The liquid holding part is formed of a hollow part in which a sample and reagent introduction part is formed and a detection plate and a covering part of the detection plate define a space including at least a near-field forming region on the detection plate surface. And at least the site | part distribute | arranged between the detection area | region and light detection part on the said detection plate surface has a light transmittance, The gel-like substance detection apparatus in any one of Claim 1 to 2. 液体保持部が、試料及び試薬を攪拌可能な攪拌部を備える請求項1から3のいずれかに記載のゲル状物質検出装置。   The gel-like substance detection device according to claim 1, wherein the liquid holding unit includes a stirring unit capable of stirring the sample and the reagent. 液体保持部が、試料及び試薬の温度を調節する温度調節部を備える請求項1から4のいずれかに記載のゲル状物質検出装置。   The gel-like substance detection device according to claim 1, wherein the liquid holding unit includes a temperature adjusting unit that adjusts the temperature of the sample and the reagent. 検出板が、裏面から表面に向けて、光透過性基板と金属材料又は半導体材料で形成される金属層又は半導体層と光透過性誘電材料で形成される誘電体層とがこの順で積層されて構成される請求項1から5のいずれかに記載のゲル状物質検出装置。   The detection plate is laminated in this order from the back surface to the front surface, a light-transmitting substrate, a metal layer or semiconductor layer formed of a metal material or a semiconductor material, and a dielectric layer formed of a light-transmitting dielectric material. The gel-like substance detection device according to claim 1, which is configured as described above. 金属層又は半導体層が、Si層及び10モル%〜30モル%のGeを含むSiGe層のいずれかの半導体層で形成される請求項6に記載のゲル状物質検出装置。   The gel-like substance detection device according to claim 6, wherein the metal layer or the semiconductor layer is formed of any one of a Si layer and a SiGe layer containing 10 mol% to 30 mol% Ge. 誘電体層が、SiO層で形成される請求項6から7のいずれかに記載のゲル状物質検出装置。 The gel-like substance detection device according to claim 6, wherein the dielectric layer is formed of a SiO 2 layer. 検出板の厚み方向に対して傾斜する角度で表され、かつ、前記検出板が光を全反射する条件を律する最小の角度を臨界角としたときに、前記臨界角以上前記臨界角より7度大きい角度以下の角度で前記検出板が裏面側から前記光の照射を受ける位置に光照射部が配される請求項6から8のいずれかに記載のゲル状物質検出装置。   When the critical angle is represented by an angle inclined with respect to the thickness direction of the detection plate, and the detection plate defines the condition for total reflection of light, the critical angle is 7 degrees or more from the critical angle. The gel-like substance detection device according to any one of claims 6 to 8, wherein a light irradiation unit is arranged at a position where the detection plate receives the light irradiation from the back side at an angle of a large angle or less. 被検出物質を含む液体の試料及び前記被検出物質と反応してゲル状物質を生成する試薬が表面上に導入されるとともに裏面側から全反射条件で照射される光により前記表面上に近接場を形成可能な検出板が配され、かつ、導入された前記試料及び前記試薬が前記検出板の前記表面上に保持される液体保持部に対し、前記試料及び前記試薬を導入する液体導入工程と、
前記全反射条件で前記検出板の前記裏面側から前記光を照射する光照射工程と、前記表面上の領域を検出領域とし前記光の照射に伴いゲル状物質から発せられる散乱光を検出する検出工程と、
を含むことを特徴とするゲル状物質検出方法。
A liquid sample containing a substance to be detected and a reagent that reacts with the substance to be detected to generate a gel-like substance are introduced onto the surface, and near-field on the surface by light irradiated under total reflection conditions from the back side. A liquid introducing step of introducing the sample and the reagent into a liquid holding portion in which the detection plate capable of forming a liquid is disposed and the introduced sample and the reagent are held on the surface of the detection plate; ,
A light irradiating step of irradiating the light from the back side of the detection plate under the total reflection condition, and a detection for detecting scattered light emitted from the gel-like substance upon irradiation of the light with the region on the surface as a detection region; Process,
A gel-like substance detection method comprising:
検出工程が、散乱光を含む検出領域の様子を2次元画像として取得する請求項10に記載のゲル状物質検出方法。   The gel-like substance detection method according to claim 10, wherein the detection step acquires the state of the detection region including scattered light as a two-dimensional image. 検出工程が、複数の2次元画像を経時的に取得する工程である請求項11に記載のゲル状物質検出方法。   The gel-like substance detection method according to claim 11, wherein the detection step is a step of acquiring a plurality of two-dimensional images over time. 裏面から表面に向けて、光透過性基板と金属材料又は半導体材料で形成される金属層又は半導体層と光透過性誘電材料で形成される誘電体層とがこの順で積層されて構成される検出板を用いる請求項10から12のいずれかに記載のゲル状物質検出方法。   From the back surface to the front surface, a light transmissive substrate, a metal layer or semiconductor layer formed of a metal material or a semiconductor material, and a dielectric layer formed of a light transmissive dielectric material are laminated in this order. The method for detecting a gel substance according to any one of claims 10 to 12, wherein a detection plate is used. 光照射工程が、検出板の厚み方向に対して傾斜する角度で表され、かつ、前記検出板が光を全反射する条件を律する最小の角度を臨界角としたときに、前記臨界角以上前記臨界角より7度大きい角度以下の角度で前記検出板の裏面側に対し前記光を照射する工程である請求項13に記載のゲル状物質検出方法。   When the light irradiation step is represented by an angle inclined with respect to the thickness direction of the detection plate, and the minimum angle that governs the condition that the detection plate totally reflects light is a critical angle, the critical angle is equal to or greater than the critical angle. The gel-like substance detection method according to claim 13, which is a step of irradiating the back surface of the detection plate with the light at an angle of 7 degrees or more larger than a critical angle.
JP2016070375A 2016-03-31 2016-03-31 Gel-like material detector and gel-like material detection method Pending JP2017181355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016070375A JP2017181355A (en) 2016-03-31 2016-03-31 Gel-like material detector and gel-like material detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016070375A JP2017181355A (en) 2016-03-31 2016-03-31 Gel-like material detector and gel-like material detection method

Publications (1)

Publication Number Publication Date
JP2017181355A true JP2017181355A (en) 2017-10-05

Family

ID=60004475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016070375A Pending JP2017181355A (en) 2016-03-31 2016-03-31 Gel-like material detector and gel-like material detection method

Country Status (1)

Country Link
JP (1) JP2017181355A (en)

Similar Documents

Publication Publication Date Title
JP4414953B2 (en) Sample analysis using anti-resonant waveguide sensors
JP3816072B2 (en) Optical waveguide sensor and measuring device using the same
US9041931B2 (en) Substrate analysis using surface acoustic wave metrology
US20200003688A1 (en) Surface Plasmon Resonance Fluorescence Analysis Device And Surface Plasmon Resonance Fluorescence Analysis Method
US20120176623A1 (en) Apparatus and method for measuring characteristics of multi-layered thin films
US11366060B2 (en) Apparatus for detecting fluorescent light emitted from a sample, a biosensor system, and a detector for detecting supercritical angle fluorescent light
US20120322166A1 (en) Fluorescence detecting apparatus, sample cell for detecting fluorescence, and fluorescence detecting method
US20220113254A1 (en) An apparatus and method for detecting photoluminescent light emitted from a sample
JP5356804B2 (en) Raman scattered light measurement system
JP2017181355A (en) Gel-like material detector and gel-like material detection method
JP2009192259A (en) Sensing device
JP5238820B2 (en) Microelectronic sensor device
US20220034803A1 (en) Optical multimeter
JP4173746B2 (en) measuring device
WO2020036014A1 (en) Light detection device and light detection system
JP2011112564A (en) Optical waveguide type biochemical sensor chip
JP2010091428A (en) Scanning optical system
KR101036619B1 (en) Bio-chip measuring system and method within evanescent wave of prism with specific transmittances
JP6703729B2 (en) Near-field enhancement chip and target substance detection device
WO2016152707A1 (en) Measuring method, measuring device and measuring chip
WO2019049817A1 (en) Sensor chip, target substance detection device, and target substance detection method
JP2002357544A (en) Measuring apparatus
JP2007192841A (en) Measurement method and instrument utilizing total attenuated reflection
JP6114097B2 (en) Surface plasmon enhanced fluorescence measurement device
Brolo et al. Development of plasmonic substrates for biosensing